NetBSD/sys/arch/evbarm/tsarm/tsarm_machdep.c
2005-12-24 22:45:33 +00:00

902 lines
25 KiB
C

/* $NetBSD: tsarm_machdep.c,v 1.3 2005/12/24 22:45:34 perry Exp $ */
/*
* Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Based on code written by Jason R. Thorpe and Steve C. Woodford for
* Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Machine dependant functions for kernel setup for Iyonix.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: tsarm_machdep.c,v 1.3 2005/12/24 22:45:34 perry Exp $");
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_pmap_debug.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#include <acorn32/include/bootconfig.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <arm/undefined.h>
#include <arm/arm32/machdep.h>
#include <arm/ep93xx/ep93xxreg.h>
#include <arm/ep93xx/ep93xxvar.h>
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#include "epcom.h"
#if NEPCOM > 0
#include <arm/ep93xx/epcomvar.h>
#endif
#include "isa.h"
#if NISA > 0
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#endif
#include <machine/isa_machdep.h>
#include <evbarm/tsarm/tsarmreg.h>
#include "opt_ipkdb.h"
#include "ksyms.h"
/* Kernel text starts 2MB in from the bottom of the kernel address space. */
#define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xf0000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE 0x0C000000
/*
* Address to call from cpu_reset() to reset the machine.
* This is machine architecture dependant as it varies depending
* on where the ROM appears when you turn the MMU off.
*/
u_int cpu_reset_address = 0x00000000;
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 8
#define ABT_STACK_SIZE 8
#ifdef IPKDB
#define UND_STACK_SIZE 16
#else
#define UND_STACK_SIZE 8
#endif
struct bootconfig bootconfig; /* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;
vm_offset_t physical_start;
vm_offset_t physical_freestart;
vm_offset_t physical_freeend;
vm_offset_t physical_freeend_low;
vm_offset_t physical_end;
u_int free_pages;
int physmem = 0;
/* Physical and virtual addresses for some global pages */
pv_addr_t systempage;
pv_addr_t irqstack;
pv_addr_t undstack;
pv_addr_t abtstack;
pv_addr_t kernelstack;
vm_offset_t msgbufphys;
static struct arm32_dma_range tsarm_dma_ranges[4];
#if NISA > 0
extern void isa_tsarm_init(u_int, u_int);
#endif
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif
#define KERNEL_PT_SYS 0 /* L2 table for mapping vectors page */
#define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM 4
/* L2 tables for mapping kernel VM */
#define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
struct user *proc0paddr;
/* Prototypes */
void consinit(void);
/*
* Define the default console speed for the machine.
*/
#ifndef CONSPEED
#define CONSPEED B115200
#endif /* ! CONSPEED */
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
int comcnspeed = CONSPEED;
int comcnmode = CONMODE;
#if KGDB
#ifndef KGDB_DEVNAME
#error Must define KGDB_DEVNAME
#endif
const char kgdb_devname[] = KGDB_DEVNAME;
#ifndef KGDB_DEVADDR
#error Must define KGDB_DEVADDR
#endif
unsigned long kgdb_devaddr = KGDB_DEVADDR;
#ifndef KGDB_DEVRATE
#define KGDB_DEVRATE CONSPEED
#endif
int kgdb_devrate = KGDB_DEVRATE;
#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE CONMODE
#endif
int kgdb_devmode = KGDB_DEVMODE;
#endif /* KGDB */
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
printf("\r\n");
printf("The operating system has halted.\r\n");
printf("Please press any key to reboot.\r\n");
cngetc();
printf("\r\nrebooting...\r\n");
goto reset;
}
/* Disable console buffering */
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the
* unmount. It looks like syslogd is getting woken up only to find
* that it cannot page part of the binary in as the filesystem has
* been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("\r\n");
printf("The operating system has halted.\r\n");
printf("Please press any key to reboot.\r\n");
cngetc();
}
printf("\r\nrebooting...\r\n");
reset:
/*
* Make really really sure that all interrupts are disabled,
* and poke the Internal Bus and Peripheral Bus reset lines.
*/
(void) disable_interrupts(I32_bit|F32_bit);
{
u_int32_t feed, ctrl;
feed = TS7XXX_IO16_VBASE + TS7XXX_WDOGFEED;
ctrl = TS7XXX_IO16_VBASE + TS7XXX_WDOGCTRL;
__asm volatile (
"mov r0, #0x5\n"
"mov r1, #0x1\n"
"strh r0, [%0]\n"
"strh r1, [%1]\n"
:
: "r" (feed), "r" (ctrl)
: "r0", "r1"
);
}
for (;;);
}
/* Static device mappings. */
static const struct pmap_devmap tsarm_devmap[] = {
{
EP93XX_AHB_VBASE,
EP93XX_AHB_HWBASE,
EP93XX_AHB_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
EP93XX_APB_VBASE,
EP93XX_APB_HWBASE,
EP93XX_APB_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
/*
* IO8 and IO16 space *must* be mapped contiguously with
* IO8_VA == IO16_VA - 64 Mbytes. ISA busmap driver depends
* on that!
*/
{
TS7XXX_IO8_VBASE,
TS7XXX_IO8_HWBASE,
TS7XXX_IO8_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
TS7XXX_IO16_VBASE,
TS7XXX_IO16_HWBASE,
TS7XXX_IO16_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
0,
0,
0,
0,
0,
}
};
/*
* u_int initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Initialising interrupt controllers to a sane default state
*/
u_int
initarm(void *arg)
{
#ifdef FIXME
struct bootconfig *passed_bootconfig = arg;
extern char _end[];
#endif
int loop;
int loop1;
u_int l1pagetable;
pv_addr_t kernel_l1pt;
paddr_t memstart;
psize_t memsize;
#ifdef FIXME
/* Calibrate the delay loop. */
i80321_calibrate_delay();
#endif
/*
* Since we map the on-board devices VA==PA, and the kernel
* is running VA==PA, it's possible for us to initialize
* the console now.
*/
consinit();
#ifdef VERBOSE_INIT_ARM
/* Talk to the user */
printf("\nNetBSD/tsarm booting ...\n");
#endif
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
if (set_cpufuncs())
panic("cpu not recognized!");
/*
* We are currently running with the MMU enabled
*/
#ifdef FIXME
/*
* Fetch the SDRAM start/size from the i80321 SDRAM configuration
* registers.
*/
i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
&memstart, &memsize);
#else
memstart = 0x0;
memsize = 0x2000000;
#endif
#ifdef VERBOSE_INIT_ARM
printf("initarm: Configuring system ...\n");
#endif
/* Fake bootconfig structure for the benefit of pmap.c */
/* XXX must make the memory description h/w independant */
bootconfig.dramblocks = 4;
bootconfig.dram[0].address = 0x0UL;
bootconfig.dram[0].pages = 0x800000UL / PAGE_SIZE;
bootconfig.dram[1].address = 0x1000000UL;
bootconfig.dram[1].pages = 0x800000UL / PAGE_SIZE;
bootconfig.dram[2].address = 0x4000000UL;
bootconfig.dram[2].pages = 0x800000UL / PAGE_SIZE;
bootconfig.dram[3].address = 0x5000000UL;
bootconfig.dram[3].pages = 0x800000UL / PAGE_SIZE;
/*
* Set up the variables that define the availablilty of
* physical memory. For now, we're going to set
* physical_freestart to 0x00200000 (where the kernel
* was loaded), and allocate the memory we need downwards.
* If we get too close to the L1 table that we set up, we
* will panic. We will update physical_freestart and
* physical_freeend later to reflect what pmap_bootstrap()
* wants to see.
*
* XXX pmap_bootstrap() needs an enema.
*/
physical_start = bootconfig.dram[0].address;
physical_end = bootconfig.dram[0].address +
(bootconfig.dram[0].pages * PAGE_SIZE);
physical_freestart = 0x00009000UL;
physical_freeend = 0x00200000UL;
physmem = (physical_end - physical_start) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
/* Tell the user about the memory */
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
#endif
/*
* Okay, the kernel starts 2MB in from the bottom of physical
* memory. We are going to allocate our bootstrap pages downwards
* from there.
*
* We need to allocate some fixed page tables to get the kernel
* going. We allocate one page directory and a number of page
* tables and store the physical addresses in the kernel_pt_table
* array.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K bounaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
physical_freestart, free_pages, free_pages);
#endif
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
physical_freeend -= ((np) * PAGE_SIZE); \
if (physical_freeend < physical_freestart) \
panic("initarm: out of memory"); \
(var) = physical_freeend; \
free_pages -= (np); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
loop1 = 0;
kernel_l1pt.pv_pa = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[loop1],
L2_TABLE_SIZE / PAGE_SIZE);
++loop1;
}
}
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory");
/*
* Allocate a page for the system vectors page
*/
alloc_pages(systempage.pv_pa, 1);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
#ifdef VERBOSE_INIT_ARM
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
kernelstack.pv_va);
#endif
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
/*
* Ok we have allocated physical pages for the primary kernel
* page tables. Save physical_freeend for when we give whats left
* of memory below 2Mbyte to UVM.
*/
physical_freeend_low = physical_freeend;
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
&kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel static code/data */
{
extern char etext[], _end[];
size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
u_int logical;
textsize = (textsize + PGOFSET) & ~PGOFSET;
totalsize = (totalsize + PGOFSET) & ~PGOFSET;
logical = 0x00200000; /* offset of kernel in RAM */
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, totalsize - textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
}
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
/* Map the vector page. */
pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the statically mapped devices. */
pmap_devmap_bootstrap(l1pagetable, tsarm_devmap);
/*
* Update the physical_freestart/physical_freeend/free_pages
* variables.
*/
{
extern char _end[];
physical_freestart = physical_start +
(((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
KERNEL_BASE);
physical_freeend = physical_end;
free_pages =
(physical_freeend - physical_freestart) / PAGE_SIZE;
}
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
physical_freestart, free_pages, free_pages);
printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
#endif
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
setttb(kernel_l1pt.pv_pa);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Moved from cpu_startup() as data_abort_handler() references
* this during uvm init
*/
proc0paddr = (struct user *)kernelstack.pv_va;
lwp0.l_addr = proc0paddr;
#ifdef VERBOSE_INIT_ARM
printf("done!\n");
#endif
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef VERBOSE_INIT_ARM
printf("init subsystems: stacks ");
#endif
set_stackptr(PSR_IRQ32_MODE,
irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE,
abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE,
undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slightly better one.
*/
#ifdef VERBOSE_INIT_ARM
printf("vectors ");
#endif
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
printf("undefined ");
#endif
undefined_init();
/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
printf("page ");
#endif
uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
atop(physical_freestart), atop(physical_freeend),
VM_FREELIST_DEFAULT);
uvm_page_physload(0, atop(physical_freeend_low),
0, atop(physical_freeend_low),
VM_FREELIST_DEFAULT);
/*
* There is 32 Mb of memory on the TS-7200 in 4 8Mb chunks, so far
* we've only been working with the first one mapped at 0x0. Tell
* UVM about the others.
*/
uvm_page_physload(atop(0x1000000), atop(0x1800000),
atop(0x1000000), atop(0x1800000),
VM_FREELIST_DEFAULT);
uvm_page_physload(atop(0x4000000), atop(0x4800000),
atop(0x4000000), atop(0x4800000),
VM_FREELIST_DEFAULT);
uvm_page_physload(atop(0x5000000), atop(0x5800000),
atop(0x5000000), atop(0x5800000),
VM_FREELIST_DEFAULT);
physmem = 0x2000000 / PAGE_SIZE;
/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
printf("pmap ");
#endif
pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
KERNEL_VM_BASE + KERNEL_VM_SIZE);
/* Setup the IRQ system */
#ifdef VERBOSE_INIT_ARM
printf("irq ");
#endif
ep93xx_intr_init();
#if NISA > 0
isa_intr_init();
#ifdef VERBOSE_INIT_ARM
printf("isa ");
#endif
isa_tsarm_init(TS7XXX_IO16_VBASE + TS7XXX_ISAIO,
TS7XXX_IO16_VBASE + TS7XXX_ISAMEM);
#endif
#ifdef VERBOSE_INIT_ARM
printf("done.\n");
#endif
#ifdef BOOTHOWTO
boothowto = BOOTHOWTO;
#endif
#ifdef IPKDB
/* Initialise ipkdb */
ipkdb_init();
if (boothowto & RB_KDB)
ipkdb_connect(0);
#endif
#if NKSYMS || defined(DDB) || defined(LKM)
/* Firmware doesn't load symbols. */
ksyms_init(0, NULL, NULL);
#endif
#ifdef DDB
db_machine_init();
if (boothowto & RB_KDB)
Debugger();
#endif
/* We return the new stack pointer address */
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
void
consinit(void)
{
static int consinit_called;
bus_space_handle_t ioh;
if (consinit_called != 0)
return;
consinit_called = 1;
/*
* Console devices are already mapped in VA. Our devmap reflects
* this, so register it now so drivers can map the console
* device.
*/
pmap_devmap_register(tsarm_devmap);
#if 0
isa_tsarm_init(TS7XXX_IO16_VBASE + TS7XXX_ISAIO,
TS7XXX_IO16_VBASE + TS7XXX_ISAMEM);
if (comcnattach(&isa_io_bs_tag, 0x3e8, comcnspeed,
COM_FREQ, COM_TYPE_NORMAL, comcnmode))
{
panic("can't init serial console");
}
#endif
#if NEPCOM > 0
bus_space_map(&ep93xx_bs_tag, EP93XX_APB_HWBASE + EP93XX_APB_UART1,
EP93XX_APB_UART_SIZE, 0, &ioh);
if (epcomcnattach(&ep93xx_bs_tag, EP93XX_APB_HWBASE + EP93XX_APB_UART1,
ioh, comcnspeed, comcnmode))
{
panic("can't init serial console");
}
#else
panic("serial console not configured");
#endif
#if KGDB
#if NEPCOM > 0
if (strcmp(kgdb_devname, "epcom") == 0) {
com_kgdb_attach(&ep93xx_bs_tag, kgdb_devaddr, kgdb_devrate,
kgdb_devmode);
}
#endif /* NEPCOM > 0 */
#endif /* KGDB */
}
bus_dma_tag_t
ep93xx_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
{
int i;
struct arm32_bus_dma_tag *dmat;
for (i = 0; i < bootconfig.dramblocks; i++) {
tsarm_dma_ranges[i].dr_sysbase = bootconfig.dram[i].address;
tsarm_dma_ranges[i].dr_busbase = bootconfig.dram[i].address;
tsarm_dma_ranges[i].dr_len = bootconfig.dram[i].pages *
PAGE_SIZE;
}
dmat = dma_tag_template;
dmat->_ranges = tsarm_dma_ranges;
dmat->_nranges = bootconfig.dramblocks;
return dmat;
}