NetBSD/sys/compat/linux/common/linux_misc_notalpha.c

545 lines
14 KiB
C

/* $NetBSD: linux_misc_notalpha.c,v 1.77 2006/02/09 19:18:56 manu Exp $ */
/*-
* Copyright (c) 1995, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
* of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: linux_misc_notalpha.c,v 1.77 2006/02/09 19:18:56 manu Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <sys/sa.h>
#include <sys/syscallargs.h>
#include <compat/linux/common/linux_types.h>
#include <compat/linux/common/linux_fcntl.h>
#include <compat/linux/common/linux_misc.h>
#include <compat/linux/common/linux_mmap.h>
#include <compat/linux/common/linux_signal.h>
#include <compat/linux/common/linux_util.h>
#include <compat/linux/linux_syscallargs.h>
/*
* This file contains routines which are used
* on every linux architechture except the Alpha.
*/
/* Used on: arm, i386, m68k, mips, ppc, sparc, sparc64 */
/* Not used on: alpha */
#ifdef DEBUG_LINUX
#define DPRINTF(a) uprintf a
#else
#define DPRINTF(a)
#endif
#ifndef COMPAT_LINUX32
#if !defined(__m68k__)
static void bsd_to_linux_statfs64(const struct statvfs *,
struct linux_statfs64 *);
#endif
/*
* Alarm. This is a libc call which uses setitimer(2) in NetBSD.
* Fiddle with the timers to make it work.
*/
int
linux_sys_alarm(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_sys_alarm_args /* {
syscallarg(unsigned int) secs;
} */ *uap = v;
struct proc *p = l->l_proc;
int s;
struct itimerval *itp, it;
struct ptimer *ptp;
if (p->p_timers && p->p_timers->pts_timers[ITIMER_REAL])
itp = &p->p_timers->pts_timers[ITIMER_REAL]->pt_time;
else
itp = NULL;
s = splclock();
/*
* Clear any pending timer alarms.
*/
if (itp) {
callout_stop(&p->p_timers->pts_timers[ITIMER_REAL]->pt_ch);
timerclear(&itp->it_interval);
if (timerisset(&itp->it_value) &&
timercmp(&itp->it_value, &time, >))
timersub(&itp->it_value, &time, &itp->it_value);
/*
* Return how many seconds were left (rounded up)
*/
retval[0] = itp->it_value.tv_sec;
if (itp->it_value.tv_usec)
retval[0]++;
} else {
retval[0] = 0;
}
/*
* alarm(0) just resets the timer.
*/
if (SCARG(uap, secs) == 0) {
if (itp)
timerclear(&itp->it_value);
splx(s);
return 0;
}
/*
* Check the new alarm time for sanity, and set it.
*/
timerclear(&it.it_interval);
it.it_value.tv_sec = SCARG(uap, secs);
it.it_value.tv_usec = 0;
if (itimerfix(&it.it_value) || itimerfix(&it.it_interval)) {
splx(s);
return (EINVAL);
}
if (p->p_timers == NULL)
timers_alloc(p);
ptp = p->p_timers->pts_timers[ITIMER_REAL];
if (ptp == NULL) {
ptp = pool_get(&ptimer_pool, PR_WAITOK);
ptp->pt_ev.sigev_notify = SIGEV_SIGNAL;
ptp->pt_ev.sigev_signo = SIGALRM;
ptp->pt_overruns = 0;
ptp->pt_proc = p;
ptp->pt_type = CLOCK_REALTIME;
ptp->pt_entry = CLOCK_REALTIME;
callout_init(&ptp->pt_ch);
p->p_timers->pts_timers[ITIMER_REAL] = ptp;
}
if (timerisset(&it.it_value)) {
/*
* Don't need to check hzto() return value, here.
* callout_reset() does it for us.
*/
timeradd(&it.it_value, &time, &it.it_value);
callout_reset(&ptp->pt_ch, hzto(&it.it_value),
realtimerexpire, ptp);
}
ptp->pt_time = it;
splx(s);
return 0;
}
#endif /* !COMPAT_LINUX32 */
#if !defined(__amd64__) || defined(COMPAT_LINUX32)
int
linux_sys_nice(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_sys_nice_args /* {
syscallarg(int) incr;
} */ *uap = v;
struct sys_setpriority_args bsa;
SCARG(&bsa, which) = PRIO_PROCESS;
SCARG(&bsa, who) = 0;
SCARG(&bsa, prio) = SCARG(uap, incr);
return sys_setpriority(l, &bsa, retval);
}
#endif /* !__amd64__ || COMPAT_LINUX32 */
#ifndef COMPAT_LINUX32
#ifndef __amd64__
/*
* The old Linux readdir was only able to read one entry at a time,
* even though it had a 'count' argument. In fact, the emulation
* of the old call was better than the original, because it did handle
* the count arg properly. Don't bother with it anymore now, and use
* it to distinguish between old and new. The difference is that the
* newer one actually does multiple entries, and the reclen field
* really is the reclen, not the namelength.
*/
int
linux_sys_readdir(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_sys_readdir_args /* {
syscallarg(int) fd;
syscallarg(struct linux_dirent *) dent;
syscallarg(unsigned int) count;
} */ *uap = v;
SCARG(uap, count) = 1;
return linux_sys_getdents(l, uap, retval);
}
#endif /* !amd64 */
/*
* I wonder why Linux has gettimeofday() _and_ time().. Still, we
* need to deal with it.
*/
int
linux_sys_time(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_sys_time_args /* {
linux_time_t *t;
} */ *uap = v;
struct timeval atv;
linux_time_t tt;
int error;
microtime(&atv);
tt = atv.tv_sec;
if (SCARG(uap, t) && (error = copyout(&tt, SCARG(uap, t), sizeof tt)))
return error;
retval[0] = tt;
return 0;
}
/*
* utime(). Do conversion to things that utimes() understands,
* and pass it on.
*/
int
linux_sys_utime(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_sys_utime_args /* {
syscallarg(const char *) path;
syscallarg(struct linux_utimbuf *)times;
} */ *uap = v;
struct proc *p = l->l_proc;
caddr_t sg;
int error;
struct sys_utimes_args ua;
struct timeval tv[2], *tvp;
struct linux_utimbuf lut;
sg = stackgap_init(p, 0);
tvp = (struct timeval *) stackgap_alloc(p, &sg, sizeof(tv));
CHECK_ALT_EXIST(l, &sg, SCARG(uap, path));
SCARG(&ua, path) = SCARG(uap, path);
if (SCARG(uap, times) != NULL) {
if ((error = copyin(SCARG(uap, times), &lut, sizeof lut)))
return error;
tv[0].tv_usec = tv[1].tv_usec = 0;
tv[0].tv_sec = lut.l_actime;
tv[1].tv_sec = lut.l_modtime;
if ((error = copyout(tv, tvp, sizeof tv)))
return error;
SCARG(&ua, tptr) = tvp;
}
else
SCARG(&ua, tptr) = NULL;
return sys_utimes(l, &ua, retval);
}
#ifndef __amd64__
/*
* waitpid(2). Just forward on to linux_sys_wait4 with a NULL rusage.
*/
int
linux_sys_waitpid(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_sys_waitpid_args /* {
syscallarg(int) pid;
syscallarg(int *) status;
syscallarg(int) options;
} */ *uap = v;
struct linux_sys_wait4_args linux_w4a;
SCARG(&linux_w4a, pid) = SCARG(uap, pid);
SCARG(&linux_w4a, status) = SCARG(uap, status);
SCARG(&linux_w4a, options) = SCARG(uap, options);
SCARG(&linux_w4a, rusage) = NULL;
return linux_sys_wait4(l, &linux_w4a, retval);
}
#endif /* !amd64 */
int
linux_sys_setresgid(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_sys_setresgid_args /* {
syscallarg(gid_t) rgid;
syscallarg(gid_t) egid;
syscallarg(gid_t) sgid;
} */ *uap = v;
/*
* Note: These checks are a little different than the NetBSD
* setregid(2) call performs. This precisely follows the
* behavior of the Linux kernel.
*/
return do_setresgid(l, SCARG(uap,rgid), SCARG(uap, egid),
SCARG(uap, sgid),
ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
}
int
linux_sys_getresgid(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_sys_getresgid_args /* {
syscallarg(gid_t *) rgid;
syscallarg(gid_t *) egid;
syscallarg(gid_t *) sgid;
} */ *uap = v;
struct proc *p = l->l_proc;
struct pcred *pc = p->p_cred;
int error;
/*
* Linux copies these values out to userspace like so:
*
* 1. Copy out rgid.
* 2. If that succeeds, copy out egid.
* 3. If both of those succeed, copy out sgid.
*/
if ((error = copyout(&pc->p_rgid, SCARG(uap, rgid),
sizeof(gid_t))) != 0)
return (error);
if ((error = copyout(&pc->pc_ucred->cr_gid, SCARG(uap, egid),
sizeof(gid_t))) != 0)
return (error);
return (copyout(&pc->p_svgid, SCARG(uap, sgid), sizeof(gid_t)));
}
#ifndef __amd64__
/*
* I wonder why Linux has settimeofday() _and_ stime().. Still, we
* need to deal with it.
*/
int
linux_sys_stime(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_sys_time_args /* {
linux_time_t *t;
} */ *uap = v;
struct proc *p = l->l_proc;
struct timespec ats;
linux_time_t tt;
int error;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return (error);
if ((error = copyin(&tt, SCARG(uap, t), sizeof tt)) != 0)
return error;
ats.tv_sec = tt;
ats.tv_nsec = 0;
if ((error = settime(p, &ats)))
return (error);
return 0;
}
#endif /* !amd64 */
#if !defined(__m68k__)
/*
* Convert NetBSD statvfs structure to Linux statfs64 structure.
* See comments in bsd_to_linux_statfs() for further background.
* We can safely pass correct bsize and frsize here, since Linux glibc
* statvfs() doesn't use statfs64().
*/
static void
bsd_to_linux_statfs64(bsp, lsp)
const struct statvfs *bsp;
struct linux_statfs64 *lsp;
{
int i, div;
for (i = 0; i < linux_fstypes_cnt; i++) {
if (strcmp(bsp->f_fstypename, linux_fstypes[i].bsd) == 0) {
lsp->l_ftype = linux_fstypes[i].linux;
break;
}
}
if (i == linux_fstypes_cnt) {
DPRINTF(("unhandled fstype in linux emulation: %s\n",
bsp->f_fstypename));
lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC;
}
div = bsp->f_bsize / bsp->f_frsize;
lsp->l_fbsize = bsp->f_bsize;
lsp->l_ffrsize = bsp->f_frsize;
lsp->l_fblocks = bsp->f_blocks / div;
lsp->l_fbfree = bsp->f_bfree / div;
lsp->l_fbavail = bsp->f_bavail / div;
lsp->l_ffiles = bsp->f_files;
lsp->l_fffree = bsp->f_ffree / div;
/* Linux sets the fsid to 0..., we don't */
lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0];
lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1];
lsp->l_fnamelen = bsp->f_namemax;
(void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare));
}
/*
* Implement the fs stat functions. Straightforward.
*/
int
linux_sys_statfs64(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_sys_statfs64_args /* {
syscallarg(const char *) path;
syscallarg(size_t) sz;
syscallarg(struct linux_statfs64 *) sp;
} */ *uap = v;
struct proc *p = l->l_proc;
struct statvfs btmp, *bsp;
struct linux_statfs64 ltmp;
struct sys_statvfs1_args bsa;
caddr_t sg;
int error;
if (SCARG(uap, sz) != sizeof ltmp)
return (EINVAL);
sg = stackgap_init(p, 0);
bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
CHECK_ALT_EXIST(l, &sg, SCARG(uap, path));
SCARG(&bsa, path) = SCARG(uap, path);
SCARG(&bsa, buf) = bsp;
SCARG(&bsa, flags) = ST_WAIT;
if ((error = sys_statvfs1(l, &bsa, retval)))
return error;
if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
return error;
bsd_to_linux_statfs64(&btmp, &ltmp);
return copyout((caddr_t) &ltmp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
}
int
linux_sys_fstatfs64(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct linux_sys_fstatfs64_args /* {
syscallarg(int) fd;
syscallarg(size_t) sz;
syscallarg(struct linux_statfs64 *) sp;
} */ *uap = v;
struct proc *p = l->l_proc;
struct statvfs btmp, *bsp;
struct linux_statfs64 ltmp;
struct sys_fstatvfs1_args bsa;
caddr_t sg;
int error;
if (SCARG(uap, sz) != sizeof ltmp)
return (EINVAL);
sg = stackgap_init(p, 0);
bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs));
SCARG(&bsa, fd) = SCARG(uap, fd);
SCARG(&bsa, buf) = bsp;
SCARG(&bsa, flags) = ST_WAIT;
if ((error = sys_fstatvfs1(l, &bsa, retval)))
return error;
if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp)))
return error;
bsd_to_linux_statfs64(&btmp, &ltmp);
return copyout((caddr_t) &ltmp, (caddr_t) SCARG(uap, sp), sizeof ltmp);
}
#endif /* !__m68k__ */
#endif /* !COMPAT_LINUX32 */