NetBSD/sys/dev/tc/asc.c
mhitch 8adf8abfea Enable another error message before the driver reboots the machine. It was
not being printed if not compiled with DEBUG.  Now all situtiations where
the driver gives up should display a message before the reboot.
1998-03-24 20:49:22 +00:00

2127 lines
55 KiB
C

/* $NetBSD: asc.c,v 1.44 1998/03/24 20:49:22 mhitch Exp $ */
/*-
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Ralph Campbell and Rick Macklem.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)asc.c 8.3 (Berkeley) 7/3/94
*/
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* HISTORY
* Log: scsi_53C94_hdw.c,v
* Revision 2.5 91/02/05 17:45:07 mrt
* Added author notices
* [91/02/04 11:18:43 mrt]
*
* Changed to use new Mach copyright
* [91/02/02 12:17:20 mrt]
*
* Revision 2.4 91/01/08 15:48:24 rpd
* Added continuation argument to thread_block.
* [90/12/27 rpd]
*
* Revision 2.3 90/12/05 23:34:48 af
* Recovered from pmax merge.. and from the destruction of a disk.
* [90/12/03 23:40:40 af]
*
* Revision 2.1.1.1 90/11/01 03:39:09 af
* Created, from the DEC specs:
* "PMAZ-AA TURBOchannel SCSI Module Functional Specification"
* Workstation Systems Engineering, Palo Alto, CA. Aug 27, 1990.
* And from the NCR data sheets
* "NCR 53C94, 53C95, 53C96 Advances SCSI Controller"
* [90/09/03 af]
*/
/*
* File: scsi_53C94_hdw.h
* Author: Alessandro Forin, Carnegie Mellon University
* Date: 9/90
*
* Bottom layer of the SCSI driver: chip-dependent functions
*
* This file contains the code that is specific to the NCR 53C94
* SCSI chip (Host Bus Adapter in SCSI parlance): probing, start
* operation, and interrupt routine.
*/
/*
* This layer works based on small simple 'scripts' that are installed
* at the start of the command and drive the chip to completion.
* The idea comes from the specs of the NCR 53C700 'script' processor.
*
* There are various reasons for this, mainly
* - Performance: identify the common (successful) path, and follow it;
* at interrupt time no code is needed to find the current status
* - Code size: it should be easy to compact common operations
* - Adaptability: the code skeleton should adapt to different chips without
* terrible complications.
* - Error handling: and it is easy to modify the actions performed
* by the scripts to cope with strange but well identified sequences
*
*/
#include <asc.h>
#if NASC > 0
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/dkstat.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/reboot.h>
#include <dev/tc/tcvar.h>
#include <dev/tc/ioasicvar.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <machine/cpu.h>
#include <machine/autoconf.h>
#include <machine/bus.h>
#include <pmax/dev/device.h>
#include <pmax/dev/scsi.h>
#include <pmax/dev/ascreg.h>
#include <pmax/pmax/asic.h>
#include <pmax/pmax/kmin.h>
/*#define readback(a) { register int foo; wbflush(); foo = (a); }*/
#define readback(a) { register int foo; foo = (a); }
/*
* In 4ns ticks.
*/
int asc_to_scsi_period[] = {
32,
33,
34,
35,
5,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
};
/*
* Debugging log of SCSI operations.
*/
#ifdef DEBUG
int asc_debug = 1;
int asc_debug_cmd;
int asc_debug_bn;
int asc_debug_sz;
#define NLOG 32
struct asc_log {
u_int status;
u_char state;
u_char msg;
int target;
int resid;
} asc_log[NLOG], *asc_logp = asc_log;
#define PACK(unit, status, ss, ir) \
((unit << 24) | (status << 16) | (ss << 8) | ir)
void asc_DumpLog __P((char *str));
#endif
/*
* Script, scsi state, and device softc structure declarations.
* script pointers occur in both scsi state and the softc,
* so they are defined first.
*/
/*
* Scripts are entries in a state machine table.
* A script has four parts: a pre-condition, an action, a command to the chip,
* and an index into asc_scripts for the next state. The first triggers error
* handling if not satisfied and in our case it is formed by the
* values of the interrupt register and status register, this
* basically captures the phase of the bus and the TC and BS
* bits. The action part is just a function pointer, and the
* command is what the 53C94 should be told to do at the end
* of the action processing. This command is only issued and the
* script proceeds if the action routine returns TRUE.
* See asc_intr() for how and where this is all done.
*/
struct asc_softc;
typedef struct script {
int condition; /* expected state at interrupt time */
int (*action) /* extra operations */
__P((register struct asc_softc *asc, register int status,
register int ss, register int ir));
int command; /* command to the chip */
struct script *next; /* index into asc_scripts for next state */
} script_t;
/*
* script definitions
*/
/* Matching on the condition value */
#define SCRIPT_MATCH(ir, csr) ((ir) | (((csr) & 0x67) << 8))
/*
* A typedef for a script function, to use in forward declarations.
*/
typedef int
script_fn_t __P((register struct asc_softc *asc, register int status,
register int ss, register int ir));
/* forward decls of script actions */
static script_fn_t script_nop; /* when nothing needed */
static script_fn_t asc_end; /* all come to an end */
static script_fn_t asc_get_status; /* get status from target */
static script_fn_t asc_dma_in; /* start reading data from target */
static script_fn_t asc_last_dma_in; /* cleanup after all data is read */
static script_fn_t asc_resume_in; /* resume data in after a message */
static script_fn_t asc_resume_dma_in; /* resume DMA after a disconnect */
static script_fn_t asc_dma_out; /* send data to target via dma */
static script_fn_t asc_last_dma_out; /* cleanup after all data is written */
static script_fn_t asc_resume_out; /* resume data out after a message */
static script_fn_t asc_resume_dma_out; /* resume DMA after a disconnect */
static script_fn_t asc_sendsync; /* negotiate sync xfer */
static script_fn_t asc_replysync; /* negotiate sync xfer */
static script_fn_t asc_msg_in; /* process a message byte */
static script_fn_t asc_disconnect; /* process an expected disconnect */
/* Define the index into asc_scripts for various state transitions */
#define SCRIPT_DATA_IN 0
#define SCRIPT_CONTINUE_IN 2
#define SCRIPT_DATA_OUT 3
#define SCRIPT_CONTINUE_OUT 5
#define SCRIPT_SIMPLE 6
#define SCRIPT_GET_STATUS 7
#define SCRIPT_DONE 8
#define SCRIPT_MSG_IN 9
#define SCRIPT_REPLY_SYNC 11
#define SCRIPT_TRY_SYNC 12
#define SCRIPT_DISCONNECT 15
#define SCRIPT_RESEL 16
#define SCRIPT_RESUME_IN 17
#define SCRIPT_RESUME_DMA_IN 18
#define SCRIPT_RESUME_OUT 19
#define SCRIPT_RESUME_DMA_OUT 20
#define SCRIPT_RESUME_NO_DATA 21
/*
* Scripts
*/
script_t asc_scripts[] = {
/* start data in */
{SCRIPT_MATCH(ASC_INT_FC | ASC_INT_BS, SCSI_PHASE_DATAI), /* 0 */
asc_dma_in, ASC_CMD_XFER_INFO | ASC_CMD_DMA,
&asc_scripts[SCRIPT_DATA_IN + 1]},
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_STATUS), /* 1 */
asc_last_dma_in, ASC_CMD_I_COMPLETE,
&asc_scripts[SCRIPT_GET_STATUS]},
/* continue data in after a chunk is finished */
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_DATAI), /* 2 */
asc_dma_in, ASC_CMD_XFER_INFO | ASC_CMD_DMA,
&asc_scripts[SCRIPT_DATA_IN + 1]},
/* start data out */
{SCRIPT_MATCH(ASC_INT_FC | ASC_INT_BS, SCSI_PHASE_DATAO), /* 3 */
asc_dma_out, ASC_CMD_XFER_INFO | ASC_CMD_DMA,
&asc_scripts[SCRIPT_DATA_OUT + 1]},
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_STATUS), /* 4 */
asc_last_dma_out, ASC_CMD_I_COMPLETE,
&asc_scripts[SCRIPT_GET_STATUS]},
/* continue data out after a chunk is finished */
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_DATAO), /* 5 */
asc_dma_out, ASC_CMD_XFER_INFO | ASC_CMD_DMA,
&asc_scripts[SCRIPT_DATA_OUT + 1]},
/* simple command with no data transfer */
{SCRIPT_MATCH(ASC_INT_FC | ASC_INT_BS, SCSI_PHASE_STATUS), /* 6 */
script_nop, ASC_CMD_I_COMPLETE,
&asc_scripts[SCRIPT_GET_STATUS]},
/* get status and finish command */
{SCRIPT_MATCH(ASC_INT_FC, SCSI_PHASE_MSG_IN), /* 7 */
asc_get_status, ASC_CMD_MSG_ACPT,
&asc_scripts[SCRIPT_DONE]},
{SCRIPT_MATCH(ASC_INT_DISC, 0), /* 8 */
asc_end, ASC_CMD_NOP,
&asc_scripts[SCRIPT_DONE]},
/* message in */
{SCRIPT_MATCH(ASC_INT_FC, SCSI_PHASE_MSG_IN), /* 9 */
asc_msg_in, ASC_CMD_MSG_ACPT,
&asc_scripts[SCRIPT_MSG_IN + 1]},
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_MSG_IN), /* 10 */
script_nop, ASC_CMD_XFER_INFO,
&asc_scripts[SCRIPT_MSG_IN]},
/* send synchonous negotiation reply */
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_MSG_OUT), /* 11 */
asc_replysync, ASC_CMD_XFER_INFO,
&asc_scripts[SCRIPT_REPLY_SYNC]},
/* try to negotiate synchonous transfer parameters */
{SCRIPT_MATCH(ASC_INT_FC | ASC_INT_BS, SCSI_PHASE_MSG_OUT), /* 12 */
asc_sendsync, ASC_CMD_XFER_INFO,
&asc_scripts[SCRIPT_TRY_SYNC + 1]},
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_MSG_IN), /* 13 */
script_nop, ASC_CMD_XFER_INFO,
&asc_scripts[SCRIPT_MSG_IN]},
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_COMMAND), /* 14 */
script_nop, ASC_CMD_XFER_INFO | ASC_CMD_DMA,
&asc_scripts[SCRIPT_RESUME_NO_DATA]},
/* handle a disconnect */
{SCRIPT_MATCH(ASC_INT_DISC, SCSI_PHASE_DATAO), /* 15 */
asc_disconnect, ASC_CMD_ENABLE_SEL,
&asc_scripts[SCRIPT_RESEL]},
/* reselect sequence: this is just a placeholder so match fails */
{SCRIPT_MATCH(0, SCSI_PHASE_MSG_IN), /* 16 */
script_nop, ASC_CMD_MSG_ACPT,
&asc_scripts[SCRIPT_RESEL]},
/* resume data in after a message */
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_DATAI), /* 17 */
asc_resume_in, ASC_CMD_XFER_INFO | ASC_CMD_DMA,
&asc_scripts[SCRIPT_DATA_IN + 1]},
/* resume partial DMA data in after a message */
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_DATAI), /* 18 */
asc_resume_dma_in, ASC_CMD_XFER_INFO | ASC_CMD_DMA,
&asc_scripts[SCRIPT_DATA_IN + 1]},
/* resume data out after a message */
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_DATAO), /* 19 */
asc_resume_out, ASC_CMD_XFER_INFO | ASC_CMD_DMA,
&asc_scripts[SCRIPT_DATA_OUT + 1]},
/* resume partial DMA data out after a message */
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_DATAO), /* 20 */
asc_resume_dma_out, ASC_CMD_XFER_INFO | ASC_CMD_DMA,
&asc_scripts[SCRIPT_DATA_OUT + 1]},
/* resume after a message when there is no more data */
{SCRIPT_MATCH(ASC_INT_BS, SCSI_PHASE_STATUS), /* 21 */
script_nop, ASC_CMD_I_COMPLETE,
&asc_scripts[SCRIPT_GET_STATUS]},
};
#include <dev/tc/ascvar.h>
/*
* Internal forward declarations.
*/
static void asc_reset __P((asc_softc_t asc, asc_regmap_t *regs));
static void asc_startcmd __P((asc_softc_t asc, int target));
static void asc_timeout __P((void *arg));
#ifdef USE_NEW_SCSI
/* Glue to the machine-independent scsi */
struct scsipi_adapter asc_switch = {
NULL, /* XXX - asc_scsi_cmd */
/*XXX*/ minphys, /* no max transfer size; DMA engine deals */
NULL,
NULL,
};
struct scsipi_device asc_dev = {
/*XXX*/ NULL, /* Use default error handler */
/*XXX*/ NULL, /* have a queue, served by this */
/*XXX*/ NULL, /* have no async handler */
/*XXX*/ NULL, /* Use default 'done' routine */
};
#endif
/*
* Definition of the controller for the old auto-configuration program.
*/
void asc_start __P((register ScsiCmd *scsicmd));
int asc_intr __P ((void *asc));
struct pmax_driver ascdriver = {
"asc", NULL, asc_start, 0, asc_intr,
};
void asc_minphys __P((struct buf *bp));
extern struct cfdriver asc_cd;
/*
* bus-parent shared attach function
*/
void
ascattach(asc, bus_speed)
register asc_softc_t asc;
int bus_speed;
{
register asc_regmap_t *regs;
int id, s;
int unit;
unit = asc->sc_dev.dv_unit;
/*
* Set up machine dependencies.
* (1) timing based on turbochannel frequency
*/
/* dma setup done in parent-specific attach code */
/*
* Now for timing. The 3max has a 25Mhz tb whereas the 3min and
* maxine are 12.5Mhz.
*/
switch (bus_speed) {
case ASC_SPEED_25_MHZ:
asc->min_period = ASC_MIN_PERIOD25;
asc->max_period = ASC_MAX_PERIOD25;
asc->ccf = ASC_CCF(25);
asc->timeout_250 = ASC_TIMEOUT_250(25, asc->ccf);
asc->tb_ticks = 10;
break;
case ASC_SPEED_12_5_MHZ:
default:
asc->min_period = ASC_MIN_PERIOD12;
asc->max_period = ASC_MAX_PERIOD12;
asc->ccf = ASC_CCF(13);
asc->timeout_250 = ASC_TIMEOUT_250(13, asc->ccf);
asc->tb_ticks = 20;
break;
};
asc->state = ASC_STATE_IDLE;
asc->target = -1;
regs = asc->regs;
/*
* Reset chip, fully. Note that interrupts are already enabled.
*/
s = splbio();
/* preserve our ID for now */
asc->sc_id = regs->asc_cnfg1 & ASC_CNFG1_MY_BUS_ID;
asc->myidmask = ~(1 << asc->sc_id);
asc_reset(asc, regs);
/*
* Our SCSI id on the bus.
* The user can set this via the prom on 3maxen/pmaxen.
* If this changes it is easy to fix: make a default that
* can be changed as boot arg.
*/
#ifdef unneeded
regs->asc_cnfg1 = (regs->asc_cnfg1 & ~ASC_CNFG1_MY_BUS_ID) |
(scsi_initiator_id[unit] & 0x7);
asc->sc_id = regs->asc_cnfg1 & ASC_CNFG1_MY_BUS_ID;
#endif
id = asc->sc_id;
splx(s);
/* Hack for old-sytle SCSI-device probe */
(void) pmax_add_scsi(&ascdriver, unit);
printf(": target %d\n", id);
#ifdef USE_NEW_SCSI
/*
* fill in the prototype scsi_link.
*/
asc->sc_link.scsipi_scsi.channel = SCSI_CHANNEL_ONLY_ONE;
asc->sc_link.adapter_softc = asc;
asc->sc_link.scsipi_scsi.adapter_target = asc->sc_id;
asc->sc_link.adapter = &asc_switch;
asc->sc_link.device = &asc_dev;
asc->sc_link.openings = 2;
asc->sc_link.scsipi_scsi.max_target = 7;
asc->sc_link.type = BUS_SCSI;
/*
* Now try to attach all the sub-devices.
*/
config_found(self, &asc->sc_link, scsiprint);
#endif /* USE_NEW_SCSI */
}
/*
* Per Fogelstrom's SCSI Driver breaks down request transfer size.
*/
void
asc_minphys(bp)
struct buf *bp;
{
/*XXX*/
}
/*
* Start activity on a SCSI device.
* We maintain information on each device separately since devices can
* connect/disconnect during an operation.
*/
void
asc_start(scsicmd)
register ScsiCmd *scsicmd; /* command to start */
{
register struct pmax_scsi_device *sdp = scsicmd->sd;
register asc_softc_t asc = asc_cd.cd_devs[sdp->sd_ctlr];
int s;
s = splbio();
/*
* Check if another command is already in progress.
* We may have to change this if we allow SCSI devices with
* separate LUNs.
*/
if (asc->cmd[sdp->sd_drive]) {
printf("asc %d: device %s busy at start\n",
sdp->sd_ctlr, /*XXX*/
sdp->sd_driver->d_name);
(*sdp->sd_driver->d_done)(scsicmd->unit, EBUSY,
scsicmd->buflen, 0);
splx(s);
}
asc->cmd[sdp->sd_drive] = scsicmd;
/*
* Kludge: use a 60 second timeout if data is being transfered,
* otherwise use a 30 minute timeout.
*/
timeout(asc_timeout, scsicmd, hz * (scsicmd->buflen == 0 ?
1800 : 60));
asc_startcmd(asc, sdp->sd_drive);
splx(s);
}
#ifdef USE_NEW_SCSI
int
asc_poll(asc, target)
struct asc_softc *asc;
int target;
{
struct scsipi_xfer *scsicmd = asc->cmd[target];
int count = scsicmd->timeout * 10;
while(count) {
if(asc->regs->asc_status &ASC_CSR_INT) {
asc_intr(asc);
}
if(scsicmd->flags & ITSDONE)
break;
DELAY(5);
count--;
}
if(count == 0) {
scsicmd->error = XS_TIMEOUT;
asc_end(asc, 0, 0, 0);
}
return COMPLETE;
}
#endif /*USE_NEW_SCSI*/
static void
asc_reset(asc, regs)
asc_softc_t asc;
asc_regmap_t *regs;
{
/*
* Reset chip and wait till done
*/
regs->asc_cmd = ASC_CMD_RESET;
tc_syncbus(); DELAY(25);
/* spec says this is needed after reset */
regs->asc_cmd = ASC_CMD_NOP;
tc_syncbus(); DELAY(25);
/*
* Set up various chip parameters
*/
regs->asc_ccf = asc->ccf;
tc_syncbus(); DELAY(25);
regs->asc_sel_timo = asc->timeout_250;
/* restore our ID */
regs->asc_cnfg1 = asc->sc_id | ASC_CNFG1_P_CHECK;
/* include ASC_CNFG2_SCSI2 if you want to allow SCSI II commands */
regs->asc_cnfg2 = /* ASC_CNFG2_RFB | ASC_CNFG2_SCSI2 | */ ASC_CNFG2_EPL;
regs->asc_cnfg3 = 0;
/* zero anything else */
ASC_TC_PUT(regs, 0);
regs->asc_syn_p = asc->min_period;
regs->asc_syn_o = 0; /* async for now */
tc_mb();
}
/*
* Start a SCSI command on a target.
*/
static void
asc_startcmd(asc, target)
asc_softc_t asc;
int target;
{
register asc_regmap_t *regs;
register ScsiCmd *scsicmd;
register State *state;
int len;
/*
* See if another target is currently selected on this SCSI bus.
*/
if (asc->target >= 0)
return;
regs = asc->regs;
/*
* If a reselection is in progress, it is Ok to ignore it since
* the ASC will automatically cancel the command and flush
* the FIFO if the ASC is reselected before the command starts.
* If we try to use ASC_CMD_DISABLE_SEL, we can hang the system if
* a reselect occurs before starting the command.
*/
asc->state = ASC_STATE_BUSY;
asc->target = target;
/* cache some pointers */
scsicmd = asc->cmd[target];
state = &asc->st[target];
#ifdef DEBUG
if (asc_debug > 1) {
printf("asc_startcmd: %s target %d cmd %x len %d\n",
scsicmd->sd->sd_driver->d_name, target,
scsicmd->cmd[0], scsicmd->buflen);
}
#endif
/* Try to avoid reselect collisions */
if ((regs->asc_status & (ASC_CSR_INT|SCSI_PHASE_MSG_IN)) ==
(ASC_CSR_INT|SCSI_PHASE_MSG_IN)) {
/* printf("asc_startcmd: possible reselect in progress\n"); */
return;
}
/*
* Init the chip and target state.
*/
state->flags = state->flags & DID_SYNC;
state->error = 0;
state->script = (script_t *)0;
state->msg_out = SCSI_NO_OP;
len = scsicmd->cmdlen;
state->dmalen = len;
/* check for simple SCSI command with no data transfer */
if ((state->buflen = scsicmd->buflen) == 0) {
/* check for sync negotiation */
if ((scsicmd->flags & SCSICMD_USE_SYNC) &&
!(state->flags & DID_SYNC)) {
asc->script = &asc_scripts[SCRIPT_TRY_SYNC];
state->flags |= TRY_SYNC;
} else
asc->script = &asc_scripts[SCRIPT_SIMPLE];
state->buf = (char *)0;
} else if (scsicmd->flags & SCSICMD_DATA_TO_DEVICE) {
asc->script = &asc_scripts[SCRIPT_DATA_OUT];
state->buf = scsicmd->buf;
state->flags |= DMA_OUT;
} else {
asc->script = &asc_scripts[SCRIPT_DATA_IN];
state->buf = scsicmd->buf;
state->flags |= DMA_IN;
}
#ifdef DEBUG
asc_debug_cmd = scsicmd->cmd[0];
if (scsicmd->cmd[0] == SCSI_READ_EXT) {
asc_debug_bn = (scsicmd->cmd[2] << 24) |
(scsicmd->cmd[3] << 16) |
(scsicmd->cmd[4] << 8) |
scsicmd->cmd[5];
asc_debug_sz = (scsicmd->cmd[7] << 8) | scsicmd->cmd[8];
}
asc_logp->status = PACK(asc->sc_dev.dv_unit, 0, 0, asc_debug_cmd);
asc_logp->target = asc->target;
asc_logp->state = asc->script - asc_scripts;
asc_logp->msg = SCSI_DIS_REC_IDENTIFY;
asc_logp->resid = scsicmd->buflen;
if (++asc_logp >= &asc_log[NLOG])
asc_logp = asc_log;
#endif
/* preload the FIFO with the message to be sent */
regs->asc_fifo = SCSI_DIS_REC_IDENTIFY;
tc_mb();
/* initialize the DMA */
len = (*asc->dma_start)(asc, state, scsicmd->cmd, ASCDMA_WRITE,
len, 0);
ASC_TC_PUT(regs, len);
readback(regs->asc_cmd);
regs->asc_dbus_id = target;
readback(regs->asc_dbus_id);
regs->asc_syn_p = state->sync_period;
readback(regs->asc_syn_p);
regs->asc_syn_o = state->sync_offset;
readback(regs->asc_syn_o);
/* Try to avoid reselect collisions */
if ((regs->asc_status & (ASC_CSR_INT|SCSI_PHASE_MSG_IN)) ==
(ASC_CSR_INT|SCSI_PHASE_MSG_IN)) {
/* printf("asc_startcmd: reselect in progress (before select)\n");*/
return;
}
if (state->flags & TRY_SYNC)
regs->asc_cmd = len = ASC_CMD_SEL_ATN_STOP;
else
regs->asc_cmd = len = ASC_CMD_SEL_ATN | ASC_CMD_DMA;
readback(regs->asc_cmd);
/* Try to avoid reselect collisions */
if ((regs->asc_status & (ASC_CSR_INT|SCSI_PHASE_MSG_IN)) ==
(ASC_CSR_INT|SCSI_PHASE_MSG_IN)) {
/* printf("asc_startcmd: reselect in progress after select\n");*/
return;
} else {
/*
* Here's a potentially nasty but infrequent problem: a
* reselect may have occurred, but did not interrupt.
*/
if (regs->asc_cmd != len &&
regs->asc_cmd == (ASC_CMD_NOP|ASC_CMD_DMA)) {
if ((regs->asc_status & ASC_CSR_INT) == 0) {
delay(250);
if (regs->asc_status == SCSI_PHASE_MSG_IN) {
printf("asc_startcmd: reselect failed to interrupt?\n");
/* XXXX THIS NEEDS FIXING */
}
}
}
}
}
/*
* Interrupt routine
* Take interrupts from the chip
*
* Implementation:
* Move along the current command's script if
* all is well, invoke error handler if not.
*/
int
asc_intr(sc)
void *sc;
{
register asc_softc_t asc = (asc_softc_t) sc;
register asc_regmap_t *regs = asc->regs;
register State *state;
register script_t *scpt;
register int ss, ir, status;
register unsigned char cmd_was;
/* collect ephemeral information */
status = regs->asc_status;
again:
ss = regs->asc_ss;
cmd_was = regs->asc_cmd;
/* drop spurious interrupts */
if ((status & ASC_CSR_INT) == 0)
return (-1); /* XXX */
ir = regs->asc_intr; /* this resets the previous two: i.e.,*/
/* this re-latches CSR (and SSTEP) */
scpt = asc->script;
#ifdef DEBUG
asc_logp->status = PACK(asc->sc_dev.dv_unit, status, ss, ir);
asc_logp->target = (asc->state == ASC_STATE_BUSY) ? asc->target : -1;
asc_logp->state = scpt - asc_scripts;
asc_logp->msg = cmd_was;
asc_logp->resid = 0;
if (++asc_logp >= &asc_log[NLOG])
asc_logp = asc_log;
if (asc_debug > 2)
printf("asc_intr: status %x ss %x ir %x cond %d:%x\n",
status, ss, ir, scpt - asc_scripts, scpt->condition);
#endif
/* This must be done withing 250msec of disconnect */
if (ir & ASC_INT_DISC) {
regs->asc_cmd = ASC_CMD_ENABLE_SEL;
readback(regs->asc_cmd);
}
/* check the expected state */
if (SCRIPT_MATCH(ir, status) == scpt->condition) {
/*
* Perform the appropriate operation, then proceed.
*/
if ((*scpt->action)(asc, status, ss, ir)) {
regs->asc_cmd = scpt->command;
readback(regs->asc_cmd);
asc->script = scpt->next;
}
goto done;
}
/*
* Check for parity error.
* Hardware will automatically set ATN
* to request the device for a MSG_OUT phase.
*/
if (status & ASC_CSR_PE) {
printf("%s: SCSI device %d: incomming parity error seen\n",
asc->sc_dev.dv_xname, asc->target);
asc->st[asc->target].flags |= PARITY_ERR;
}
/*
* Check for gross error.
* Probably a bug in a device driver.
*/
if (status & ASC_CSR_GE) {
printf("%s: SCSI device %d: gross error\n",
asc->sc_dev.dv_xname, asc->target);
goto abort;
}
/* check for message in or out */
if ((ir & ~ASC_INT_FC) == ASC_INT_BS) {
register int len, fifo;
state = &asc->st[asc->target];
switch (ASC_PHASE(status)) {
case SCSI_PHASE_DATAI:
if ((asc->script - asc_scripts) == SCRIPT_GET_STATUS) {
/*
* From the Mach driver:
* After a reconnect and restart dma in, we
* seem to have gotten an interrupt even though
* the DMA is running. The Mach driver just
* ignores this interrupt.
*/
ASC_TC_GET(regs, len);
fifo = regs->asc_flags & ASC_FLAGS_FIFO_CNT;
printf("asc_intr: ignoring strange interrupt");
printf(" tc %d fifo residue %d\n", len, fifo);
goto done;
}
/* FALLTHROUGH */
case SCSI_PHASE_DATAO:
ASC_TC_GET(regs, len);
fifo = regs->asc_flags & ASC_FLAGS_FIFO_CNT;
printf("asc_intr: data overrun: buflen %d dmalen %d tc %d fifo %d\n",
state->buflen, state->dmalen, len, fifo);
goto abort;
case SCSI_PHASE_MSG_IN:
break;
case SCSI_PHASE_MSG_OUT:
/*
* Check for parity error.
* Hardware will automatically set ATN
* to request the device for a MSG_OUT phase.
*/
if (state->flags & PARITY_ERR) {
state->flags &= ~PARITY_ERR;
state->msg_out = SCSI_MESSAGE_PARITY_ERROR;
/* reset message in counter */
state->msglen = 0;
} else
state->msg_out = SCSI_NO_OP;
regs->asc_fifo = state->msg_out;
regs->asc_cmd = ASC_CMD_XFER_INFO;
readback(regs->asc_cmd);
goto done;
case SCSI_PHASE_STATUS:
/* probably an error in the SCSI command */
asc->script = &asc_scripts[SCRIPT_GET_STATUS];
regs->asc_cmd = ASC_CMD_I_COMPLETE;
readback(regs->asc_cmd);
goto done;
case SCSI_PHASE_COMMAND:
/*
* This seems to occur after the command is sent
* following sync negotiation. The device still
* wants more command data. The fifo appears to
* to still have the unsent data - but the 53C94
* signaled TC. If the fifo still contains data,
* transfer it, otherwise do a transfer pad. The
* target should then continue through the rest of
* the phases and complete normally.
*/
printf("asc_intr: tgt %d command phase TC zero",
asc->target);
if ((regs->asc_flags & ASC_FLAGS_FIFO_CNT) != 0) {
printf(" with non-empty fifo %d\n",
regs->asc_flags & ASC_FLAGS_FIFO_CNT);
regs->asc_cmd = ASC_CMD_XFER_INFO;
} else {
printf("; padding command\n");
ASC_TC_PUT(regs, 0xff);
regs->asc_cmd = ASC_CMD_XFER_PAD | ASC_CMD_DMA;
}
goto done;
default:
printf("asc_intr: target %d, unknown phase 0x%x\n",
asc->target, status);
goto abort;
}
if (state->script) {
printf("asc_intr: target %d, incomplete script %p\n",
asc->target, state->script);
goto abort;
}
/* check for DMA in progress */
ASC_TC_GET(regs, len);
fifo = regs->asc_flags & ASC_FLAGS_FIFO_CNT;
/* flush any data in the FIFO */
if (fifo) {
if (state->flags & DMA_OUT) {
#ifdef ASC_DIAGNOSTIC
printf("asc: DMA_OUT, fifo resid %d, len %d, flags 0x%x\n",
fifo, len, state->flags);
#endif /* ASC_DIAGNOSTIC */
len += fifo;
} else if (state->flags & DMA_IN) {
#ifdef ASC_DIAGNOSTIC
printf("asc_intr: IN: dmalen %d len %d fifo %d\n",
state->dmalen, len, fifo); /* XXX */
#endif /* ASC_DIAGNOSTIC */
} else
printf("asc_intr: dmalen %d len %d fifo %d\n",
state->dmalen, len, fifo); /* XXX */
regs->asc_cmd = ASC_CMD_FLUSH;
tc_mb();
readback(regs->asc_cmd);
DELAY(2);
}
if (len && (state->flags & DMA_IN_PROGRESS)) {
/* save number of bytes still to be sent or received */
state->dmaresid = len;
state->flags &= ~DMA_IN_PROGRESS;
ASC_TC_PUT(regs, 0);
#ifdef DEBUG
if (asc_logp == asc_log)
asc_log[NLOG - 1].resid = len;
else
asc_logp[-1].resid = len;
#endif
/* setup state to resume to */
if (state->flags & DMA_IN) {
/*
* Since the ASC_CNFG3_SRB bit of the
* cnfg3 register bit is not set,
* we just transferred an extra byte.
* Since we can't resume on an odd byte
* boundary, we copy the valid data out
* and resume DMA at the start address.
*/
if (len & 1) {
printf("asc_intr: msg in len %d (fifo %d)\n",
len, fifo); /* XXX */
len = state->dmalen - len;
goto do_in;
}
state->script =
&asc_scripts[SCRIPT_RESUME_DMA_IN];
state->flags |= DMA_RESUME;
} else if (state->flags & DMA_OUT) {
state->script =
&asc_scripts[SCRIPT_RESUME_DMA_OUT];
state->flags |= DMA_RESUME;
} else
state->script = asc->script;
} else if (state->flags & DMA_IN) {
if (len) {
printf("asc_intr: 1: bn %d len %d (fifo %d)\n",
asc_debug_bn, len, fifo); /* XXX */
goto abort;
}
/* setup state to resume to */
if (state->flags & DMA_IN_PROGRESS) {
len = state->dmalen;
state->flags &= ~DMA_IN_PROGRESS;
do_in:
state->dmalen = len; /* dma_end needs actual length */
(*asc->dma_end)(asc, state, ASCDMA_READ);
state->buf += len;
state->buflen -= len;
}
if (state->buflen)
state->script = (state->flags & DMA_RESUME) ?
&asc_scripts[SCRIPT_RESUME_DMA_IN] :
&asc_scripts[SCRIPT_RESUME_IN];
else
state->script =
&asc_scripts[SCRIPT_RESUME_NO_DATA];
} else if (state->flags & DMA_OUT) {
if (len) {
#ifdef DEBUG
printf("asc_intr: 2: len %d (fifo %d)\n", len,
fifo); /* XXX */
#endif
}
/*
* If this is the last chunk, the next expected
* state is to get status.
*/
if (state->flags & DMA_IN_PROGRESS) {
state->flags &= ~DMA_IN_PROGRESS;
(*asc->dma_end)(asc, state, ASCDMA_WRITE);
len = state->dmalen;
state->buf += len;
state->buflen -= len;
}
if (state->buflen)
state->script = (state->flags & DMA_RESUME) ?
&asc_scripts[SCRIPT_RESUME_DMA_OUT] :
&asc_scripts[SCRIPT_RESUME_OUT];
else
state->script =
&asc_scripts[SCRIPT_RESUME_NO_DATA];
} else if (asc->script == &asc_scripts[SCRIPT_SIMPLE])
state->script = &asc_scripts[SCRIPT_RESUME_NO_DATA];
else
state->script = asc->script;
/* setup to receive a message */
asc->script = &asc_scripts[SCRIPT_MSG_IN];
state->msglen = 0;
regs->asc_cmd = ASC_CMD_XFER_INFO;
readback(regs->asc_cmd);
goto done;
}
/* check for SCSI bus reset */
if (ir & ASC_INT_RESET) {
register int i;
printf("%s: SCSI bus reset!!\n", asc->sc_dev.dv_xname);
/* need to flush any pending commands */
for (i = 0; i < ASC_NCMD; i++) {
if (!asc->cmd[i])
continue;
asc->st[i].error = EIO;
asc_end(asc, 0, 0, 0);
}
/* rearbitrate synchronous offset */
for (i = 0; i < ASC_NCMD; i++) {
asc->st[i].sync_offset = 0;
asc->st[i].flags = 0;
}
asc->target = -1;
return 0 ; /* XXX ??? */
}
/* check for disconnect */
if (ir & ASC_INT_DISC) {
state = &asc->st[asc->target];
switch (asc->script - asc_scripts) {
case SCRIPT_DONE:
case SCRIPT_DISCONNECT:
/*
* Disconnects can happen normally when the
* command is complete with the phase being
* either SCSI_PHASE_DATAO or SCSI_PHASE_MSG_IN.
* The SCRIPT_MATCH() only checks for one phase
* so we can wind up here.
* Perform the appropriate operation, then proceed.
*/
if ((*scpt->action)(asc, status, ss, ir)) {
regs->asc_cmd = scpt->command;
readback(regs->asc_cmd);
asc->script = scpt->next;
}
goto done;
case SCRIPT_TRY_SYNC:
case SCRIPT_SIMPLE:
case SCRIPT_DATA_IN:
case SCRIPT_DATA_OUT: /* one of the starting scripts */
if (ASC_SS(ss) == 0) {
/* device did not respond */
if (regs->asc_flags & ASC_FLAGS_FIFO_CNT) {
regs->asc_cmd = ASC_CMD_FLUSH;
readback(regs->asc_cmd);
}
state->error = ENXIO;
asc_end(asc, status, ss, ir);
return 0 ; /* XXX ??? */
}
/* FALLTHROUGH */
default:
printf("%s: SCSI device %d: unexpected disconnect\n",
asc->sc_dev.dv_xname, asc->target);
#ifdef DEBUG
asc_DumpLog("asc_disc");
#endif
/*
* On rare occasions my RZ24 does a disconnect during
* data in phase and the following seems to keep it
* happy.
* XXX Should a scsi disk ever do this??
*/
asc->script = &asc_scripts[SCRIPT_RESEL];
asc->state = ASC_STATE_RESEL;
state->flags |= DISCONN;
regs->asc_cmd = ASC_CMD_ENABLE_SEL;
readback(regs->asc_cmd);
return 0 ; /* XXX ??? */
}
}
/* mhitch - debug - check select/reselect collision */
if ((ir & ASC_INT_ILL) && (regs->asc_cmd & ASC_CMD_SEL_ATN)) {
printf("asc_intr: Illegal command status %x ir %x\n",
status, ir);
/* Should process reselect? */
}
/* check for reselect */
if (ir & ASC_INT_RESEL) {
unsigned fifo, id, msg;
fifo = regs->asc_flags & ASC_FLAGS_FIFO_CNT;
if (fifo < 2) {
printf("asc_intr: target %d, reselect, fifo %d too small for msg\n",
asc->target, fifo);
goto abort;
}
/* read unencoded SCSI ID and convert to binary */
msg = regs->asc_fifo & asc->myidmask;
for (id = 0; (msg & 1) == 0; id++)
msg >>= 1;
/* read identify message */
msg = regs->asc_fifo;
#ifdef DEBUG
if (asc_logp == asc_log)
asc_log[NLOG - 1].msg = msg;
else
asc_logp[-1].msg = msg;
#endif
asc->state = ASC_STATE_BUSY;
asc->target = id;
state = &asc->st[id];
asc->script = state->script;
state->script = (script_t *)0;
if (!(state->flags & DISCONN)) {
printf("asc_intr: reselect tgt %d, flags 0x%x not disconnected\n",
asc->target, state->flags);
goto abort;
}
state->flags &= ~DISCONN;
regs->asc_syn_p = state->sync_period;
regs->asc_syn_o = state->sync_offset;
regs->asc_cmd = ASC_CMD_MSG_ACPT;
readback(regs->asc_cmd);
goto done;
}
/* check if we are being selected as a target */
if (ir & (ASC_INT_SEL | ASC_INT_SEL_ATN)) {
printf("asc_intr: host adaptor selected as target\n");
goto abort;
}
/*
* 'ir' must be just ASC_INT_FC.
* This is normal if canceling an ASC_ENABLE_SEL.
*/
done:
tc_mb();
/* watch out for HW race conditions and setup & hold time violations */
ir = regs->asc_status;
while (ir != (status = regs->asc_status))
ir = status;
if (status & ASC_CSR_INT)
goto again;
return 0 ; /* XXX ??? */
abort:
#ifdef DEBUG
asc_DumpLog("asc_intr");
#endif
#if 0
panic("asc_intr");
#else
cpu_reboot(RB_NOSYNC, NULL); /* XXX */
#endif
}
/*
* All the many little things that the interrupt
* routine might switch to.
*/
/* ARGSUSED */
static int
script_nop(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
return (1);
}
/* ARGSUSED */
static int
asc_get_status(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register asc_regmap_t *regs = asc->regs;
register int data;
/*
* Get the last two bytes in the FIFO.
*/
if ((data = regs->asc_flags & ASC_FLAGS_FIFO_CNT) != 2) {
printf("asc_get_status: cmdreg %x, fifo cnt %d\n",
regs->asc_cmd, data); /* XXX */
#ifdef DEBUG
asc_DumpLog("get_status"); /* XXX */
#endif
if (data < 2) {
asc->regs->asc_cmd = ASC_CMD_MSG_ACPT;
readback(asc->regs->asc_cmd);
return (0);
}
do {
data = regs->asc_fifo;
} while ((regs->asc_flags & ASC_FLAGS_FIFO_CNT) > 2);
}
/* save the status byte */
asc->st[asc->target].statusByte = data = regs->asc_fifo;
#ifdef DEBUG
if (asc_logp == asc_log)
asc_log[NLOG - 1].msg = data;
else
asc_logp[-1].msg = data;
#endif
/* get the (presumed) command_complete message */
if ((data = regs->asc_fifo) == SCSI_COMMAND_COMPLETE)
return (1);
#ifdef DEBUG
printf("asc_get_status: status %x cmd %x\n",
asc->st[asc->target].statusByte, data);
asc_DumpLog("asc_get_status");
#endif
return (0);
}
/* ARGSUSED */
static int
asc_end(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register ScsiCmd *scsicmd;
register State *state;
register int i, target;
asc->state = ASC_STATE_IDLE;
target = asc->target;
asc->target = -1;
scsicmd = asc->cmd[target];
asc->cmd[target] = (ScsiCmd *)0;
state = &asc->st[target];
untimeout(asc_timeout, scsicmd);
#ifdef DEBUG
if (asc_debug > 1) {
printf("asc_end: %s target %d cmd %x err %d resid %d\n",
scsicmd->sd->sd_driver->d_name, target,
scsicmd->cmd[0], state->error, state->buflen);
}
#endif
#ifdef DIAGNOSTIC
if (target < 0 || !scsicmd)
panic("asc_end");
#endif
/* look for disconnected devices */
for (i = 0; i < ASC_NCMD; i++) {
if (!asc->cmd[i] || !(asc->st[i].flags & DISCONN))
continue;
asc->regs->asc_cmd = ASC_CMD_ENABLE_SEL;
readback(asc->regs->asc_cmd);
asc->state = ASC_STATE_RESEL;
asc->script = &asc_scripts[SCRIPT_RESEL];
break;
}
#ifdef USE_NEW_SCSI
if(scsicmd->error == XS_NOERROR && !(state->flags & CHECK_SENSE)) {
if((state->statusByte & ST_MASK) == SCSI_CHECK) {
struct scsipi_sense *ss = (void *)&state->cmd;
/* Save return values */
scsicmd->resid = state->buflen;
scsicmd->status = state->statusByte;
/* Set up sense request command */
bzero(ss, sizeof(*ss));
ss->opcode = REQUEST_SENSE;
ss->byte2 = sc_link->lun << 5;
ss->length = sizeof(struct scsipi_sense_data);
state->cmdlen = sizeof(*ss);
state->buf = (vm_offset_t)&scsicmd->sense;
state->buflen = sizeof(struct scsipi_sense_data);
state->flags |= CHECK_SENSE;
MachFlushDCache(state->buf, state->buflen);
asc->cmd[target] = scsicmd;
asc_startcmd(asc, target);
return(0);
}
}
#endif /*USE_NEW_SCSI*/
/*
* Look for another device that is ready.
* May want to keep last one started and increment for fairness
* rather than always starting at zero.
*/
for (i = 0; i < ASC_NCMD; i++) {
/* don't restart a disconnected command */
if (!asc->cmd[i] || (asc->st[i].flags & DISCONN))
continue;
asc_startcmd(asc, i);
break;
}
/* signal device driver that the command is done */
(*scsicmd->sd->sd_driver->d_done)(scsicmd->unit, state->error,
state->buflen, state->statusByte);
return (0);
}
/* ARGSUSED */
static int
asc_dma_in(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register asc_regmap_t *regs = asc->regs;
register State *state = &asc->st[asc->target];
register int len;
/* check for previous chunk in buffer */
if (state->flags & DMA_IN_PROGRESS) {
/*
* Only count bytes that have been copied to memory.
* There may be some bytes in the FIFO if synchonous transfers
* are in progress.
*/
ASC_TC_GET(regs, len);
len = state->dmalen - len;
state->dmalen = len; /* dma_end may need actual length */
(*asc->dma_end)(asc, state, ASCDMA_READ);
state->buf += len;
state->buflen -= len;
}
if (!(state->flags & DMA_IN_PROGRESS) &&
(regs->asc_flags & ASC_FLAGS_FIFO_CNT) != 0) {
volatile int async_fifo_junk = 0;
/*
* If the target is asynchronous, the FIFO contains
* a byte of garbage. (see the Mach mk84 53c94 driver,
* where this occurs on tk-50s and exabytes.)
* It also occurs on asynch disks like SCSI-1 disks.
* Recover by reading the byte of junk from the fifo if,
* and only if, the target is async. If the target is
* synch, there is no junk, and reading the fifo
* deadlocks our SCSI state machine.
*/
if (state->sync_offset == 0)
async_fifo_junk = regs->asc_fifo;
#ifdef ASC_DIAGNOSTIC
printf("%s: asc_dma_in: FIFO count %x flags %x sync_offset %d",
asc->sc_dev.dv_xname, regs->asc_flags,
state->flags, state->sync_offset);
if (state->sync_offset != 0)
printf("\n");
else
printf(" unexpected fifo data %x\n", async_fifo_junk);
#ifdef DEBUG
asc_DumpLog("asc_dma_in");
#endif /* DEBUG */
#endif /* ASC_DIAGNOSTIC */
}
/* setup to start reading the next chunk */
len = state->buflen;
#ifdef DEBUG
if (asc_logp == asc_log)
asc_log[NLOG - 1].resid = len;
else
asc_logp[-1].resid = len;
#endif
len = (*asc->dma_start)(asc, state, state->buf, ASCDMA_READ, len, 0);
state->dmalen = len;
ASC_TC_PUT(regs, len);
#ifdef DEBUG
if (asc_debug > 2)
printf("asc_dma_in: buflen %d, len %d\n", state->buflen, len);
#endif
/* check for next chunk */
state->flags |= DMA_IN_PROGRESS;
if (len != state->buflen) {
regs->asc_cmd = ASC_CMD_XFER_INFO | ASC_CMD_DMA;
readback(regs->asc_cmd);
asc->script = &asc_scripts[SCRIPT_CONTINUE_IN];
return (0);
}
return (1);
}
/* ARGSUSED */
static int
asc_last_dma_in(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register asc_regmap_t *regs = asc->regs;
register State *state = &asc->st[asc->target];
register int len, fifo;
ASC_TC_GET(regs, len);
fifo = regs->asc_flags & ASC_FLAGS_FIFO_CNT;
#ifdef DEBUG
if (asc_debug > 2)
printf("asc_last_dma_in: buflen %d dmalen %d tc %d fifo %d\n",
state->buflen, state->dmalen, len, fifo);
#endif
if (fifo) {
/* device must be trying to send more than we expect */
regs->asc_cmd = ASC_CMD_FLUSH;
readback(regs->asc_cmd);
}
state->flags &= ~DMA_IN_PROGRESS;
len = state->dmalen - len;
state->dmalen = len; /* dma_end may need actual length */
(*asc->dma_end)(asc, state, ASCDMA_READ);
state->buflen -= len;
return (1);
}
/* ARGSUSED */
static int
asc_resume_in(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register asc_regmap_t *regs = asc->regs;
register State *state = &asc->st[asc->target];
register int len;
/* setup to start reading the next chunk */
len = state->buflen;
#ifdef DEBUG
if (asc_logp == asc_log)
asc_log[NLOG - 1].resid = len;
else
asc_logp[-1].resid = len;
#endif
len = (*asc->dma_start)(asc, state, state->buf, ASCDMA_READ, len, 0);
state->dmalen = len;
ASC_TC_PUT(regs, len);
#ifdef DEBUG
if (asc_debug > 2)
printf("asc_resume_in: buflen %d, len %d\n", state->buflen,
len);
#endif
/* check for next chunk */
state->flags |= DMA_IN_PROGRESS;
if (len != state->buflen) {
regs->asc_cmd = ASC_CMD_XFER_INFO | ASC_CMD_DMA;
readback(regs->asc_cmd);
asc->script = &asc_scripts[SCRIPT_CONTINUE_IN];
return (0);
}
return (1);
}
/* ARGSUSED */
static int
asc_resume_dma_in(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register asc_regmap_t *regs = asc->regs;
register State *state = &asc->st[asc->target];
register int len, off;
/* setup to finish reading the current chunk */
len = state->dmaresid;
off = state->dmalen - len;
if ((off & 1) && state->sync_offset) {
printf("asc_resume_dma_in: odd xfer dmalen %d len %d off %d\n",
state->dmalen, len, off); /* XXX */
regs->asc_res_fifo = state->buf[off];
}
#ifdef DEBUG
if (asc_logp == asc_log)
asc_log[NLOG - 1].resid = len;
else
asc_logp[-1].resid = len;
#endif
len = (*asc->dma_start)(asc, state, state->buf + off, ASCDMA_READ, len, off);
ASC_TC_PUT(regs, len);
#ifdef DEBUG
if (asc_debug > 2)
printf("asc_resume_dma_in: buflen %d dmalen %d len %d off %d\n",
state->dmalen, state->buflen, len, off);
#endif
/* check for next chunk */
state->flags |= DMA_IN_PROGRESS;
state->flags &= ~DMA_RESUME;
if (state->dmalen != state->buflen) {
regs->asc_cmd = ASC_CMD_XFER_INFO | ASC_CMD_DMA;
readback(regs->asc_cmd);
asc->script = &asc_scripts[SCRIPT_CONTINUE_IN];
return (0);
}
return (1);
}
/* ARGSUSED */
static int
asc_dma_out(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register asc_regmap_t *regs = asc->regs;
register State *state = &asc->st[asc->target];
register int len, fifo;
if (state->flags & DMA_IN_PROGRESS) {
/* check to be sure previous chunk was finished */
ASC_TC_GET(regs, len);
fifo = regs->asc_flags & ASC_FLAGS_FIFO_CNT;
if (len || fifo)
printf("asc_dma_out: buflen %d dmalen %d tc %d fifo %d\n",
state->buflen, state->dmalen, len, fifo); /* XXX */
len += fifo;
len = state->dmalen - len;
state->buf += len;
state->buflen -= len;
}
/*
* Flush the fifo - sometimes there seems to be something left
* in the fifo. Since the dma output has not been started,
* the fifo is supposed to be empty.
*/
if (regs->asc_flags & ASC_FLAGS_FIFO_CNT) {
while (regs->asc_flags & ASC_FLAGS_FIFO_CNT)
regs->asc_fifo;
}
/* setup for this chunk */
len = state->buflen;
#ifdef DEBUG
if (asc_logp == asc_log)
asc_log[NLOG - 1].resid = len;
else
asc_logp[-1].resid = len;
#endif
len = (*asc->dma_start)(asc, state, state->buf, ASCDMA_WRITE, len, 0);
state->dmalen = len;
ASC_TC_PUT(regs, len);
#ifdef DEBUG
if (asc_debug > 2)
printf("asc_dma_out: buflen %d, len %d\n", state->buflen, len);
#endif
/* check for next chunk */
state->flags |= DMA_IN_PROGRESS;
if (len != state->buflen) {
regs->asc_cmd = ASC_CMD_XFER_INFO | ASC_CMD_DMA;
readback(regs->asc_cmd);
asc->script = &asc_scripts[SCRIPT_CONTINUE_OUT];
return (0);
}
return (1);
}
/* ARGSUSED */
static int
asc_last_dma_out(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register asc_regmap_t *regs = asc->regs;
register State *state = &asc->st[asc->target];
register int len, fifo;
ASC_TC_GET(regs, len);
fifo = regs->asc_flags & ASC_FLAGS_FIFO_CNT;
#ifdef DEBUG
if (asc_debug > 2)
printf("asc_last_dma_out: buflen %d dmalen %d tc %d fifo %d\n",
state->buflen, state->dmalen, len, fifo);
#endif
if (fifo) {
len += fifo;
regs->asc_cmd = ASC_CMD_FLUSH;
readback(regs->asc_cmd);
printf("asc_last_dma_out: buflen %d dmalen %d tc %d fifo %d\n",
state->buflen, state->dmalen, len, fifo);
}
state->flags &= ~DMA_IN_PROGRESS;
len = state->dmalen - len;
state->buflen -= len;
return (1);
}
/* ARGSUSED */
static int
asc_resume_out(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register asc_regmap_t *regs = asc->regs;
register State *state = &asc->st[asc->target];
register int len;
/* setup for this chunk */
len = state->buflen;
#ifdef DEBUG
if (asc_logp == asc_log)
asc_log[NLOG - 1].resid = len;
else
asc_logp[-1].resid = len;
#endif
len = (*asc->dma_start)(asc, state, state->buf, ASCDMA_WRITE, len, 0);
state->dmalen = len;
ASC_TC_PUT(regs, len);
#ifdef DEBUG
if (asc_debug > 2)
printf("asc_resume_out: buflen %d, len %d\n", state->buflen,
len);
#endif
/* check for next chunk */
state->flags |= DMA_IN_PROGRESS;
if (len != state->buflen) {
regs->asc_cmd = ASC_CMD_XFER_INFO | ASC_CMD_DMA;
readback(regs->asc_cmd);
asc->script = &asc_scripts[SCRIPT_CONTINUE_OUT];
return (0);
}
return (1);
}
/* ARGSUSED */
static int
asc_resume_dma_out(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register asc_regmap_t *regs = asc->regs;
register State *state = &asc->st[asc->target];
register int len, off;
/* setup to finish writing this chunk */
len = state->dmaresid;
off = state->dmalen - len;
if (off & 1) {
printf("asc_resume_dma_out: odd xfer dmalen %d len %d off %d\n",
state->dmalen, len, off); /* XXX */
regs->asc_fifo = state->buf[off];
off++;
len--;
}
#ifdef DEBUG
if (asc_logp == asc_log)
asc_log[NLOG - 1].resid = len;
else
asc_logp[-1].resid = len;
#endif
/* XXX may result in redundant copy of data */
len = (*asc->dma_start)(asc, state, state->buf + off, ASCDMA_WRITE, len, off);
ASC_TC_PUT(regs, len);
#ifdef DEBUG
if (asc_debug > 2)
printf("asc_resume_dma_out: buflen %d dmalen %d len %d off %d\n",
state->dmalen, state->buflen, len, off);
#endif
/* check for next chunk */
state->flags |= DMA_IN_PROGRESS;
state->flags &= ~DMA_RESUME;
if (state->dmalen != state->buflen) {
regs->asc_cmd = ASC_CMD_XFER_INFO | ASC_CMD_DMA;
readback(regs->asc_cmd);
asc->script = &asc_scripts[SCRIPT_CONTINUE_OUT];
return (0);
}
return (1);
}
/* ARGSUSED */
static int
asc_sendsync(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register asc_regmap_t *regs = asc->regs;
register State *state = &asc->st[asc->target];
/* send the extended synchronous negotiation message */
regs->asc_fifo = SCSI_EXTENDED_MSG;
tc_mb();
regs->asc_fifo = 3;
tc_mb();
regs->asc_fifo = SCSI_SYNCHRONOUS_XFER;
tc_mb();
regs->asc_fifo = SCSI_MIN_PERIOD;
tc_mb();
regs->asc_fifo = ASC_MAX_OFFSET;
/* state to resume after we see the sync reply message */
state->script = asc->script + 2;
state->msglen = 0;
return (1);
}
/* ARGSUSED */
static int
asc_replysync(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register asc_regmap_t *regs = asc->regs;
register State *state = &asc->st[asc->target];
#ifdef DEBUG
if (asc_debug > 2)
printf("asc_replysync: %x %x\n",
asc_to_scsi_period[state->sync_period] * asc->tb_ticks,
state->sync_offset);
#endif
/* send synchronous transfer in response to a request */
regs->asc_fifo = SCSI_EXTENDED_MSG;
tc_mb();
regs->asc_fifo = 3;
tc_mb();
regs->asc_fifo = SCSI_SYNCHRONOUS_XFER;
tc_mb();
regs->asc_fifo = asc_to_scsi_period[state->sync_period] * asc->tb_ticks;
tc_mb();
regs->asc_fifo = state->sync_offset;
regs->asc_cmd = ASC_CMD_XFER_INFO;
readback(regs->asc_cmd);
/* return to the appropriate script */
if (!state->script) {
#ifdef DEBUG
asc_DumpLog("asc_replsync");
#endif
panic("asc_replysync");
}
asc->script = state->script;
state->script = (script_t *)0;
return (0);
}
/* ARGSUSED */
static int
asc_msg_in(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
register asc_regmap_t *regs = asc->regs;
register State *state = &asc->st[asc->target];
register int msg;
int i;
/* read one message byte */
msg = regs->asc_fifo;
#ifdef DEBUG
if (asc_logp == asc_log)
asc_log[NLOG - 1].msg = msg;
else
asc_logp[-1].msg = msg;
#endif
/* check for multi-byte message */
if (state->msglen != 0) {
/* first byte is the message length */
if (state->msglen < 0) {
state->msglen = msg;
return (1);
}
if (state->msgcnt >= state->msglen) {
printf("asc: msg_in too big, msgcnt %d msglen %d\n",
state->msgcnt, state->msglen);
goto abort;
}
state->msg_in[state->msgcnt++] = msg;
/* did we just read the last byte of the message? */
if (state->msgcnt != state->msglen)
return (1);
/* process an extended message */
#ifdef DEBUG
if (asc_debug > 2)
printf("asc_msg_in: msg %x %x %x\n",
state->msg_in[0],
state->msg_in[1],
state->msg_in[2]);
#endif
switch (state->msg_in[0]) {
case SCSI_SYNCHRONOUS_XFER:
state->flags |= DID_SYNC;
state->sync_offset = state->msg_in[2];
/* convert SCSI period to ASC period */
i = state->msg_in[1] / asc->tb_ticks;
if (i < asc->min_period)
i = asc->min_period;
else if (i >= asc->max_period) {
/* can't do sync transfer, period too long */
printf("%s: SCSI device %d: sync xfer period too long (%d)\n",
asc->sc_dev.dv_xname, asc->target, i);
i = asc->max_period;
state->sync_offset = 0;
}
if ((i * asc->tb_ticks) != state->msg_in[1])
i++;
state->sync_period = i & 0x1F;
/*
* If this is a request, check minimums and
* send back an acknowledge.
*/
if (!(state->flags & TRY_SYNC)) {
regs->asc_cmd = ASC_CMD_SET_ATN;
readback(regs->asc_cmd);
if (state->sync_period < asc->min_period)
state->sync_period =
asc->min_period;
if (state->sync_offset > ASC_MAX_OFFSET)
state->sync_offset =
ASC_MAX_OFFSET;
asc->script = &asc_scripts[SCRIPT_REPLY_SYNC];
regs->asc_syn_p = state->sync_period;
readback(regs->asc_syn_p);
regs->asc_syn_o = state->sync_offset;
readback(regs->asc_syn_o);
regs->asc_cmd = ASC_CMD_MSG_ACPT;
readback(regs->asc_cmd);
return (0);
}
regs->asc_syn_p = state->sync_period;
readback(regs->asc_syn_p);
regs->asc_syn_o = state->sync_offset;
readback(regs->asc_syn_o);
goto done;
default:
printf("%s: SCSI device %d: rejecting extended message 0x%x\n",
asc->sc_dev.dv_xname, asc->target,
state->msg_in[0]);
goto reject;
}
}
/* process first byte of a message */
#ifdef DEBUG
if (asc_debug > 2)
printf("asc_msg_in: msg %x\n", msg);
#endif
switch (msg) {
#if 0
case SCSI_MESSAGE_REJECT:
printf(" did not like SYNCH xfer "); /* XXX */
state->flags |= DID_SYNC;
regs->asc_cmd = ASC_CMD_MSG_ACPT;
readback(regs->asc_cmd);
status = asc_wait(regs, ASC_CSR_INT);
ir = regs->asc_intr;
/* some just break out here, some dont */
if (ASC_PHASE(status) == SCSI_PHASE_MSG_OUT) {
regs->asc_fifo = SCSI_ABORT;
regs->asc_cmd = ASC_CMD_XFER_INFO;
readback(regs->asc_cmd);
status = asc_wait(regs, ASC_CSR_INT);
ir = regs->asc_intr;
}
if (ir & ASC_INT_DISC) {
asc_end(asc, status, 0, ir);
return (0);
}
goto status;
#endif /*0*/
case SCSI_EXTENDED_MSG: /* read an extended message */
/* setup to read message length next */
state->msglen = -1;
state->msgcnt = 0;
return (1);
case SCSI_NO_OP:
break;
case SCSI_SAVE_DATA_POINTER:
/* expect another message */
return (1);
case SCSI_RESTORE_POINTERS:
/*
* Need to do the following if resuming synchonous data in
* on an odd byte boundary.
regs->asc_cnfg2 |= ASC_CNFG2_RFB;
*/
break;
case SCSI_DISCONNECT:
if (state->flags & DISCONN) {
printf("asc: disconnected target %d disconnecting again\n",
asc->target);
goto abort;
}
state->flags |= DISCONN;
regs->asc_cmd = ASC_CMD_MSG_ACPT;
readback(regs->asc_cmd);
asc->script = &asc_scripts[SCRIPT_DISCONNECT];
return (0);
default:
printf("%s: SCSI device %d: rejecting message 0x%x\n",
asc->sc_dev.dv_xname, asc->target, msg);
reject:
/* request a message out before acknowledging this message */
state->msg_out = SCSI_MESSAGE_REJECT;
regs->asc_cmd = ASC_CMD_SET_ATN;
readback(regs->asc_cmd);
}
done:
/* return to original script */
regs->asc_cmd = ASC_CMD_MSG_ACPT;
readback(regs->asc_cmd);
if (!state->script) {
printf("asc_msg_in: target %d, no script?\n", asc->target);
abort:
#ifdef DEBUG
asc_DumpLog("asc_msg_in");
#endif
panic("asc_msg_in");
}
asc->script = state->script;
state->script = (script_t *)0;
return (0);
}
/* ARGSUSED */
static int
asc_disconnect(asc, status, ss, ir)
register asc_softc_t asc;
register int status, ss, ir;
{
int i;
#ifdef DIAGNOSTIC
/* later Mach driver checks for late asych disconnect here. */
register State *state = &asc->st[asc->target];
if (!(state->flags & DISCONN)) {
printf("asc_disconnect: device %d: DISCONN not set!\n",
asc->target);
}
#endif /*DIAGNOSTIC*/
asc->target = -1;
asc->state = ASC_STATE_RESEL;
/*
* Look for another device that is ready.
* May want to keep last one started and increment for fairness
* rather than always starting at zero.
*/
for (i = 0; i < ASC_NCMD; i++) {
/* don't restart a disconnected command */
if (!asc->cmd[i] || asc->st[i].flags & DISCONN)
continue;
asc_startcmd(asc, i);
return (0);
}
return (1);
}
void
asc_timeout(arg)
void *arg;
{
int s = splbio();
ScsiCmd *scsicmd = (ScsiCmd *) arg;
printf("asc_timeout: cmd %p drive %d\n", scsicmd, scsicmd->sd->sd_drive);
#ifdef DEBUG
asc_DumpLog("asc_timeout");
#endif
#if 0
panic("asc_timeout");
#else
cpu_reboot(RB_NOSYNC, NULL); /* XXX */
#endif
splx(s);
}
#ifdef DEBUG
void
asc_DumpLog(str)
char *str;
{
register struct asc_log *lp;
register u_int status;
printf("asc: %s: cmd %x bn %d cnt %d\n", str, asc_debug_cmd,
asc_debug_bn, asc_debug_sz);
lp = asc_logp;
do {
status = lp->status;
printf("asc%d tgt %d status %x ss %x ir %x cond %d:%x msg %x resid %d\n",
status >> 24,
lp->target,
(status >> 16) & 0xFF,
(status >> 8) & 0xFF,
status & 0XFF,
lp->state,
asc_scripts[lp->state].condition,
lp->msg, lp->resid);
if (++lp >= &asc_log[NLOG])
lp = asc_log;
} while (lp != asc_logp);
}
#endif /*DEBUG*/
#endif /* NASC > 0 */