8320 lines
223 KiB
C
8320 lines
223 KiB
C
/* $NetBSD: if_iwm.c,v 1.83 2018/06/26 06:48:01 msaitoh Exp $ */
|
|
/* OpenBSD: if_iwm.c,v 1.148 2016/11/19 21:07:08 stsp Exp */
|
|
#define IEEE80211_NO_HT
|
|
/*
|
|
* Copyright (c) 2014, 2016 genua gmbh <info@genua.de>
|
|
* Author: Stefan Sperling <stsp@openbsd.org>
|
|
* Copyright (c) 2014 Fixup Software Ltd.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*-
|
|
* Based on BSD-licensed source modules in the Linux iwlwifi driver,
|
|
* which were used as the reference documentation for this implementation.
|
|
*
|
|
***********************************************************************
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2016 Intel Deutschland GmbH
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
|
|
* USA
|
|
*
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called COPYING.
|
|
*
|
|
* Contact Information:
|
|
* Intel Linux Wireless <linuxwifi@intel.com>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
|
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
|
* Copyright(c) 2016 Intel Deutschland GmbH
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_iwm.c,v 1.83 2018/06/26 06:48:01 msaitoh Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/cpu.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/workqueue.h>
|
|
#include <machine/endian.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
#include <dev/firmload.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_amrr.h>
|
|
#include <net80211/ieee80211_radiotap.h>
|
|
|
|
#define DEVNAME(_s) device_xname((_s)->sc_dev)
|
|
#define IC2IFP(_ic_) ((_ic_)->ic_ifp)
|
|
|
|
#define le16_to_cpup(_a_) (le16toh(*(const uint16_t *)(_a_)))
|
|
#define le32_to_cpup(_a_) (le32toh(*(const uint32_t *)(_a_)))
|
|
|
|
#ifdef IWM_DEBUG
|
|
#define DPRINTF(x) do { if (iwm_debug > 0) printf x; } while (0)
|
|
#define DPRINTFN(n, x) do { if (iwm_debug >= (n)) printf x; } while (0)
|
|
int iwm_debug = 0;
|
|
#else
|
|
#define DPRINTF(x) do { ; } while (0)
|
|
#define DPRINTFN(n, x) do { ; } while (0)
|
|
#endif
|
|
|
|
#include <dev/pci/if_iwmreg.h>
|
|
#include <dev/pci/if_iwmvar.h>
|
|
|
|
static const uint8_t iwm_nvm_channels[] = {
|
|
/* 2.4 GHz */
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
/* 5 GHz */
|
|
36, 40, 44, 48, 52, 56, 60, 64,
|
|
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
|
|
149, 153, 157, 161, 165
|
|
};
|
|
|
|
static const uint8_t iwm_nvm_channels_8000[] = {
|
|
/* 2.4 GHz */
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
/* 5 GHz */
|
|
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
|
|
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
|
|
149, 153, 157, 161, 165, 169, 173, 177, 181
|
|
};
|
|
|
|
#define IWM_NUM_2GHZ_CHANNELS 14
|
|
|
|
static const struct iwm_rate {
|
|
uint8_t rate;
|
|
uint8_t plcp;
|
|
uint8_t ht_plcp;
|
|
} iwm_rates[] = {
|
|
/* Legacy */ /* HT */
|
|
{ 2, IWM_RATE_1M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
|
|
{ 4, IWM_RATE_2M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
|
|
{ 11, IWM_RATE_5M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
|
|
{ 22, IWM_RATE_11M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
|
|
{ 12, IWM_RATE_6M_PLCP, IWM_RATE_HT_SISO_MCS_0_PLCP },
|
|
{ 18, IWM_RATE_9M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
|
|
{ 24, IWM_RATE_12M_PLCP, IWM_RATE_HT_SISO_MCS_1_PLCP },
|
|
{ 36, IWM_RATE_18M_PLCP, IWM_RATE_HT_SISO_MCS_2_PLCP },
|
|
{ 48, IWM_RATE_24M_PLCP, IWM_RATE_HT_SISO_MCS_3_PLCP },
|
|
{ 72, IWM_RATE_36M_PLCP, IWM_RATE_HT_SISO_MCS_4_PLCP },
|
|
{ 96, IWM_RATE_48M_PLCP, IWM_RATE_HT_SISO_MCS_5_PLCP },
|
|
{ 108, IWM_RATE_54M_PLCP, IWM_RATE_HT_SISO_MCS_6_PLCP },
|
|
{ 128, IWM_RATE_INVM_PLCP, IWM_RATE_HT_SISO_MCS_7_PLCP },
|
|
};
|
|
#define IWM_RIDX_CCK 0
|
|
#define IWM_RIDX_OFDM 4
|
|
#define IWM_RIDX_MAX (__arraycount(iwm_rates)-1)
|
|
#define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
|
|
#define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
|
|
|
|
#ifndef IEEE80211_NO_HT
|
|
/* Convert an MCS index into an iwm_rates[] index. */
|
|
static const int iwm_mcs2ridx[] = {
|
|
IWM_RATE_MCS_0_INDEX,
|
|
IWM_RATE_MCS_1_INDEX,
|
|
IWM_RATE_MCS_2_INDEX,
|
|
IWM_RATE_MCS_3_INDEX,
|
|
IWM_RATE_MCS_4_INDEX,
|
|
IWM_RATE_MCS_5_INDEX,
|
|
IWM_RATE_MCS_6_INDEX,
|
|
IWM_RATE_MCS_7_INDEX,
|
|
};
|
|
#endif
|
|
|
|
struct iwm_nvm_section {
|
|
uint16_t length;
|
|
uint8_t *data;
|
|
};
|
|
|
|
struct iwm_newstate_state {
|
|
struct work ns_wk;
|
|
enum ieee80211_state ns_nstate;
|
|
int ns_arg;
|
|
int ns_generation;
|
|
};
|
|
|
|
static int iwm_store_cscheme(struct iwm_softc *, uint8_t *, size_t);
|
|
static int iwm_firmware_store_section(struct iwm_softc *,
|
|
enum iwm_ucode_type, uint8_t *, size_t);
|
|
static int iwm_set_default_calib(struct iwm_softc *, const void *);
|
|
static int iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
|
|
static uint32_t iwm_read_prph(struct iwm_softc *, uint32_t);
|
|
static void iwm_write_prph(struct iwm_softc *, uint32_t, uint32_t);
|
|
#ifdef IWM_DEBUG
|
|
static int iwm_read_mem(struct iwm_softc *, uint32_t, void *, int);
|
|
#endif
|
|
static int iwm_write_mem(struct iwm_softc *, uint32_t, const void *, int);
|
|
static int iwm_write_mem32(struct iwm_softc *, uint32_t, uint32_t);
|
|
static int iwm_poll_bit(struct iwm_softc *, int, uint32_t, uint32_t, int);
|
|
static int iwm_nic_lock(struct iwm_softc *);
|
|
static void iwm_nic_unlock(struct iwm_softc *);
|
|
static void iwm_set_bits_mask_prph(struct iwm_softc *, uint32_t, uint32_t,
|
|
uint32_t);
|
|
static void iwm_set_bits_prph(struct iwm_softc *, uint32_t, uint32_t);
|
|
static void iwm_clear_bits_prph(struct iwm_softc *, uint32_t, uint32_t);
|
|
static int iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
|
|
bus_size_t, bus_size_t);
|
|
static void iwm_dma_contig_free(struct iwm_dma_info *);
|
|
static int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
|
|
static void iwm_disable_rx_dma(struct iwm_softc *);
|
|
static void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
|
|
static void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
|
|
static int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
|
|
int);
|
|
static void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
|
|
static void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
|
|
static void iwm_enable_rfkill_int(struct iwm_softc *);
|
|
static int iwm_check_rfkill(struct iwm_softc *);
|
|
static void iwm_enable_interrupts(struct iwm_softc *);
|
|
static void iwm_restore_interrupts(struct iwm_softc *);
|
|
static void iwm_disable_interrupts(struct iwm_softc *);
|
|
static void iwm_ict_reset(struct iwm_softc *);
|
|
static int iwm_set_hw_ready(struct iwm_softc *);
|
|
static int iwm_prepare_card_hw(struct iwm_softc *);
|
|
static void iwm_apm_config(struct iwm_softc *);
|
|
static int iwm_apm_init(struct iwm_softc *);
|
|
static void iwm_apm_stop(struct iwm_softc *);
|
|
static int iwm_allow_mcast(struct iwm_softc *);
|
|
static int iwm_start_hw(struct iwm_softc *);
|
|
static void iwm_stop_device(struct iwm_softc *);
|
|
static void iwm_nic_config(struct iwm_softc *);
|
|
static int iwm_nic_rx_init(struct iwm_softc *);
|
|
static int iwm_nic_tx_init(struct iwm_softc *);
|
|
static int iwm_nic_init(struct iwm_softc *);
|
|
static int iwm_enable_txq(struct iwm_softc *, int, int, int);
|
|
static int iwm_post_alive(struct iwm_softc *);
|
|
static struct iwm_phy_db_entry *
|
|
iwm_phy_db_get_section(struct iwm_softc *,
|
|
enum iwm_phy_db_section_type, uint16_t);
|
|
static int iwm_phy_db_set_section(struct iwm_softc *,
|
|
struct iwm_calib_res_notif_phy_db *, uint16_t);
|
|
static int iwm_is_valid_channel(uint16_t);
|
|
static uint8_t iwm_ch_id_to_ch_index(uint16_t);
|
|
static uint16_t iwm_channel_id_to_papd(uint16_t);
|
|
static uint16_t iwm_channel_id_to_txp(struct iwm_softc *, uint16_t);
|
|
static int iwm_phy_db_get_section_data(struct iwm_softc *, uint32_t,
|
|
uint8_t **, uint16_t *, uint16_t);
|
|
static int iwm_send_phy_db_cmd(struct iwm_softc *, uint16_t, uint16_t,
|
|
void *);
|
|
static int iwm_phy_db_send_all_channel_groups(struct iwm_softc *,
|
|
enum iwm_phy_db_section_type, uint8_t);
|
|
static int iwm_send_phy_db_data(struct iwm_softc *);
|
|
static void iwm_te_v2_to_v1(const struct iwm_time_event_cmd_v2 *,
|
|
struct iwm_time_event_cmd_v1 *);
|
|
static int iwm_send_time_event_cmd(struct iwm_softc *,
|
|
const struct iwm_time_event_cmd_v2 *);
|
|
static void iwm_protect_session(struct iwm_softc *, struct iwm_node *,
|
|
uint32_t, uint32_t);
|
|
static int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
|
|
uint16_t, uint8_t *, uint16_t *);
|
|
static int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
|
|
uint16_t *, size_t);
|
|
static void iwm_init_channel_map(struct iwm_softc *, const uint16_t * const,
|
|
const uint8_t *, size_t);
|
|
#ifndef IEEE80211_NO_HT
|
|
static void iwm_setup_ht_rates(struct iwm_softc *);
|
|
static void iwm_htprot_task(void *);
|
|
static void iwm_update_htprot(struct ieee80211com *,
|
|
struct ieee80211_node *);
|
|
static int iwm_ampdu_rx_start(struct ieee80211com *,
|
|
struct ieee80211_node *, uint8_t);
|
|
static void iwm_ampdu_rx_stop(struct ieee80211com *,
|
|
struct ieee80211_node *, uint8_t);
|
|
static void iwm_sta_rx_agg(struct iwm_softc *, struct ieee80211_node *,
|
|
uint8_t, uint16_t, int);
|
|
#ifdef notyet
|
|
static int iwm_ampdu_tx_start(struct ieee80211com *,
|
|
struct ieee80211_node *, uint8_t);
|
|
static void iwm_ampdu_tx_stop(struct ieee80211com *,
|
|
struct ieee80211_node *, uint8_t);
|
|
#endif
|
|
static void iwm_ba_task(void *);
|
|
#endif
|
|
|
|
static int iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
|
|
const uint16_t *, const uint16_t *, const uint16_t *,
|
|
const uint16_t *, const uint16_t *);
|
|
static void iwm_set_hw_address_8000(struct iwm_softc *,
|
|
struct iwm_nvm_data *, const uint16_t *, const uint16_t *);
|
|
static int iwm_parse_nvm_sections(struct iwm_softc *,
|
|
struct iwm_nvm_section *);
|
|
static int iwm_nvm_init(struct iwm_softc *);
|
|
static int iwm_firmware_load_sect(struct iwm_softc *, uint32_t,
|
|
const uint8_t *, uint32_t);
|
|
static int iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
|
|
const uint8_t *, uint32_t);
|
|
static int iwm_load_cpu_sections_7000(struct iwm_softc *,
|
|
struct iwm_fw_sects *, int , int *);
|
|
static int iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type);
|
|
static int iwm_load_cpu_sections_8000(struct iwm_softc *,
|
|
struct iwm_fw_sects *, int , int *);
|
|
static int iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type);
|
|
static int iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
|
|
static int iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
|
|
static int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
|
|
static int iwm_send_phy_cfg_cmd(struct iwm_softc *);
|
|
static int iwm_load_ucode_wait_alive(struct iwm_softc *,
|
|
enum iwm_ucode_type);
|
|
static int iwm_run_init_mvm_ucode(struct iwm_softc *, int);
|
|
static int iwm_rx_addbuf(struct iwm_softc *, int, int);
|
|
static int iwm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
|
|
static int iwm_get_signal_strength(struct iwm_softc *,
|
|
struct iwm_rx_phy_info *);
|
|
static void iwm_rx_rx_phy_cmd(struct iwm_softc *,
|
|
struct iwm_rx_packet *, struct iwm_rx_data *);
|
|
static int iwm_get_noise(const struct iwm_statistics_rx_non_phy *);
|
|
static void iwm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
|
|
struct iwm_rx_data *);
|
|
static void iwm_rx_tx_cmd_single(struct iwm_softc *, struct iwm_rx_packet *, struct iwm_node *);
|
|
static void iwm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
|
|
struct iwm_rx_data *);
|
|
static int iwm_binding_cmd(struct iwm_softc *, struct iwm_node *,
|
|
uint32_t);
|
|
#if 0
|
|
static int iwm_binding_update(struct iwm_softc *, struct iwm_node *, int);
|
|
static int iwm_binding_add_vif(struct iwm_softc *, struct iwm_node *);
|
|
#endif
|
|
static void iwm_phy_ctxt_cmd_hdr(struct iwm_softc *, struct iwm_phy_ctxt *,
|
|
struct iwm_phy_context_cmd *, uint32_t, uint32_t);
|
|
static void iwm_phy_ctxt_cmd_data(struct iwm_softc *,
|
|
struct iwm_phy_context_cmd *, struct ieee80211_channel *,
|
|
uint8_t, uint8_t);
|
|
static int iwm_phy_ctxt_cmd(struct iwm_softc *, struct iwm_phy_ctxt *,
|
|
uint8_t, uint8_t, uint32_t, uint32_t);
|
|
static int iwm_send_cmd(struct iwm_softc *, struct iwm_host_cmd *);
|
|
static int iwm_send_cmd_pdu(struct iwm_softc *, uint32_t, uint32_t,
|
|
uint16_t, const void *);
|
|
static int iwm_send_cmd_status(struct iwm_softc *, struct iwm_host_cmd *,
|
|
uint32_t *);
|
|
static int iwm_send_cmd_pdu_status(struct iwm_softc *, uint32_t, uint16_t,
|
|
const void *, uint32_t *);
|
|
static void iwm_free_resp(struct iwm_softc *, struct iwm_host_cmd *);
|
|
static void iwm_cmd_done(struct iwm_softc *, int qid, int idx);
|
|
#if 0
|
|
static void iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
|
|
uint16_t);
|
|
#endif
|
|
static const struct iwm_rate *
|
|
iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
|
|
struct ieee80211_frame *, struct iwm_tx_cmd *);
|
|
static int iwm_tx(struct iwm_softc *, struct mbuf *,
|
|
struct ieee80211_node *, int);
|
|
static void iwm_led_enable(struct iwm_softc *);
|
|
static void iwm_led_disable(struct iwm_softc *);
|
|
static int iwm_led_is_enabled(struct iwm_softc *);
|
|
static void iwm_led_blink_timeout(void *);
|
|
static void iwm_led_blink_start(struct iwm_softc *);
|
|
static void iwm_led_blink_stop(struct iwm_softc *);
|
|
static int iwm_beacon_filter_send_cmd(struct iwm_softc *,
|
|
struct iwm_beacon_filter_cmd *);
|
|
static void iwm_beacon_filter_set_cqm_params(struct iwm_softc *,
|
|
struct iwm_node *, struct iwm_beacon_filter_cmd *);
|
|
static int iwm_update_beacon_abort(struct iwm_softc *, struct iwm_node *,
|
|
int);
|
|
static void iwm_power_build_cmd(struct iwm_softc *, struct iwm_node *,
|
|
struct iwm_mac_power_cmd *);
|
|
static int iwm_power_mac_update_mode(struct iwm_softc *,
|
|
struct iwm_node *);
|
|
static int iwm_power_update_device(struct iwm_softc *);
|
|
#ifdef notyet
|
|
static int iwm_enable_beacon_filter(struct iwm_softc *, struct iwm_node *);
|
|
#endif
|
|
static int iwm_disable_beacon_filter(struct iwm_softc *);
|
|
static int iwm_add_sta_cmd(struct iwm_softc *, struct iwm_node *, int);
|
|
static int iwm_add_aux_sta(struct iwm_softc *);
|
|
static uint16_t iwm_scan_rx_chain(struct iwm_softc *);
|
|
static uint32_t iwm_scan_rate_n_flags(struct iwm_softc *, int, int);
|
|
#ifdef notyet
|
|
static uint16_t iwm_get_active_dwell(struct iwm_softc *, int, int);
|
|
static uint16_t iwm_get_passive_dwell(struct iwm_softc *, int);
|
|
#endif
|
|
static uint8_t iwm_lmac_scan_fill_channels(struct iwm_softc *,
|
|
struct iwm_scan_channel_cfg_lmac *, int);
|
|
static int iwm_fill_probe_req(struct iwm_softc *,
|
|
struct iwm_scan_probe_req *);
|
|
static int iwm_lmac_scan(struct iwm_softc *);
|
|
static int iwm_config_umac_scan(struct iwm_softc *);
|
|
static int iwm_umac_scan(struct iwm_softc *);
|
|
static uint8_t iwm_ridx2rate(struct ieee80211_rateset *, int);
|
|
static void iwm_ack_rates(struct iwm_softc *, struct iwm_node *, int *,
|
|
int *);
|
|
static void iwm_mac_ctxt_cmd_common(struct iwm_softc *, struct iwm_node *,
|
|
struct iwm_mac_ctx_cmd *, uint32_t, int);
|
|
static void iwm_mac_ctxt_cmd_fill_sta(struct iwm_softc *, struct iwm_node *,
|
|
struct iwm_mac_data_sta *, int);
|
|
static int iwm_mac_ctxt_cmd(struct iwm_softc *, struct iwm_node *,
|
|
uint32_t, int);
|
|
static int iwm_update_quotas(struct iwm_softc *, struct iwm_node *);
|
|
static int iwm_auth(struct iwm_softc *);
|
|
static int iwm_assoc(struct iwm_softc *);
|
|
static void iwm_calib_timeout(void *);
|
|
#ifndef IEEE80211_NO_HT
|
|
static void iwm_setrates_task(void *);
|
|
static int iwm_setrates(struct iwm_node *);
|
|
#endif
|
|
static int iwm_media_change(struct ifnet *);
|
|
static int iwm_do_newstate(struct ieee80211com *, enum ieee80211_state,
|
|
int);
|
|
static void iwm_newstate_cb(struct work *, void *);
|
|
static int iwm_newstate(struct ieee80211com *, enum ieee80211_state, int);
|
|
static void iwm_endscan(struct iwm_softc *);
|
|
static void iwm_fill_sf_command(struct iwm_softc *, struct iwm_sf_cfg_cmd *,
|
|
struct ieee80211_node *);
|
|
static int iwm_sf_config(struct iwm_softc *, int);
|
|
static int iwm_send_bt_init_conf(struct iwm_softc *);
|
|
static int iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
|
|
static void iwm_tt_tx_backoff(struct iwm_softc *, uint32_t);
|
|
static int iwm_init_hw(struct iwm_softc *);
|
|
static int iwm_init(struct ifnet *);
|
|
static void iwm_start(struct ifnet *);
|
|
static void iwm_stop(struct ifnet *, int);
|
|
static void iwm_watchdog(struct ifnet *);
|
|
static int iwm_ioctl(struct ifnet *, u_long, void *);
|
|
#ifdef IWM_DEBUG
|
|
static const char *iwm_desc_lookup(uint32_t);
|
|
static void iwm_nic_error(struct iwm_softc *);
|
|
static void iwm_nic_umac_error(struct iwm_softc *);
|
|
#endif
|
|
static void iwm_notif_intr(struct iwm_softc *);
|
|
static int iwm_intr(void *);
|
|
static void iwm_softintr(void *);
|
|
static int iwm_preinit(struct iwm_softc *);
|
|
static void iwm_attach_hook(device_t);
|
|
static void iwm_attach(device_t, device_t, void *);
|
|
#if 0
|
|
static void iwm_init_task(void *);
|
|
static int iwm_activate(device_t, enum devact);
|
|
static void iwm_wakeup(struct iwm_softc *);
|
|
#endif
|
|
static void iwm_radiotap_attach(struct iwm_softc *);
|
|
static int iwm_sysctl_fw_loaded_handler(SYSCTLFN_PROTO);
|
|
|
|
static int iwm_sysctl_root_num;
|
|
static int iwm_lar_disable;
|
|
|
|
#ifndef IWM_DEFAULT_MCC
|
|
#define IWM_DEFAULT_MCC "ZZ"
|
|
#endif
|
|
static char iwm_default_mcc[3] = IWM_DEFAULT_MCC;
|
|
|
|
static int
|
|
iwm_firmload(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_fw_info *fw = &sc->sc_fw;
|
|
firmware_handle_t fwh;
|
|
int err;
|
|
|
|
if (ISSET(sc->sc_flags, IWM_FLAG_FW_LOADED))
|
|
return 0;
|
|
|
|
/* Open firmware image. */
|
|
err = firmware_open("if_iwm", sc->sc_fwname, &fwh);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not get firmware handle %s\n", sc->sc_fwname);
|
|
return err;
|
|
}
|
|
|
|
if (fw->fw_rawdata != NULL && fw->fw_rawsize > 0) {
|
|
kmem_free(fw->fw_rawdata, fw->fw_rawsize);
|
|
fw->fw_rawdata = NULL;
|
|
}
|
|
|
|
fw->fw_rawsize = firmware_get_size(fwh);
|
|
/*
|
|
* Well, this is how the Linux driver checks it ....
|
|
*/
|
|
if (fw->fw_rawsize < sizeof(uint32_t)) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"firmware too short: %zd bytes\n", fw->fw_rawsize);
|
|
err = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Read the firmware. */
|
|
fw->fw_rawdata = kmem_alloc(fw->fw_rawsize, KM_SLEEP);
|
|
err = firmware_read(fwh, 0, fw->fw_rawdata, fw->fw_rawsize);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not read firmware %s\n", sc->sc_fwname);
|
|
goto out;
|
|
}
|
|
|
|
SET(sc->sc_flags, IWM_FLAG_FW_LOADED);
|
|
out:
|
|
/* caller will release memory, if necessary */
|
|
|
|
firmware_close(fwh);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* just maintaining status quo.
|
|
*/
|
|
static void
|
|
iwm_fix_channel(struct iwm_softc *sc, struct mbuf *m)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_frame *wh;
|
|
uint8_t subtype;
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
|
|
return;
|
|
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
|
|
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
|
|
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
|
return;
|
|
|
|
int chan = le32toh(sc->sc_last_phy_info.channel);
|
|
if (chan < __arraycount(ic->ic_channels))
|
|
ic->ic_curchan = &ic->ic_channels[chan];
|
|
}
|
|
|
|
static int
|
|
iwm_store_cscheme(struct iwm_softc *sc, uint8_t *data, size_t dlen)
|
|
{
|
|
struct iwm_fw_cscheme_list *l = (struct iwm_fw_cscheme_list *)data;
|
|
|
|
if (dlen < sizeof(*l) ||
|
|
dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
|
|
return EINVAL;
|
|
|
|
/* we don't actually store anything for now, always use s/w crypto */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_firmware_store_section(struct iwm_softc *sc, enum iwm_ucode_type type,
|
|
uint8_t *data, size_t dlen)
|
|
{
|
|
struct iwm_fw_sects *fws;
|
|
struct iwm_fw_onesect *fwone;
|
|
|
|
if (type >= IWM_UCODE_TYPE_MAX)
|
|
return EINVAL;
|
|
if (dlen < sizeof(uint32_t))
|
|
return EINVAL;
|
|
|
|
fws = &sc->sc_fw.fw_sects[type];
|
|
if (fws->fw_count >= IWM_UCODE_SECT_MAX)
|
|
return EINVAL;
|
|
|
|
fwone = &fws->fw_sect[fws->fw_count];
|
|
|
|
/* first 32bit are device load offset */
|
|
memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
|
|
|
|
/* rest is data */
|
|
fwone->fws_data = data + sizeof(uint32_t);
|
|
fwone->fws_len = dlen - sizeof(uint32_t);
|
|
|
|
/* for freeing the buffer during driver unload */
|
|
fwone->fws_alloc = data;
|
|
fwone->fws_allocsize = dlen;
|
|
|
|
fws->fw_count++;
|
|
fws->fw_totlen += fwone->fws_len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct iwm_tlv_calib_data {
|
|
uint32_t ucode_type;
|
|
struct iwm_tlv_calib_ctrl calib;
|
|
} __packed;
|
|
|
|
static int
|
|
iwm_set_default_calib(struct iwm_softc *sc, const void *data)
|
|
{
|
|
const struct iwm_tlv_calib_data *def_calib = data;
|
|
uint32_t ucode_type = le32toh(def_calib->ucode_type);
|
|
|
|
if (ucode_type >= IWM_UCODE_TYPE_MAX) {
|
|
DPRINTF(("%s: Wrong ucode_type %u for default calibration.\n",
|
|
DEVNAME(sc), ucode_type));
|
|
return EINVAL;
|
|
}
|
|
|
|
sc->sc_default_calib[ucode_type].flow_trigger =
|
|
def_calib->calib.flow_trigger;
|
|
sc->sc_default_calib[ucode_type].event_trigger =
|
|
def_calib->calib.event_trigger;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
|
|
{
|
|
struct iwm_fw_info *fw = &sc->sc_fw;
|
|
struct iwm_tlv_ucode_header *uhdr;
|
|
struct iwm_ucode_tlv tlv;
|
|
enum iwm_ucode_tlv_type tlv_type;
|
|
uint8_t *data;
|
|
int err, status;
|
|
size_t len;
|
|
|
|
if (ucode_type != IWM_UCODE_TYPE_INIT &&
|
|
fw->fw_status == IWM_FW_STATUS_DONE)
|
|
return 0;
|
|
|
|
if (fw->fw_status == IWM_FW_STATUS_NONE) {
|
|
fw->fw_status = IWM_FW_STATUS_INPROGRESS;
|
|
} else {
|
|
while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
|
|
tsleep(&sc->sc_fw, 0, "iwmfwp", 0);
|
|
}
|
|
status = fw->fw_status;
|
|
|
|
if (status == IWM_FW_STATUS_DONE)
|
|
return 0;
|
|
|
|
err = iwm_firmload(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not read firmware %s (error %d)\n",
|
|
sc->sc_fwname, err);
|
|
goto out;
|
|
}
|
|
|
|
sc->sc_capaflags = 0;
|
|
sc->sc_capa_n_scan_channels = IWM_MAX_NUM_SCAN_CHANNELS;
|
|
memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa));
|
|
memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
|
|
|
|
uhdr = (void *)fw->fw_rawdata;
|
|
if (*(uint32_t *)fw->fw_rawdata != 0
|
|
|| le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
|
|
aprint_error_dev(sc->sc_dev, "invalid firmware %s\n",
|
|
sc->sc_fwname);
|
|
err = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)",
|
|
IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
|
|
IWM_UCODE_MINOR(le32toh(uhdr->ver)),
|
|
IWM_UCODE_API(le32toh(uhdr->ver)));
|
|
data = uhdr->data;
|
|
len = fw->fw_rawsize - sizeof(*uhdr);
|
|
|
|
while (len >= sizeof(tlv)) {
|
|
size_t tlv_len;
|
|
void *tlv_data;
|
|
|
|
memcpy(&tlv, data, sizeof(tlv));
|
|
tlv_len = le32toh(tlv.length);
|
|
tlv_type = le32toh(tlv.type);
|
|
|
|
len -= sizeof(tlv);
|
|
data += sizeof(tlv);
|
|
tlv_data = data;
|
|
|
|
if (len < tlv_len) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"firmware too short: %zu bytes\n", len);
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
|
|
switch (tlv_type) {
|
|
case IWM_UCODE_TLV_PROBE_MAX_LEN:
|
|
if (tlv_len < sizeof(uint32_t)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
sc->sc_capa_max_probe_len
|
|
= le32toh(*(uint32_t *)tlv_data);
|
|
/* limit it to something sensible */
|
|
if (sc->sc_capa_max_probe_len >
|
|
IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
break;
|
|
case IWM_UCODE_TLV_PAN:
|
|
if (tlv_len) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
|
|
break;
|
|
case IWM_UCODE_TLV_FLAGS:
|
|
if (tlv_len < sizeof(uint32_t)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
if (tlv_len % sizeof(uint32_t)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
/*
|
|
* Apparently there can be many flags, but Linux driver
|
|
* parses only the first one, and so do we.
|
|
*
|
|
* XXX: why does this override IWM_UCODE_TLV_PAN?
|
|
* Intentional or a bug? Observations from
|
|
* current firmware file:
|
|
* 1) TLV_PAN is parsed first
|
|
* 2) TLV_FLAGS contains TLV_FLAGS_PAN
|
|
* ==> this resets TLV_PAN to itself... hnnnk
|
|
*/
|
|
sc->sc_capaflags = le32toh(*(uint32_t *)tlv_data);
|
|
break;
|
|
case IWM_UCODE_TLV_CSCHEME:
|
|
err = iwm_store_cscheme(sc, tlv_data, tlv_len);
|
|
if (err)
|
|
goto parse_out;
|
|
break;
|
|
case IWM_UCODE_TLV_NUM_OF_CPU: {
|
|
uint32_t num_cpu;
|
|
if (tlv_len != sizeof(uint32_t)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
num_cpu = le32toh(*(uint32_t *)tlv_data);
|
|
if (num_cpu == 2) {
|
|
fw->fw_sects[IWM_UCODE_TYPE_REGULAR].is_dual_cpus =
|
|
true;
|
|
fw->fw_sects[IWM_UCODE_TYPE_INIT].is_dual_cpus =
|
|
true;
|
|
fw->fw_sects[IWM_UCODE_TYPE_WOW].is_dual_cpus =
|
|
true;
|
|
} else if (num_cpu < 1 || num_cpu > 2) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
break;
|
|
}
|
|
case IWM_UCODE_TLV_SEC_RT:
|
|
err = iwm_firmware_store_section(sc,
|
|
IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len);
|
|
if (err)
|
|
goto parse_out;
|
|
break;
|
|
case IWM_UCODE_TLV_SEC_INIT:
|
|
err = iwm_firmware_store_section(sc,
|
|
IWM_UCODE_TYPE_INIT, tlv_data, tlv_len);
|
|
if (err)
|
|
goto parse_out;
|
|
break;
|
|
case IWM_UCODE_TLV_SEC_WOWLAN:
|
|
err = iwm_firmware_store_section(sc,
|
|
IWM_UCODE_TYPE_WOW, tlv_data, tlv_len);
|
|
if (err)
|
|
goto parse_out;
|
|
break;
|
|
case IWM_UCODE_TLV_DEF_CALIB:
|
|
if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
err = iwm_set_default_calib(sc, tlv_data);
|
|
if (err)
|
|
goto parse_out;
|
|
break;
|
|
case IWM_UCODE_TLV_PHY_SKU:
|
|
if (tlv_len != sizeof(uint32_t)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
sc->sc_fw_phy_config = le32toh(*(uint32_t *)tlv_data);
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_API_CHANGES_SET: {
|
|
struct iwm_ucode_api *api;
|
|
uint32_t idx, bits;
|
|
int i;
|
|
if (tlv_len != sizeof(*api)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
api = (struct iwm_ucode_api *)tlv_data;
|
|
idx = le32toh(api->api_index);
|
|
bits = le32toh(api->api_flags);
|
|
if (idx >= howmany(IWM_NUM_UCODE_TLV_API, 32)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
for (i = 0; i < 32; i++) {
|
|
if (!ISSET(bits, __BIT(i)))
|
|
continue;
|
|
setbit(sc->sc_ucode_api, i + (32 * idx));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
|
|
struct iwm_ucode_capa *capa;
|
|
uint32_t idx, bits;
|
|
int i;
|
|
if (tlv_len != sizeof(*capa)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
capa = (struct iwm_ucode_capa *)tlv_data;
|
|
idx = le32toh(capa->api_index);
|
|
bits = le32toh(capa->api_capa);
|
|
if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
for (i = 0; i < 32; i++) {
|
|
if (!ISSET(bits, __BIT(i)))
|
|
continue;
|
|
setbit(sc->sc_enabled_capa, i + (32 * idx));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case IWM_UCODE_TLV_FW_UNDOCUMENTED1:
|
|
case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
|
|
case IWM_UCODE_TLV_FW_GSCAN_CAPA:
|
|
case IWM_UCODE_TLV_FW_MEM_SEG:
|
|
/* ignore, not used by current driver */
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_SEC_RT_USNIFFER:
|
|
err = iwm_firmware_store_section(sc,
|
|
IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data,
|
|
tlv_len);
|
|
if (err)
|
|
goto parse_out;
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_PAGING: {
|
|
uint32_t paging_mem_size;
|
|
if (tlv_len != sizeof(paging_mem_size)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
paging_mem_size = le32toh(*(uint32_t *)tlv_data);
|
|
if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
fw->fw_sects[IWM_UCODE_TYPE_REGULAR].paging_mem_size =
|
|
paging_mem_size;
|
|
fw->fw_sects[IWM_UCODE_TYPE_REGULAR_USNIFFER].paging_mem_size =
|
|
paging_mem_size;
|
|
break;
|
|
}
|
|
|
|
case IWM_UCODE_TLV_N_SCAN_CHANNELS:
|
|
if (tlv_len != sizeof(uint32_t)) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
sc->sc_capa_n_scan_channels =
|
|
le32toh(*(uint32_t *)tlv_data);
|
|
break;
|
|
|
|
case IWM_UCODE_TLV_FW_VERSION:
|
|
if (tlv_len != sizeof(uint32_t) * 3) {
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
|
|
"%d.%d.%d",
|
|
le32toh(((uint32_t *)tlv_data)[0]),
|
|
le32toh(((uint32_t *)tlv_data)[1]),
|
|
le32toh(((uint32_t *)tlv_data)[2]));
|
|
break;
|
|
|
|
default:
|
|
DPRINTF(("%s: unknown firmware section %d, abort\n",
|
|
DEVNAME(sc), tlv_type));
|
|
err = EINVAL;
|
|
goto parse_out;
|
|
}
|
|
|
|
len -= roundup(tlv_len, 4);
|
|
data += roundup(tlv_len, 4);
|
|
}
|
|
|
|
KASSERT(err == 0);
|
|
|
|
parse_out:
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"firmware parse error, section type %d\n", tlv_type);
|
|
}
|
|
|
|
if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"device uses unsupported power ops\n");
|
|
err = ENOTSUP;
|
|
}
|
|
|
|
out:
|
|
if (err)
|
|
fw->fw_status = IWM_FW_STATUS_NONE;
|
|
else
|
|
fw->fw_status = IWM_FW_STATUS_DONE;
|
|
wakeup(&sc->sc_fw);
|
|
|
|
if (err && fw->fw_rawdata != NULL) {
|
|
kmem_free(fw->fw_rawdata, fw->fw_rawsize);
|
|
fw->fw_rawdata = NULL;
|
|
CLR(sc->sc_flags, IWM_FLAG_FW_LOADED);
|
|
/* don't touch fw->fw_status */
|
|
memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static uint32_t
|
|
iwm_read_prph(struct iwm_softc *sc, uint32_t addr)
|
|
{
|
|
IWM_WRITE(sc,
|
|
IWM_HBUS_TARG_PRPH_RADDR, ((addr & 0x000fffff) | (3 << 24)));
|
|
IWM_BARRIER_READ_WRITE(sc);
|
|
return IWM_READ(sc, IWM_HBUS_TARG_PRPH_RDAT);
|
|
}
|
|
|
|
static void
|
|
iwm_write_prph(struct iwm_softc *sc, uint32_t addr, uint32_t val)
|
|
{
|
|
IWM_WRITE(sc,
|
|
IWM_HBUS_TARG_PRPH_WADDR, ((addr & 0x000fffff) | (3 << 24)));
|
|
IWM_BARRIER_WRITE(sc);
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_PRPH_WDAT, val);
|
|
}
|
|
|
|
#ifdef IWM_DEBUG
|
|
static int
|
|
iwm_read_mem(struct iwm_softc *sc, uint32_t addr, void *buf, int dwords)
|
|
{
|
|
int offs;
|
|
uint32_t *vals = buf;
|
|
|
|
if (iwm_nic_lock(sc)) {
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_MEM_RADDR, addr);
|
|
for (offs = 0; offs < dwords; offs++)
|
|
vals[offs] = IWM_READ(sc, IWM_HBUS_TARG_MEM_RDAT);
|
|
iwm_nic_unlock(sc);
|
|
return 0;
|
|
}
|
|
return EBUSY;
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
iwm_write_mem(struct iwm_softc *sc, uint32_t addr, const void *buf, int dwords)
|
|
{
|
|
int offs;
|
|
const uint32_t *vals = buf;
|
|
|
|
if (iwm_nic_lock(sc)) {
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WADDR, addr);
|
|
/* WADDR auto-increments */
|
|
for (offs = 0; offs < dwords; offs++) {
|
|
uint32_t val = vals ? vals[offs] : 0;
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WDAT, val);
|
|
}
|
|
iwm_nic_unlock(sc);
|
|
return 0;
|
|
}
|
|
return EBUSY;
|
|
}
|
|
|
|
static int
|
|
iwm_write_mem32(struct iwm_softc *sc, uint32_t addr, uint32_t val)
|
|
{
|
|
return iwm_write_mem(sc, addr, &val, 1);
|
|
}
|
|
|
|
static int
|
|
iwm_poll_bit(struct iwm_softc *sc, int reg, uint32_t bits, uint32_t mask,
|
|
int timo)
|
|
{
|
|
for (;;) {
|
|
if ((IWM_READ(sc, reg) & mask) == (bits & mask)) {
|
|
return 1;
|
|
}
|
|
if (timo < 10) {
|
|
return 0;
|
|
}
|
|
timo -= 10;
|
|
DELAY(10);
|
|
}
|
|
}
|
|
|
|
static int
|
|
iwm_nic_lock(struct iwm_softc *sc)
|
|
{
|
|
int rv = 0;
|
|
|
|
if (sc->sc_cmd_hold_nic_awake)
|
|
return 1;
|
|
|
|
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
|
|
DELAY(2);
|
|
|
|
if (iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY
|
|
| IWM_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP, 15000)) {
|
|
rv = 1;
|
|
} else {
|
|
DPRINTF(("%s: resetting device via NMI\n", DEVNAME(sc)));
|
|
IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_FORCE_NMI);
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static void
|
|
iwm_nic_unlock(struct iwm_softc *sc)
|
|
{
|
|
|
|
if (sc->sc_cmd_hold_nic_awake)
|
|
return;
|
|
|
|
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
}
|
|
|
|
static void
|
|
iwm_set_bits_mask_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits,
|
|
uint32_t mask)
|
|
{
|
|
uint32_t val;
|
|
|
|
/* XXX: no error path? */
|
|
if (iwm_nic_lock(sc)) {
|
|
val = iwm_read_prph(sc, reg) & mask;
|
|
val |= bits;
|
|
iwm_write_prph(sc, reg, val);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
iwm_set_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits)
|
|
{
|
|
iwm_set_bits_mask_prph(sc, reg, bits, ~0);
|
|
}
|
|
|
|
static void
|
|
iwm_clear_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits)
|
|
{
|
|
iwm_set_bits_mask_prph(sc, reg, 0, ~bits);
|
|
}
|
|
|
|
static int
|
|
iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
|
|
bus_size_t size, bus_size_t alignment)
|
|
{
|
|
int nsegs, err;
|
|
void *va;
|
|
|
|
dma->tag = tag;
|
|
dma->size = size;
|
|
|
|
err = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
|
|
&dma->map);
|
|
if (err)
|
|
goto fail;
|
|
|
|
err = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
|
|
BUS_DMA_NOWAIT);
|
|
if (err)
|
|
goto fail;
|
|
|
|
err = bus_dmamem_map(tag, &dma->seg, 1, size, &va, BUS_DMA_NOWAIT);
|
|
if (err)
|
|
goto fail;
|
|
dma->vaddr = va;
|
|
|
|
err = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
|
|
BUS_DMA_NOWAIT);
|
|
if (err)
|
|
goto fail;
|
|
|
|
memset(dma->vaddr, 0, size);
|
|
bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
|
|
dma->paddr = dma->map->dm_segs[0].ds_addr;
|
|
|
|
return 0;
|
|
|
|
fail: iwm_dma_contig_free(dma);
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
iwm_dma_contig_free(struct iwm_dma_info *dma)
|
|
{
|
|
if (dma->map != NULL) {
|
|
if (dma->vaddr != NULL) {
|
|
bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(dma->tag, dma->map);
|
|
bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
|
|
bus_dmamem_free(dma->tag, &dma->seg, 1);
|
|
dma->vaddr = NULL;
|
|
}
|
|
bus_dmamap_destroy(dma->tag, dma->map);
|
|
dma->map = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
|
|
{
|
|
bus_size_t size;
|
|
int i, err;
|
|
|
|
ring->cur = 0;
|
|
|
|
/* Allocate RX descriptors (256-byte aligned). */
|
|
size = IWM_RX_RING_COUNT * sizeof(uint32_t);
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate RX ring DMA memory\n");
|
|
goto fail;
|
|
}
|
|
ring->desc = ring->desc_dma.vaddr;
|
|
|
|
/* Allocate RX status area (16-byte aligned). */
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
|
|
sizeof(*ring->stat), 16);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate RX status DMA memory\n");
|
|
goto fail;
|
|
}
|
|
ring->stat = ring->stat_dma.vaddr;
|
|
|
|
for (i = 0; i < IWM_RX_RING_COUNT; i++) {
|
|
struct iwm_rx_data *data = &ring->data[i];
|
|
|
|
memset(data, 0, sizeof(*data));
|
|
err = bus_dmamap_create(sc->sc_dmat, IWM_RBUF_SIZE, 1,
|
|
IWM_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
|
|
&data->map);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not create RX buf DMA map\n");
|
|
goto fail;
|
|
}
|
|
|
|
err = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i);
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
return 0;
|
|
|
|
fail: iwm_free_rx_ring(sc, ring);
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
iwm_disable_rx_dma(struct iwm_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
if (iwm_nic_lock(sc)) {
|
|
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if (IWM_READ(sc, IWM_FH_MEM_RSSR_RX_STATUS_REG) &
|
|
IWM_FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
|
|
{
|
|
ring->cur = 0;
|
|
memset(ring->stat, 0, sizeof(*ring->stat));
|
|
bus_dmamap_sync(sc->sc_dmat, ring->stat_dma.map, 0,
|
|
ring->stat_dma.size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static void
|
|
iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
iwm_dma_contig_free(&ring->desc_dma);
|
|
iwm_dma_contig_free(&ring->stat_dma);
|
|
|
|
for (i = 0; i < IWM_RX_RING_COUNT; i++) {
|
|
struct iwm_rx_data *data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
if (data->map != NULL) {
|
|
bus_dmamap_destroy(sc->sc_dmat, data->map);
|
|
data->map = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
|
|
{
|
|
bus_addr_t paddr;
|
|
bus_size_t size;
|
|
int i, err, nsegs;
|
|
|
|
ring->qid = qid;
|
|
ring->queued = 0;
|
|
ring->cur = 0;
|
|
|
|
/* Allocate TX descriptors (256-byte aligned). */
|
|
size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate TX ring DMA memory\n");
|
|
goto fail;
|
|
}
|
|
ring->desc = ring->desc_dma.vaddr;
|
|
|
|
/*
|
|
* We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
|
|
* to allocate commands space for other rings.
|
|
*/
|
|
if (qid > IWM_CMD_QUEUE)
|
|
return 0;
|
|
|
|
size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate TX cmd DMA memory\n");
|
|
goto fail;
|
|
}
|
|
ring->cmd = ring->cmd_dma.vaddr;
|
|
|
|
paddr = ring->cmd_dma.paddr;
|
|
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
|
|
struct iwm_tx_data *data = &ring->data[i];
|
|
size_t mapsize;
|
|
|
|
data->cmd_paddr = paddr;
|
|
data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
|
|
+ offsetof(struct iwm_tx_cmd, scratch);
|
|
paddr += sizeof(struct iwm_device_cmd);
|
|
|
|
/* FW commands may require more mapped space than packets. */
|
|
if (qid == IWM_CMD_QUEUE) {
|
|
mapsize = IWM_RBUF_SIZE;
|
|
nsegs = 1;
|
|
} else {
|
|
mapsize = MCLBYTES;
|
|
nsegs = IWM_NUM_OF_TBS - 2;
|
|
}
|
|
err = bus_dmamap_create(sc->sc_dmat, mapsize, nsegs, mapsize,
|
|
0, BUS_DMA_NOWAIT, &data->map);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not create TX buf DMA map\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
KASSERT(paddr == ring->cmd_dma.paddr + size);
|
|
return 0;
|
|
|
|
fail: iwm_free_tx_ring(sc, ring);
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
iwm_clear_cmd_in_flight(struct iwm_softc *sc)
|
|
{
|
|
|
|
if (!sc->apmg_wake_up_wa)
|
|
return;
|
|
|
|
if (!sc->sc_cmd_hold_nic_awake) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"cmd_hold_nic_awake not set\n");
|
|
return;
|
|
}
|
|
|
|
sc->sc_cmd_hold_nic_awake = 0;
|
|
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
}
|
|
|
|
static int
|
|
iwm_set_cmd_in_flight(struct iwm_softc *sc)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* wake up the NIC to make sure that the firmware will see the host
|
|
* command - we will let the NIC sleep once all the host commands
|
|
* returned. This needs to be done only on NICs that have
|
|
* apmg_wake_up_wa set.
|
|
*/
|
|
if (sc->apmg_wake_up_wa && !sc->sc_cmd_hold_nic_awake) {
|
|
|
|
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
|
|
ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
|
|
(IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP),
|
|
15000);
|
|
if (ret == 0) {
|
|
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
aprint_error_dev(sc->sc_dev,
|
|
"failed to wake NIC for hcmd\n");
|
|
return EIO;
|
|
}
|
|
sc->sc_cmd_hold_nic_awake = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
static void
|
|
iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
|
|
struct iwm_tx_data *data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
}
|
|
/* Clear TX descriptors. */
|
|
memset(ring->desc, 0, ring->desc_dma.size);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
|
|
ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
|
|
sc->qfullmsk &= ~(1 << ring->qid);
|
|
ring->queued = 0;
|
|
ring->cur = 0;
|
|
|
|
if (ring->qid == IWM_CMD_QUEUE && sc->sc_cmd_hold_nic_awake)
|
|
iwm_clear_cmd_in_flight(sc);
|
|
}
|
|
|
|
static void
|
|
iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
iwm_dma_contig_free(&ring->desc_dma);
|
|
iwm_dma_contig_free(&ring->cmd_dma);
|
|
|
|
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
|
|
struct iwm_tx_data *data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
if (data->map != NULL) {
|
|
bus_dmamap_destroy(sc->sc_dmat, data->map);
|
|
data->map = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
iwm_enable_rfkill_int(struct iwm_softc *sc)
|
|
{
|
|
sc->sc_intmask = IWM_CSR_INT_BIT_RF_KILL;
|
|
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
|
|
}
|
|
|
|
static int
|
|
iwm_check_rfkill(struct iwm_softc *sc)
|
|
{
|
|
uint32_t v;
|
|
int s;
|
|
int rv;
|
|
|
|
s = splnet();
|
|
|
|
/*
|
|
* "documentation" is not really helpful here:
|
|
* 27: HW_RF_KILL_SW
|
|
* Indicates state of (platform's) hardware RF-Kill switch
|
|
*
|
|
* But apparently when it's off, it's on ...
|
|
*/
|
|
v = IWM_READ(sc, IWM_CSR_GP_CNTRL);
|
|
rv = (v & IWM_CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW) == 0;
|
|
if (rv) {
|
|
sc->sc_flags |= IWM_FLAG_RFKILL;
|
|
} else {
|
|
sc->sc_flags &= ~IWM_FLAG_RFKILL;
|
|
}
|
|
|
|
splx(s);
|
|
return rv;
|
|
}
|
|
|
|
static void
|
|
iwm_enable_interrupts(struct iwm_softc *sc)
|
|
{
|
|
sc->sc_intmask = IWM_CSR_INI_SET_MASK;
|
|
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
|
|
}
|
|
|
|
static void
|
|
iwm_restore_interrupts(struct iwm_softc *sc)
|
|
{
|
|
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
|
|
}
|
|
|
|
static void
|
|
iwm_disable_interrupts(struct iwm_softc *sc)
|
|
{
|
|
int s = splnet();
|
|
|
|
IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
|
|
|
|
/* acknowledge all interrupts */
|
|
IWM_WRITE(sc, IWM_CSR_INT, ~0);
|
|
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
iwm_ict_reset(struct iwm_softc *sc)
|
|
{
|
|
iwm_disable_interrupts(sc);
|
|
|
|
memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
|
|
bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWM_ICT_SIZE,
|
|
BUS_DMASYNC_PREWRITE);
|
|
sc->ict_cur = 0;
|
|
|
|
/* Set physical address of ICT (4KB aligned). */
|
|
IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
|
|
IWM_CSR_DRAM_INT_TBL_ENABLE
|
|
| IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
|
|
| IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
|
|
| sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
|
|
|
|
/* Switch to ICT interrupt mode in driver. */
|
|
sc->sc_flags |= IWM_FLAG_USE_ICT;
|
|
|
|
IWM_WRITE(sc, IWM_CSR_INT, ~0);
|
|
iwm_enable_interrupts(sc);
|
|
}
|
|
|
|
#define IWM_HW_READY_TIMEOUT 50
|
|
static int
|
|
iwm_set_hw_ready(struct iwm_softc *sc)
|
|
{
|
|
int ready;
|
|
|
|
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
|
|
IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY);
|
|
|
|
ready = iwm_poll_bit(sc, IWM_CSR_HW_IF_CONFIG_REG,
|
|
IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
|
|
IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
|
|
IWM_HW_READY_TIMEOUT);
|
|
if (ready)
|
|
IWM_SETBITS(sc, IWM_CSR_MBOX_SET_REG,
|
|
IWM_CSR_MBOX_SET_REG_OS_ALIVE);
|
|
|
|
return ready;
|
|
}
|
|
#undef IWM_HW_READY_TIMEOUT
|
|
|
|
static int
|
|
iwm_prepare_card_hw(struct iwm_softc *sc)
|
|
{
|
|
int t = 0;
|
|
|
|
if (iwm_set_hw_ready(sc))
|
|
return 0;
|
|
|
|
DELAY(100);
|
|
|
|
/* If HW is not ready, prepare the conditions to check again */
|
|
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
|
|
IWM_CSR_HW_IF_CONFIG_REG_PREPARE);
|
|
|
|
do {
|
|
if (iwm_set_hw_ready(sc))
|
|
return 0;
|
|
DELAY(200);
|
|
t += 200;
|
|
} while (t < 150000);
|
|
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
static void
|
|
iwm_apm_config(struct iwm_softc *sc)
|
|
{
|
|
pcireg_t reg;
|
|
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
|
|
sc->sc_cap_off + PCIE_LCSR);
|
|
if (reg & PCIE_LCSR_ASPM_L1) {
|
|
/* Um the Linux driver prints "Disabling L0S for this one ... */
|
|
IWM_SETBITS(sc, IWM_CSR_GIO_REG,
|
|
IWM_CSR_GIO_REG_VAL_L0S_ENABLED);
|
|
} else {
|
|
/* ... and "Enabling" here */
|
|
IWM_CLRBITS(sc, IWM_CSR_GIO_REG,
|
|
IWM_CSR_GIO_REG_VAL_L0S_ENABLED);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start up NIC's basic functionality after it has been reset
|
|
* e.g. after platform boot or shutdown.
|
|
* NOTE: This does not load uCode nor start the embedded processor
|
|
*/
|
|
static int
|
|
iwm_apm_init(struct iwm_softc *sc)
|
|
{
|
|
int err = 0;
|
|
|
|
/* Disable L0S exit timer (platform NMI workaround) */
|
|
if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
|
|
IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS,
|
|
IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
|
|
}
|
|
|
|
/*
|
|
* Disable L0s without affecting L1;
|
|
* don't wait for ICH L0s (ICH bug W/A)
|
|
*/
|
|
IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS,
|
|
IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
|
|
|
|
/* Set FH wait threshold to maximum (HW error during stress W/A) */
|
|
IWM_SETBITS(sc, IWM_CSR_DBG_HPET_MEM_REG, IWM_CSR_DBG_HPET_MEM_REG_VAL);
|
|
|
|
/*
|
|
* Enable HAP INTA (interrupt from management bus) to
|
|
* wake device's PCI Express link L1a -> L0s
|
|
*/
|
|
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
|
|
IWM_CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
|
|
|
|
iwm_apm_config(sc);
|
|
|
|
#if 0 /* not for 7k/8k */
|
|
/* Configure analog phase-lock-loop before activating to D0A */
|
|
if (trans->cfg->base_params->pll_cfg_val)
|
|
IWM_SETBITS(trans, IWM_CSR_ANA_PLL_CFG,
|
|
trans->cfg->base_params->pll_cfg_val);
|
|
#endif
|
|
|
|
/*
|
|
* Set "initialization complete" bit to move adapter from
|
|
* D0U* --> D0A* (powered-up active) state.
|
|
*/
|
|
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
|
|
/*
|
|
* Wait for clock stabilization; once stabilized, access to
|
|
* device-internal resources is supported, e.g. iwm_write_prph()
|
|
* and accesses to uCode SRAM.
|
|
*/
|
|
if (!iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000)) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"timeout waiting for clock stabilization\n");
|
|
err = ETIMEDOUT;
|
|
goto out;
|
|
}
|
|
|
|
if (sc->host_interrupt_operation_mode) {
|
|
/*
|
|
* This is a bit of an abuse - This is needed for 7260 / 3160
|
|
* only check host_interrupt_operation_mode even if this is
|
|
* not related to host_interrupt_operation_mode.
|
|
*
|
|
* Enable the oscillator to count wake up time for L1 exit. This
|
|
* consumes slightly more power (100uA) - but allows to be sure
|
|
* that we wake up from L1 on time.
|
|
*
|
|
* This looks weird: read twice the same register, discard the
|
|
* value, set a bit, and yet again, read that same register
|
|
* just to discard the value. But that's the way the hardware
|
|
* seems to like it.
|
|
*/
|
|
iwm_read_prph(sc, IWM_OSC_CLK);
|
|
iwm_read_prph(sc, IWM_OSC_CLK);
|
|
iwm_set_bits_prph(sc, IWM_OSC_CLK, IWM_OSC_CLK_FORCE_CONTROL);
|
|
iwm_read_prph(sc, IWM_OSC_CLK);
|
|
iwm_read_prph(sc, IWM_OSC_CLK);
|
|
}
|
|
|
|
/*
|
|
* Enable DMA clock and wait for it to stabilize.
|
|
*
|
|
* Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits
|
|
* do not disable clocks. This preserves any hardware bits already
|
|
* set by default in "CLK_CTRL_REG" after reset.
|
|
*/
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
iwm_write_prph(sc, IWM_APMG_CLK_EN_REG,
|
|
IWM_APMG_CLK_VAL_DMA_CLK_RQT);
|
|
DELAY(20);
|
|
|
|
/* Disable L1-Active */
|
|
iwm_set_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
|
|
IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
|
|
|
|
/* Clear the interrupt in APMG if the NIC is in RFKILL */
|
|
iwm_write_prph(sc, IWM_APMG_RTC_INT_STT_REG,
|
|
IWM_APMG_RTC_INT_STT_RFKILL);
|
|
}
|
|
out:
|
|
if (err)
|
|
aprint_error_dev(sc->sc_dev, "apm init error %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
iwm_apm_stop(struct iwm_softc *sc)
|
|
{
|
|
/* stop device's busmaster DMA activity */
|
|
IWM_SETBITS(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_STOP_MASTER);
|
|
|
|
if (!iwm_poll_bit(sc, IWM_CSR_RESET,
|
|
IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED,
|
|
IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED, 100))
|
|
aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
|
|
DPRINTF(("iwm apm stop\n"));
|
|
}
|
|
|
|
static int
|
|
iwm_start_hw(struct iwm_softc *sc)
|
|
{
|
|
int err;
|
|
|
|
err = iwm_prepare_card_hw(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Reset the entire device */
|
|
IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
|
|
DELAY(10);
|
|
|
|
err = iwm_apm_init(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
iwm_enable_rfkill_int(sc);
|
|
iwm_check_rfkill(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
iwm_stop_device(struct iwm_softc *sc)
|
|
{
|
|
int chnl, ntries;
|
|
int qid;
|
|
|
|
iwm_disable_interrupts(sc);
|
|
sc->sc_flags &= ~IWM_FLAG_USE_ICT;
|
|
|
|
/* Deactivate TX scheduler. */
|
|
iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
|
|
|
|
/* Stop all DMA channels. */
|
|
if (iwm_nic_lock(sc)) {
|
|
for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
|
|
IWM_WRITE(sc,
|
|
IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
|
|
for (ntries = 0; ntries < 200; ntries++) {
|
|
uint32_t r;
|
|
|
|
r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG);
|
|
if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(
|
|
chnl))
|
|
break;
|
|
DELAY(20);
|
|
}
|
|
}
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
iwm_disable_rx_dma(sc);
|
|
|
|
iwm_reset_rx_ring(sc, &sc->rxq);
|
|
|
|
for (qid = 0; qid < __arraycount(sc->txq); qid++)
|
|
iwm_reset_tx_ring(sc, &sc->txq[qid]);
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
/* Power-down device's busmaster DMA clocks */
|
|
if (iwm_nic_lock(sc)) {
|
|
iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG,
|
|
IWM_APMG_CLK_VAL_DMA_CLK_RQT);
|
|
DELAY(5);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
}
|
|
|
|
/* Make sure (redundant) we've released our request to stay awake */
|
|
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
|
|
|
|
/* Stop the device, and put it in low power state */
|
|
iwm_apm_stop(sc);
|
|
|
|
/*
|
|
* Upon stop, the APM issues an interrupt if HW RF kill is set.
|
|
* Clean again the interrupt here
|
|
*/
|
|
iwm_disable_interrupts(sc);
|
|
|
|
/* Reset the on-board processor. */
|
|
IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
|
|
|
|
/* Even though we stop the HW we still want the RF kill interrupt. */
|
|
iwm_enable_rfkill_int(sc);
|
|
iwm_check_rfkill(sc);
|
|
}
|
|
|
|
static void
|
|
iwm_nic_config(struct iwm_softc *sc)
|
|
{
|
|
uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
|
|
uint32_t reg_val = 0;
|
|
|
|
radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
|
|
IWM_FW_PHY_CFG_RADIO_TYPE_POS;
|
|
radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
|
|
IWM_FW_PHY_CFG_RADIO_STEP_POS;
|
|
radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
|
|
IWM_FW_PHY_CFG_RADIO_DASH_POS;
|
|
|
|
reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
|
|
IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
|
|
reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
|
|
IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
|
|
|
|
/* radio configuration */
|
|
reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
|
|
reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
|
|
reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
|
|
|
|
IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
|
|
|
|
DPRINTF(("Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
|
|
radio_cfg_step, radio_cfg_dash));
|
|
|
|
/*
|
|
* W/A : NIC is stuck in a reset state after Early PCIe power off
|
|
* (PCIe power is lost before PERST# is asserted), causing ME FW
|
|
* to lose ownership and not being able to obtain it back.
|
|
*/
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
|
|
IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
|
|
~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
|
|
}
|
|
}
|
|
|
|
static int
|
|
iwm_nic_rx_init(struct iwm_softc *sc)
|
|
{
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
|
|
memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
|
|
bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
|
|
0, sc->rxq.stat_dma.size,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
iwm_disable_rx_dma(sc);
|
|
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
|
|
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
|
|
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
|
|
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
|
|
|
|
/* Set physical address of RX ring (256-byte aligned). */
|
|
IWM_WRITE(sc,
|
|
IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
|
|
|
|
/* Set physical address of RX status (16-byte aligned). */
|
|
IWM_WRITE(sc,
|
|
IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
|
|
|
|
/* Enable RX. */
|
|
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
|
|
IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
|
|
IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */
|
|
IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
|
|
IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK |
|
|
IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K |
|
|
(IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
|
|
IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
|
|
|
|
IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
|
|
|
|
/* W/A for interrupt coalescing bug in 7260 and 3160 */
|
|
if (sc->host_interrupt_operation_mode)
|
|
IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
|
|
|
|
/*
|
|
* This value should initially be 0 (before preparing any RBs),
|
|
* and should be 8 after preparing the first 8 RBs (for example).
|
|
*/
|
|
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_nic_tx_init(struct iwm_softc *sc)
|
|
{
|
|
int qid;
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
|
|
/* Deactivate TX scheduler. */
|
|
iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
|
|
|
|
/* Set physical address of "keep warm" page (16-byte aligned). */
|
|
IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
|
|
|
|
for (qid = 0; qid < __arraycount(sc->txq); qid++) {
|
|
struct iwm_tx_ring *txq = &sc->txq[qid];
|
|
|
|
/* Set physical address of TX ring (256-byte aligned). */
|
|
IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
|
|
txq->desc_dma.paddr >> 8);
|
|
DPRINTF(("loading ring %d descriptors (%p) at %"PRIxMAX"\n",
|
|
qid, txq->desc, (uintmax_t)(txq->desc_dma.paddr >> 8)));
|
|
}
|
|
|
|
iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_nic_init(struct iwm_softc *sc)
|
|
{
|
|
int err;
|
|
|
|
iwm_apm_init(sc);
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
|
|
IWM_APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
|
|
~IWM_APMG_PS_CTRL_MSK_PWR_SRC);
|
|
}
|
|
|
|
iwm_nic_config(sc);
|
|
|
|
err = iwm_nic_rx_init(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_nic_tx_init(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
DPRINTF(("shadow registers enabled\n"));
|
|
IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const uint8_t iwm_ac_to_tx_fifo[] = {
|
|
IWM_TX_FIFO_VO,
|
|
IWM_TX_FIFO_VI,
|
|
IWM_TX_FIFO_BE,
|
|
IWM_TX_FIFO_BK,
|
|
};
|
|
|
|
static int
|
|
iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
|
|
{
|
|
if (!iwm_nic_lock(sc)) {
|
|
DPRINTF(("%s: cannot enable txq %d\n", DEVNAME(sc), qid));
|
|
return EBUSY;
|
|
}
|
|
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
|
|
|
|
if (qid == IWM_CMD_QUEUE) {
|
|
iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
|
|
(0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
|
|
| (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
|
|
iwm_nic_unlock(sc);
|
|
|
|
iwm_write_mem32(sc,
|
|
sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
|
|
|
|
/* Set scheduler window size and frame limit. */
|
|
iwm_write_mem32(sc,
|
|
sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
|
|
sizeof(uint32_t),
|
|
((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
|
|
IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
|
|
((IWM_FRAME_LIMIT
|
|
<< IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
|
|
IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
|
|
(1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
|
|
(fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
|
|
(1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
|
|
IWM_SCD_QUEUE_STTS_REG_MSK);
|
|
} else {
|
|
struct iwm_scd_txq_cfg_cmd cmd;
|
|
int err;
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.scd_queue = qid;
|
|
cmd.enable = 1;
|
|
cmd.sta_id = sta_id;
|
|
cmd.tx_fifo = fifo;
|
|
cmd.aggregate = 0;
|
|
cmd.window = IWM_FRAME_LIMIT;
|
|
|
|
err = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, 0, sizeof(cmd),
|
|
&cmd);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
}
|
|
|
|
iwm_write_prph(sc, IWM_SCD_EN_CTRL,
|
|
iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
DPRINTF(("enabled txq %d FIFO %d\n", qid, fifo));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_post_alive(struct iwm_softc *sc)
|
|
{
|
|
int nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
|
|
IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t);
|
|
int err, chnl;
|
|
uint32_t base;
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
|
|
base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
|
|
if (sc->sched_base != base) {
|
|
DPRINTF(("%s: sched addr mismatch: 0x%08x != 0x%08x\n",
|
|
DEVNAME(sc), sc->sched_base, base));
|
|
sc->sched_base = base;
|
|
}
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
iwm_ict_reset(sc);
|
|
|
|
/* Clear TX scheduler state in SRAM. */
|
|
err = iwm_write_mem(sc,
|
|
sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND, NULL, nwords);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
|
|
/* Set physical address of TX scheduler rings (1KB aligned). */
|
|
iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
|
|
|
|
iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
/* enable command channel */
|
|
err = iwm_enable_txq(sc, 0 /* unused */, IWM_CMD_QUEUE, 7);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
|
|
/* Activate TX scheduler. */
|
|
iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
|
|
|
|
/* Enable DMA channels. */
|
|
for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
|
|
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
|
|
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
|
|
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
|
|
}
|
|
|
|
IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
|
|
IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
|
|
|
|
/* Enable L1-Active */
|
|
if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
|
|
iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
|
|
IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
|
|
}
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct iwm_phy_db_entry *
|
|
iwm_phy_db_get_section(struct iwm_softc *sc, enum iwm_phy_db_section_type type,
|
|
uint16_t chg_id)
|
|
{
|
|
struct iwm_phy_db *phy_db = &sc->sc_phy_db;
|
|
|
|
if (type >= IWM_PHY_DB_MAX)
|
|
return NULL;
|
|
|
|
switch (type) {
|
|
case IWM_PHY_DB_CFG:
|
|
return &phy_db->cfg;
|
|
case IWM_PHY_DB_CALIB_NCH:
|
|
return &phy_db->calib_nch;
|
|
case IWM_PHY_DB_CALIB_CHG_PAPD:
|
|
if (chg_id >= IWM_NUM_PAPD_CH_GROUPS)
|
|
return NULL;
|
|
return &phy_db->calib_ch_group_papd[chg_id];
|
|
case IWM_PHY_DB_CALIB_CHG_TXP:
|
|
if (chg_id >= IWM_NUM_TXP_CH_GROUPS)
|
|
return NULL;
|
|
return &phy_db->calib_ch_group_txp[chg_id];
|
|
default:
|
|
return NULL;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
iwm_phy_db_set_section(struct iwm_softc *sc,
|
|
struct iwm_calib_res_notif_phy_db *phy_db_notif, uint16_t size)
|
|
{
|
|
struct iwm_phy_db_entry *entry;
|
|
enum iwm_phy_db_section_type type = le16toh(phy_db_notif->type);
|
|
uint16_t chg_id = 0;
|
|
|
|
if (type == IWM_PHY_DB_CALIB_CHG_PAPD ||
|
|
type == IWM_PHY_DB_CALIB_CHG_TXP)
|
|
chg_id = le16toh(*(uint16_t *)phy_db_notif->data);
|
|
|
|
entry = iwm_phy_db_get_section(sc, type, chg_id);
|
|
if (!entry)
|
|
return EINVAL;
|
|
|
|
if (entry->data)
|
|
kmem_intr_free(entry->data, entry->size);
|
|
entry->data = kmem_intr_alloc(size, KM_NOSLEEP);
|
|
if (!entry->data) {
|
|
entry->size = 0;
|
|
return ENOMEM;
|
|
}
|
|
memcpy(entry->data, phy_db_notif->data, size);
|
|
entry->size = size;
|
|
|
|
DPRINTFN(10, ("%s(%d): [PHYDB]SET: Type %d, Size: %d, data: %p\n",
|
|
__func__, __LINE__, type, size, entry->data));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_is_valid_channel(uint16_t ch_id)
|
|
{
|
|
if (ch_id <= 14 ||
|
|
(36 <= ch_id && ch_id <= 64 && ch_id % 4 == 0) ||
|
|
(100 <= ch_id && ch_id <= 140 && ch_id % 4 == 0) ||
|
|
(145 <= ch_id && ch_id <= 165 && ch_id % 4 == 1))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t
|
|
iwm_ch_id_to_ch_index(uint16_t ch_id)
|
|
{
|
|
if (!iwm_is_valid_channel(ch_id))
|
|
return 0xff;
|
|
|
|
if (ch_id <= 14)
|
|
return ch_id - 1;
|
|
if (ch_id <= 64)
|
|
return (ch_id + 20) / 4;
|
|
if (ch_id <= 140)
|
|
return (ch_id - 12) / 4;
|
|
return (ch_id - 13) / 4;
|
|
}
|
|
|
|
|
|
static uint16_t
|
|
iwm_channel_id_to_papd(uint16_t ch_id)
|
|
{
|
|
if (!iwm_is_valid_channel(ch_id))
|
|
return 0xff;
|
|
|
|
if (1 <= ch_id && ch_id <= 14)
|
|
return 0;
|
|
if (36 <= ch_id && ch_id <= 64)
|
|
return 1;
|
|
if (100 <= ch_id && ch_id <= 140)
|
|
return 2;
|
|
return 3;
|
|
}
|
|
|
|
static uint16_t
|
|
iwm_channel_id_to_txp(struct iwm_softc *sc, uint16_t ch_id)
|
|
{
|
|
struct iwm_phy_db *phy_db = &sc->sc_phy_db;
|
|
struct iwm_phy_db_chg_txp *txp_chg;
|
|
int i;
|
|
uint8_t ch_index = iwm_ch_id_to_ch_index(ch_id);
|
|
|
|
if (ch_index == 0xff)
|
|
return 0xff;
|
|
|
|
for (i = 0; i < IWM_NUM_TXP_CH_GROUPS; i++) {
|
|
txp_chg = (void *)phy_db->calib_ch_group_txp[i].data;
|
|
if (!txp_chg)
|
|
return 0xff;
|
|
/*
|
|
* Looking for the first channel group the max channel
|
|
* of which is higher than the requested channel.
|
|
*/
|
|
if (le16toh(txp_chg->max_channel_idx) >= ch_index)
|
|
return i;
|
|
}
|
|
return 0xff;
|
|
}
|
|
|
|
static int
|
|
iwm_phy_db_get_section_data(struct iwm_softc *sc, uint32_t type, uint8_t **data,
|
|
uint16_t *size, uint16_t ch_id)
|
|
{
|
|
struct iwm_phy_db_entry *entry;
|
|
uint16_t ch_group_id = 0;
|
|
|
|
if (type == IWM_PHY_DB_CALIB_CHG_PAPD)
|
|
ch_group_id = iwm_channel_id_to_papd(ch_id);
|
|
else if (type == IWM_PHY_DB_CALIB_CHG_TXP)
|
|
ch_group_id = iwm_channel_id_to_txp(sc, ch_id);
|
|
|
|
entry = iwm_phy_db_get_section(sc, type, ch_group_id);
|
|
if (!entry)
|
|
return EINVAL;
|
|
|
|
*data = entry->data;
|
|
*size = entry->size;
|
|
|
|
DPRINTFN(10, ("%s(%d): [PHYDB] GET: Type %d , Size: %d\n",
|
|
__func__, __LINE__, type, *size));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_send_phy_db_cmd(struct iwm_softc *sc, uint16_t type, uint16_t length,
|
|
void *data)
|
|
{
|
|
struct iwm_phy_db_cmd phy_db_cmd;
|
|
struct iwm_host_cmd cmd = {
|
|
.id = IWM_PHY_DB_CMD,
|
|
.flags = IWM_CMD_ASYNC,
|
|
};
|
|
|
|
DPRINTFN(10, ("Sending PHY-DB hcmd of type %d, of length %d\n",
|
|
type, length));
|
|
|
|
phy_db_cmd.type = le16toh(type);
|
|
phy_db_cmd.length = le16toh(length);
|
|
|
|
cmd.data[0] = &phy_db_cmd;
|
|
cmd.len[0] = sizeof(struct iwm_phy_db_cmd);
|
|
cmd.data[1] = data;
|
|
cmd.len[1] = length;
|
|
|
|
return iwm_send_cmd(sc, &cmd);
|
|
}
|
|
|
|
static int
|
|
iwm_phy_db_send_all_channel_groups(struct iwm_softc *sc,
|
|
enum iwm_phy_db_section_type type, uint8_t max_ch_groups)
|
|
{
|
|
uint16_t i;
|
|
int err;
|
|
struct iwm_phy_db_entry *entry;
|
|
|
|
/* Send all the channel-specific groups to operational fw */
|
|
for (i = 0; i < max_ch_groups; i++) {
|
|
entry = iwm_phy_db_get_section(sc, type, i);
|
|
if (!entry)
|
|
return EINVAL;
|
|
|
|
if (!entry->size)
|
|
continue;
|
|
|
|
err = iwm_send_phy_db_cmd(sc, type, entry->size, entry->data);
|
|
if (err) {
|
|
DPRINTF(("%s: Can't SEND phy_db section %d (%d), "
|
|
"err %d\n", DEVNAME(sc), type, i, err));
|
|
return err;
|
|
}
|
|
|
|
DPRINTFN(10, ("%s: Sent PHY_DB HCMD, type = %d num = %d\n",
|
|
DEVNAME(sc), type, i));
|
|
|
|
DELAY(1000);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_send_phy_db_data(struct iwm_softc *sc)
|
|
{
|
|
uint8_t *data = NULL;
|
|
uint16_t size = 0;
|
|
int err;
|
|
|
|
err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CFG, &data, &size, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CFG, size, data);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CALIB_NCH,
|
|
&data, &size, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CALIB_NCH, size, data);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_phy_db_send_all_channel_groups(sc,
|
|
IWM_PHY_DB_CALIB_CHG_PAPD, IWM_NUM_PAPD_CH_GROUPS);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_phy_db_send_all_channel_groups(sc,
|
|
IWM_PHY_DB_CALIB_CHG_TXP, IWM_NUM_TXP_CH_GROUPS);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For the high priority TE use a time event type that has similar priority to
|
|
* the FW's action scan priority.
|
|
*/
|
|
#define IWM_ROC_TE_TYPE_NORMAL IWM_TE_P2P_DEVICE_DISCOVERABLE
|
|
#define IWM_ROC_TE_TYPE_MGMT_TX IWM_TE_P2P_CLIENT_ASSOC
|
|
|
|
/* used to convert from time event API v2 to v1 */
|
|
#define IWM_TE_V2_DEP_POLICY_MSK (IWM_TE_V2_DEP_OTHER | IWM_TE_V2_DEP_TSF |\
|
|
IWM_TE_V2_EVENT_SOCIOPATHIC)
|
|
static inline uint16_t
|
|
iwm_te_v2_get_notify(uint16_t policy)
|
|
{
|
|
return le16toh(policy) & IWM_TE_V2_NOTIF_MSK;
|
|
}
|
|
|
|
static inline uint16_t
|
|
iwm_te_v2_get_dep_policy(uint16_t policy)
|
|
{
|
|
return (le16toh(policy) & IWM_TE_V2_DEP_POLICY_MSK) >>
|
|
IWM_TE_V2_PLACEMENT_POS;
|
|
}
|
|
|
|
static inline uint16_t
|
|
iwm_te_v2_get_absence(uint16_t policy)
|
|
{
|
|
return (le16toh(policy) & IWM_TE_V2_ABSENCE) >> IWM_TE_V2_ABSENCE_POS;
|
|
}
|
|
|
|
static void
|
|
iwm_te_v2_to_v1(const struct iwm_time_event_cmd_v2 *cmd_v2,
|
|
struct iwm_time_event_cmd_v1 *cmd_v1)
|
|
{
|
|
cmd_v1->id_and_color = cmd_v2->id_and_color;
|
|
cmd_v1->action = cmd_v2->action;
|
|
cmd_v1->id = cmd_v2->id;
|
|
cmd_v1->apply_time = cmd_v2->apply_time;
|
|
cmd_v1->max_delay = cmd_v2->max_delay;
|
|
cmd_v1->depends_on = cmd_v2->depends_on;
|
|
cmd_v1->interval = cmd_v2->interval;
|
|
cmd_v1->duration = cmd_v2->duration;
|
|
if (cmd_v2->repeat == IWM_TE_V2_REPEAT_ENDLESS)
|
|
cmd_v1->repeat = htole32(IWM_TE_V1_REPEAT_ENDLESS);
|
|
else
|
|
cmd_v1->repeat = htole32(cmd_v2->repeat);
|
|
cmd_v1->max_frags = htole32(cmd_v2->max_frags);
|
|
cmd_v1->interval_reciprocal = 0; /* unused */
|
|
|
|
cmd_v1->dep_policy = htole32(iwm_te_v2_get_dep_policy(cmd_v2->policy));
|
|
cmd_v1->is_present = htole32(!iwm_te_v2_get_absence(cmd_v2->policy));
|
|
cmd_v1->notify = htole32(iwm_te_v2_get_notify(cmd_v2->policy));
|
|
}
|
|
|
|
static int
|
|
iwm_send_time_event_cmd(struct iwm_softc *sc,
|
|
const struct iwm_time_event_cmd_v2 *cmd)
|
|
{
|
|
struct iwm_time_event_cmd_v1 cmd_v1;
|
|
|
|
if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_TIME_EVENT_API_V2)
|
|
return iwm_send_cmd_pdu(sc, IWM_TIME_EVENT_CMD, 0, sizeof(*cmd),
|
|
cmd);
|
|
|
|
iwm_te_v2_to_v1(cmd, &cmd_v1);
|
|
return iwm_send_cmd_pdu(sc, IWM_TIME_EVENT_CMD, 0, sizeof(cmd_v1),
|
|
&cmd_v1);
|
|
}
|
|
|
|
static void
|
|
iwm_protect_session(struct iwm_softc *sc, struct iwm_node *in,
|
|
uint32_t duration, uint32_t max_delay)
|
|
{
|
|
struct iwm_time_event_cmd_v2 time_cmd;
|
|
|
|
memset(&time_cmd, 0, sizeof(time_cmd));
|
|
|
|
time_cmd.action = htole32(IWM_FW_CTXT_ACTION_ADD);
|
|
time_cmd.id_and_color =
|
|
htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
|
|
time_cmd.id = htole32(IWM_TE_BSS_STA_AGGRESSIVE_ASSOC);
|
|
|
|
time_cmd.apply_time = htole32(0);
|
|
|
|
time_cmd.max_frags = IWM_TE_V2_FRAG_NONE;
|
|
time_cmd.max_delay = htole32(max_delay);
|
|
/* TODO: why do we need to interval = bi if it is not periodic? */
|
|
time_cmd.interval = htole32(1);
|
|
time_cmd.duration = htole32(duration);
|
|
time_cmd.repeat = 1;
|
|
time_cmd.policy
|
|
= htole16(IWM_TE_V2_NOTIF_HOST_EVENT_START |
|
|
IWM_TE_V2_NOTIF_HOST_EVENT_END |
|
|
IWM_T2_V2_START_IMMEDIATELY);
|
|
|
|
iwm_send_time_event_cmd(sc, &time_cmd);
|
|
}
|
|
|
|
/*
|
|
* NVM read access and content parsing. We do not support
|
|
* external NVM or writing NVM.
|
|
*/
|
|
|
|
/* list of NVM sections we are allowed/need to read */
|
|
static const int iwm_nvm_to_read[] = {
|
|
IWM_NVM_SECTION_TYPE_HW,
|
|
IWM_NVM_SECTION_TYPE_SW,
|
|
IWM_NVM_SECTION_TYPE_REGULATORY,
|
|
IWM_NVM_SECTION_TYPE_CALIBRATION,
|
|
IWM_NVM_SECTION_TYPE_PRODUCTION,
|
|
IWM_NVM_SECTION_TYPE_HW_8000,
|
|
IWM_NVM_SECTION_TYPE_MAC_OVERRIDE,
|
|
IWM_NVM_SECTION_TYPE_PHY_SKU,
|
|
};
|
|
|
|
/* Default NVM size to read */
|
|
#define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024)
|
|
#define IWM_MAX_NVM_SECTION_SIZE_7000 (16 * 512 * sizeof(uint16_t)) /*16 KB*/
|
|
#define IWM_MAX_NVM_SECTION_SIZE_8000 (32 * 512 * sizeof(uint16_t)) /*32 KB*/
|
|
|
|
#define IWM_NVM_WRITE_OPCODE 1
|
|
#define IWM_NVM_READ_OPCODE 0
|
|
|
|
static int
|
|
iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, uint16_t offset,
|
|
uint16_t length, uint8_t *data, uint16_t *len)
|
|
{
|
|
offset = 0;
|
|
struct iwm_nvm_access_cmd nvm_access_cmd = {
|
|
.offset = htole16(offset),
|
|
.length = htole16(length),
|
|
.type = htole16(section),
|
|
.op_code = IWM_NVM_READ_OPCODE,
|
|
};
|
|
struct iwm_nvm_access_resp *nvm_resp;
|
|
struct iwm_rx_packet *pkt;
|
|
struct iwm_host_cmd cmd = {
|
|
.id = IWM_NVM_ACCESS_CMD,
|
|
.flags = (IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL),
|
|
.data = { &nvm_access_cmd, },
|
|
};
|
|
int err, offset_read;
|
|
size_t bytes_read;
|
|
uint8_t *resp_data;
|
|
|
|
cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
|
|
|
|
err = iwm_send_cmd(sc, &cmd);
|
|
if (err) {
|
|
DPRINTF(("%s: Could not send NVM_ACCESS command (error=%d)\n",
|
|
DEVNAME(sc), err));
|
|
return err;
|
|
}
|
|
|
|
pkt = cmd.resp_pkt;
|
|
if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
|
|
err = EIO;
|
|
goto exit;
|
|
}
|
|
|
|
/* Extract NVM response */
|
|
nvm_resp = (void *)pkt->data;
|
|
|
|
err = le16toh(nvm_resp->status);
|
|
bytes_read = le16toh(nvm_resp->length);
|
|
offset_read = le16toh(nvm_resp->offset);
|
|
resp_data = nvm_resp->data;
|
|
if (err) {
|
|
err = EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
if (offset_read != offset) {
|
|
err = EINVAL;
|
|
goto exit;
|
|
}
|
|
if (bytes_read > length) {
|
|
err = EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
memcpy(data + offset, resp_data, bytes_read);
|
|
*len = bytes_read;
|
|
|
|
exit:
|
|
iwm_free_resp(sc, &cmd);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Reads an NVM section completely.
|
|
* NICs prior to 7000 family doesn't have a real NVM, but just read
|
|
* section 0 which is the EEPROM. Because the EEPROM reading is unlimited
|
|
* by uCode, we need to manually check in this case that we don't
|
|
* overflow and try to read more than the EEPROM size.
|
|
*/
|
|
static int
|
|
iwm_nvm_read_section(struct iwm_softc *sc, uint16_t section, uint8_t *data,
|
|
uint16_t *len, size_t max_len)
|
|
{
|
|
uint16_t chunklen, seglen;
|
|
int err;
|
|
|
|
chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
|
|
*len = 0;
|
|
|
|
/* Read NVM chunks until exhausted (reading less than requested) */
|
|
while (seglen == chunklen && *len < max_len) {
|
|
err = iwm_nvm_read_chunk(sc, section, *len, chunklen, data,
|
|
&seglen);
|
|
if (err) {
|
|
DPRINTF(("%s: Cannot read NVM from section %d "
|
|
"offset %d, length %d\n",
|
|
DEVNAME(sc), section, *len, chunklen));
|
|
return err;
|
|
}
|
|
*len += seglen;
|
|
}
|
|
|
|
DPRINTFN(4, ("NVM section %d read completed\n", section));
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t
|
|
iwm_fw_valid_tx_ant(struct iwm_softc *sc)
|
|
{
|
|
uint8_t tx_ant;
|
|
|
|
tx_ant = ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_TX_CHAIN)
|
|
>> IWM_FW_PHY_CFG_TX_CHAIN_POS);
|
|
|
|
if (sc->sc_nvm.valid_tx_ant)
|
|
tx_ant &= sc->sc_nvm.valid_tx_ant;
|
|
|
|
return tx_ant;
|
|
}
|
|
|
|
static uint8_t
|
|
iwm_fw_valid_rx_ant(struct iwm_softc *sc)
|
|
{
|
|
uint8_t rx_ant;
|
|
|
|
rx_ant = ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RX_CHAIN)
|
|
>> IWM_FW_PHY_CFG_RX_CHAIN_POS);
|
|
|
|
if (sc->sc_nvm.valid_rx_ant)
|
|
rx_ant &= sc->sc_nvm.valid_rx_ant;
|
|
|
|
return rx_ant;
|
|
}
|
|
|
|
static void
|
|
iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags,
|
|
const uint8_t *nvm_channels, size_t nchan)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_nvm_data *data = &sc->sc_nvm;
|
|
int ch_idx;
|
|
struct ieee80211_channel *channel;
|
|
uint16_t ch_flags;
|
|
int is_5ghz;
|
|
int flags, hw_value;
|
|
|
|
for (ch_idx = 0; ch_idx < nchan; ch_idx++) {
|
|
ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
|
|
aprint_debug_dev(sc->sc_dev,
|
|
"Ch. %d: %svalid %cibss %s %cradar %cdfs"
|
|
" %cwide %c40MHz %c80MHz %c160MHz\n",
|
|
nvm_channels[ch_idx],
|
|
ch_flags & IWM_NVM_CHANNEL_VALID ? "" : "in",
|
|
ch_flags & IWM_NVM_CHANNEL_IBSS ? '+' : '-',
|
|
ch_flags & IWM_NVM_CHANNEL_ACTIVE ? "active" : "passive",
|
|
ch_flags & IWM_NVM_CHANNEL_RADAR ? '+' : '-',
|
|
ch_flags & IWM_NVM_CHANNEL_DFS ? '+' : '-',
|
|
ch_flags & IWM_NVM_CHANNEL_WIDE ? '+' : '-',
|
|
ch_flags & IWM_NVM_CHANNEL_40MHZ ? '+' : '-',
|
|
ch_flags & IWM_NVM_CHANNEL_80MHZ ? '+' : '-',
|
|
ch_flags & IWM_NVM_CHANNEL_160MHZ ? '+' : '-');
|
|
|
|
if (ch_idx >= IWM_NUM_2GHZ_CHANNELS &&
|
|
!data->sku_cap_band_52GHz_enable)
|
|
ch_flags &= ~IWM_NVM_CHANNEL_VALID;
|
|
|
|
if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
|
|
DPRINTF(("Ch. %d Flags %x [%sGHz] - No traffic\n",
|
|
nvm_channels[ch_idx], ch_flags,
|
|
(ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? "5" : "2.4"));
|
|
continue;
|
|
}
|
|
|
|
hw_value = nvm_channels[ch_idx];
|
|
channel = &ic->ic_channels[hw_value];
|
|
|
|
is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS;
|
|
if (!is_5ghz) {
|
|
flags = IEEE80211_CHAN_2GHZ;
|
|
channel->ic_flags
|
|
= IEEE80211_CHAN_CCK
|
|
| IEEE80211_CHAN_OFDM
|
|
| IEEE80211_CHAN_DYN
|
|
| IEEE80211_CHAN_2GHZ;
|
|
} else {
|
|
flags = IEEE80211_CHAN_5GHZ;
|
|
channel->ic_flags =
|
|
IEEE80211_CHAN_A;
|
|
}
|
|
channel->ic_freq = ieee80211_ieee2mhz(hw_value, flags);
|
|
|
|
if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE))
|
|
channel->ic_flags |= IEEE80211_CHAN_PASSIVE;
|
|
|
|
#ifndef IEEE80211_NO_HT
|
|
if (data->sku_cap_11n_enable)
|
|
channel->ic_flags |= IEEE80211_CHAN_HT;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifndef IEEE80211_NO_HT
|
|
static void
|
|
iwm_setup_ht_rates(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
/* TX is supported with the same MCS as RX. */
|
|
ic->ic_tx_mcs_set = IEEE80211_TX_MCS_SET_DEFINED;
|
|
|
|
ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
|
|
|
|
#ifdef notyet
|
|
if (sc->sc_nvm.sku_cap_mimo_disable)
|
|
return;
|
|
|
|
if (iwm_fw_valid_rx_ant(sc) > 1)
|
|
ic->ic_sup_mcs[1] = 0xff; /* MCS 8-15 */
|
|
if (iwm_fw_valid_rx_ant(sc) > 2)
|
|
ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
|
|
#endif
|
|
}
|
|
|
|
#define IWM_MAX_RX_BA_SESSIONS 16
|
|
|
|
static void
|
|
iwm_sta_rx_agg(struct iwm_softc *sc, struct ieee80211_node *ni, uint8_t tid,
|
|
uint16_t ssn, int start)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_add_sta_cmd_v7 cmd;
|
|
struct iwm_node *in = (struct iwm_node *)ni;
|
|
int err, s;
|
|
uint32_t status;
|
|
|
|
if (start && sc->sc_rx_ba_sessions >= IWM_MAX_RX_BA_SESSIONS) {
|
|
ieee80211_addba_req_refuse(ic, ni, tid);
|
|
return;
|
|
}
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
cmd.sta_id = IWM_STATION_ID;
|
|
cmd.mac_id_n_color
|
|
= htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
|
|
cmd.add_modify = IWM_STA_MODE_MODIFY;
|
|
|
|
if (start) {
|
|
cmd.add_immediate_ba_tid = (uint8_t)tid;
|
|
cmd.add_immediate_ba_ssn = ssn;
|
|
} else {
|
|
cmd.remove_immediate_ba_tid = (uint8_t)tid;
|
|
}
|
|
cmd.modify_mask = start ? IWM_STA_MODIFY_ADD_BA_TID :
|
|
IWM_STA_MODIFY_REMOVE_BA_TID;
|
|
|
|
status = IWM_ADD_STA_SUCCESS;
|
|
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd), &cmd,
|
|
&status);
|
|
|
|
s = splnet();
|
|
if (err == 0 && status == IWM_ADD_STA_SUCCESS) {
|
|
if (start) {
|
|
sc->sc_rx_ba_sessions++;
|
|
ieee80211_addba_req_accept(ic, ni, tid);
|
|
} else if (sc->sc_rx_ba_sessions > 0)
|
|
sc->sc_rx_ba_sessions--;
|
|
} else if (start)
|
|
ieee80211_addba_req_refuse(ic, ni, tid);
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
iwm_htprot_task(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (struct iwm_node *)ic->ic_bss;
|
|
int err;
|
|
|
|
/* This call updates HT protection based on in->in_ni.ni_htop1. */
|
|
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 1);
|
|
if (err)
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not change HT protection: error %d\n", err);
|
|
}
|
|
|
|
/*
|
|
* This function is called by upper layer when HT protection settings in
|
|
* beacons have changed.
|
|
*/
|
|
static void
|
|
iwm_update_htprot(struct ieee80211com *ic, struct ieee80211_node *ni)
|
|
{
|
|
struct iwm_softc *sc = ic->ic_softc;
|
|
|
|
/* assumes that ni == ic->ic_bss */
|
|
task_add(systq, &sc->htprot_task);
|
|
}
|
|
|
|
static void
|
|
iwm_ba_task(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
|
|
if (sc->ba_start)
|
|
iwm_sta_rx_agg(sc, ni, sc->ba_tid, sc->ba_ssn, 1);
|
|
else
|
|
iwm_sta_rx_agg(sc, ni, sc->ba_tid, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* This function is called by upper layer when an ADDBA request is received
|
|
* from another STA and before the ADDBA response is sent.
|
|
*/
|
|
static int
|
|
iwm_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
uint8_t tid)
|
|
{
|
|
struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
|
|
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
|
|
|
|
if (sc->sc_rx_ba_sessions >= IWM_MAX_RX_BA_SESSIONS)
|
|
return ENOSPC;
|
|
|
|
sc->ba_start = 1;
|
|
sc->ba_tid = tid;
|
|
sc->ba_ssn = htole16(ba->ba_winstart);
|
|
task_add(systq, &sc->ba_task);
|
|
|
|
return EBUSY;
|
|
}
|
|
|
|
/*
|
|
* This function is called by upper layer on teardown of an HT-immediate
|
|
* Block Ack agreement (eg. upon receipt of a DELBA frame).
|
|
*/
|
|
static void
|
|
iwm_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
uint8_t tid)
|
|
{
|
|
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
|
|
|
|
sc->ba_start = 0;
|
|
sc->ba_tid = tid;
|
|
task_add(systq, &sc->ba_task);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
iwm_free_fw_paging(struct iwm_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
if (sc->fw_paging_db[0].fw_paging_block.vaddr == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < IWM_NUM_OF_FW_PAGING_BLOCKS; i++) {
|
|
iwm_dma_contig_free(&sc->fw_paging_db[i].fw_paging_block);
|
|
}
|
|
|
|
memset(sc->fw_paging_db, 0, sizeof(sc->fw_paging_db));
|
|
}
|
|
|
|
static int
|
|
iwm_fill_paging_mem(struct iwm_softc *sc, const struct iwm_fw_sects *fws)
|
|
{
|
|
int sec_idx, idx;
|
|
uint32_t offset = 0;
|
|
|
|
/*
|
|
* find where is the paging image start point:
|
|
* if CPU2 exist and it's in paging format, then the image looks like:
|
|
* CPU1 sections (2 or more)
|
|
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between CPU1 to CPU2
|
|
* CPU2 sections (not paged)
|
|
* PAGING_SEPARATOR_SECTION delimiter - separate between CPU2
|
|
* non paged to CPU2 paging sec
|
|
* CPU2 paging CSS
|
|
* CPU2 paging image (including instruction and data)
|
|
*/
|
|
for (sec_idx = 0; sec_idx < IWM_UCODE_SECT_MAX; sec_idx++) {
|
|
if (fws->fw_sect[sec_idx].fws_devoff ==
|
|
IWM_PAGING_SEPARATOR_SECTION) {
|
|
sec_idx++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If paging is enabled there should be at least 2 more sections left
|
|
* (one for CSS and one for Paging data)
|
|
*/
|
|
if (sec_idx >= __arraycount(fws->fw_sect) - 1) {
|
|
aprint_verbose_dev(sc->sc_dev,
|
|
"Paging: Missing CSS and/or paging sections\n");
|
|
iwm_free_fw_paging(sc);
|
|
return EINVAL;
|
|
}
|
|
|
|
/* copy the CSS block to the dram */
|
|
DPRINTF(("%s: Paging: load paging CSS to FW, sec = %d\n", DEVNAME(sc),
|
|
sec_idx));
|
|
|
|
memcpy(sc->fw_paging_db[0].fw_paging_block.vaddr,
|
|
fws->fw_sect[sec_idx].fws_data, sc->fw_paging_db[0].fw_paging_size);
|
|
|
|
DPRINTF(("%s: Paging: copied %d CSS bytes to first block\n",
|
|
DEVNAME(sc), sc->fw_paging_db[0].fw_paging_size));
|
|
|
|
sec_idx++;
|
|
|
|
/*
|
|
* copy the paging blocks to the dram
|
|
* loop index start from 1 since that CSS block already copied to dram
|
|
* and CSS index is 0.
|
|
* loop stop at num_of_paging_blk since that last block is not full.
|
|
*/
|
|
for (idx = 1; idx < sc->num_of_paging_blk; idx++) {
|
|
memcpy(sc->fw_paging_db[idx].fw_paging_block.vaddr,
|
|
(const char *)fws->fw_sect[sec_idx].fws_data + offset,
|
|
sc->fw_paging_db[idx].fw_paging_size);
|
|
|
|
DPRINTF(("%s: Paging: copied %d paging bytes to block %d\n",
|
|
DEVNAME(sc), sc->fw_paging_db[idx].fw_paging_size, idx));
|
|
|
|
offset += sc->fw_paging_db[idx].fw_paging_size;
|
|
}
|
|
|
|
/* copy the last paging block */
|
|
if (sc->num_of_pages_in_last_blk > 0) {
|
|
memcpy(sc->fw_paging_db[idx].fw_paging_block.vaddr,
|
|
(const char *)fws->fw_sect[sec_idx].fws_data + offset,
|
|
IWM_FW_PAGING_SIZE * sc->num_of_pages_in_last_blk);
|
|
|
|
DPRINTF(("%s: Paging: copied %d pages in the last block %d\n",
|
|
DEVNAME(sc), sc->num_of_pages_in_last_blk, idx));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_alloc_fw_paging_mem(struct iwm_softc *sc, const struct iwm_fw_sects *fws)
|
|
{
|
|
int blk_idx = 0;
|
|
int error, num_of_pages;
|
|
bus_dmamap_t dmap;
|
|
|
|
if (sc->fw_paging_db[0].fw_paging_block.vaddr != NULL) {
|
|
int i;
|
|
/* Device got reset, and we setup firmware paging again */
|
|
for (i = 0; i < sc->num_of_paging_blk + 1; i++) {
|
|
dmap = sc->fw_paging_db[i].fw_paging_block.map;
|
|
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* ensure IWM_BLOCK_2_EXP_SIZE is power of 2 of IWM_PAGING_BLOCK_SIZE */
|
|
CTASSERT(__BIT(IWM_BLOCK_2_EXP_SIZE) == IWM_PAGING_BLOCK_SIZE);
|
|
|
|
num_of_pages = fws->paging_mem_size / IWM_FW_PAGING_SIZE;
|
|
sc->num_of_paging_blk =
|
|
howmany(num_of_pages, IWM_NUM_OF_PAGE_PER_GROUP);
|
|
sc->num_of_pages_in_last_blk = num_of_pages -
|
|
IWM_NUM_OF_PAGE_PER_GROUP * (sc->num_of_paging_blk - 1);
|
|
|
|
DPRINTF(("%s: Paging: allocating mem for %d paging blocks, "
|
|
"each block holds 8 pages, last block holds %d pages\n",
|
|
DEVNAME(sc), sc->num_of_paging_blk, sc->num_of_pages_in_last_blk));
|
|
|
|
/* allocate block of 4Kbytes for paging CSS */
|
|
error = iwm_dma_contig_alloc(sc->sc_dmat,
|
|
&sc->fw_paging_db[blk_idx].fw_paging_block, IWM_FW_PAGING_SIZE,
|
|
4096);
|
|
if (error) {
|
|
/* free all the previous pages since we failed */
|
|
iwm_free_fw_paging(sc);
|
|
return ENOMEM;
|
|
}
|
|
|
|
sc->fw_paging_db[blk_idx].fw_paging_size = IWM_FW_PAGING_SIZE;
|
|
|
|
DPRINTF(("%s: Paging: allocated 4K(CSS) bytes for firmware paging.\n",
|
|
DEVNAME(sc)));
|
|
|
|
/*
|
|
* allocate blocks in dram.
|
|
* since that CSS allocated in fw_paging_db[0] loop start from index 1
|
|
*/
|
|
for (blk_idx = 1; blk_idx < sc->num_of_paging_blk + 1; blk_idx++) {
|
|
/* allocate block of IWM_PAGING_BLOCK_SIZE (32K) */
|
|
/* XXX Use iwm_dma_contig_alloc for allocating */
|
|
error = iwm_dma_contig_alloc(sc->sc_dmat,
|
|
&sc->fw_paging_db[blk_idx].fw_paging_block,
|
|
IWM_PAGING_BLOCK_SIZE, 4096);
|
|
if (error) {
|
|
/* free all the previous pages since we failed */
|
|
iwm_free_fw_paging(sc);
|
|
return ENOMEM;
|
|
}
|
|
|
|
sc->fw_paging_db[blk_idx].fw_paging_size =
|
|
IWM_PAGING_BLOCK_SIZE;
|
|
|
|
DPRINTF(("%s: Paging: allocated 32K bytes for firmware "
|
|
"paging.\n", DEVNAME(sc)));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_save_fw_paging(struct iwm_softc *sc, const struct iwm_fw_sects *fws)
|
|
{
|
|
int err;
|
|
|
|
err = iwm_alloc_fw_paging_mem(sc, fws);
|
|
if (err)
|
|
return err;
|
|
|
|
return iwm_fill_paging_mem(sc, fws);
|
|
}
|
|
|
|
static bool
|
|
iwm_has_new_tx_api(struct iwm_softc *sc)
|
|
{
|
|
/* XXX */
|
|
return false;
|
|
}
|
|
|
|
/* send paging cmd to FW in case CPU2 has paging image */
|
|
static int
|
|
iwm_send_paging_cmd(struct iwm_softc *sc, const struct iwm_fw_sects *fws)
|
|
{
|
|
struct iwm_fw_paging_cmd fw_paging_cmd = {
|
|
.flags = htole32(IWM_PAGING_CMD_IS_SECURED |
|
|
IWM_PAGING_CMD_IS_ENABLED |
|
|
(sc->num_of_pages_in_last_blk <<
|
|
IWM_PAGING_CMD_NUM_OF_PAGES_IN_LAST_GRP_POS)),
|
|
.block_size = htole32(IWM_BLOCK_2_EXP_SIZE),
|
|
.block_num = htole32(sc->num_of_paging_blk),
|
|
};
|
|
size_t size = sizeof(fw_paging_cmd);
|
|
int blk_idx;
|
|
bus_dmamap_t dmap;
|
|
|
|
if (!iwm_has_new_tx_api(sc))
|
|
size -= (sizeof(uint64_t) - sizeof(uint32_t)) *
|
|
IWM_NUM_OF_FW_PAGING_BLOCKS;
|
|
|
|
/* loop for for all paging blocks + CSS block */
|
|
for (blk_idx = 0; blk_idx < sc->num_of_paging_blk + 1; blk_idx++) {
|
|
bus_addr_t dev_phy_addr =
|
|
sc->fw_paging_db[blk_idx].fw_paging_block.paddr;
|
|
if (iwm_has_new_tx_api(sc)) {
|
|
fw_paging_cmd.device_phy_addr.addr64[blk_idx] =
|
|
htole64(dev_phy_addr);
|
|
} else {
|
|
dev_phy_addr = dev_phy_addr >> IWM_PAGE_2_EXP_SIZE;
|
|
fw_paging_cmd.device_phy_addr.addr32[blk_idx] =
|
|
htole32(dev_phy_addr);
|
|
}
|
|
dmap = sc->fw_paging_db[blk_idx].fw_paging_block.map;
|
|
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
|
|
}
|
|
|
|
return iwm_send_cmd_pdu(sc,
|
|
iwm_cmd_id(IWM_FW_PAGING_BLOCK_CMD, IWM_ALWAYS_LONG_GROUP, 0),
|
|
0, size, &fw_paging_cmd);
|
|
}
|
|
|
|
static void
|
|
iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
|
|
const uint16_t *mac_override, const uint16_t *nvm_hw)
|
|
{
|
|
static const uint8_t reserved_mac[ETHER_ADDR_LEN] = {
|
|
0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
|
|
};
|
|
static const u_int8_t etheranyaddr[ETHER_ADDR_LEN] = {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
|
};
|
|
const uint8_t *hw_addr;
|
|
|
|
if (mac_override) {
|
|
hw_addr = (const uint8_t *)(mac_override +
|
|
IWM_MAC_ADDRESS_OVERRIDE_8000);
|
|
|
|
/*
|
|
* Store the MAC address from MAO section.
|
|
* No byte swapping is required in MAO section
|
|
*/
|
|
memcpy(data->hw_addr, hw_addr, ETHER_ADDR_LEN);
|
|
|
|
/*
|
|
* Force the use of the OTP MAC address in case of reserved MAC
|
|
* address in the NVM, or if address is given but invalid.
|
|
*/
|
|
if (memcmp(reserved_mac, hw_addr, ETHER_ADDR_LEN) != 0 &&
|
|
(memcmp(etherbroadcastaddr, data->hw_addr,
|
|
sizeof(etherbroadcastaddr)) != 0) &&
|
|
(memcmp(etheranyaddr, data->hw_addr,
|
|
sizeof(etheranyaddr)) != 0) &&
|
|
!ETHER_IS_MULTICAST(data->hw_addr))
|
|
return;
|
|
}
|
|
|
|
if (nvm_hw) {
|
|
/* Read the mac address from WFMP registers. */
|
|
uint32_t mac_addr0 =
|
|
htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
|
|
uint32_t mac_addr1 =
|
|
htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
|
|
|
|
hw_addr = (const uint8_t *)&mac_addr0;
|
|
data->hw_addr[0] = hw_addr[3];
|
|
data->hw_addr[1] = hw_addr[2];
|
|
data->hw_addr[2] = hw_addr[1];
|
|
data->hw_addr[3] = hw_addr[0];
|
|
|
|
hw_addr = (const uint8_t *)&mac_addr1;
|
|
data->hw_addr[4] = hw_addr[1];
|
|
data->hw_addr[5] = hw_addr[0];
|
|
|
|
return;
|
|
}
|
|
|
|
aprint_error_dev(sc->sc_dev, "mac address not found\n");
|
|
memset(data->hw_addr, 0, sizeof(data->hw_addr));
|
|
}
|
|
|
|
static int
|
|
iwm_parse_nvm_data(struct iwm_softc *sc, const uint16_t *nvm_hw,
|
|
const uint16_t *nvm_sw, const uint16_t *nvm_calib,
|
|
const uint16_t *mac_override, const uint16_t *phy_sku,
|
|
const uint16_t *regulatory)
|
|
{
|
|
struct iwm_nvm_data *data = &sc->sc_nvm;
|
|
uint8_t hw_addr[ETHER_ADDR_LEN];
|
|
uint32_t sku;
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
uint16_t radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
|
|
data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
|
|
data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
|
|
data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
|
|
data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
|
|
|
|
data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
|
|
sku = le16_to_cpup(nvm_sw + IWM_SKU);
|
|
} else {
|
|
uint32_t radio_cfg = le32_to_cpup(phy_sku + IWM_RADIO_CFG_8000);
|
|
data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
|
|
data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
|
|
data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
|
|
data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK_8000(radio_cfg);
|
|
data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
|
|
data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
|
|
|
|
data->nvm_version = le32_to_cpup(nvm_sw + IWM_NVM_VERSION_8000);
|
|
sku = le32_to_cpup(phy_sku + IWM_SKU_8000);
|
|
}
|
|
|
|
data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
|
|
data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
|
|
data->sku_cap_11n_enable = sku & IWM_NVM_SKU_CAP_11N_ENABLE;
|
|
data->sku_cap_mimo_disable = sku & IWM_NVM_SKU_CAP_MIMO_DISABLE;
|
|
|
|
data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
memcpy(hw_addr, nvm_hw + IWM_HW_ADDR, ETHER_ADDR_LEN);
|
|
data->hw_addr[0] = hw_addr[1];
|
|
data->hw_addr[1] = hw_addr[0];
|
|
data->hw_addr[2] = hw_addr[3];
|
|
data->hw_addr[3] = hw_addr[2];
|
|
data->hw_addr[4] = hw_addr[5];
|
|
data->hw_addr[5] = hw_addr[4];
|
|
} else
|
|
iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw);
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
|
|
uint16_t lar_offset, lar_config;
|
|
lar_offset = data->nvm_version < 0xE39 ?
|
|
IWM_NVM_LAR_OFFSET_8000_OLD : IWM_NVM_LAR_OFFSET_8000;
|
|
lar_config = le16_to_cpup(regulatory + lar_offset);
|
|
data->lar_enabled = !!(lar_config & IWM_NVM_LAR_ENABLED_8000);
|
|
}
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
|
|
iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS],
|
|
iwm_nvm_channels, __arraycount(iwm_nvm_channels));
|
|
else
|
|
iwm_init_channel_map(sc, ®ulatory[IWM_NVM_CHANNELS_8000],
|
|
iwm_nvm_channels_8000, __arraycount(iwm_nvm_channels_8000));
|
|
|
|
data->calib_version = 255; /* TODO:
|
|
this value will prevent some checks from
|
|
failing, we need to check if this
|
|
field is still needed, and if it does,
|
|
where is it in the NVM */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
|
|
{
|
|
const uint16_t *hw, *sw, *calib, *mac_override = NULL, *phy_sku = NULL;
|
|
const uint16_t *regulatory = NULL;
|
|
|
|
/* Checking for required sections */
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
|
|
if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
|
|
!sections[IWM_NVM_SECTION_TYPE_HW].data) {
|
|
return ENOENT;
|
|
}
|
|
|
|
hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data;
|
|
} else if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
|
|
/* SW and REGULATORY sections are mandatory */
|
|
if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
|
|
!sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
|
|
return ENOENT;
|
|
}
|
|
/* MAC_OVERRIDE or at least HW section must exist */
|
|
if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data &&
|
|
!sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
|
|
return ENOENT;
|
|
}
|
|
|
|
/* PHY_SKU section is mandatory in B0 */
|
|
if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
|
|
return ENOENT;
|
|
}
|
|
|
|
regulatory = (const uint16_t *)
|
|
sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
|
|
hw = (const uint16_t *)
|
|
sections[IWM_NVM_SECTION_TYPE_HW_8000].data;
|
|
mac_override =
|
|
(const uint16_t *)
|
|
sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
|
|
phy_sku = (const uint16_t *)
|
|
sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
|
|
} else {
|
|
panic("unknown device family %d\n", sc->sc_device_family);
|
|
}
|
|
|
|
sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
|
|
calib = (const uint16_t *)
|
|
sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
|
|
|
|
return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
|
|
phy_sku, regulatory);
|
|
}
|
|
|
|
static int
|
|
iwm_nvm_init(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
|
|
int i, section, err;
|
|
uint16_t len;
|
|
uint8_t *buf;
|
|
const size_t bufsz = (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) ?
|
|
IWM_MAX_NVM_SECTION_SIZE_8000 : IWM_MAX_NVM_SECTION_SIZE_7000;
|
|
|
|
/* Read From FW NVM */
|
|
DPRINTF(("Read NVM\n"));
|
|
|
|
memset(nvm_sections, 0, sizeof(nvm_sections));
|
|
|
|
buf = kmem_alloc(bufsz, KM_SLEEP);
|
|
|
|
for (i = 0; i < __arraycount(iwm_nvm_to_read); i++) {
|
|
section = iwm_nvm_to_read[i];
|
|
KASSERT(section <= IWM_NVM_NUM_OF_SECTIONS);
|
|
|
|
err = iwm_nvm_read_section(sc, section, buf, &len, bufsz);
|
|
if (err) {
|
|
err = 0;
|
|
continue;
|
|
}
|
|
nvm_sections[section].data = kmem_alloc(len, KM_SLEEP);
|
|
memcpy(nvm_sections[section].data, buf, len);
|
|
nvm_sections[section].length = len;
|
|
}
|
|
kmem_free(buf, bufsz);
|
|
if (err == 0)
|
|
err = iwm_parse_nvm_sections(sc, nvm_sections);
|
|
|
|
for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) {
|
|
if (nvm_sections[i].data != NULL)
|
|
kmem_free(nvm_sections[i].data, nvm_sections[i].length);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr,
|
|
const uint8_t *section, uint32_t byte_cnt)
|
|
{
|
|
int err = EINVAL;
|
|
uint32_t chunk_sz, offset;
|
|
|
|
chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt);
|
|
|
|
for (offset = 0; offset < byte_cnt; offset += chunk_sz) {
|
|
uint32_t addr, len;
|
|
const uint8_t *data;
|
|
bool is_extended = false;
|
|
|
|
addr = dst_addr + offset;
|
|
len = MIN(chunk_sz, byte_cnt - offset);
|
|
data = section + offset;
|
|
|
|
if (addr >= IWM_FW_MEM_EXTENDED_START &&
|
|
addr <= IWM_FW_MEM_EXTENDED_END)
|
|
is_extended = true;
|
|
|
|
if (is_extended)
|
|
iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
|
|
IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
|
|
|
|
err = iwm_firmware_load_chunk(sc, addr, data, len);
|
|
|
|
if (is_extended)
|
|
iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
|
|
IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
|
|
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
|
|
const uint8_t *section, uint32_t byte_cnt)
|
|
{
|
|
struct iwm_dma_info *dma = &sc->fw_dma;
|
|
int err;
|
|
|
|
/* Copy firmware chunk into pre-allocated DMA-safe memory. */
|
|
memcpy(dma->vaddr, section, byte_cnt);
|
|
bus_dmamap_sync(sc->sc_dmat, dma->map, 0, byte_cnt,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
sc->sc_fw_chunk_done = 0;
|
|
|
|
if (!iwm_nic_lock(sc))
|
|
return EBUSY;
|
|
|
|
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
|
|
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
|
|
IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
|
|
dst_addr);
|
|
IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
|
|
dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
|
|
IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
|
|
(iwm_get_dma_hi_addr(dma->paddr)
|
|
<< IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
|
|
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
|
|
1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
|
|
1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
|
|
IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
|
|
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
|
|
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
|
|
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
|
|
IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
|
|
|
|
iwm_nic_unlock(sc);
|
|
|
|
/* Wait for this segment to load. */
|
|
err = 0;
|
|
while (!sc->sc_fw_chunk_done) {
|
|
err = tsleep(&sc->sc_fw, 0, "iwmfw", mstohz(5000));
|
|
if (err)
|
|
break;
|
|
}
|
|
if (!sc->sc_fw_chunk_done) {
|
|
DPRINTF(("%s: fw chunk addr 0x%x len %d failed to load\n",
|
|
DEVNAME(sc), dst_addr, byte_cnt));
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_load_cpu_sections_7000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
|
|
int cpu, int *first_ucode_section)
|
|
{
|
|
int i, err = 0;
|
|
uint32_t last_read_idx = 0;
|
|
void *data;
|
|
uint32_t dlen;
|
|
uint32_t offset;
|
|
|
|
if (cpu == 1) {
|
|
*first_ucode_section = 0;
|
|
} else {
|
|
(*first_ucode_section)++;
|
|
}
|
|
|
|
for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
|
|
last_read_idx = i;
|
|
data = fws->fw_sect[i].fws_data;
|
|
dlen = fws->fw_sect[i].fws_len;
|
|
offset = fws->fw_sect[i].fws_devoff;
|
|
|
|
/*
|
|
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU1 to CPU2.
|
|
* PAGING_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU2 non paged to CPU2 paging sec.
|
|
*/
|
|
if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
|
|
offset == IWM_PAGING_SEPARATOR_SECTION)
|
|
break;
|
|
|
|
if (dlen > sc->sc_fwdmasegsz) {
|
|
err = EFBIG;
|
|
} else
|
|
err = iwm_firmware_load_sect(sc, offset, data, dlen);
|
|
if (err) {
|
|
DPRINTF(("%s: could not load firmware chunk %d "
|
|
"(error %d)\n", DEVNAME(sc), i, err));
|
|
return err;
|
|
}
|
|
}
|
|
|
|
*first_ucode_section = last_read_idx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
|
|
{
|
|
struct iwm_fw_sects *fws;
|
|
int err = 0;
|
|
int first_ucode_section;
|
|
|
|
fws = &sc->sc_fw.fw_sects[ucode_type];
|
|
|
|
DPRINTF(("%s: working with %s CPU\n", DEVNAME(sc),
|
|
fws->is_dual_cpus ? "dual" : "single"));
|
|
|
|
/* load to FW the binary Secured sections of CPU1 */
|
|
err = iwm_load_cpu_sections_7000(sc, fws, 1, &first_ucode_section);
|
|
if (err)
|
|
return err;
|
|
|
|
if (fws->is_dual_cpus) {
|
|
/* set CPU2 header address */
|
|
if (iwm_nic_lock(sc)) {
|
|
iwm_write_prph(sc,
|
|
IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
|
|
IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
|
|
/* load to FW the binary sections of CPU2 */
|
|
err = iwm_load_cpu_sections_7000(sc, fws, 2,
|
|
&first_ucode_section);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* release CPU reset */
|
|
IWM_WRITE(sc, IWM_CSR_RESET, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
|
|
int cpu, int *first_ucode_section)
|
|
{
|
|
int shift_param;
|
|
int i, err = 0, sec_num = 0x1;
|
|
uint32_t val, last_read_idx = 0;
|
|
void *data;
|
|
uint32_t dlen;
|
|
uint32_t offset;
|
|
|
|
if (cpu == 1) {
|
|
shift_param = 0;
|
|
*first_ucode_section = 0;
|
|
} else {
|
|
shift_param = 16;
|
|
(*first_ucode_section)++;
|
|
}
|
|
|
|
for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
|
|
last_read_idx = i;
|
|
data = fws->fw_sect[i].fws_data;
|
|
dlen = fws->fw_sect[i].fws_len;
|
|
offset = fws->fw_sect[i].fws_devoff;
|
|
|
|
/*
|
|
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU1 to CPU2.
|
|
* PAGING_SEPARATOR_SECTION delimiter - separate between
|
|
* CPU2 non paged to CPU2 paging sec.
|
|
*/
|
|
if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
|
|
offset == IWM_PAGING_SEPARATOR_SECTION)
|
|
break;
|
|
|
|
if (dlen > sc->sc_fwdmasegsz) {
|
|
err = EFBIG;
|
|
} else
|
|
err = iwm_firmware_load_sect(sc, offset, data, dlen);
|
|
if (err) {
|
|
DPRINTF(("%s: could not load firmware chunk %d "
|
|
"(error %d)\n", DEVNAME(sc), i, err));
|
|
return err;
|
|
}
|
|
|
|
/* Notify the ucode of the loaded section number and status */
|
|
if (iwm_nic_lock(sc)) {
|
|
val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
|
|
val = val | (sec_num << shift_param);
|
|
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
|
|
sec_num = (sec_num << 1) | 0x1;
|
|
iwm_nic_unlock(sc);
|
|
|
|
/*
|
|
* The firmware won't load correctly without this delay.
|
|
*/
|
|
DELAY(8000);
|
|
}
|
|
}
|
|
|
|
*first_ucode_section = last_read_idx;
|
|
|
|
if (iwm_nic_lock(sc)) {
|
|
if (cpu == 1)
|
|
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
|
|
else
|
|
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
|
|
{
|
|
struct iwm_fw_sects *fws;
|
|
int err = 0;
|
|
int first_ucode_section;
|
|
|
|
fws = &sc->sc_fw.fw_sects[ucode_type];
|
|
|
|
/* configure the ucode to be ready to get the secured image */
|
|
/* release CPU reset */
|
|
if (iwm_nic_lock(sc)) {
|
|
iwm_write_prph(sc, IWM_RELEASE_CPU_RESET,
|
|
IWM_RELEASE_CPU_RESET_BIT);
|
|
iwm_nic_unlock(sc);
|
|
}
|
|
|
|
/* load to FW the binary Secured sections of CPU1 */
|
|
err = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section);
|
|
if (err)
|
|
return err;
|
|
|
|
/* load to FW the binary sections of CPU2 */
|
|
return iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section);
|
|
}
|
|
|
|
static int
|
|
iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
|
|
{
|
|
int err, w;
|
|
|
|
sc->sc_uc.uc_intr = 0;
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
|
|
err = iwm_load_firmware_8000(sc, ucode_type);
|
|
else
|
|
err = iwm_load_firmware_7000(sc, ucode_type);
|
|
if (err)
|
|
return err;
|
|
|
|
/* wait for the firmware to load */
|
|
for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++)
|
|
err = tsleep(&sc->sc_uc, 0, "iwmuc", mstohz(100));
|
|
if (err || !sc->sc_uc.uc_ok) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not load firmware (error %d, ok %d)\n",
|
|
err, sc->sc_uc.uc_ok);
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
|
|
aprint_error_dev(sc->sc_dev, "cpu1 status: 0x%x\n",
|
|
iwm_read_prph(sc, IWM_SB_CPU_1_STATUS));
|
|
aprint_error_dev(sc->sc_dev, "cpu2 status: 0x%x\n",
|
|
iwm_read_prph(sc, IWM_SB_CPU_2_STATUS));
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
|
|
{
|
|
int err;
|
|
|
|
IWM_WRITE(sc, IWM_CSR_INT, ~0);
|
|
|
|
err = iwm_nic_init(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "Unable to init nic\n");
|
|
return err;
|
|
}
|
|
|
|
/* make sure rfkill handshake bits are cleared */
|
|
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
|
|
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
|
|
IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
|
|
|
|
/* clear (again), then enable host interrupts */
|
|
IWM_WRITE(sc, IWM_CSR_INT, ~0);
|
|
iwm_enable_interrupts(sc);
|
|
|
|
/* really make sure rfkill handshake bits are cleared */
|
|
/* maybe we should write a few times more? just to make sure */
|
|
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
|
|
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
|
|
|
|
return iwm_load_firmware(sc, ucode_type);
|
|
}
|
|
|
|
static int
|
|
iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
|
|
{
|
|
struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
|
|
.valid = htole32(valid_tx_ant),
|
|
};
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD, 0,
|
|
sizeof(tx_ant_cmd), &tx_ant_cmd);
|
|
}
|
|
|
|
static int
|
|
iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_phy_cfg_cmd phy_cfg_cmd;
|
|
enum iwm_ucode_type ucode_type = sc->sc_uc_current;
|
|
|
|
phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
|
|
phy_cfg_cmd.calib_control.event_trigger =
|
|
sc->sc_default_calib[ucode_type].event_trigger;
|
|
phy_cfg_cmd.calib_control.flow_trigger =
|
|
sc->sc_default_calib[ucode_type].flow_trigger;
|
|
|
|
DPRINTFN(10, ("Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg));
|
|
return iwm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, 0,
|
|
sizeof(phy_cfg_cmd), &phy_cfg_cmd);
|
|
}
|
|
|
|
static int
|
|
iwm_load_ucode_wait_alive(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
|
|
{
|
|
struct iwm_fw_sects *fws;
|
|
enum iwm_ucode_type old_type = sc->sc_uc_current;
|
|
int err;
|
|
|
|
err = iwm_read_firmware(sc, ucode_type);
|
|
if (err)
|
|
return err;
|
|
|
|
sc->sc_uc_current = ucode_type;
|
|
err = iwm_start_fw(sc, ucode_type);
|
|
if (err) {
|
|
sc->sc_uc_current = old_type;
|
|
return err;
|
|
}
|
|
|
|
err = iwm_post_alive(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
fws = &sc->sc_fw.fw_sects[ucode_type];
|
|
if (fws->paging_mem_size) {
|
|
err = iwm_save_fw_paging(sc, fws);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_send_paging_cmd(sc, fws);
|
|
if (err) {
|
|
iwm_free_fw_paging(sc);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
|
|
{
|
|
int err;
|
|
|
|
if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"radio is disabled by hardware switch\n");
|
|
return EPERM;
|
|
}
|
|
|
|
sc->sc_init_complete = 0;
|
|
err = iwm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_INIT);
|
|
if (err) {
|
|
DPRINTF(("%s: failed to load init firmware\n", DEVNAME(sc)));
|
|
return err;
|
|
}
|
|
|
|
if (justnvm) {
|
|
err = iwm_nvm_init(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "failed to read nvm\n");
|
|
return err;
|
|
}
|
|
|
|
memcpy(&sc->sc_ic.ic_myaddr, &sc->sc_nvm.hw_addr,
|
|
ETHER_ADDR_LEN);
|
|
return 0;
|
|
}
|
|
|
|
err = iwm_send_bt_init_conf(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_sf_config(sc, IWM_SF_INIT_OFF);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc));
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Send phy configurations command to init uCode
|
|
* to start the 16.0 uCode init image internal calibrations.
|
|
*/
|
|
err = iwm_send_phy_cfg_cmd(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Nothing to do but wait for the init complete notification
|
|
* from the firmware
|
|
*/
|
|
while (!sc->sc_init_complete) {
|
|
err = tsleep(&sc->sc_init_complete, 0, "iwminit", mstohz(2000));
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
|
|
{
|
|
struct iwm_rx_ring *ring = &sc->rxq;
|
|
struct iwm_rx_data *data = &ring->data[idx];
|
|
struct mbuf *m;
|
|
int err;
|
|
int fatal = 0;
|
|
|
|
m = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return ENOBUFS;
|
|
|
|
if (size <= MCLBYTES) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
} else {
|
|
MEXTMALLOC(m, IWM_RBUF_SIZE, M_DONTWAIT);
|
|
}
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
fatal = 1;
|
|
}
|
|
|
|
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
|
|
err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
|
|
BUS_DMA_READ|BUS_DMA_NOWAIT);
|
|
if (err) {
|
|
/* XXX */
|
|
if (fatal)
|
|
panic("iwm: could not load RX mbuf");
|
|
m_freem(m);
|
|
return err;
|
|
}
|
|
data->m = m;
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, size, BUS_DMASYNC_PREREAD);
|
|
|
|
/* Update RX descriptor. */
|
|
ring->desc[idx] = htole32(data->map->dm_segs[0].ds_addr >> 8);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
|
|
idx * sizeof(uint32_t), sizeof(uint32_t), BUS_DMASYNC_PREWRITE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define IWM_RSSI_OFFSET 50
|
|
static int
|
|
iwm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
|
|
{
|
|
int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
|
|
uint32_t agc_a, agc_b;
|
|
uint32_t val;
|
|
|
|
val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
|
|
agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
|
|
agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
|
|
|
|
val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
|
|
rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
|
|
rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
|
|
|
|
/*
|
|
* dBm = rssi dB - agc dB - constant.
|
|
* Higher AGC (higher radio gain) means lower signal.
|
|
*/
|
|
rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
|
|
rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
|
|
max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
|
|
|
|
DPRINTF(("Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
|
|
rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b));
|
|
|
|
return max_rssi_dbm;
|
|
}
|
|
|
|
/*
|
|
* RSSI values are reported by the FW as positive values - need to negate
|
|
* to obtain their dBM. Account for missing antennas by replacing 0
|
|
* values by -256dBm: practically 0 power and a non-feasible 8 bit value.
|
|
*/
|
|
static int
|
|
iwm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
|
|
{
|
|
int energy_a, energy_b, energy_c, max_energy;
|
|
uint32_t val;
|
|
|
|
val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
|
|
energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
|
|
IWM_RX_INFO_ENERGY_ANT_A_POS;
|
|
energy_a = energy_a ? -energy_a : -256;
|
|
energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
|
|
IWM_RX_INFO_ENERGY_ANT_B_POS;
|
|
energy_b = energy_b ? -energy_b : -256;
|
|
energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
|
|
IWM_RX_INFO_ENERGY_ANT_C_POS;
|
|
energy_c = energy_c ? -energy_c : -256;
|
|
max_energy = MAX(energy_a, energy_b);
|
|
max_energy = MAX(max_energy, energy_c);
|
|
|
|
DPRINTFN(12, ("energy In A %d B %d C %d, and max %d\n",
|
|
energy_a, energy_b, energy_c, max_energy));
|
|
|
|
return max_energy;
|
|
}
|
|
|
|
static void
|
|
iwm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
|
|
struct iwm_rx_data *data)
|
|
{
|
|
struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
|
|
|
|
DPRINTFN(20, ("received PHY stats\n"));
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt),
|
|
sizeof(*phy_info), BUS_DMASYNC_POSTREAD);
|
|
|
|
memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
|
|
}
|
|
|
|
/*
|
|
* Retrieve the average noise (in dBm) among receivers.
|
|
*/
|
|
static int
|
|
iwm_get_noise(const struct iwm_statistics_rx_non_phy *stats)
|
|
{
|
|
int i, total, nbant, noise;
|
|
|
|
total = nbant = noise = 0;
|
|
for (i = 0; i < 3; i++) {
|
|
noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
|
|
if (noise) {
|
|
total += noise;
|
|
nbant++;
|
|
}
|
|
}
|
|
|
|
/* There should be at least one antenna but check anyway. */
|
|
return (nbant == 0) ? -127 : (total / nbant) - 107;
|
|
}
|
|
|
|
static void
|
|
iwm_rx_rx_mpdu(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
|
|
struct iwm_rx_data *data)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_node *ni;
|
|
struct ieee80211_channel *c = NULL;
|
|
struct mbuf *m;
|
|
struct iwm_rx_phy_info *phy_info;
|
|
struct iwm_rx_mpdu_res_start *rx_res;
|
|
int device_timestamp;
|
|
uint32_t len;
|
|
uint32_t rx_pkt_status;
|
|
int rssi;
|
|
int s;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
phy_info = &sc->sc_last_phy_info;
|
|
rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
|
|
wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
|
|
len = le16toh(rx_res->byte_count);
|
|
rx_pkt_status = le32toh(*(uint32_t *)(pkt->data +
|
|
sizeof(*rx_res) + len));
|
|
|
|
m = data->m;
|
|
m->m_data = pkt->data + sizeof(*rx_res);
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
|
|
DPRINTF(("dsp size out of range [0,20]: %d\n",
|
|
phy_info->cfg_phy_cnt));
|
|
return;
|
|
}
|
|
|
|
if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
|
|
!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
|
|
DPRINTF(("Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status));
|
|
return; /* drop */
|
|
}
|
|
|
|
device_timestamp = le32toh(phy_info->system_timestamp);
|
|
|
|
if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
|
|
rssi = iwm_get_signal_strength(sc, phy_info);
|
|
} else {
|
|
rssi = iwm_calc_rssi(sc, phy_info);
|
|
}
|
|
rssi = -rssi;
|
|
|
|
if (ic->ic_state == IEEE80211_S_SCAN)
|
|
iwm_fix_channel(sc, m);
|
|
|
|
if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0)
|
|
return;
|
|
|
|
m_set_rcvif(m, IC2IFP(ic));
|
|
|
|
if (le32toh(phy_info->channel) < __arraycount(ic->ic_channels))
|
|
c = &ic->ic_channels[le32toh(phy_info->channel)];
|
|
|
|
s = splnet();
|
|
|
|
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
|
|
if (c)
|
|
ni->ni_chan = c;
|
|
|
|
if (__predict_false(sc->sc_drvbpf != NULL)) {
|
|
struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
|
|
|
|
tap->wr_flags = 0;
|
|
if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
|
|
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
|
|
tap->wr_chan_freq =
|
|
htole16(ic->ic_channels[phy_info->channel].ic_freq);
|
|
tap->wr_chan_flags =
|
|
htole16(ic->ic_channels[phy_info->channel].ic_flags);
|
|
tap->wr_dbm_antsignal = (int8_t)rssi;
|
|
tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
|
|
tap->wr_tsft = phy_info->system_timestamp;
|
|
if (phy_info->phy_flags &
|
|
htole16(IWM_RX_RES_PHY_FLAGS_OFDM_HT)) {
|
|
uint8_t mcs = (phy_info->rate_n_flags &
|
|
htole32(IWM_RATE_HT_MCS_RATE_CODE_MSK |
|
|
IWM_RATE_HT_MCS_NSS_MSK));
|
|
tap->wr_rate = (0x80 | mcs);
|
|
} else {
|
|
uint8_t rate = (phy_info->rate_n_flags &
|
|
htole32(IWM_RATE_LEGACY_RATE_MSK));
|
|
switch (rate) {
|
|
/* CCK rates. */
|
|
case 10: tap->wr_rate = 2; break;
|
|
case 20: tap->wr_rate = 4; break;
|
|
case 55: tap->wr_rate = 11; break;
|
|
case 110: tap->wr_rate = 22; break;
|
|
/* OFDM rates. */
|
|
case 0xd: tap->wr_rate = 12; break;
|
|
case 0xf: tap->wr_rate = 18; break;
|
|
case 0x5: tap->wr_rate = 24; break;
|
|
case 0x7: tap->wr_rate = 36; break;
|
|
case 0x9: tap->wr_rate = 48; break;
|
|
case 0xb: tap->wr_rate = 72; break;
|
|
case 0x1: tap->wr_rate = 96; break;
|
|
case 0x3: tap->wr_rate = 108; break;
|
|
/* Unknown rate: should not happen. */
|
|
default: tap->wr_rate = 0;
|
|
}
|
|
}
|
|
|
|
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
|
|
}
|
|
ieee80211_input(ic, m, ni, rssi, device_timestamp);
|
|
ieee80211_free_node(ni);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
iwm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
|
|
struct iwm_node *in)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
struct iwm_tx_resp *tx_resp = (void *)pkt->data;
|
|
int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
|
|
int failack = tx_resp->failure_frame;
|
|
|
|
KASSERT(tx_resp->frame_count == 1);
|
|
|
|
/* Update rate control statistics. */
|
|
in->in_amn.amn_txcnt++;
|
|
if (failack > 0) {
|
|
in->in_amn.amn_retrycnt++;
|
|
}
|
|
|
|
if (status != IWM_TX_STATUS_SUCCESS &&
|
|
status != IWM_TX_STATUS_DIRECT_DONE)
|
|
ifp->if_oerrors++;
|
|
else
|
|
ifp->if_opackets++;
|
|
}
|
|
|
|
static void
|
|
iwm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
|
|
struct iwm_rx_data *data)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
|
|
int idx = cmd_hdr->idx;
|
|
int qid = cmd_hdr->qid;
|
|
struct iwm_tx_ring *ring = &sc->txq[qid];
|
|
struct iwm_tx_data *txd = &ring->data[idx];
|
|
struct iwm_node *in = txd->in;
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
if (txd->done) {
|
|
DPRINTF(("%s: got tx interrupt that's already been handled!\n",
|
|
DEVNAME(sc)));
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
sc->sc_tx_timer = 0;
|
|
|
|
iwm_rx_tx_cmd_single(sc, pkt, in);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, txd->map, 0, txd->map->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, txd->map);
|
|
m_freem(txd->m);
|
|
|
|
DPRINTFN(8, ("free txd %p, in %p\n", txd, txd->in));
|
|
KASSERT(txd->done == 0);
|
|
txd->done = 1;
|
|
KASSERT(txd->in);
|
|
|
|
txd->m = NULL;
|
|
txd->in = NULL;
|
|
ieee80211_free_node(&in->in_ni);
|
|
|
|
if (--ring->queued < IWM_TX_RING_LOMARK) {
|
|
sc->qfullmsk &= ~(1 << qid);
|
|
if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
KASSERT(KERNEL_LOCKED_P());
|
|
iwm_start(ifp);
|
|
}
|
|
}
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static int
|
|
iwm_binding_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action)
|
|
{
|
|
struct iwm_binding_cmd cmd;
|
|
struct iwm_phy_ctxt *phyctxt = in->in_phyctxt;
|
|
int i, err;
|
|
uint32_t status;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
cmd.id_and_color
|
|
= htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color));
|
|
cmd.action = htole32(action);
|
|
cmd.phy = htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color));
|
|
|
|
cmd.macs[0] = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
|
|
for (i = 1; i < IWM_MAX_MACS_IN_BINDING; i++)
|
|
cmd.macs[i] = htole32(IWM_FW_CTXT_INVALID);
|
|
|
|
status = 0;
|
|
err = iwm_send_cmd_pdu_status(sc, IWM_BINDING_CONTEXT_CMD,
|
|
sizeof(cmd), &cmd, &status);
|
|
if (err == 0 && status != 0)
|
|
err = EIO;
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
iwm_phy_ctxt_cmd_hdr(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt,
|
|
struct iwm_phy_context_cmd *cmd, uint32_t action, uint32_t apply_time)
|
|
{
|
|
memset(cmd, 0, sizeof(struct iwm_phy_context_cmd));
|
|
|
|
cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(ctxt->id,
|
|
ctxt->color));
|
|
cmd->action = htole32(action);
|
|
cmd->apply_time = htole32(apply_time);
|
|
}
|
|
|
|
static void
|
|
iwm_phy_ctxt_cmd_data(struct iwm_softc *sc, struct iwm_phy_context_cmd *cmd,
|
|
struct ieee80211_channel *chan, uint8_t chains_static,
|
|
uint8_t chains_dynamic)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint8_t active_cnt, idle_cnt;
|
|
|
|
cmd->ci.band = IEEE80211_IS_CHAN_2GHZ(chan) ?
|
|
IWM_PHY_BAND_24 : IWM_PHY_BAND_5;
|
|
|
|
cmd->ci.channel = ieee80211_chan2ieee(ic, chan);
|
|
cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE20;
|
|
cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
|
|
|
|
/* Set rx the chains */
|
|
idle_cnt = chains_static;
|
|
active_cnt = chains_dynamic;
|
|
|
|
cmd->rxchain_info = htole32(iwm_fw_valid_rx_ant(sc) <<
|
|
IWM_PHY_RX_CHAIN_VALID_POS);
|
|
cmd->rxchain_info |= htole32(idle_cnt << IWM_PHY_RX_CHAIN_CNT_POS);
|
|
cmd->rxchain_info |= htole32(active_cnt <<
|
|
IWM_PHY_RX_CHAIN_MIMO_CNT_POS);
|
|
|
|
cmd->txchain_info = htole32(iwm_fw_valid_tx_ant(sc));
|
|
}
|
|
|
|
static int
|
|
iwm_phy_ctxt_cmd(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt,
|
|
uint8_t chains_static, uint8_t chains_dynamic, uint32_t action,
|
|
uint32_t apply_time)
|
|
{
|
|
struct iwm_phy_context_cmd cmd;
|
|
|
|
iwm_phy_ctxt_cmd_hdr(sc, ctxt, &cmd, action, apply_time);
|
|
|
|
iwm_phy_ctxt_cmd_data(sc, &cmd, ctxt->channel,
|
|
chains_static, chains_dynamic);
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_PHY_CONTEXT_CMD, 0,
|
|
sizeof(struct iwm_phy_context_cmd), &cmd);
|
|
}
|
|
|
|
static int
|
|
iwm_send_cmd(struct iwm_softc *sc, struct iwm_host_cmd *hcmd)
|
|
{
|
|
struct iwm_tx_ring *ring = &sc->txq[IWM_CMD_QUEUE];
|
|
struct iwm_tfd *desc;
|
|
struct iwm_tx_data *txdata;
|
|
struct iwm_device_cmd *cmd;
|
|
struct mbuf *m;
|
|
bus_addr_t paddr;
|
|
uint32_t addr_lo;
|
|
int err = 0, i, paylen, off, s;
|
|
int code;
|
|
int async, wantresp;
|
|
int group_id;
|
|
size_t hdrlen, datasz;
|
|
uint8_t *data;
|
|
|
|
code = hcmd->id;
|
|
async = hcmd->flags & IWM_CMD_ASYNC;
|
|
wantresp = hcmd->flags & IWM_CMD_WANT_SKB;
|
|
|
|
for (i = 0, paylen = 0; i < __arraycount(hcmd->len); i++) {
|
|
paylen += hcmd->len[i];
|
|
}
|
|
|
|
/* if the command wants an answer, busy sc_cmd_resp */
|
|
if (wantresp) {
|
|
KASSERT(!async);
|
|
while (sc->sc_wantresp != IWM_CMD_RESP_IDLE)
|
|
tsleep(&sc->sc_wantresp, 0, "iwmcmdsl", 0);
|
|
sc->sc_wantresp = ring->qid << 16 | ring->cur;
|
|
}
|
|
|
|
/*
|
|
* Is the hardware still available? (after e.g. above wait).
|
|
*/
|
|
s = splnet();
|
|
if (sc->sc_flags & IWM_FLAG_STOPPED) {
|
|
err = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
desc = &ring->desc[ring->cur];
|
|
txdata = &ring->data[ring->cur];
|
|
|
|
group_id = iwm_cmd_groupid(code);
|
|
if (group_id != 0) {
|
|
hdrlen = sizeof(cmd->hdr_wide);
|
|
datasz = sizeof(cmd->data_wide);
|
|
} else {
|
|
hdrlen = sizeof(cmd->hdr);
|
|
datasz = sizeof(cmd->data);
|
|
}
|
|
|
|
if (paylen > datasz) {
|
|
/* Command is too large to fit in pre-allocated space. */
|
|
size_t totlen = hdrlen + paylen;
|
|
if (paylen > IWM_MAX_CMD_PAYLOAD_SIZE) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"firmware command too long (%zd bytes)\n", totlen);
|
|
err = EINVAL;
|
|
goto out;
|
|
}
|
|
m = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
err = ENOMEM;
|
|
goto out;
|
|
}
|
|
MEXTMALLOC(m, IWM_RBUF_SIZE, M_DONTWAIT);
|
|
if (!(m->m_flags & M_EXT)) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not get fw cmd mbuf (%zd bytes)\n", totlen);
|
|
m_freem(m);
|
|
err = ENOMEM;
|
|
goto out;
|
|
}
|
|
cmd = mtod(m, struct iwm_device_cmd *);
|
|
err = bus_dmamap_load(sc->sc_dmat, txdata->map, cmd,
|
|
totlen, NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not load fw cmd mbuf (%zd bytes)\n", totlen);
|
|
m_freem(m);
|
|
goto out;
|
|
}
|
|
txdata->m = m;
|
|
paddr = txdata->map->dm_segs[0].ds_addr;
|
|
} else {
|
|
cmd = &ring->cmd[ring->cur];
|
|
paddr = txdata->cmd_paddr;
|
|
}
|
|
|
|
if (group_id != 0) {
|
|
cmd->hdr_wide.opcode = iwm_cmd_opcode(code);
|
|
cmd->hdr_wide.group_id = group_id;
|
|
cmd->hdr_wide.qid = ring->qid;
|
|
cmd->hdr_wide.idx = ring->cur;
|
|
cmd->hdr_wide.length = htole16(paylen);
|
|
cmd->hdr_wide.version = iwm_cmd_version(code);
|
|
data = cmd->data_wide;
|
|
} else {
|
|
cmd->hdr.code = code;
|
|
cmd->hdr.flags = 0;
|
|
cmd->hdr.qid = ring->qid;
|
|
cmd->hdr.idx = ring->cur;
|
|
data = cmd->data;
|
|
}
|
|
|
|
for (i = 0, off = 0; i < __arraycount(hcmd->data); i++) {
|
|
if (hcmd->len[i] == 0)
|
|
continue;
|
|
memcpy(data + off, hcmd->data[i], hcmd->len[i]);
|
|
off += hcmd->len[i];
|
|
}
|
|
KASSERT(off == paylen);
|
|
|
|
/* lo field is not aligned */
|
|
addr_lo = htole32((uint32_t)paddr);
|
|
memcpy(&desc->tbs[0].lo, &addr_lo, sizeof(uint32_t));
|
|
desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(paddr)
|
|
| ((hdrlen + paylen) << 4));
|
|
desc->num_tbs = 1;
|
|
|
|
DPRINTFN(8, ("iwm_send_cmd 0x%x size=%zu %s\n",
|
|
code, hdrlen + paylen, async ? " (async)" : ""));
|
|
|
|
if (paylen > datasz) {
|
|
bus_dmamap_sync(sc->sc_dmat, txdata->map, 0, hdrlen + paylen,
|
|
BUS_DMASYNC_PREWRITE);
|
|
} else {
|
|
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
|
|
(uint8_t *)cmd - (uint8_t *)ring->cmd, hdrlen + paylen,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
|
|
(uint8_t *)desc - (uint8_t *)ring->desc, sizeof(*desc),
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
err = iwm_set_cmd_in_flight(sc);
|
|
if (err)
|
|
goto out;
|
|
ring->queued++;
|
|
|
|
#if 0
|
|
iwm_update_sched(sc, ring->qid, ring->cur, 0, 0);
|
|
#endif
|
|
DPRINTF(("sending command 0x%x qid %d, idx %d\n",
|
|
code, ring->qid, ring->cur));
|
|
|
|
/* Kick command ring. */
|
|
ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
|
|
|
|
if (!async) {
|
|
int generation = sc->sc_generation;
|
|
err = tsleep(desc, PCATCH, "iwmcmd", mstohz(2000));
|
|
if (err == 0) {
|
|
/* if hardware is no longer up, return error */
|
|
if (generation != sc->sc_generation) {
|
|
err = ENXIO;
|
|
} else {
|
|
hcmd->resp_pkt = (void *)sc->sc_cmd_resp;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
if (wantresp && err) {
|
|
iwm_free_resp(sc, hcmd);
|
|
}
|
|
splx(s);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_send_cmd_pdu(struct iwm_softc *sc, uint32_t id, uint32_t flags,
|
|
uint16_t len, const void *data)
|
|
{
|
|
struct iwm_host_cmd cmd = {
|
|
.id = id,
|
|
.len = { len, },
|
|
.data = { data, },
|
|
.flags = flags,
|
|
};
|
|
|
|
return iwm_send_cmd(sc, &cmd);
|
|
}
|
|
|
|
static int
|
|
iwm_send_cmd_status(struct iwm_softc *sc, struct iwm_host_cmd *cmd,
|
|
uint32_t *status)
|
|
{
|
|
struct iwm_rx_packet *pkt;
|
|
struct iwm_cmd_response *resp;
|
|
int err, resp_len;
|
|
|
|
KASSERT((cmd->flags & IWM_CMD_WANT_SKB) == 0);
|
|
cmd->flags |= IWM_CMD_WANT_SKB;
|
|
|
|
err = iwm_send_cmd(sc, cmd);
|
|
if (err)
|
|
return err;
|
|
pkt = cmd->resp_pkt;
|
|
|
|
/* Can happen if RFKILL is asserted */
|
|
if (!pkt) {
|
|
err = 0;
|
|
goto out_free_resp;
|
|
}
|
|
|
|
if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
|
|
err = EIO;
|
|
goto out_free_resp;
|
|
}
|
|
|
|
resp_len = iwm_rx_packet_payload_len(pkt);
|
|
if (resp_len != sizeof(*resp)) {
|
|
err = EIO;
|
|
goto out_free_resp;
|
|
}
|
|
|
|
resp = (void *)pkt->data;
|
|
*status = le32toh(resp->status);
|
|
out_free_resp:
|
|
iwm_free_resp(sc, cmd);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_send_cmd_pdu_status(struct iwm_softc *sc, uint32_t id, uint16_t len,
|
|
const void *data, uint32_t *status)
|
|
{
|
|
struct iwm_host_cmd cmd = {
|
|
.id = id,
|
|
.len = { len, },
|
|
.data = { data, },
|
|
};
|
|
|
|
return iwm_send_cmd_status(sc, &cmd, status);
|
|
}
|
|
|
|
static void
|
|
iwm_free_resp(struct iwm_softc *sc, struct iwm_host_cmd *hcmd)
|
|
{
|
|
KASSERT(sc->sc_wantresp != IWM_CMD_RESP_IDLE);
|
|
KASSERT((hcmd->flags & IWM_CMD_WANT_SKB) == IWM_CMD_WANT_SKB);
|
|
sc->sc_wantresp = IWM_CMD_RESP_IDLE;
|
|
wakeup(&sc->sc_wantresp);
|
|
}
|
|
|
|
static void
|
|
iwm_cmd_done(struct iwm_softc *sc, int qid, int idx)
|
|
{
|
|
struct iwm_tx_ring *ring = &sc->txq[IWM_CMD_QUEUE];
|
|
struct iwm_tx_data *data;
|
|
int s;
|
|
|
|
if (qid != IWM_CMD_QUEUE) {
|
|
return; /* Not a command ack. */
|
|
}
|
|
|
|
s = splnet();
|
|
|
|
data = &ring->data[idx];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
wakeup(&ring->desc[idx]);
|
|
|
|
if (((idx + ring->queued) % IWM_TX_RING_COUNT) != ring->cur) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"Some HCMDs skipped?: idx=%d queued=%d cur=%d\n",
|
|
idx, ring->queued, ring->cur);
|
|
}
|
|
|
|
KASSERT(ring->queued > 0);
|
|
if (--ring->queued == 0)
|
|
iwm_clear_cmd_in_flight(sc);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* necessary only for block ack mode
|
|
*/
|
|
void
|
|
iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
|
|
uint16_t len)
|
|
{
|
|
struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
|
|
uint16_t w_val;
|
|
|
|
scd_bc_tbl = sc->sched_dma.vaddr;
|
|
|
|
len += 8; /* magic numbers came naturally from paris */
|
|
if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
|
|
len = roundup(len, 4) / 4;
|
|
|
|
w_val = htole16(sta_id << 12 | len);
|
|
|
|
/* Update TX scheduler. */
|
|
scd_bc_tbl[qid].tfd_offset[idx] = w_val;
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
|
|
(char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
|
|
sizeof(uint16_t), BUS_DMASYNC_PREWRITE);
|
|
|
|
/* I really wonder what this is ?!? */
|
|
if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
|
|
scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
|
|
(char *)(void *)(w + IWM_TFD_QUEUE_SIZE_MAX) -
|
|
(char *)(void *)sc->sched_dma.vaddr,
|
|
sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Fill in various bit for management frames, and leave them
|
|
* unfilled for data frames (firmware takes care of that).
|
|
* Return the selected TX rate.
|
|
*/
|
|
static const struct iwm_rate *
|
|
iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
|
|
struct ieee80211_frame *wh, struct iwm_tx_cmd *tx)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
const struct iwm_rate *rinfo;
|
|
int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
int ridx, rate_flags, i, ind;
|
|
int nrates = ni->ni_rates.rs_nrates;
|
|
|
|
tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
|
|
tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
|
|
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
type != IEEE80211_FC0_TYPE_DATA) {
|
|
/* for non-data, use the lowest supported rate */
|
|
ridx = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) ?
|
|
IWM_RIDX_OFDM : IWM_RIDX_CCK;
|
|
tx->data_retry_limit = IWM_MGMT_DFAULT_RETRY_LIMIT;
|
|
#ifndef IEEE80211_NO_HT
|
|
} else if (ic->ic_fixed_mcs != -1) {
|
|
ridx = sc->sc_fixed_ridx;
|
|
#endif
|
|
} else if (ic->ic_fixed_rate != -1) {
|
|
ridx = sc->sc_fixed_ridx;
|
|
} else {
|
|
/* for data frames, use RS table */
|
|
tx->initial_rate_index = 0;
|
|
tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
|
|
DPRINTFN(12, ("start with txrate %d\n",
|
|
tx->initial_rate_index));
|
|
#ifndef IEEE80211_NO_HT
|
|
if (ni->ni_flags & IEEE80211_NODE_HT) {
|
|
ridx = iwm_mcs2ridx[ni->ni_txmcs];
|
|
return &iwm_rates[ridx];
|
|
}
|
|
#endif
|
|
ridx = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) ?
|
|
IWM_RIDX_OFDM : IWM_RIDX_CCK;
|
|
for (i = 0; i < nrates; i++) {
|
|
if (iwm_rates[i].rate == (ni->ni_txrate &
|
|
IEEE80211_RATE_VAL)) {
|
|
ridx = i;
|
|
break;
|
|
}
|
|
}
|
|
return &iwm_rates[ridx];
|
|
}
|
|
|
|
rinfo = &iwm_rates[ridx];
|
|
for (i = 0, ind = sc->sc_mgmt_last_antenna;
|
|
i < IWM_RATE_MCS_ANT_NUM; i++) {
|
|
ind = (ind + 1) % IWM_RATE_MCS_ANT_NUM;
|
|
if (iwm_fw_valid_tx_ant(sc) & (1 << ind)) {
|
|
sc->sc_mgmt_last_antenna = ind;
|
|
break;
|
|
}
|
|
}
|
|
rate_flags = (1 << sc->sc_mgmt_last_antenna) << IWM_RATE_MCS_ANT_POS;
|
|
if (IWM_RIDX_IS_CCK(ridx))
|
|
rate_flags |= IWM_RATE_MCS_CCK_MSK;
|
|
#ifndef IEEE80211_NO_HT
|
|
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
|
|
rinfo->ht_plcp != IWM_RATE_HT_SISO_MCS_INV_PLCP) {
|
|
rate_flags |= IWM_RATE_MCS_HT_MSK;
|
|
tx->rate_n_flags = htole32(rate_flags | rinfo->ht_plcp);
|
|
} else
|
|
#endif
|
|
tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
|
|
|
|
return rinfo;
|
|
}
|
|
|
|
#define TB0_SIZE 16
|
|
static int
|
|
iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (struct iwm_node *)ni;
|
|
struct iwm_tx_ring *ring;
|
|
struct iwm_tx_data *data;
|
|
struct iwm_tfd *desc;
|
|
struct iwm_device_cmd *cmd;
|
|
struct iwm_tx_cmd *tx;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_key *k = NULL;
|
|
struct mbuf *m1;
|
|
const struct iwm_rate *rinfo;
|
|
uint32_t flags;
|
|
u_int hdrlen;
|
|
bus_dma_segment_t *seg;
|
|
uint8_t tid, type;
|
|
int i, totlen, err, pad;
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
hdrlen = ieee80211_anyhdrsize(wh);
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
|
|
tid = 0;
|
|
|
|
ring = &sc->txq[ac];
|
|
desc = &ring->desc[ring->cur];
|
|
memset(desc, 0, sizeof(*desc));
|
|
data = &ring->data[ring->cur];
|
|
|
|
cmd = &ring->cmd[ring->cur];
|
|
cmd->hdr.code = IWM_TX_CMD;
|
|
cmd->hdr.flags = 0;
|
|
cmd->hdr.qid = ring->qid;
|
|
cmd->hdr.idx = ring->cur;
|
|
|
|
tx = (void *)cmd->data;
|
|
memset(tx, 0, sizeof(*tx));
|
|
|
|
rinfo = iwm_tx_fill_cmd(sc, in, wh, tx);
|
|
|
|
if (__predict_false(sc->sc_drvbpf != NULL)) {
|
|
struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
|
|
|
|
tap->wt_flags = 0;
|
|
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
|
|
tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
|
|
#ifndef IEEE80211_NO_HT
|
|
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
|
|
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
|
|
type == IEEE80211_FC0_TYPE_DATA &&
|
|
rinfo->plcp == IWM_RATE_INVM_PLCP) {
|
|
tap->wt_rate = (0x80 | rinfo->ht_plcp);
|
|
} else
|
|
#endif
|
|
tap->wt_rate = rinfo->rate;
|
|
tap->wt_hwqueue = ac;
|
|
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
|
|
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
|
|
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
|
|
}
|
|
|
|
/* Encrypt the frame if need be. */
|
|
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
|
|
k = ieee80211_crypto_encap(ic, ni, m);
|
|
if (k == NULL) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
/* Packet header may have moved, reset our local pointer. */
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
}
|
|
totlen = m->m_pkthdr.len;
|
|
|
|
flags = 0;
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
flags |= IWM_TX_CMD_FLG_ACK;
|
|
}
|
|
|
|
if (type == IEEE80211_FC0_TYPE_DATA &&
|
|
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
|
|
(totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
|
|
(ic->ic_flags & IEEE80211_F_USEPROT)))
|
|
flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
|
|
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
type != IEEE80211_FC0_TYPE_DATA)
|
|
tx->sta_id = IWM_AUX_STA_ID;
|
|
else
|
|
tx->sta_id = IWM_STATION_ID;
|
|
|
|
if (type == IEEE80211_FC0_TYPE_MGT) {
|
|
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
|
|
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
|
|
tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
|
|
else
|
|
tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
|
|
} else {
|
|
tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
|
|
}
|
|
|
|
if (hdrlen & 3) {
|
|
/* First segment length must be a multiple of 4. */
|
|
flags |= IWM_TX_CMD_FLG_MH_PAD;
|
|
pad = 4 - (hdrlen & 3);
|
|
} else
|
|
pad = 0;
|
|
|
|
tx->driver_txop = 0;
|
|
tx->next_frame_len = 0;
|
|
|
|
tx->len = htole16(totlen);
|
|
tx->tid_tspec = tid;
|
|
tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
|
|
|
|
/* Set physical address of "scratch area". */
|
|
tx->dram_lsb_ptr = htole32(data->scratch_paddr);
|
|
tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
|
|
|
|
/* Copy 802.11 header in TX command. */
|
|
memcpy(tx + 1, wh, hdrlen);
|
|
|
|
flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
|
|
|
|
tx->sec_ctl = 0;
|
|
tx->tx_flags |= htole32(flags);
|
|
|
|
/* Trim 802.11 header. */
|
|
m_adj(m, hdrlen);
|
|
|
|
err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
|
|
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (err) {
|
|
if (err != EFBIG) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't map mbuf (error %d)\n", err);
|
|
m_freem(m);
|
|
return err;
|
|
}
|
|
/* Too many DMA segments, linearize mbuf. */
|
|
MGETHDR(m1, M_DONTWAIT, MT_DATA);
|
|
if (m1 == NULL) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
if (m->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m1, M_DONTWAIT);
|
|
if (!(m1->m_flags & M_EXT)) {
|
|
m_freem(m);
|
|
m_freem(m1);
|
|
return ENOBUFS;
|
|
}
|
|
}
|
|
m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
|
|
m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
|
|
m_freem(m);
|
|
m = m1;
|
|
|
|
err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
|
|
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't map mbuf (error %d)\n", err);
|
|
m_freem(m);
|
|
return err;
|
|
}
|
|
}
|
|
data->m = m;
|
|
data->in = in;
|
|
data->done = 0;
|
|
|
|
DPRINTFN(8, ("sending txd %p, in %p\n", data, data->in));
|
|
KASSERT(data->in != NULL);
|
|
|
|
DPRINTFN(8, ("sending data: qid=%d idx=%d len=%d nsegs=%d type=%d "
|
|
"subtype=%x tx_flags=%08x init_rateidx=%08x rate_n_flags=%08x\n",
|
|
ring->qid, ring->cur, totlen, data->map->dm_nsegs, type,
|
|
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) >> 4,
|
|
le32toh(tx->tx_flags), le32toh(tx->initial_rate_index),
|
|
le32toh(tx->rate_n_flags)));
|
|
|
|
/* Fill TX descriptor. */
|
|
desc->num_tbs = 2 + data->map->dm_nsegs;
|
|
|
|
desc->tbs[0].lo = htole32(data->cmd_paddr);
|
|
desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
|
|
(TB0_SIZE << 4);
|
|
desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
|
|
desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
|
|
((sizeof(struct iwm_cmd_header) + sizeof(*tx)
|
|
+ hdrlen + pad - TB0_SIZE) << 4);
|
|
|
|
/* Other DMA segments are for data payload. */
|
|
seg = data->map->dm_segs;
|
|
for (i = 0; i < data->map->dm_nsegs; i++, seg++) {
|
|
desc->tbs[i+2].lo = htole32(seg->ds_addr);
|
|
desc->tbs[i+2].hi_n_len =
|
|
htole16(iwm_get_dma_hi_addr(seg->ds_addr))
|
|
| ((seg->ds_len) << 4);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
|
|
(uint8_t *)cmd - (uint8_t *)ring->cmd, sizeof(*cmd),
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
|
|
(uint8_t *)desc - (uint8_t *)ring->desc, sizeof(*desc),
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
#if 0
|
|
iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id,
|
|
le16toh(tx->len));
|
|
#endif
|
|
|
|
/* Kick TX ring. */
|
|
ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
|
|
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
|
|
|
|
/* Mark TX ring as full if we reach a certain threshold. */
|
|
if (++ring->queued > IWM_TX_RING_HIMARK) {
|
|
sc->qfullmsk |= 1 << ring->qid;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
/* not necessary? */
|
|
static int
|
|
iwm_flush_tx_path(struct iwm_softc *sc, int tfd_msk, int sync)
|
|
{
|
|
struct iwm_tx_path_flush_cmd flush_cmd = {
|
|
.queues_ctl = htole32(tfd_msk),
|
|
.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
|
|
};
|
|
int err;
|
|
|
|
err = iwm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, sync ? 0 : IWM_CMD_ASYNC,
|
|
sizeof(flush_cmd), &flush_cmd);
|
|
if (err)
|
|
aprint_error_dev(sc->sc_dev, "Flushing tx queue failed: %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
iwm_led_enable(struct iwm_softc *sc)
|
|
{
|
|
IWM_WRITE(sc, IWM_CSR_LED_REG, IWM_CSR_LED_REG_TURN_ON);
|
|
}
|
|
|
|
static void
|
|
iwm_led_disable(struct iwm_softc *sc)
|
|
{
|
|
IWM_WRITE(sc, IWM_CSR_LED_REG, IWM_CSR_LED_REG_TURN_OFF);
|
|
}
|
|
|
|
static int
|
|
iwm_led_is_enabled(struct iwm_softc *sc)
|
|
{
|
|
return (IWM_READ(sc, IWM_CSR_LED_REG) == IWM_CSR_LED_REG_TURN_ON);
|
|
}
|
|
|
|
static void
|
|
iwm_led_blink_timeout(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
|
|
if (iwm_led_is_enabled(sc))
|
|
iwm_led_disable(sc);
|
|
else
|
|
iwm_led_enable(sc);
|
|
|
|
callout_schedule(&sc->sc_led_blink_to, mstohz(200));
|
|
}
|
|
|
|
static void
|
|
iwm_led_blink_start(struct iwm_softc *sc)
|
|
{
|
|
callout_schedule(&sc->sc_led_blink_to, mstohz(200));
|
|
}
|
|
|
|
static void
|
|
iwm_led_blink_stop(struct iwm_softc *sc)
|
|
{
|
|
callout_stop(&sc->sc_led_blink_to);
|
|
iwm_led_disable(sc);
|
|
}
|
|
|
|
#define IWM_POWER_KEEP_ALIVE_PERIOD_SEC 25
|
|
|
|
static int
|
|
iwm_beacon_filter_send_cmd(struct iwm_softc *sc,
|
|
struct iwm_beacon_filter_cmd *cmd)
|
|
{
|
|
return iwm_send_cmd_pdu(sc, IWM_REPLY_BEACON_FILTERING_CMD,
|
|
0, sizeof(struct iwm_beacon_filter_cmd), cmd);
|
|
}
|
|
|
|
static void
|
|
iwm_beacon_filter_set_cqm_params(struct iwm_softc *sc, struct iwm_node *in,
|
|
struct iwm_beacon_filter_cmd *cmd)
|
|
{
|
|
cmd->ba_enable_beacon_abort = htole32(sc->sc_bf.ba_enabled);
|
|
}
|
|
|
|
static int
|
|
iwm_update_beacon_abort(struct iwm_softc *sc, struct iwm_node *in, int enable)
|
|
{
|
|
struct iwm_beacon_filter_cmd cmd = {
|
|
IWM_BF_CMD_CONFIG_DEFAULTS,
|
|
.bf_enable_beacon_filter = htole32(1),
|
|
.ba_enable_beacon_abort = htole32(enable),
|
|
};
|
|
|
|
if (!sc->sc_bf.bf_enabled)
|
|
return 0;
|
|
|
|
sc->sc_bf.ba_enabled = enable;
|
|
iwm_beacon_filter_set_cqm_params(sc, in, &cmd);
|
|
return iwm_beacon_filter_send_cmd(sc, &cmd);
|
|
}
|
|
|
|
static void
|
|
iwm_power_build_cmd(struct iwm_softc *sc, struct iwm_node *in,
|
|
struct iwm_mac_power_cmd *cmd)
|
|
{
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
int dtim_period, dtim_msec, keep_alive;
|
|
|
|
cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,
|
|
in->in_color));
|
|
if (ni->ni_dtim_period)
|
|
dtim_period = ni->ni_dtim_period;
|
|
else
|
|
dtim_period = 1;
|
|
|
|
/*
|
|
* Regardless of power management state the driver must set
|
|
* keep alive period. FW will use it for sending keep alive NDPs
|
|
* immediately after association. Check that keep alive period
|
|
* is at least 3 * DTIM.
|
|
*/
|
|
dtim_msec = dtim_period * ni->ni_intval;
|
|
keep_alive = MAX(3 * dtim_msec, 1000 * IWM_POWER_KEEP_ALIVE_PERIOD_SEC);
|
|
keep_alive = roundup(keep_alive, 1000) / 1000;
|
|
cmd->keep_alive_seconds = htole16(keep_alive);
|
|
|
|
#ifdef notyet
|
|
cmd->flags = htole16(IWM_POWER_FLAGS_POWER_SAVE_ENA_MSK);
|
|
cmd->rx_data_timeout = IWM_DEFAULT_PS_RX_DATA_TIMEOUT;
|
|
cmd->tx_data_timeout = IWM_DEFAULT_PS_TX_DATA_TIMEOUT;
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
iwm_power_mac_update_mode(struct iwm_softc *sc, struct iwm_node *in)
|
|
{
|
|
int err;
|
|
int ba_enable;
|
|
struct iwm_mac_power_cmd cmd;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
iwm_power_build_cmd(sc, in, &cmd);
|
|
|
|
err = iwm_send_cmd_pdu(sc, IWM_MAC_PM_POWER_TABLE, 0,
|
|
sizeof(cmd), &cmd);
|
|
if (err)
|
|
return err;
|
|
|
|
ba_enable = !!(cmd.flags &
|
|
htole16(IWM_POWER_FLAGS_POWER_MANAGEMENT_ENA_MSK));
|
|
return iwm_update_beacon_abort(sc, in, ba_enable);
|
|
}
|
|
|
|
static int
|
|
iwm_power_update_device(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_device_power_cmd cmd = {
|
|
#ifdef notyet
|
|
.flags = htole16(IWM_DEVICE_POWER_FLAGS_POWER_SAVE_ENA_MSK),
|
|
#else
|
|
.flags = 0,
|
|
#endif
|
|
};
|
|
|
|
if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DEVICE_PS_CMD))
|
|
return 0;
|
|
|
|
cmd.flags |= htole16(IWM_DEVICE_POWER_FLAGS_CAM_MSK);
|
|
DPRINTF(("Sending device power command with flags = 0x%X\n",
|
|
cmd.flags));
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_POWER_TABLE_CMD, 0, sizeof(cmd), &cmd);
|
|
}
|
|
|
|
#ifdef notyet
|
|
static int
|
|
iwm_enable_beacon_filter(struct iwm_softc *sc, struct iwm_node *in)
|
|
{
|
|
struct iwm_beacon_filter_cmd cmd = {
|
|
IWM_BF_CMD_CONFIG_DEFAULTS,
|
|
.bf_enable_beacon_filter = htole32(1),
|
|
};
|
|
int err;
|
|
|
|
iwm_beacon_filter_set_cqm_params(sc, in, &cmd);
|
|
err = iwm_beacon_filter_send_cmd(sc, &cmd);
|
|
|
|
if (err == 0)
|
|
sc->sc_bf.bf_enabled = 1;
|
|
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
iwm_disable_beacon_filter(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_beacon_filter_cmd cmd;
|
|
int err;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
if ((sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_BF_UPDATED) == 0)
|
|
return 0;
|
|
|
|
err = iwm_beacon_filter_send_cmd(sc, &cmd);
|
|
if (err == 0)
|
|
sc->sc_bf.bf_enabled = 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_add_sta_cmd(struct iwm_softc *sc, struct iwm_node *in, int update)
|
|
{
|
|
struct iwm_add_sta_cmd_v7 add_sta_cmd;
|
|
int err;
|
|
uint32_t status;
|
|
|
|
memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
|
|
|
|
add_sta_cmd.sta_id = IWM_STATION_ID;
|
|
add_sta_cmd.mac_id_n_color
|
|
= htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
|
|
if (!update) {
|
|
int ac;
|
|
for (ac = 0; ac < WME_NUM_AC; ac++) {
|
|
add_sta_cmd.tfd_queue_msk |=
|
|
htole32(__BIT(iwm_ac_to_tx_fifo[ac]));
|
|
}
|
|
IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
|
|
}
|
|
add_sta_cmd.add_modify = update ? 1 : 0;
|
|
add_sta_cmd.station_flags_msk
|
|
|= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
|
|
add_sta_cmd.tid_disable_tx = htole16(0xffff);
|
|
if (update)
|
|
add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX);
|
|
|
|
#ifndef IEEE80211_NO_HT
|
|
if (in->in_ni.ni_flags & IEEE80211_NODE_HT) {
|
|
add_sta_cmd.station_flags_msk
|
|
|= htole32(IWM_STA_FLG_MAX_AGG_SIZE_MSK |
|
|
IWM_STA_FLG_AGG_MPDU_DENS_MSK);
|
|
|
|
add_sta_cmd.station_flags
|
|
|= htole32(IWM_STA_FLG_MAX_AGG_SIZE_64K);
|
|
switch (ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_SS) {
|
|
case IEEE80211_AMPDU_PARAM_SS_2:
|
|
add_sta_cmd.station_flags
|
|
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_2US);
|
|
break;
|
|
case IEEE80211_AMPDU_PARAM_SS_4:
|
|
add_sta_cmd.station_flags
|
|
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_4US);
|
|
break;
|
|
case IEEE80211_AMPDU_PARAM_SS_8:
|
|
add_sta_cmd.station_flags
|
|
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_8US);
|
|
break;
|
|
case IEEE80211_AMPDU_PARAM_SS_16:
|
|
add_sta_cmd.station_flags
|
|
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_16US);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
status = IWM_ADD_STA_SUCCESS;
|
|
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(add_sta_cmd),
|
|
&add_sta_cmd, &status);
|
|
if (err == 0 && status != IWM_ADD_STA_SUCCESS)
|
|
err = EIO;
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_add_aux_sta(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_add_sta_cmd_v7 cmd;
|
|
int err;
|
|
uint32_t status;
|
|
|
|
err = iwm_enable_txq(sc, 0, IWM_AUX_QUEUE, IWM_TX_FIFO_MCAST);
|
|
if (err)
|
|
return err;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.sta_id = IWM_AUX_STA_ID;
|
|
cmd.mac_id_n_color =
|
|
htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_MAC_INDEX_AUX, 0));
|
|
cmd.tfd_queue_msk = htole32(1 << IWM_AUX_QUEUE);
|
|
cmd.tid_disable_tx = htole16(0xffff);
|
|
|
|
status = IWM_ADD_STA_SUCCESS;
|
|
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd), &cmd,
|
|
&status);
|
|
if (err == 0 && status != IWM_ADD_STA_SUCCESS)
|
|
err = EIO;
|
|
|
|
return err;
|
|
}
|
|
|
|
#define IWM_PLCP_QUIET_THRESH 1
|
|
#define IWM_ACTIVE_QUIET_TIME 10
|
|
#define LONG_OUT_TIME_PERIOD 600
|
|
#define SHORT_OUT_TIME_PERIOD 200
|
|
#define SUSPEND_TIME_PERIOD 100
|
|
|
|
static uint16_t
|
|
iwm_scan_rx_chain(struct iwm_softc *sc)
|
|
{
|
|
uint16_t rx_chain;
|
|
uint8_t rx_ant;
|
|
|
|
rx_ant = iwm_fw_valid_rx_ant(sc);
|
|
rx_chain = rx_ant << IWM_PHY_RX_CHAIN_VALID_POS;
|
|
rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_MIMO_SEL_POS;
|
|
rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_SEL_POS;
|
|
rx_chain |= 0x1 << IWM_PHY_RX_CHAIN_DRIVER_FORCE_POS;
|
|
return htole16(rx_chain);
|
|
}
|
|
|
|
static uint32_t
|
|
iwm_scan_rate_n_flags(struct iwm_softc *sc, int flags, int no_cck)
|
|
{
|
|
uint32_t tx_ant;
|
|
int i, ind;
|
|
|
|
for (i = 0, ind = sc->sc_scan_last_antenna;
|
|
i < IWM_RATE_MCS_ANT_NUM; i++) {
|
|
ind = (ind + 1) % IWM_RATE_MCS_ANT_NUM;
|
|
if (iwm_fw_valid_tx_ant(sc) & (1 << ind)) {
|
|
sc->sc_scan_last_antenna = ind;
|
|
break;
|
|
}
|
|
}
|
|
tx_ant = (1 << sc->sc_scan_last_antenna) << IWM_RATE_MCS_ANT_POS;
|
|
|
|
if ((flags & IEEE80211_CHAN_2GHZ) && !no_cck)
|
|
return htole32(IWM_RATE_1M_PLCP | IWM_RATE_MCS_CCK_MSK |
|
|
tx_ant);
|
|
else
|
|
return htole32(IWM_RATE_6M_PLCP | tx_ant);
|
|
}
|
|
|
|
#ifdef notyet
|
|
/*
|
|
* If req->n_ssids > 0, it means we should do an active scan.
|
|
* In case of active scan w/o directed scan, we receive a zero-length SSID
|
|
* just to notify that this scan is active and not passive.
|
|
* In order to notify the FW of the number of SSIDs we wish to scan (including
|
|
* the zero-length one), we need to set the corresponding bits in chan->type,
|
|
* one for each SSID, and set the active bit (first). If the first SSID is
|
|
* already included in the probe template, so we need to set only
|
|
* req->n_ssids - 1 bits in addition to the first bit.
|
|
*/
|
|
static uint16_t
|
|
iwm_get_active_dwell(struct iwm_softc *sc, int flags, int n_ssids)
|
|
{
|
|
if (flags & IEEE80211_CHAN_2GHZ)
|
|
return 30 + 3 * (n_ssids + 1);
|
|
return 20 + 2 * (n_ssids + 1);
|
|
}
|
|
|
|
static uint16_t
|
|
iwm_get_passive_dwell(struct iwm_softc *sc, int flags)
|
|
{
|
|
return (flags & IEEE80211_CHAN_2GHZ) ? 100 + 20 : 100 + 10;
|
|
}
|
|
#endif
|
|
|
|
static uint8_t
|
|
iwm_lmac_scan_fill_channels(struct iwm_softc *sc,
|
|
struct iwm_scan_channel_cfg_lmac *chan, int n_ssids)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_channel *c;
|
|
uint8_t nchan;
|
|
|
|
for (nchan = 0, c = &ic->ic_channels[1];
|
|
c <= &ic->ic_channels[IEEE80211_CHAN_MAX] &&
|
|
nchan < sc->sc_capa_n_scan_channels;
|
|
c++) {
|
|
if (c->ic_flags == 0)
|
|
continue;
|
|
|
|
chan->channel_num = htole16(ieee80211_mhz2ieee(c->ic_freq, 0));
|
|
chan->iter_count = htole16(1);
|
|
chan->iter_interval = htole32(0);
|
|
chan->flags = htole32(IWM_UNIFIED_SCAN_CHANNEL_PARTIAL);
|
|
chan->flags |= htole32(IWM_SCAN_CHANNEL_NSSIDS(n_ssids));
|
|
if (!IEEE80211_IS_CHAN_PASSIVE(c) && n_ssids != 0)
|
|
chan->flags |= htole32(IWM_SCAN_CHANNEL_TYPE_ACTIVE);
|
|
chan++;
|
|
nchan++;
|
|
}
|
|
|
|
return nchan;
|
|
}
|
|
|
|
static uint8_t
|
|
iwm_umac_scan_fill_channels(struct iwm_softc *sc,
|
|
struct iwm_scan_channel_cfg_umac *chan, int n_ssids)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_channel *c;
|
|
uint8_t nchan;
|
|
|
|
for (nchan = 0, c = &ic->ic_channels[1];
|
|
c <= &ic->ic_channels[IEEE80211_CHAN_MAX] &&
|
|
nchan < sc->sc_capa_n_scan_channels;
|
|
c++) {
|
|
if (c->ic_flags == 0)
|
|
continue;
|
|
|
|
chan->channel_num = ieee80211_mhz2ieee(c->ic_freq, 0);
|
|
chan->iter_count = 1;
|
|
chan->iter_interval = htole16(0);
|
|
chan->flags = htole32(IWM_SCAN_CHANNEL_UMAC_NSSIDS(n_ssids));
|
|
chan++;
|
|
nchan++;
|
|
}
|
|
|
|
return nchan;
|
|
}
|
|
|
|
static int
|
|
iwm_fill_probe_req(struct iwm_softc *sc, struct iwm_scan_probe_req *preq)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_frame *wh = (struct ieee80211_frame *)preq->buf;
|
|
struct ieee80211_rateset *rs;
|
|
size_t remain = sizeof(preq->buf);
|
|
uint8_t *frm, *pos;
|
|
|
|
memset(preq, 0, sizeof(*preq));
|
|
|
|
KASSERT(ic->ic_des_esslen < sizeof(ic->ic_des_essid));
|
|
if (remain < sizeof(*wh) + 2 + ic->ic_des_esslen)
|
|
return ENOBUFS;
|
|
|
|
/*
|
|
* Build a probe request frame. Most of the following code is a
|
|
* copy & paste of what is done in net80211.
|
|
*/
|
|
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
|
|
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
|
|
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
|
|
IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
|
|
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
|
|
IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
|
|
*(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
|
|
*(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
|
|
|
|
frm = (uint8_t *)(wh + 1);
|
|
frm = ieee80211_add_ssid(frm, ic->ic_des_essid, ic->ic_des_esslen);
|
|
|
|
/* Tell the firmware where the MAC header is. */
|
|
preq->mac_header.offset = 0;
|
|
preq->mac_header.len = htole16(frm - (uint8_t *)wh);
|
|
remain -= frm - (uint8_t *)wh;
|
|
|
|
/* Fill in 2GHz IEs and tell firmware where they are. */
|
|
rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
|
|
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
|
|
if (remain < 4 + rs->rs_nrates)
|
|
return ENOBUFS;
|
|
} else if (remain < 2 + rs->rs_nrates)
|
|
return ENOBUFS;
|
|
preq->band_data[0].offset = htole16(frm - (uint8_t *)wh);
|
|
pos = frm;
|
|
frm = ieee80211_add_rates(frm, rs);
|
|
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
|
|
frm = ieee80211_add_xrates(frm, rs);
|
|
preq->band_data[0].len = htole16(frm - pos);
|
|
remain -= frm - pos;
|
|
|
|
if (isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT)) {
|
|
if (remain < 3)
|
|
return ENOBUFS;
|
|
*frm++ = IEEE80211_ELEMID_DSPARMS;
|
|
*frm++ = 1;
|
|
*frm++ = 0;
|
|
remain -= 3;
|
|
}
|
|
|
|
if (sc->sc_nvm.sku_cap_band_52GHz_enable) {
|
|
/* Fill in 5GHz IEs. */
|
|
rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
|
|
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
|
|
if (remain < 4 + rs->rs_nrates)
|
|
return ENOBUFS;
|
|
} else if (remain < 2 + rs->rs_nrates)
|
|
return ENOBUFS;
|
|
preq->band_data[1].offset = htole16(frm - (uint8_t *)wh);
|
|
pos = frm;
|
|
frm = ieee80211_add_rates(frm, rs);
|
|
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
|
|
frm = ieee80211_add_xrates(frm, rs);
|
|
preq->band_data[1].len = htole16(frm - pos);
|
|
remain -= frm - pos;
|
|
}
|
|
|
|
#ifndef IEEE80211_NO_HT
|
|
/* Send 11n IEs on both 2GHz and 5GHz bands. */
|
|
preq->common_data.offset = htole16(frm - (uint8_t *)wh);
|
|
pos = frm;
|
|
if (ic->ic_flags & IEEE80211_F_HTON) {
|
|
if (remain < 28)
|
|
return ENOBUFS;
|
|
frm = ieee80211_add_htcaps(frm, ic);
|
|
/* XXX add WME info? */
|
|
}
|
|
#endif
|
|
|
|
preq->common_data.len = htole16(frm - pos);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_lmac_scan(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_host_cmd hcmd = {
|
|
.id = IWM_SCAN_OFFLOAD_REQUEST_CMD,
|
|
.len = { 0, },
|
|
.data = { NULL, },
|
|
.flags = 0,
|
|
};
|
|
struct iwm_scan_req_lmac *req;
|
|
size_t req_len;
|
|
int err;
|
|
|
|
DPRINTF(("%s: %s\n", DEVNAME(sc), __func__));
|
|
|
|
req_len = sizeof(struct iwm_scan_req_lmac) +
|
|
(sizeof(struct iwm_scan_channel_cfg_lmac) *
|
|
sc->sc_capa_n_scan_channels) + sizeof(struct iwm_scan_probe_req);
|
|
if (req_len > IWM_MAX_CMD_PAYLOAD_SIZE)
|
|
return ENOMEM;
|
|
req = kmem_zalloc(req_len, KM_SLEEP);
|
|
hcmd.len[0] = (uint16_t)req_len;
|
|
hcmd.data[0] = (void *)req;
|
|
|
|
/* These timings correspond to iwlwifi's UNASSOC scan. */
|
|
req->active_dwell = 10;
|
|
req->passive_dwell = 110;
|
|
req->fragmented_dwell = 44;
|
|
req->extended_dwell = 90;
|
|
req->max_out_time = 0;
|
|
req->suspend_time = 0;
|
|
|
|
req->scan_prio = htole32(IWM_SCAN_PRIORITY_HIGH);
|
|
req->rx_chain_select = iwm_scan_rx_chain(sc);
|
|
req->iter_num = htole32(1);
|
|
req->delay = 0;
|
|
|
|
req->scan_flags = htole32(IWM_LMAC_SCAN_FLAG_PASS_ALL |
|
|
IWM_LMAC_SCAN_FLAG_ITER_COMPLETE |
|
|
IWM_LMAC_SCAN_FLAG_EXTENDED_DWELL);
|
|
if (ic->ic_des_esslen == 0)
|
|
req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAG_PASSIVE);
|
|
else
|
|
req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAG_PRE_CONNECTION);
|
|
if (isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT))
|
|
req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAGS_RRM_ENABLED);
|
|
|
|
req->flags = htole32(IWM_PHY_BAND_24);
|
|
if (sc->sc_nvm.sku_cap_band_52GHz_enable)
|
|
req->flags |= htole32(IWM_PHY_BAND_5);
|
|
req->filter_flags =
|
|
htole32(IWM_MAC_FILTER_ACCEPT_GRP | IWM_MAC_FILTER_IN_BEACON);
|
|
|
|
/* Tx flags 2 GHz. */
|
|
req->tx_cmd[0].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL |
|
|
IWM_TX_CMD_FLG_BT_DIS);
|
|
req->tx_cmd[0].rate_n_flags =
|
|
iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_2GHZ, 1/*XXX*/);
|
|
req->tx_cmd[0].sta_id = IWM_AUX_STA_ID;
|
|
|
|
/* Tx flags 5 GHz. */
|
|
req->tx_cmd[1].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL |
|
|
IWM_TX_CMD_FLG_BT_DIS);
|
|
req->tx_cmd[1].rate_n_flags =
|
|
iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_5GHZ, 1/*XXX*/);
|
|
req->tx_cmd[1].sta_id = IWM_AUX_STA_ID;
|
|
|
|
/* Check if we're doing an active directed scan. */
|
|
if (ic->ic_des_esslen != 0) {
|
|
req->direct_scan[0].id = IEEE80211_ELEMID_SSID;
|
|
req->direct_scan[0].len = ic->ic_des_esslen;
|
|
memcpy(req->direct_scan[0].ssid, ic->ic_des_essid,
|
|
ic->ic_des_esslen);
|
|
}
|
|
|
|
req->n_channels = iwm_lmac_scan_fill_channels(sc,
|
|
(struct iwm_scan_channel_cfg_lmac *)req->data,
|
|
ic->ic_des_esslen != 0);
|
|
|
|
err = iwm_fill_probe_req(sc,
|
|
(struct iwm_scan_probe_req *)(req->data +
|
|
(sizeof(struct iwm_scan_channel_cfg_lmac) *
|
|
sc->sc_capa_n_scan_channels)));
|
|
if (err) {
|
|
kmem_free(req, req_len);
|
|
return err;
|
|
}
|
|
|
|
/* Specify the scan plan: We'll do one iteration. */
|
|
req->schedule[0].iterations = 1;
|
|
req->schedule[0].full_scan_mul = 1;
|
|
|
|
/* Disable EBS. */
|
|
req->channel_opt[0].non_ebs_ratio = 1;
|
|
req->channel_opt[1].non_ebs_ratio = 1;
|
|
|
|
err = iwm_send_cmd(sc, &hcmd);
|
|
kmem_free(req, req_len);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_config_umac_scan(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_scan_config *scan_config;
|
|
int err, nchan;
|
|
size_t cmd_size;
|
|
struct ieee80211_channel *c;
|
|
struct iwm_host_cmd hcmd = {
|
|
.id = iwm_cmd_id(IWM_SCAN_CFG_CMD, IWM_ALWAYS_LONG_GROUP, 0),
|
|
.flags = 0,
|
|
};
|
|
static const uint32_t rates = (IWM_SCAN_CONFIG_RATE_1M |
|
|
IWM_SCAN_CONFIG_RATE_2M | IWM_SCAN_CONFIG_RATE_5M |
|
|
IWM_SCAN_CONFIG_RATE_11M | IWM_SCAN_CONFIG_RATE_6M |
|
|
IWM_SCAN_CONFIG_RATE_9M | IWM_SCAN_CONFIG_RATE_12M |
|
|
IWM_SCAN_CONFIG_RATE_18M | IWM_SCAN_CONFIG_RATE_24M |
|
|
IWM_SCAN_CONFIG_RATE_36M | IWM_SCAN_CONFIG_RATE_48M |
|
|
IWM_SCAN_CONFIG_RATE_54M);
|
|
|
|
cmd_size = sizeof(*scan_config) + sc->sc_capa_n_scan_channels;
|
|
|
|
scan_config = kmem_zalloc(cmd_size, KM_SLEEP);
|
|
scan_config->tx_chains = htole32(iwm_fw_valid_tx_ant(sc));
|
|
scan_config->rx_chains = htole32(iwm_fw_valid_rx_ant(sc));
|
|
scan_config->legacy_rates = htole32(rates |
|
|
IWM_SCAN_CONFIG_SUPPORTED_RATE(rates));
|
|
|
|
/* These timings correspond to iwlwifi's UNASSOC scan. */
|
|
scan_config->dwell_active = 10;
|
|
scan_config->dwell_passive = 110;
|
|
scan_config->dwell_fragmented = 44;
|
|
scan_config->dwell_extended = 90;
|
|
scan_config->out_of_channel_time = htole32(0);
|
|
scan_config->suspend_time = htole32(0);
|
|
|
|
IEEE80211_ADDR_COPY(scan_config->mac_addr, sc->sc_ic.ic_myaddr);
|
|
|
|
scan_config->bcast_sta_id = IWM_AUX_STA_ID;
|
|
scan_config->channel_flags = IWM_CHANNEL_FLAG_EBS |
|
|
IWM_CHANNEL_FLAG_ACCURATE_EBS | IWM_CHANNEL_FLAG_EBS_ADD |
|
|
IWM_CHANNEL_FLAG_PRE_SCAN_PASSIVE2ACTIVE;
|
|
|
|
for (c = &ic->ic_channels[1], nchan = 0;
|
|
c <= &ic->ic_channels[IEEE80211_CHAN_MAX] &&
|
|
nchan < sc->sc_capa_n_scan_channels; c++) {
|
|
if (c->ic_flags == 0)
|
|
continue;
|
|
scan_config->channel_array[nchan++] =
|
|
ieee80211_mhz2ieee(c->ic_freq, 0);
|
|
}
|
|
|
|
scan_config->flags = htole32(IWM_SCAN_CONFIG_FLAG_ACTIVATE |
|
|
IWM_SCAN_CONFIG_FLAG_ALLOW_CHUB_REQS |
|
|
IWM_SCAN_CONFIG_FLAG_SET_TX_CHAINS |
|
|
IWM_SCAN_CONFIG_FLAG_SET_RX_CHAINS |
|
|
IWM_SCAN_CONFIG_FLAG_SET_AUX_STA_ID |
|
|
IWM_SCAN_CONFIG_FLAG_SET_ALL_TIMES |
|
|
IWM_SCAN_CONFIG_FLAG_SET_LEGACY_RATES |
|
|
IWM_SCAN_CONFIG_FLAG_SET_MAC_ADDR |
|
|
IWM_SCAN_CONFIG_FLAG_SET_CHANNEL_FLAGS|
|
|
IWM_SCAN_CONFIG_N_CHANNELS(nchan) |
|
|
IWM_SCAN_CONFIG_FLAG_CLEAR_FRAGMENTED);
|
|
|
|
hcmd.data[0] = scan_config;
|
|
hcmd.len[0] = cmd_size;
|
|
|
|
err = iwm_send_cmd(sc, &hcmd);
|
|
kmem_free(scan_config, cmd_size);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_umac_scan(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_host_cmd hcmd = {
|
|
.id = iwm_cmd_id(IWM_SCAN_REQ_UMAC, IWM_ALWAYS_LONG_GROUP, 0),
|
|
.len = { 0, },
|
|
.data = { NULL, },
|
|
.flags = 0,
|
|
};
|
|
struct iwm_scan_req_umac *req;
|
|
struct iwm_scan_req_umac_tail *tail;
|
|
size_t req_len;
|
|
int err;
|
|
|
|
DPRINTF(("%s: %s\n", DEVNAME(sc), __func__));
|
|
|
|
req_len = sizeof(struct iwm_scan_req_umac) +
|
|
(sizeof(struct iwm_scan_channel_cfg_umac) *
|
|
sc->sc_capa_n_scan_channels) +
|
|
sizeof(struct iwm_scan_req_umac_tail);
|
|
if (req_len > IWM_MAX_CMD_PAYLOAD_SIZE)
|
|
return ENOMEM;
|
|
req = kmem_zalloc(req_len, KM_SLEEP);
|
|
|
|
hcmd.len[0] = (uint16_t)req_len;
|
|
hcmd.data[0] = (void *)req;
|
|
|
|
/* These timings correspond to iwlwifi's UNASSOC scan. */
|
|
req->active_dwell = 10;
|
|
req->passive_dwell = 110;
|
|
req->fragmented_dwell = 44;
|
|
req->extended_dwell = 90;
|
|
req->max_out_time = 0;
|
|
req->suspend_time = 0;
|
|
|
|
req->scan_priority = htole32(IWM_SCAN_PRIORITY_HIGH);
|
|
req->ooc_priority = htole32(IWM_SCAN_PRIORITY_HIGH);
|
|
|
|
req->n_channels = iwm_umac_scan_fill_channels(sc,
|
|
(struct iwm_scan_channel_cfg_umac *)req->data,
|
|
ic->ic_des_esslen != 0);
|
|
|
|
req->general_flags = htole32(IWM_UMAC_SCAN_GEN_FLAGS_PASS_ALL |
|
|
IWM_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE |
|
|
IWM_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL);
|
|
|
|
tail = (struct iwm_scan_req_umac_tail *)(req->data +
|
|
sizeof(struct iwm_scan_channel_cfg_umac) *
|
|
sc->sc_capa_n_scan_channels);
|
|
|
|
/* Check if we're doing an active directed scan. */
|
|
if (ic->ic_des_esslen != 0) {
|
|
tail->direct_scan[0].id = IEEE80211_ELEMID_SSID;
|
|
tail->direct_scan[0].len = ic->ic_des_esslen;
|
|
memcpy(tail->direct_scan[0].ssid, ic->ic_des_essid,
|
|
ic->ic_des_esslen);
|
|
req->general_flags |=
|
|
htole32(IWM_UMAC_SCAN_GEN_FLAGS_PRE_CONNECT);
|
|
} else
|
|
req->general_flags |= htole32(IWM_UMAC_SCAN_GEN_FLAGS_PASSIVE);
|
|
|
|
if (isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT))
|
|
req->general_flags |=
|
|
htole32(IWM_UMAC_SCAN_GEN_FLAGS_RRM_ENABLED);
|
|
|
|
err = iwm_fill_probe_req(sc, &tail->preq);
|
|
if (err) {
|
|
kmem_free(req, req_len);
|
|
return err;
|
|
}
|
|
|
|
/* Specify the scan plan: We'll do one iteration. */
|
|
tail->schedule[0].interval = 0;
|
|
tail->schedule[0].iter_count = 1;
|
|
|
|
err = iwm_send_cmd(sc, &hcmd);
|
|
kmem_free(req, req_len);
|
|
return err;
|
|
}
|
|
|
|
static uint8_t
|
|
iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx)
|
|
{
|
|
int i;
|
|
uint8_t rval;
|
|
|
|
for (i = 0; i < rs->rs_nrates; i++) {
|
|
rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL);
|
|
if (rval == iwm_rates[ridx].rate)
|
|
return rs->rs_rates[i];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
iwm_ack_rates(struct iwm_softc *sc, struct iwm_node *in, int *cck_rates,
|
|
int *ofdm_rates)
|
|
{
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
struct ieee80211_rateset *rs = &ni->ni_rates;
|
|
int lowest_present_ofdm = -1;
|
|
int lowest_present_cck = -1;
|
|
uint8_t cck = 0;
|
|
uint8_t ofdm = 0;
|
|
int i;
|
|
|
|
if (ni->ni_chan == IEEE80211_CHAN_ANYC ||
|
|
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
|
|
for (i = IWM_FIRST_CCK_RATE; i < IWM_FIRST_OFDM_RATE; i++) {
|
|
if ((iwm_ridx2rate(rs, i) & IEEE80211_RATE_BASIC) == 0)
|
|
continue;
|
|
cck |= (1 << i);
|
|
if (lowest_present_cck == -1 || lowest_present_cck > i)
|
|
lowest_present_cck = i;
|
|
}
|
|
}
|
|
for (i = IWM_FIRST_OFDM_RATE; i <= IWM_LAST_NON_HT_RATE; i++) {
|
|
if ((iwm_ridx2rate(rs, i) & IEEE80211_RATE_BASIC) == 0)
|
|
continue;
|
|
ofdm |= (1 << (i - IWM_FIRST_OFDM_RATE));
|
|
if (lowest_present_ofdm == -1 || lowest_present_ofdm > i)
|
|
lowest_present_ofdm = i;
|
|
}
|
|
|
|
/*
|
|
* Now we've got the basic rates as bitmaps in the ofdm and cck
|
|
* variables. This isn't sufficient though, as there might not
|
|
* be all the right rates in the bitmap. E.g. if the only basic
|
|
* rates are 5.5 Mbps and 11 Mbps, we still need to add 1 Mbps
|
|
* and 6 Mbps because the 802.11-2007 standard says in 9.6:
|
|
*
|
|
* [...] a STA responding to a received frame shall transmit
|
|
* its Control Response frame [...] at the highest rate in the
|
|
* BSSBasicRateSet parameter that is less than or equal to the
|
|
* rate of the immediately previous frame in the frame exchange
|
|
* sequence ([...]) and that is of the same modulation class
|
|
* ([...]) as the received frame. If no rate contained in the
|
|
* BSSBasicRateSet parameter meets these conditions, then the
|
|
* control frame sent in response to a received frame shall be
|
|
* transmitted at the highest mandatory rate of the PHY that is
|
|
* less than or equal to the rate of the received frame, and
|
|
* that is of the same modulation class as the received frame.
|
|
*
|
|
* As a consequence, we need to add all mandatory rates that are
|
|
* lower than all of the basic rates to these bitmaps.
|
|
*/
|
|
|
|
if (IWM_RATE_24M_INDEX < lowest_present_ofdm)
|
|
ofdm |= IWM_RATE_BIT_MSK(24) >> IWM_FIRST_OFDM_RATE;
|
|
if (IWM_RATE_12M_INDEX < lowest_present_ofdm)
|
|
ofdm |= IWM_RATE_BIT_MSK(12) >> IWM_FIRST_OFDM_RATE;
|
|
/* 6M already there or needed so always add */
|
|
ofdm |= IWM_RATE_BIT_MSK(6) >> IWM_FIRST_OFDM_RATE;
|
|
|
|
/*
|
|
* CCK is a bit more complex with DSSS vs. HR/DSSS vs. ERP.
|
|
* Note, however:
|
|
* - if no CCK rates are basic, it must be ERP since there must
|
|
* be some basic rates at all, so they're OFDM => ERP PHY
|
|
* (or we're in 5 GHz, and the cck bitmap will never be used)
|
|
* - if 11M is a basic rate, it must be ERP as well, so add 5.5M
|
|
* - if 5.5M is basic, 1M and 2M are mandatory
|
|
* - if 2M is basic, 1M is mandatory
|
|
* - if 1M is basic, that's the only valid ACK rate.
|
|
* As a consequence, it's not as complicated as it sounds, just add
|
|
* any lower rates to the ACK rate bitmap.
|
|
*/
|
|
if (IWM_RATE_11M_INDEX < lowest_present_cck)
|
|
cck |= IWM_RATE_BIT_MSK(11) >> IWM_FIRST_CCK_RATE;
|
|
if (IWM_RATE_5M_INDEX < lowest_present_cck)
|
|
cck |= IWM_RATE_BIT_MSK(5) >> IWM_FIRST_CCK_RATE;
|
|
if (IWM_RATE_2M_INDEX < lowest_present_cck)
|
|
cck |= IWM_RATE_BIT_MSK(2) >> IWM_FIRST_CCK_RATE;
|
|
/* 1M already there or needed so always add */
|
|
cck |= IWM_RATE_BIT_MSK(1) >> IWM_FIRST_CCK_RATE;
|
|
|
|
*cck_rates = cck;
|
|
*ofdm_rates = ofdm;
|
|
}
|
|
|
|
static void
|
|
iwm_mac_ctxt_cmd_common(struct iwm_softc *sc, struct iwm_node *in,
|
|
struct iwm_mac_ctx_cmd *cmd, uint32_t action, int assoc)
|
|
{
|
|
#define IWM_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
int cck_ack_rates, ofdm_ack_rates;
|
|
int i;
|
|
|
|
cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,
|
|
in->in_color));
|
|
cmd->action = htole32(action);
|
|
|
|
cmd->mac_type = htole32(IWM_FW_MAC_TYPE_BSS_STA);
|
|
cmd->tsf_id = htole32(IWM_TSF_ID_A);
|
|
|
|
IEEE80211_ADDR_COPY(cmd->node_addr, ic->ic_myaddr);
|
|
IEEE80211_ADDR_COPY(cmd->bssid_addr, ni->ni_bssid);
|
|
|
|
iwm_ack_rates(sc, in, &cck_ack_rates, &ofdm_ack_rates);
|
|
cmd->cck_rates = htole32(cck_ack_rates);
|
|
cmd->ofdm_rates = htole32(ofdm_ack_rates);
|
|
|
|
cmd->cck_short_preamble
|
|
= htole32((ic->ic_flags & IEEE80211_F_SHPREAMBLE)
|
|
? IWM_MAC_FLG_SHORT_PREAMBLE : 0);
|
|
cmd->short_slot
|
|
= htole32((ic->ic_flags & IEEE80211_F_SHSLOT)
|
|
? IWM_MAC_FLG_SHORT_SLOT : 0);
|
|
|
|
for (i = 0; i < WME_NUM_AC; i++) {
|
|
struct wmeParams *wmep = &ic->ic_wme.wme_params[i];
|
|
int txf = iwm_ac_to_tx_fifo[i];
|
|
|
|
cmd->ac[txf].cw_min = htole16(IWM_EXP2(wmep->wmep_logcwmin));
|
|
cmd->ac[txf].cw_max = htole16(IWM_EXP2(wmep->wmep_logcwmax));
|
|
cmd->ac[txf].aifsn = wmep->wmep_aifsn;
|
|
cmd->ac[txf].fifos_mask = (1 << txf);
|
|
cmd->ac[txf].edca_txop = htole16(wmep->wmep_txopLimit * 32);
|
|
}
|
|
if (ni->ni_flags & IEEE80211_NODE_QOS)
|
|
cmd->qos_flags |= htole32(IWM_MAC_QOS_FLG_UPDATE_EDCA);
|
|
|
|
#ifndef IEEE80211_NO_HT
|
|
if (ni->ni_flags & IEEE80211_NODE_HT) {
|
|
enum ieee80211_htprot htprot =
|
|
(ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK);
|
|
switch (htprot) {
|
|
case IEEE80211_HTPROT_NONE:
|
|
break;
|
|
case IEEE80211_HTPROT_NONMEMBER:
|
|
case IEEE80211_HTPROT_NONHT_MIXED:
|
|
cmd->protection_flags |=
|
|
htole32(IWM_MAC_PROT_FLG_HT_PROT);
|
|
case IEEE80211_HTPROT_20MHZ:
|
|
cmd->protection_flags |=
|
|
htole32(IWM_MAC_PROT_FLG_HT_PROT |
|
|
IWM_MAC_PROT_FLG_FAT_PROT);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
cmd->qos_flags |= htole32(IWM_MAC_QOS_FLG_TGN);
|
|
}
|
|
#endif
|
|
|
|
if (ic->ic_flags & IEEE80211_F_USEPROT)
|
|
cmd->protection_flags |= htole32(IWM_MAC_PROT_FLG_TGG_PROTECT);
|
|
|
|
cmd->filter_flags = htole32(IWM_MAC_FILTER_ACCEPT_GRP);
|
|
#undef IWM_EXP2
|
|
}
|
|
|
|
static void
|
|
iwm_mac_ctxt_cmd_fill_sta(struct iwm_softc *sc, struct iwm_node *in,
|
|
struct iwm_mac_data_sta *sta, int assoc)
|
|
{
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
uint32_t dtim_off;
|
|
uint64_t tsf;
|
|
|
|
dtim_off = ni->ni_dtim_count * ni->ni_intval * IEEE80211_DUR_TU;
|
|
tsf = le64toh(ni->ni_tstamp.tsf);
|
|
|
|
sta->is_assoc = htole32(assoc);
|
|
sta->dtim_time = htole32(ni->ni_rstamp + dtim_off);
|
|
sta->dtim_tsf = htole64(tsf + dtim_off);
|
|
sta->bi = htole32(ni->ni_intval);
|
|
sta->bi_reciprocal = htole32(iwm_reciprocal(ni->ni_intval));
|
|
sta->dtim_interval = htole32(ni->ni_intval * ni->ni_dtim_period);
|
|
sta->dtim_reciprocal = htole32(iwm_reciprocal(sta->dtim_interval));
|
|
sta->listen_interval = htole32(10);
|
|
sta->assoc_id = htole32(ni->ni_associd);
|
|
sta->assoc_beacon_arrive_time = htole32(ni->ni_rstamp);
|
|
}
|
|
|
|
static int
|
|
iwm_mac_ctxt_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action,
|
|
int assoc)
|
|
{
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
struct iwm_mac_ctx_cmd cmd;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
iwm_mac_ctxt_cmd_common(sc, in, &cmd, action, assoc);
|
|
|
|
/* Allow beacons to pass through as long as we are not associated or we
|
|
* do not have dtim period information */
|
|
if (!assoc || !ni->ni_associd || !ni->ni_dtim_period)
|
|
cmd.filter_flags |= htole32(IWM_MAC_FILTER_IN_BEACON);
|
|
else
|
|
iwm_mac_ctxt_cmd_fill_sta(sc, in, &cmd.sta, assoc);
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_MAC_CONTEXT_CMD, 0, sizeof(cmd), &cmd);
|
|
}
|
|
|
|
#define IWM_MISSED_BEACONS_THRESHOLD 8
|
|
|
|
static void
|
|
iwm_rx_missed_beacons_notif(struct iwm_softc *sc,
|
|
struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
|
|
{
|
|
struct iwm_missed_beacons_notif *mb = (void *)pkt->data;
|
|
int s;
|
|
|
|
DPRINTF(("missed bcn mac_id=%u, consecutive=%u (%u, %u, %u)\n",
|
|
le32toh(mb->mac_id),
|
|
le32toh(mb->consec_missed_beacons),
|
|
le32toh(mb->consec_missed_beacons_since_last_rx),
|
|
le32toh(mb->num_recvd_beacons),
|
|
le32toh(mb->num_expected_beacons)));
|
|
|
|
/*
|
|
* TODO: the threshold should be adjusted based on latency conditions,
|
|
* and/or in case of a CS flow on one of the other AP vifs.
|
|
*/
|
|
if (le32toh(mb->consec_missed_beacons_since_last_rx) >
|
|
IWM_MISSED_BEACONS_THRESHOLD) {
|
|
s = splnet();
|
|
ieee80211_beacon_miss(&sc->sc_ic);
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
static int
|
|
iwm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
|
|
{
|
|
struct iwm_time_quota_cmd cmd;
|
|
int i, idx, num_active_macs, quota, quota_rem;
|
|
int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
|
|
int n_ifs[IWM_MAX_BINDINGS] = {0, };
|
|
uint16_t id;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
|
|
/* currently, PHY ID == binding ID */
|
|
if (in) {
|
|
id = in->in_phyctxt->id;
|
|
KASSERT(id < IWM_MAX_BINDINGS);
|
|
colors[id] = in->in_phyctxt->color;
|
|
|
|
if (1)
|
|
n_ifs[id] = 1;
|
|
}
|
|
|
|
/*
|
|
* The FW's scheduling session consists of
|
|
* IWM_MAX_QUOTA fragments. Divide these fragments
|
|
* equally between all the bindings that require quota
|
|
*/
|
|
num_active_macs = 0;
|
|
for (i = 0; i < IWM_MAX_BINDINGS; i++) {
|
|
cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
|
|
num_active_macs += n_ifs[i];
|
|
}
|
|
|
|
quota = 0;
|
|
quota_rem = 0;
|
|
if (num_active_macs) {
|
|
quota = IWM_MAX_QUOTA / num_active_macs;
|
|
quota_rem = IWM_MAX_QUOTA % num_active_macs;
|
|
}
|
|
|
|
for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
|
|
if (colors[i] < 0)
|
|
continue;
|
|
|
|
cmd.quotas[idx].id_and_color =
|
|
htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
|
|
|
|
if (n_ifs[i] <= 0) {
|
|
cmd.quotas[idx].quota = htole32(0);
|
|
cmd.quotas[idx].max_duration = htole32(0);
|
|
} else {
|
|
cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
|
|
cmd.quotas[idx].max_duration = htole32(0);
|
|
}
|
|
idx++;
|
|
}
|
|
|
|
/* Give the remainder of the session to the first binding */
|
|
cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, 0, sizeof(cmd), &cmd);
|
|
}
|
|
|
|
static int
|
|
iwm_auth(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (struct iwm_node *)ic->ic_bss;
|
|
uint32_t duration;
|
|
int err;
|
|
|
|
err = iwm_sf_config(sc, IWM_SF_FULL_ON);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_allow_mcast(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
sc->sc_phyctxt[0].channel = in->in_ni.ni_chan;
|
|
err = iwm_phy_ctxt_cmd(sc, &sc->sc_phyctxt[0], 1, 1,
|
|
IWM_FW_CTXT_ACTION_MODIFY, 0);
|
|
if (err)
|
|
return err;
|
|
in->in_phyctxt = &sc->sc_phyctxt[0];
|
|
|
|
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD, 0);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not add MAC context (error %d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
err = iwm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_add_sta_cmd(sc, in, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 0);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "failed to update MAC\n");
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Prevent the FW from wandering off channel during association
|
|
* by "protecting" the session with a time event.
|
|
*/
|
|
if (in->in_ni.ni_intval)
|
|
duration = in->in_ni.ni_intval * 2;
|
|
else
|
|
duration = IEEE80211_DUR_TU;
|
|
iwm_protect_session(sc, in, duration, in->in_ni.ni_intval / 2);
|
|
DELAY(100);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_assoc(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (struct iwm_node *)ic->ic_bss;
|
|
int err;
|
|
|
|
err = iwm_add_sta_cmd(sc, in, 1);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct ieee80211_node *
|
|
iwm_node_alloc(struct ieee80211_node_table *nt)
|
|
{
|
|
return malloc(sizeof(struct iwm_node), M_80211_NODE, M_NOWAIT | M_ZERO);
|
|
}
|
|
|
|
static void
|
|
iwm_calib_timeout(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (struct iwm_node *)ic->ic_bss;
|
|
#ifndef IEEE80211_NO_HT
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
int otxrate;
|
|
#endif
|
|
int s;
|
|
|
|
s = splnet();
|
|
if ((ic->ic_fixed_rate == -1
|
|
#ifndef IEEE80211_NO_HT
|
|
|| ic->ic_fixed_mcs == -1
|
|
#endif
|
|
) &&
|
|
ic->ic_opmode == IEEE80211_M_STA && ic->ic_bss) {
|
|
#ifndef IEEE80211_NO_HT
|
|
if (ni->ni_flags & IEEE80211_NODE_HT)
|
|
otxrate = ni->ni_txmcs;
|
|
else
|
|
otxrate = ni->ni_txrate;
|
|
#endif
|
|
ieee80211_amrr_choose(&sc->sc_amrr, &in->in_ni, &in->in_amn);
|
|
|
|
#ifndef IEEE80211_NO_HT
|
|
/*
|
|
* If AMRR has chosen a new TX rate we must update
|
|
* the firwmare's LQ rate table from process context.
|
|
*/
|
|
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
|
|
otxrate != ni->ni_txmcs)
|
|
softint_schedule(sc->setrates_task);
|
|
else if (otxrate != ni->ni_txrate)
|
|
softint_schedule(sc->setrates_task);
|
|
#endif
|
|
}
|
|
splx(s);
|
|
|
|
callout_schedule(&sc->sc_calib_to, mstohz(500));
|
|
}
|
|
|
|
#ifndef IEEE80211_NO_HT
|
|
static void
|
|
iwm_setrates_task(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (struct iwm_node *)ic->ic_bss;
|
|
|
|
/* Update rates table based on new TX rate determined by AMRR. */
|
|
iwm_setrates(in);
|
|
}
|
|
|
|
static int
|
|
iwm_setrates(struct iwm_node *in)
|
|
{
|
|
struct ieee80211_node *ni = &in->in_ni;
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
|
|
struct iwm_lq_cmd *lq = &in->in_lq;
|
|
struct ieee80211_rateset *rs = &ni->ni_rates;
|
|
int i, j, ridx, ridx_min, tab = 0;
|
|
#ifndef IEEE80211_NO_HT
|
|
int sgi_ok;
|
|
#endif
|
|
struct iwm_host_cmd cmd = {
|
|
.id = IWM_LQ_CMD,
|
|
.len = { sizeof(in->in_lq), },
|
|
};
|
|
|
|
memset(lq, 0, sizeof(*lq));
|
|
lq->sta_id = IWM_STATION_ID;
|
|
|
|
if (ic->ic_flags & IEEE80211_F_USEPROT)
|
|
lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
|
|
|
|
#ifndef IEEE80211_NO_HT
|
|
sgi_ok = ((ni->ni_flags & IEEE80211_NODE_HT) &&
|
|
(ni->ni_htcaps & IEEE80211_HTCAP_SGI20));
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Fill the LQ rate selection table with legacy and/or HT rates
|
|
* in descending order, i.e. with the node's current TX rate first.
|
|
* In cases where throughput of an HT rate corresponds to a legacy
|
|
* rate it makes no sense to add both. We rely on the fact that
|
|
* iwm_rates is laid out such that equivalent HT/legacy rates share
|
|
* the same IWM_RATE_*_INDEX value. Also, rates not applicable to
|
|
* legacy/HT are assumed to be marked with an 'invalid' PLCP value.
|
|
*/
|
|
j = 0;
|
|
ridx_min = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) ?
|
|
IWM_RIDX_OFDM : IWM_RIDX_CCK;
|
|
for (ridx = IWM_RIDX_MAX; ridx >= ridx_min; ridx--) {
|
|
if (j >= __arraycount(lq->rs_table))
|
|
break;
|
|
tab = 0;
|
|
#ifndef IEEE80211_NO_HT
|
|
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
|
|
iwm_rates[ridx].ht_plcp != IWM_RATE_HT_SISO_MCS_INV_PLCP) {
|
|
for (i = ni->ni_txmcs; i >= 0; i--) {
|
|
if (isclr(ni->ni_rxmcs, i))
|
|
continue;
|
|
if (ridx == iwm_mcs2ridx[i]) {
|
|
tab = iwm_rates[ridx].ht_plcp;
|
|
tab |= IWM_RATE_MCS_HT_MSK;
|
|
if (sgi_ok)
|
|
tab |= IWM_RATE_MCS_SGI_MSK;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (tab == 0 && iwm_rates[ridx].plcp != IWM_RATE_INVM_PLCP) {
|
|
for (i = ni->ni_txrate; i >= 0; i--) {
|
|
if (iwm_rates[ridx].rate == (rs->rs_rates[i] &
|
|
IEEE80211_RATE_VAL)) {
|
|
tab = iwm_rates[ridx].plcp;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (tab == 0)
|
|
continue;
|
|
|
|
tab |= 1 << IWM_RATE_MCS_ANT_POS;
|
|
if (IWM_RIDX_IS_CCK(ridx))
|
|
tab |= IWM_RATE_MCS_CCK_MSK;
|
|
DPRINTFN(2, ("station rate %d %x\n", i, tab));
|
|
lq->rs_table[j++] = htole32(tab);
|
|
}
|
|
|
|
/* Fill the rest with the lowest possible rate */
|
|
i = j > 0 ? j - 1 : 0;
|
|
while (j < __arraycount(lq->rs_table))
|
|
lq->rs_table[j++] = lq->rs_table[i];
|
|
|
|
lq->single_stream_ant_msk = IWM_ANT_A;
|
|
lq->dual_stream_ant_msk = IWM_ANT_AB;
|
|
|
|
lq->agg_time_limit = htole16(4000); /* 4ms */
|
|
lq->agg_disable_start_th = 3;
|
|
#ifdef notyet
|
|
lq->agg_frame_cnt_limit = 0x3f;
|
|
#else
|
|
lq->agg_frame_cnt_limit = 1; /* tx agg disabled */
|
|
#endif
|
|
|
|
cmd.data[0] = &in->in_lq;
|
|
return iwm_send_cmd(sc, &cmd);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
iwm_media_change(struct ifnet *ifp)
|
|
{
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint8_t rate, ridx;
|
|
int err;
|
|
|
|
err = ieee80211_media_change(ifp);
|
|
if (err != ENETRESET)
|
|
return err;
|
|
|
|
#ifndef IEEE80211_NO_HT
|
|
if (ic->ic_fixed_mcs != -1)
|
|
sc->sc_fixed_ridx = iwm_mcs2ridx[ic->ic_fixed_mcs];
|
|
else
|
|
#endif
|
|
if (ic->ic_fixed_rate != -1) {
|
|
rate = ic->ic_sup_rates[ic->ic_curmode].
|
|
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
|
|
/* Map 802.11 rate to HW rate index. */
|
|
for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
|
|
if (iwm_rates[ridx].rate == rate)
|
|
break;
|
|
sc->sc_fixed_ridx = ridx;
|
|
}
|
|
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
|
|
(IFF_UP | IFF_RUNNING)) {
|
|
iwm_stop(ifp, 0);
|
|
err = iwm_init(ifp);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_do_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
enum ieee80211_state ostate = ic->ic_state;
|
|
struct iwm_node *in;
|
|
int err;
|
|
|
|
DPRINTF(("switching state %s->%s\n", ieee80211_state_name[ostate],
|
|
ieee80211_state_name[nstate]));
|
|
|
|
if (ostate == IEEE80211_S_SCAN && nstate != ostate)
|
|
iwm_led_blink_stop(sc);
|
|
|
|
if (ostate == IEEE80211_S_RUN && nstate != ostate)
|
|
iwm_disable_beacon_filter(sc);
|
|
|
|
/* Reset the device if moving out of AUTH, ASSOC, or RUN. */
|
|
/* XXX Is there a way to switch states without a full reset? */
|
|
if (ostate > IEEE80211_S_SCAN && nstate < ostate) {
|
|
/*
|
|
* Upon receiving a deauth frame from AP the net80211 stack
|
|
* puts the driver into AUTH state. This will fail with this
|
|
* driver so bring the FSM from RUN to SCAN in this case.
|
|
*/
|
|
if (nstate != IEEE80211_S_INIT) {
|
|
DPRINTF(("Force transition to INIT; MGT=%d\n", arg));
|
|
/* Always pass arg as -1 since we can't Tx right now. */
|
|
sc->sc_newstate(ic, IEEE80211_S_INIT, -1);
|
|
iwm_stop(ifp, 0);
|
|
iwm_init(ifp);
|
|
return 0;
|
|
}
|
|
|
|
iwm_stop_device(sc);
|
|
iwm_init_hw(sc);
|
|
}
|
|
|
|
switch (nstate) {
|
|
case IEEE80211_S_INIT:
|
|
break;
|
|
|
|
case IEEE80211_S_SCAN:
|
|
if (ostate == nstate &&
|
|
ISSET(sc->sc_flags, IWM_FLAG_SCANNING))
|
|
return 0;
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
|
|
err = iwm_umac_scan(sc);
|
|
else
|
|
err = iwm_lmac_scan(sc);
|
|
if (err) {
|
|
DPRINTF(("%s: could not initiate scan: %d\n",
|
|
DEVNAME(sc), err));
|
|
return err;
|
|
}
|
|
SET(sc->sc_flags, IWM_FLAG_SCANNING);
|
|
ic->ic_state = nstate;
|
|
iwm_led_blink_start(sc);
|
|
return 0;
|
|
|
|
case IEEE80211_S_AUTH:
|
|
err = iwm_auth(sc);
|
|
if (err) {
|
|
DPRINTF(("%s: could not move to auth state: %d\n",
|
|
DEVNAME(sc), err));
|
|
return err;
|
|
}
|
|
break;
|
|
|
|
case IEEE80211_S_ASSOC:
|
|
err = iwm_assoc(sc);
|
|
if (err) {
|
|
DPRINTF(("%s: failed to associate: %d\n", DEVNAME(sc),
|
|
err));
|
|
return err;
|
|
}
|
|
break;
|
|
|
|
case IEEE80211_S_RUN:
|
|
in = (struct iwm_node *)ic->ic_bss;
|
|
|
|
/* We have now been assigned an associd by the AP. */
|
|
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 1);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "failed to update MAC\n");
|
|
return err;
|
|
}
|
|
|
|
err = iwm_power_update_device(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could send power command (error %d)\n", err);
|
|
return err;
|
|
}
|
|
#ifdef notyet
|
|
/*
|
|
* Disabled for now. Default beacon filter settings
|
|
* prevent net80211 from getting ERP and HT protection
|
|
* updates from beacons.
|
|
*/
|
|
err = iwm_enable_beacon_filter(sc, in);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not enable beacon filter\n");
|
|
return err;
|
|
}
|
|
#endif
|
|
err = iwm_power_mac_update_mode(sc, in);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not update MAC power (error %d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
err = iwm_update_quotas(sc, in);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not update quotas (error %d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
ieee80211_amrr_node_init(&sc->sc_amrr, &in->in_amn);
|
|
|
|
/* Start at lowest available bit-rate, AMRR will raise. */
|
|
in->in_ni.ni_txrate = 0;
|
|
#ifndef IEEE80211_NO_HT
|
|
in->in_ni.ni_txmcs = 0;
|
|
iwm_setrates(in);
|
|
#endif
|
|
|
|
callout_schedule(&sc->sc_calib_to, mstohz(500));
|
|
iwm_led_enable(sc);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return sc->sc_newstate(ic, nstate, arg);
|
|
}
|
|
|
|
static void
|
|
iwm_newstate_cb(struct work *wk, void *v)
|
|
{
|
|
struct iwm_softc *sc = v;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_newstate_state *iwmns = (struct iwm_newstate_state *)wk;
|
|
enum ieee80211_state nstate = iwmns->ns_nstate;
|
|
int generation = iwmns->ns_generation;
|
|
int arg = iwmns->ns_arg;
|
|
int s;
|
|
|
|
kmem_intr_free(iwmns, sizeof(*iwmns));
|
|
|
|
s = splnet();
|
|
|
|
DPRINTF(("Prepare to switch state %d->%d\n", ic->ic_state, nstate));
|
|
if (sc->sc_generation != generation) {
|
|
DPRINTF(("newstate_cb: someone pulled the plug meanwhile\n"));
|
|
if (nstate == IEEE80211_S_INIT) {
|
|
DPRINTF(("newstate_cb: nstate == IEEE80211_S_INIT: "
|
|
"calling sc_newstate()\n"));
|
|
(void) sc->sc_newstate(ic, nstate, arg);
|
|
}
|
|
} else
|
|
(void) iwm_do_newstate(ic, nstate, arg);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static int
|
|
iwm_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct iwm_newstate_state *iwmns;
|
|
struct ifnet *ifp = IC2IFP(ic);
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
|
|
callout_stop(&sc->sc_calib_to);
|
|
|
|
iwmns = kmem_intr_alloc(sizeof(*iwmns), KM_NOSLEEP);
|
|
if (!iwmns) {
|
|
DPRINTF(("%s: allocating state cb mem failed\n", DEVNAME(sc)));
|
|
return ENOMEM;
|
|
}
|
|
|
|
iwmns->ns_nstate = nstate;
|
|
iwmns->ns_arg = arg;
|
|
iwmns->ns_generation = sc->sc_generation;
|
|
|
|
workqueue_enqueue(sc->sc_nswq, &iwmns->ns_wk, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
iwm_endscan(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int s;
|
|
|
|
DPRINTF(("%s: scan ended\n", DEVNAME(sc)));
|
|
|
|
s = splnet();
|
|
if (ic->ic_state == IEEE80211_S_SCAN)
|
|
ieee80211_end_scan(ic);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Aging and idle timeouts for the different possible scenarios
|
|
* in default configuration
|
|
*/
|
|
static const uint32_t
|
|
iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
|
|
{
|
|
htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
|
|
htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
|
|
},
|
|
{
|
|
htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
|
|
htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
|
|
},
|
|
{
|
|
htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
|
|
htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
|
|
},
|
|
{
|
|
htole32(IWM_SF_BA_AGING_TIMER_DEF),
|
|
htole32(IWM_SF_BA_IDLE_TIMER_DEF)
|
|
},
|
|
{
|
|
htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
|
|
htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Aging and idle timeouts for the different possible scenarios
|
|
* in single BSS MAC configuration.
|
|
*/
|
|
static const uint32_t
|
|
iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
|
|
{
|
|
htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
|
|
htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
|
|
},
|
|
{
|
|
htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
|
|
htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
|
|
},
|
|
{
|
|
htole32(IWM_SF_MCAST_AGING_TIMER),
|
|
htole32(IWM_SF_MCAST_IDLE_TIMER)
|
|
},
|
|
{
|
|
htole32(IWM_SF_BA_AGING_TIMER),
|
|
htole32(IWM_SF_BA_IDLE_TIMER)
|
|
},
|
|
{
|
|
htole32(IWM_SF_TX_RE_AGING_TIMER),
|
|
htole32(IWM_SF_TX_RE_IDLE_TIMER)
|
|
},
|
|
};
|
|
|
|
static void
|
|
iwm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
|
|
struct ieee80211_node *ni)
|
|
{
|
|
int i, j, watermark;
|
|
|
|
sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
|
|
|
|
/*
|
|
* If we are in association flow - check antenna configuration
|
|
* capabilities of the AP station, and choose the watermark accordingly.
|
|
*/
|
|
if (ni) {
|
|
#ifndef IEEE80211_NO_HT
|
|
if (ni->ni_flags & IEEE80211_NODE_HT) {
|
|
#ifdef notyet
|
|
if (ni->ni_rxmcs[2] != 0)
|
|
watermark = IWM_SF_W_MARK_MIMO3;
|
|
else if (ni->ni_rxmcs[1] != 0)
|
|
watermark = IWM_SF_W_MARK_MIMO2;
|
|
else
|
|
#endif
|
|
watermark = IWM_SF_W_MARK_SISO;
|
|
} else
|
|
#endif
|
|
watermark = IWM_SF_W_MARK_LEGACY;
|
|
/* default watermark value for unassociated mode. */
|
|
} else {
|
|
watermark = IWM_SF_W_MARK_MIMO2;
|
|
}
|
|
sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
|
|
|
|
for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
|
|
for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
|
|
sf_cmd->long_delay_timeouts[i][j] =
|
|
htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
|
|
}
|
|
}
|
|
|
|
if (ni) {
|
|
memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
|
|
sizeof(iwm_sf_full_timeout));
|
|
} else {
|
|
memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
|
|
sizeof(iwm_sf_full_timeout_def));
|
|
}
|
|
}
|
|
|
|
static int
|
|
iwm_sf_config(struct iwm_softc *sc, int new_state)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_sf_cfg_cmd sf_cmd = {
|
|
.state = htole32(IWM_SF_FULL_ON),
|
|
};
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
|
|
sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
|
|
|
|
switch (new_state) {
|
|
case IWM_SF_UNINIT:
|
|
case IWM_SF_INIT_OFF:
|
|
iwm_fill_sf_command(sc, &sf_cmd, NULL);
|
|
break;
|
|
case IWM_SF_FULL_ON:
|
|
iwm_fill_sf_command(sc, &sf_cmd, ic->ic_bss);
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
|
|
sizeof(sf_cmd), &sf_cmd);
|
|
}
|
|
|
|
static int
|
|
iwm_send_bt_init_conf(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_bt_coex_cmd bt_cmd;
|
|
|
|
bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
|
|
bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
|
|
|
|
return iwm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd), &bt_cmd);
|
|
}
|
|
|
|
static bool
|
|
iwm_is_lar_supported(struct iwm_softc *sc)
|
|
{
|
|
bool nvm_lar = sc->sc_nvm.lar_enabled;
|
|
bool tlv_lar = isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_LAR_SUPPORT);
|
|
|
|
if (iwm_lar_disable)
|
|
return false;
|
|
|
|
/*
|
|
* Enable LAR only if it is supported by the FW (TLV) &&
|
|
* enabled in the NVM
|
|
*/
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
|
|
return nvm_lar && tlv_lar;
|
|
else
|
|
return tlv_lar;
|
|
}
|
|
|
|
static int
|
|
iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
|
|
{
|
|
struct iwm_mcc_update_cmd mcc_cmd;
|
|
struct iwm_host_cmd hcmd = {
|
|
.id = IWM_MCC_UPDATE_CMD,
|
|
.flags = IWM_CMD_WANT_SKB,
|
|
.data = { &mcc_cmd },
|
|
};
|
|
int err;
|
|
int resp_v2 = isset(sc->sc_enabled_capa,
|
|
IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
|
|
|
|
if (!iwm_is_lar_supported(sc)) {
|
|
DPRINTF(("%s: no LAR support\n", __func__));
|
|
return 0;
|
|
}
|
|
|
|
memset(&mcc_cmd, 0, sizeof(mcc_cmd));
|
|
mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
|
|
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
|
|
isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
|
|
mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
|
|
else
|
|
mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
|
|
|
|
if (resp_v2)
|
|
hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
|
|
else
|
|
hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
|
|
|
|
err = iwm_send_cmd(sc, &hcmd);
|
|
if (err)
|
|
return err;
|
|
|
|
iwm_free_resp(sc, &hcmd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
iwm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
|
|
{
|
|
struct iwm_host_cmd cmd = {
|
|
.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
|
|
.len = { sizeof(uint32_t), },
|
|
.data = { &backoff, },
|
|
};
|
|
|
|
iwm_send_cmd(sc, &cmd);
|
|
}
|
|
|
|
static int
|
|
iwm_init_hw(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int err, i, ac;
|
|
|
|
err = iwm_preinit(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
err = iwm_start_hw(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "could not initialize hardware\n");
|
|
return err;
|
|
}
|
|
|
|
err = iwm_run_init_mvm_ucode(sc, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Should stop and start HW since INIT image just loaded. */
|
|
iwm_stop_device(sc);
|
|
err = iwm_start_hw(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "could not initialize hardware\n");
|
|
return err;
|
|
}
|
|
|
|
/* Restart, this time with the regular firmware */
|
|
err = iwm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not load firmware (error %d)\n", err);
|
|
goto err;
|
|
}
|
|
|
|
err = iwm_send_bt_init_conf(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not init bt coex (error %d)\n", err);
|
|
goto err;
|
|
}
|
|
|
|
err = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc));
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not init tx ant config (error %d)\n", err);
|
|
goto err;
|
|
}
|
|
|
|
/* Send phy db control command and then phy db calibration*/
|
|
err = iwm_send_phy_db_data(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not init phy db (error %d)\n", err);
|
|
goto err;
|
|
}
|
|
|
|
err = iwm_send_phy_cfg_cmd(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not send phy config (error %d)\n", err);
|
|
goto err;
|
|
}
|
|
|
|
/* Add auxiliary station for scanning */
|
|
err = iwm_add_aux_sta(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not add aux station (error %d)\n", err);
|
|
goto err;
|
|
}
|
|
|
|
for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
|
|
/*
|
|
* The channel used here isn't relevant as it's
|
|
* going to be overwritten in the other flows.
|
|
* For now use the first channel we have.
|
|
*/
|
|
sc->sc_phyctxt[i].channel = &ic->ic_channels[1];
|
|
err = iwm_phy_ctxt_cmd(sc, &sc->sc_phyctxt[i], 1, 1,
|
|
IWM_FW_CTXT_ACTION_ADD, 0);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not add phy context %d (error %d)\n",
|
|
i, err);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* Initialize tx backoffs to the minimum. */
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
|
|
iwm_tt_tx_backoff(sc, 0);
|
|
|
|
err = iwm_power_update_device(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could send power command (error %d)\n", err);
|
|
goto err;
|
|
}
|
|
|
|
err = iwm_send_update_mcc_cmd(sc, iwm_default_mcc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not init LAR (error %d)\n", err);
|
|
goto err;
|
|
}
|
|
|
|
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
|
|
err = iwm_config_umac_scan(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not configure scan (error %d)\n", err);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
for (ac = 0; ac < WME_NUM_AC; ac++) {
|
|
err = iwm_enable_txq(sc, IWM_STATION_ID, ac,
|
|
iwm_ac_to_tx_fifo[ac]);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not enable Tx queue %d (error %d)\n",
|
|
i, err);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
err = iwm_disable_beacon_filter(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not disable beacon filter (error %d)\n", err);
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
iwm_stop_device(sc);
|
|
return err;
|
|
}
|
|
|
|
/* Allow multicast from our BSSID. */
|
|
static int
|
|
iwm_allow_mcast(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
struct iwm_mcast_filter_cmd *cmd;
|
|
size_t size;
|
|
int err;
|
|
|
|
size = roundup(sizeof(*cmd), 4);
|
|
cmd = kmem_intr_zalloc(size, KM_NOSLEEP);
|
|
if (cmd == NULL)
|
|
return ENOMEM;
|
|
cmd->filter_own = 1;
|
|
cmd->port_id = 0;
|
|
cmd->count = 0;
|
|
cmd->pass_all = 1;
|
|
IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
|
|
|
|
err = iwm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD, 0, size, cmd);
|
|
kmem_intr_free(cmd, size);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
iwm_init(struct ifnet *ifp)
|
|
{
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
int err;
|
|
|
|
if (ISSET(sc->sc_flags, IWM_FLAG_HW_INITED))
|
|
return 0;
|
|
|
|
sc->sc_generation++;
|
|
sc->sc_flags &= ~IWM_FLAG_STOPPED;
|
|
|
|
err = iwm_init_hw(sc);
|
|
if (err) {
|
|
iwm_stop(ifp, 1);
|
|
return err;
|
|
}
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
ieee80211_begin_scan(&sc->sc_ic, 0);
|
|
SET(sc->sc_flags, IWM_FLAG_HW_INITED);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
iwm_start(struct ifnet *ifp)
|
|
{
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni;
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
int ac;
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
for (;;) {
|
|
/* why isn't this done per-queue? */
|
|
if (sc->qfullmsk != 0) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
/* need to send management frames even if we're not RUNning */
|
|
IF_DEQUEUE(&ic->ic_mgtq, m);
|
|
if (m) {
|
|
ni = M_GETCTX(m, struct ieee80211_node *);
|
|
M_CLEARCTX(m);
|
|
ac = WME_AC_BE;
|
|
goto sendit;
|
|
}
|
|
if (ic->ic_state != IEEE80211_S_RUN) {
|
|
break;
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
break;
|
|
|
|
if (m->m_len < sizeof (*eh) &&
|
|
(m = m_pullup(m, sizeof (*eh))) == NULL) {
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
|
|
if (ni == NULL) {
|
|
m_freem(m);
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
/* classify mbuf so we can find which tx ring to use */
|
|
if (ieee80211_classify(ic, m, ni) != 0) {
|
|
m_freem(m);
|
|
ieee80211_free_node(ni);
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
/* No QoS encapsulation for EAPOL frames. */
|
|
ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
|
|
M_WME_GETAC(m) : WME_AC_BE;
|
|
|
|
bpf_mtap(ifp, m, BPF_D_OUT);
|
|
|
|
if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
|
|
ieee80211_free_node(ni);
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
sendit:
|
|
bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
|
|
|
|
if (iwm_tx(sc, m, ni, ac) != 0) {
|
|
ieee80211_free_node(ni);
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_UP) {
|
|
sc->sc_tx_timer = 15;
|
|
ifp->if_timer = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
iwm_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct iwm_node *in = (struct iwm_node *)ic->ic_bss;
|
|
|
|
sc->sc_flags &= ~IWM_FLAG_HW_INITED;
|
|
sc->sc_flags |= IWM_FLAG_STOPPED;
|
|
sc->sc_generation++;
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
|
|
if (in)
|
|
in->in_phyctxt = NULL;
|
|
|
|
if (ic->ic_state != IEEE80211_S_INIT)
|
|
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
|
|
|
|
callout_stop(&sc->sc_calib_to);
|
|
iwm_led_blink_stop(sc);
|
|
ifp->if_timer = sc->sc_tx_timer = 0;
|
|
iwm_stop_device(sc);
|
|
}
|
|
|
|
static void
|
|
iwm_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
|
|
ifp->if_timer = 0;
|
|
if (sc->sc_tx_timer > 0) {
|
|
if (--sc->sc_tx_timer == 0) {
|
|
aprint_error_dev(sc->sc_dev, "device timeout\n");
|
|
#ifdef IWM_DEBUG
|
|
iwm_nic_error(sc);
|
|
#endif
|
|
ifp->if_flags &= ~IFF_UP;
|
|
iwm_stop(ifp, 1);
|
|
ifp->if_oerrors++;
|
|
return;
|
|
}
|
|
ifp->if_timer = 1;
|
|
}
|
|
|
|
ieee80211_watchdog(&sc->sc_ic);
|
|
}
|
|
|
|
static int
|
|
iwm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct iwm_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
const struct sockaddr *sa;
|
|
int s, err = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
/* FALLTHROUGH */
|
|
case SIOCSIFFLAGS:
|
|
err = ifioctl_common(ifp, cmd, data);
|
|
if (err)
|
|
break;
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (!(ifp->if_flags & IFF_RUNNING)) {
|
|
err = iwm_init(ifp);
|
|
if (err)
|
|
ifp->if_flags &= ~IFF_UP;
|
|
}
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
iwm_stop(ifp, 1);
|
|
}
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if (!ISSET(sc->sc_flags, IWM_FLAG_ATTACHED)) {
|
|
err = ENXIO;
|
|
break;
|
|
}
|
|
sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
|
|
err = (cmd == SIOCADDMULTI) ?
|
|
ether_addmulti(sa, &sc->sc_ec) :
|
|
ether_delmulti(sa, &sc->sc_ec);
|
|
if (err == ENETRESET)
|
|
err = 0;
|
|
break;
|
|
|
|
default:
|
|
if (!ISSET(sc->sc_flags, IWM_FLAG_ATTACHED)) {
|
|
err = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
err = ieee80211_ioctl(ic, cmd, data);
|
|
break;
|
|
}
|
|
|
|
if (err == ENETRESET) {
|
|
err = 0;
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
|
|
(IFF_UP | IFF_RUNNING)) {
|
|
iwm_stop(ifp, 0);
|
|
err = iwm_init(ifp);
|
|
}
|
|
}
|
|
|
|
splx(s);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Note: This structure is read from the device with IO accesses,
|
|
* and the reading already does the endian conversion. As it is
|
|
* read with uint32_t-sized accesses, any members with a different size
|
|
* need to be ordered correctly though!
|
|
*/
|
|
struct iwm_error_event_table {
|
|
uint32_t valid; /* (nonzero) valid, (0) log is empty */
|
|
uint32_t error_id; /* type of error */
|
|
uint32_t trm_hw_status0; /* TRM HW status */
|
|
uint32_t trm_hw_status1; /* TRM HW status */
|
|
uint32_t blink2; /* branch link */
|
|
uint32_t ilink1; /* interrupt link */
|
|
uint32_t ilink2; /* interrupt link */
|
|
uint32_t data1; /* error-specific data */
|
|
uint32_t data2; /* error-specific data */
|
|
uint32_t data3; /* error-specific data */
|
|
uint32_t bcon_time; /* beacon timer */
|
|
uint32_t tsf_low; /* network timestamp function timer */
|
|
uint32_t tsf_hi; /* network timestamp function timer */
|
|
uint32_t gp1; /* GP1 timer register */
|
|
uint32_t gp2; /* GP2 timer register */
|
|
uint32_t fw_rev_type; /* firmware revision type */
|
|
uint32_t major; /* uCode version major */
|
|
uint32_t minor; /* uCode version minor */
|
|
uint32_t hw_ver; /* HW Silicon version */
|
|
uint32_t brd_ver; /* HW board version */
|
|
uint32_t log_pc; /* log program counter */
|
|
uint32_t frame_ptr; /* frame pointer */
|
|
uint32_t stack_ptr; /* stack pointer */
|
|
uint32_t hcmd; /* last host command header */
|
|
uint32_t isr0; /* isr status register LMPM_NIC_ISR0:
|
|
* rxtx_flag */
|
|
uint32_t isr1; /* isr status register LMPM_NIC_ISR1:
|
|
* host_flag */
|
|
uint32_t isr2; /* isr status register LMPM_NIC_ISR2:
|
|
* enc_flag */
|
|
uint32_t isr3; /* isr status register LMPM_NIC_ISR3:
|
|
* time_flag */
|
|
uint32_t isr4; /* isr status register LMPM_NIC_ISR4:
|
|
* wico interrupt */
|
|
uint32_t last_cmd_id; /* last HCMD id handled by the firmware */
|
|
uint32_t wait_event; /* wait event() caller address */
|
|
uint32_t l2p_control; /* L2pControlField */
|
|
uint32_t l2p_duration; /* L2pDurationField */
|
|
uint32_t l2p_mhvalid; /* L2pMhValidBits */
|
|
uint32_t l2p_addr_match; /* L2pAddrMatchStat */
|
|
uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on
|
|
* (LMPM_PMG_SEL) */
|
|
uint32_t u_timestamp; /* indicate when the date and time of the
|
|
* compilation */
|
|
uint32_t flow_handler; /* FH read/write pointers, RX credit */
|
|
} __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
|
|
|
|
/*
|
|
* UMAC error struct - relevant starting from family 8000 chip.
|
|
* Note: This structure is read from the device with IO accesses,
|
|
* and the reading already does the endian conversion. As it is
|
|
* read with u32-sized accesses, any members with a different size
|
|
* need to be ordered correctly though!
|
|
*/
|
|
struct iwm_umac_error_event_table {
|
|
uint32_t valid; /* (nonzero) valid, (0) log is empty */
|
|
uint32_t error_id; /* type of error */
|
|
uint32_t blink1; /* branch link */
|
|
uint32_t blink2; /* branch link */
|
|
uint32_t ilink1; /* interrupt link */
|
|
uint32_t ilink2; /* interrupt link */
|
|
uint32_t data1; /* error-specific data */
|
|
uint32_t data2; /* error-specific data */
|
|
uint32_t data3; /* error-specific data */
|
|
uint32_t umac_major;
|
|
uint32_t umac_minor;
|
|
uint32_t frame_pointer; /* core register 27 */
|
|
uint32_t stack_pointer; /* core register 28 */
|
|
uint32_t cmd_header; /* latest host cmd sent to UMAC */
|
|
uint32_t nic_isr_pref; /* ISR status register */
|
|
} __packed;
|
|
|
|
#define ERROR_START_OFFSET (1 * sizeof(uint32_t))
|
|
#define ERROR_ELEM_SIZE (7 * sizeof(uint32_t))
|
|
|
|
#ifdef IWM_DEBUG
|
|
static const struct {
|
|
const char *name;
|
|
uint8_t num;
|
|
} advanced_lookup[] = {
|
|
{ "NMI_INTERRUPT_WDG", 0x34 },
|
|
{ "SYSASSERT", 0x35 },
|
|
{ "UCODE_VERSION_MISMATCH", 0x37 },
|
|
{ "BAD_COMMAND", 0x38 },
|
|
{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
|
|
{ "FATAL_ERROR", 0x3D },
|
|
{ "NMI_TRM_HW_ERR", 0x46 },
|
|
{ "NMI_INTERRUPT_TRM", 0x4C },
|
|
{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
|
|
{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
|
|
{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
|
|
{ "NMI_INTERRUPT_HOST", 0x66 },
|
|
{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
|
|
{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
|
|
{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
|
|
{ "ADVANCED_SYSASSERT", 0 },
|
|
};
|
|
|
|
static const char *
|
|
iwm_desc_lookup(uint32_t num)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < __arraycount(advanced_lookup) - 1; i++)
|
|
if (advanced_lookup[i].num == num)
|
|
return advanced_lookup[i].name;
|
|
|
|
/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
|
|
return advanced_lookup[i].name;
|
|
}
|
|
|
|
/*
|
|
* Support for dumping the error log seemed like a good idea ...
|
|
* but it's mostly hex junk and the only sensible thing is the
|
|
* hw/ucode revision (which we know anyway). Since it's here,
|
|
* I'll just leave it in, just in case e.g. the Intel guys want to
|
|
* help us decipher some "ADVANCED_SYSASSERT" later.
|
|
*/
|
|
static void
|
|
iwm_nic_error(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_error_event_table t;
|
|
uint32_t base;
|
|
|
|
aprint_error_dev(sc->sc_dev, "dumping device error log\n");
|
|
base = sc->sc_uc.uc_error_event_table;
|
|
if (base < 0x800000) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"Invalid error log pointer 0x%08x\n", base);
|
|
return;
|
|
}
|
|
|
|
if (iwm_read_mem(sc, base, &t, sizeof(t)/sizeof(uint32_t))) {
|
|
aprint_error_dev(sc->sc_dev, "reading errlog failed\n");
|
|
return;
|
|
}
|
|
|
|
if (!t.valid) {
|
|
aprint_error_dev(sc->sc_dev, "errlog not found, skipping\n");
|
|
return;
|
|
}
|
|
|
|
if (ERROR_START_OFFSET <= t.valid * ERROR_ELEM_SIZE) {
|
|
aprint_error_dev(sc->sc_dev, "Start Error Log Dump:\n");
|
|
aprint_error_dev(sc->sc_dev, "Status: 0x%x, count: %d\n",
|
|
sc->sc_flags, t.valid);
|
|
}
|
|
|
|
aprint_error_dev(sc->sc_dev, "%08X | %-28s\n", t.error_id,
|
|
iwm_desc_lookup(t.error_id));
|
|
aprint_error_dev(sc->sc_dev, "%08X | trm_hw_status0\n",
|
|
t.trm_hw_status0);
|
|
aprint_error_dev(sc->sc_dev, "%08X | trm_hw_status1\n",
|
|
t.trm_hw_status1);
|
|
aprint_error_dev(sc->sc_dev, "%08X | branchlink2\n", t.blink2);
|
|
aprint_error_dev(sc->sc_dev, "%08X | interruptlink1\n", t.ilink1);
|
|
aprint_error_dev(sc->sc_dev, "%08X | interruptlink2\n", t.ilink2);
|
|
aprint_error_dev(sc->sc_dev, "%08X | data1\n", t.data1);
|
|
aprint_error_dev(sc->sc_dev, "%08X | data2\n", t.data2);
|
|
aprint_error_dev(sc->sc_dev, "%08X | data3\n", t.data3);
|
|
aprint_error_dev(sc->sc_dev, "%08X | beacon time\n", t.bcon_time);
|
|
aprint_error_dev(sc->sc_dev, "%08X | tsf low\n", t.tsf_low);
|
|
aprint_error_dev(sc->sc_dev, "%08X | tsf hi\n", t.tsf_hi);
|
|
aprint_error_dev(sc->sc_dev, "%08X | time gp1\n", t.gp1);
|
|
aprint_error_dev(sc->sc_dev, "%08X | time gp2\n", t.gp2);
|
|
aprint_error_dev(sc->sc_dev, "%08X | uCode revision type\n",
|
|
t.fw_rev_type);
|
|
aprint_error_dev(sc->sc_dev, "%08X | uCode version major\n",
|
|
t.major);
|
|
aprint_error_dev(sc->sc_dev, "%08X | uCode version minor\n",
|
|
t.minor);
|
|
aprint_error_dev(sc->sc_dev, "%08X | hw version\n", t.hw_ver);
|
|
aprint_error_dev(sc->sc_dev, "%08X | board version\n", t.brd_ver);
|
|
aprint_error_dev(sc->sc_dev, "%08X | hcmd\n", t.hcmd);
|
|
aprint_error_dev(sc->sc_dev, "%08X | isr0\n", t.isr0);
|
|
aprint_error_dev(sc->sc_dev, "%08X | isr1\n", t.isr1);
|
|
aprint_error_dev(sc->sc_dev, "%08X | isr2\n", t.isr2);
|
|
aprint_error_dev(sc->sc_dev, "%08X | isr3\n", t.isr3);
|
|
aprint_error_dev(sc->sc_dev, "%08X | isr4\n", t.isr4);
|
|
aprint_error_dev(sc->sc_dev, "%08X | last cmd Id\n", t.last_cmd_id);
|
|
aprint_error_dev(sc->sc_dev, "%08X | wait_event\n", t.wait_event);
|
|
aprint_error_dev(sc->sc_dev, "%08X | l2p_control\n", t.l2p_control);
|
|
aprint_error_dev(sc->sc_dev, "%08X | l2p_duration\n", t.l2p_duration);
|
|
aprint_error_dev(sc->sc_dev, "%08X | l2p_mhvalid\n", t.l2p_mhvalid);
|
|
aprint_error_dev(sc->sc_dev, "%08X | l2p_addr_match\n",
|
|
t.l2p_addr_match);
|
|
aprint_error_dev(sc->sc_dev, "%08X | lmpm_pmg_sel\n", t.lmpm_pmg_sel);
|
|
aprint_error_dev(sc->sc_dev, "%08X | timestamp\n", t.u_timestamp);
|
|
aprint_error_dev(sc->sc_dev, "%08X | flow_handler\n", t.flow_handler);
|
|
|
|
if (sc->sc_uc.uc_umac_error_event_table)
|
|
iwm_nic_umac_error(sc);
|
|
}
|
|
|
|
static void
|
|
iwm_nic_umac_error(struct iwm_softc *sc)
|
|
{
|
|
struct iwm_umac_error_event_table t;
|
|
uint32_t base;
|
|
|
|
base = sc->sc_uc.uc_umac_error_event_table;
|
|
|
|
if (base < 0x800000) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"Invalid error log pointer 0x%08x\n", base);
|
|
return;
|
|
}
|
|
|
|
if (iwm_read_mem(sc, base, &t, sizeof(t)/sizeof(uint32_t))) {
|
|
aprint_error_dev(sc->sc_dev, "reading errlog failed\n");
|
|
return;
|
|
}
|
|
|
|
if (ERROR_START_OFFSET <= t.valid * ERROR_ELEM_SIZE) {
|
|
aprint_error_dev(sc->sc_dev, "Start UMAC Error Log Dump:\n");
|
|
aprint_error_dev(sc->sc_dev, "Status: 0x%x, count: %d\n",
|
|
sc->sc_flags, t.valid);
|
|
}
|
|
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | %s\n", t.error_id,
|
|
iwm_desc_lookup(t.error_id));
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | umac branchlink1\n", t.blink1);
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | umac branchlink2\n", t.blink2);
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | umac interruptlink1\n",
|
|
t.ilink1);
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | umac interruptlink2\n",
|
|
t.ilink2);
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | umac data1\n", t.data1);
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | umac data2\n", t.data2);
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | umac data3\n", t.data3);
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | umac major\n", t.umac_major);
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | umac minor\n", t.umac_minor);
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | frame pointer\n",
|
|
t.frame_pointer);
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | stack pointer\n",
|
|
t.stack_pointer);
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | last host cmd\n", t.cmd_header);
|
|
aprint_error_dev(sc->sc_dev, "0x%08X | isr status reg\n",
|
|
t.nic_isr_pref);
|
|
}
|
|
#endif
|
|
|
|
#define SYNC_RESP_STRUCT(_var_, _pkt_) \
|
|
do { \
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \
|
|
sizeof(*(_var_)), BUS_DMASYNC_POSTREAD); \
|
|
_var_ = (void *)((_pkt_)+1); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define SYNC_RESP_PTR(_ptr_, _len_, _pkt_) \
|
|
do { \
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \
|
|
sizeof(len), BUS_DMASYNC_POSTREAD); \
|
|
_ptr_ = (void *)((_pkt_)+1); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
|
|
|
|
static void
|
|
iwm_notif_intr(struct iwm_softc *sc)
|
|
{
|
|
uint16_t hw;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
|
|
0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
|
|
|
|
hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
|
|
while (sc->rxq.cur != hw) {
|
|
struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
|
|
struct iwm_rx_packet *pkt;
|
|
struct iwm_cmd_response *cresp;
|
|
int orig_qid, qid, idx, code;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof(*pkt),
|
|
BUS_DMASYNC_POSTREAD);
|
|
pkt = mtod(data->m, struct iwm_rx_packet *);
|
|
|
|
orig_qid = pkt->hdr.qid;
|
|
qid = orig_qid & ~0x80;
|
|
idx = pkt->hdr.idx;
|
|
|
|
code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
|
|
|
|
/*
|
|
* randomly get these from the firmware, no idea why.
|
|
* they at least seem harmless, so just ignore them for now
|
|
*/
|
|
if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
|
|
|| pkt->len_n_flags == htole32(0x55550000))) {
|
|
ADVANCE_RXQ(sc);
|
|
continue;
|
|
}
|
|
|
|
switch (code) {
|
|
case IWM_REPLY_RX_PHY_CMD:
|
|
iwm_rx_rx_phy_cmd(sc, pkt, data);
|
|
break;
|
|
|
|
case IWM_REPLY_RX_MPDU_CMD:
|
|
iwm_rx_rx_mpdu(sc, pkt, data);
|
|
break;
|
|
|
|
case IWM_TX_CMD:
|
|
iwm_rx_tx_cmd(sc, pkt, data);
|
|
break;
|
|
|
|
case IWM_MISSED_BEACONS_NOTIFICATION:
|
|
iwm_rx_missed_beacons_notif(sc, pkt, data);
|
|
break;
|
|
|
|
case IWM_MFUART_LOAD_NOTIFICATION:
|
|
break;
|
|
|
|
case IWM_ALIVE: {
|
|
struct iwm_alive_resp_v1 *resp1;
|
|
struct iwm_alive_resp_v2 *resp2;
|
|
struct iwm_alive_resp_v3 *resp3;
|
|
|
|
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) {
|
|
SYNC_RESP_STRUCT(resp1, pkt);
|
|
sc->sc_uc.uc_error_event_table
|
|
= le32toh(resp1->error_event_table_ptr);
|
|
sc->sc_uc.uc_log_event_table
|
|
= le32toh(resp1->log_event_table_ptr);
|
|
sc->sched_base = le32toh(resp1->scd_base_ptr);
|
|
if (resp1->status == IWM_ALIVE_STATUS_OK)
|
|
sc->sc_uc.uc_ok = 1;
|
|
else
|
|
sc->sc_uc.uc_ok = 0;
|
|
}
|
|
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) {
|
|
SYNC_RESP_STRUCT(resp2, pkt);
|
|
sc->sc_uc.uc_error_event_table
|
|
= le32toh(resp2->error_event_table_ptr);
|
|
sc->sc_uc.uc_log_event_table
|
|
= le32toh(resp2->log_event_table_ptr);
|
|
sc->sched_base = le32toh(resp2->scd_base_ptr);
|
|
sc->sc_uc.uc_umac_error_event_table
|
|
= le32toh(resp2->error_info_addr);
|
|
if (resp2->status == IWM_ALIVE_STATUS_OK)
|
|
sc->sc_uc.uc_ok = 1;
|
|
else
|
|
sc->sc_uc.uc_ok = 0;
|
|
}
|
|
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) {
|
|
SYNC_RESP_STRUCT(resp3, pkt);
|
|
sc->sc_uc.uc_error_event_table
|
|
= le32toh(resp3->error_event_table_ptr);
|
|
sc->sc_uc.uc_log_event_table
|
|
= le32toh(resp3->log_event_table_ptr);
|
|
sc->sched_base = le32toh(resp3->scd_base_ptr);
|
|
sc->sc_uc.uc_umac_error_event_table
|
|
= le32toh(resp3->error_info_addr);
|
|
if (resp3->status == IWM_ALIVE_STATUS_OK)
|
|
sc->sc_uc.uc_ok = 1;
|
|
else
|
|
sc->sc_uc.uc_ok = 0;
|
|
}
|
|
|
|
sc->sc_uc.uc_intr = 1;
|
|
wakeup(&sc->sc_uc);
|
|
break;
|
|
}
|
|
|
|
case IWM_CALIB_RES_NOTIF_PHY_DB: {
|
|
struct iwm_calib_res_notif_phy_db *phy_db_notif;
|
|
SYNC_RESP_STRUCT(phy_db_notif, pkt);
|
|
uint16_t size = le16toh(phy_db_notif->length);
|
|
bus_dmamap_sync(sc->sc_dmat, data->map,
|
|
sizeof(*pkt) + sizeof(*phy_db_notif),
|
|
size, BUS_DMASYNC_POSTREAD);
|
|
iwm_phy_db_set_section(sc, phy_db_notif, size);
|
|
break;
|
|
}
|
|
|
|
case IWM_STATISTICS_NOTIFICATION: {
|
|
struct iwm_notif_statistics *stats;
|
|
SYNC_RESP_STRUCT(stats, pkt);
|
|
memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
|
|
sc->sc_noise = iwm_get_noise(&stats->rx.general);
|
|
break;
|
|
}
|
|
|
|
case IWM_NVM_ACCESS_CMD:
|
|
case IWM_MCC_UPDATE_CMD:
|
|
if (sc->sc_wantresp == ((qid << 16) | idx)) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
sizeof(sc->sc_cmd_resp),
|
|
BUS_DMASYNC_POSTREAD);
|
|
memcpy(sc->sc_cmd_resp,
|
|
pkt, sizeof(sc->sc_cmd_resp));
|
|
}
|
|
break;
|
|
|
|
case IWM_MCC_CHUB_UPDATE_CMD: {
|
|
struct iwm_mcc_chub_notif *notif;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
|
|
sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
|
|
sc->sc_fw_mcc[1] = notif->mcc & 0xff;
|
|
sc->sc_fw_mcc[2] = '\0';
|
|
break;
|
|
}
|
|
|
|
case IWM_DTS_MEASUREMENT_NOTIFICATION:
|
|
case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
|
|
IWM_DTS_MEASUREMENT_NOTIF_WIDE): {
|
|
struct iwm_dts_measurement_notif_v1 *notif1;
|
|
struct iwm_dts_measurement_notif_v2 *notif2;
|
|
|
|
if (iwm_rx_packet_payload_len(pkt) == sizeof(*notif1)) {
|
|
SYNC_RESP_STRUCT(notif1, pkt);
|
|
DPRINTF(("%s: DTS temp=%d \n",
|
|
DEVNAME(sc), notif1->temp));
|
|
break;
|
|
}
|
|
if (iwm_rx_packet_payload_len(pkt) == sizeof(*notif2)) {
|
|
SYNC_RESP_STRUCT(notif2, pkt);
|
|
DPRINTF(("%s: DTS temp=%d \n",
|
|
DEVNAME(sc), notif2->temp));
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case IWM_PHY_CONFIGURATION_CMD:
|
|
case IWM_TX_ANT_CONFIGURATION_CMD:
|
|
case IWM_ADD_STA:
|
|
case IWM_MAC_CONTEXT_CMD:
|
|
case IWM_REPLY_SF_CFG_CMD:
|
|
case IWM_POWER_TABLE_CMD:
|
|
case IWM_PHY_CONTEXT_CMD:
|
|
case IWM_BINDING_CONTEXT_CMD:
|
|
case IWM_TIME_EVENT_CMD:
|
|
case IWM_SCAN_REQUEST_CMD:
|
|
case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
|
|
case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
|
|
case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_ABORT_UMAC):
|
|
case IWM_SCAN_OFFLOAD_REQUEST_CMD:
|
|
case IWM_SCAN_OFFLOAD_ABORT_CMD:
|
|
case IWM_REPLY_BEACON_FILTERING_CMD:
|
|
case IWM_MAC_PM_POWER_TABLE:
|
|
case IWM_TIME_QUOTA_CMD:
|
|
case IWM_REMOVE_STA:
|
|
case IWM_TXPATH_FLUSH:
|
|
case IWM_LQ_CMD:
|
|
case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_FW_PAGING_BLOCK_CMD):
|
|
case IWM_BT_CONFIG:
|
|
case IWM_REPLY_THERMAL_MNG_BACKOFF:
|
|
SYNC_RESP_STRUCT(cresp, pkt);
|
|
if (sc->sc_wantresp == ((qid << 16) | idx)) {
|
|
memcpy(sc->sc_cmd_resp,
|
|
pkt, sizeof(*pkt) + sizeof(*cresp));
|
|
}
|
|
break;
|
|
|
|
/* ignore */
|
|
case IWM_PHY_DB_CMD:
|
|
break;
|
|
|
|
case IWM_INIT_COMPLETE_NOTIF:
|
|
sc->sc_init_complete = 1;
|
|
wakeup(&sc->sc_init_complete);
|
|
break;
|
|
|
|
case IWM_SCAN_OFFLOAD_COMPLETE: {
|
|
struct iwm_periodic_scan_complete *notif;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
break;
|
|
}
|
|
|
|
case IWM_SCAN_ITERATION_COMPLETE: {
|
|
struct iwm_lmac_scan_complete_notif *notif;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
if (ISSET(sc->sc_flags, IWM_FLAG_SCANNING)) {
|
|
CLR(sc->sc_flags, IWM_FLAG_SCANNING);
|
|
iwm_endscan(sc);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case IWM_SCAN_COMPLETE_UMAC: {
|
|
struct iwm_umac_scan_complete *notif;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
if (ISSET(sc->sc_flags, IWM_FLAG_SCANNING)) {
|
|
CLR(sc->sc_flags, IWM_FLAG_SCANNING);
|
|
iwm_endscan(sc);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
|
|
struct iwm_umac_scan_iter_complete_notif *notif;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
if (ISSET(sc->sc_flags, IWM_FLAG_SCANNING)) {
|
|
CLR(sc->sc_flags, IWM_FLAG_SCANNING);
|
|
iwm_endscan(sc);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case IWM_REPLY_ERROR: {
|
|
struct iwm_error_resp *resp;
|
|
SYNC_RESP_STRUCT(resp, pkt);
|
|
aprint_error_dev(sc->sc_dev,
|
|
"firmware error 0x%x, cmd 0x%x\n",
|
|
le32toh(resp->error_type), resp->cmd_id);
|
|
break;
|
|
}
|
|
|
|
case IWM_TIME_EVENT_NOTIFICATION: {
|
|
struct iwm_time_event_notif *notif;
|
|
SYNC_RESP_STRUCT(notif, pkt);
|
|
break;
|
|
}
|
|
|
|
case IWM_DEBUG_LOG_MSG:
|
|
break;
|
|
|
|
case IWM_MCAST_FILTER_CMD:
|
|
break;
|
|
|
|
case IWM_SCD_QUEUE_CFG: {
|
|
struct iwm_scd_txq_cfg_rsp *rsp;
|
|
SYNC_RESP_STRUCT(rsp, pkt);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unhandled firmware response 0x%x 0x%x/0x%x "
|
|
"rx ring %d[%d]\n",
|
|
code, pkt->hdr.code, pkt->len_n_flags, qid, idx);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* uCode sets bit 0x80 when it originates the notification,
|
|
* i.e. when the notification is not a direct response to a
|
|
* command sent by the driver.
|
|
* For example, uCode issues IWM_REPLY_RX when it sends a
|
|
* received frame to the driver.
|
|
*/
|
|
if (!(orig_qid & (1 << 7))) {
|
|
iwm_cmd_done(sc, qid, idx);
|
|
}
|
|
|
|
ADVANCE_RXQ(sc);
|
|
}
|
|
|
|
/*
|
|
* Seems like the hardware gets upset unless we align the write by 8??
|
|
*/
|
|
hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
|
|
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
|
|
}
|
|
|
|
static int
|
|
iwm_intr(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
|
|
/* Disable interrupts */
|
|
IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
|
|
|
|
softint_schedule(sc->sc_soft_ih);
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
iwm_softintr(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ifnet *ifp = IC2IFP(&sc->sc_ic);
|
|
uint32_t r1, r2;
|
|
int isperiodic = 0, s;
|
|
|
|
if (__predict_true(sc->sc_flags & IWM_FLAG_USE_ICT)) {
|
|
uint32_t *ict = sc->ict_dma.vaddr;
|
|
int tmp;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map,
|
|
0, sc->ict_dma.size, BUS_DMASYNC_POSTREAD);
|
|
tmp = htole32(ict[sc->ict_cur]);
|
|
if (tmp == 0)
|
|
goto out_ena; /* Interrupt not for us. */
|
|
|
|
/*
|
|
* ok, there was something. keep plowing until we have all.
|
|
*/
|
|
r1 = r2 = 0;
|
|
while (tmp) {
|
|
r1 |= tmp;
|
|
ict[sc->ict_cur] = 0; /* Acknowledge. */
|
|
sc->ict_cur = (sc->ict_cur + 1) % IWM_ICT_COUNT;
|
|
tmp = htole32(ict[sc->ict_cur]);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map,
|
|
0, sc->ict_dma.size, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* this is where the fun begins. don't ask */
|
|
if (r1 == 0xffffffff)
|
|
r1 = 0;
|
|
|
|
/* i am not expected to understand this */
|
|
if (r1 & 0xc0000)
|
|
r1 |= 0x8000;
|
|
r1 = (0xff & r1) | ((0xff00 & r1) << 16);
|
|
} else {
|
|
r1 = IWM_READ(sc, IWM_CSR_INT);
|
|
if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
|
|
return; /* Hardware gone! */
|
|
r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
|
|
}
|
|
if (r1 == 0 && r2 == 0) {
|
|
goto out_ena; /* Interrupt not for us. */
|
|
}
|
|
|
|
/* Acknowledge interrupts. */
|
|
IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
|
|
if (__predict_false(!(sc->sc_flags & IWM_FLAG_USE_ICT)))
|
|
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, r2);
|
|
|
|
if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
|
|
#ifdef IWM_DEBUG
|
|
int i;
|
|
|
|
iwm_nic_error(sc);
|
|
|
|
/* Dump driver status (TX and RX rings) while we're here. */
|
|
DPRINTF(("driver status:\n"));
|
|
for (i = 0; i < IWM_MAX_QUEUES; i++) {
|
|
struct iwm_tx_ring *ring = &sc->txq[i];
|
|
DPRINTF((" tx ring %2d: qid=%-2d cur=%-3d "
|
|
"queued=%-3d\n",
|
|
i, ring->qid, ring->cur, ring->queued));
|
|
}
|
|
DPRINTF((" rx ring: cur=%d\n", sc->rxq.cur));
|
|
DPRINTF((" 802.11 state %s\n",
|
|
ieee80211_state_name[sc->sc_ic.ic_state]));
|
|
#endif
|
|
|
|
aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
|
|
fatal:
|
|
s = splnet();
|
|
ifp->if_flags &= ~IFF_UP;
|
|
iwm_stop(ifp, 1);
|
|
splx(s);
|
|
/* Don't restore interrupt mask */
|
|
return;
|
|
|
|
}
|
|
|
|
if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"hardware error, stopping device\n");
|
|
goto fatal;
|
|
}
|
|
|
|
/* firmware chunk loaded */
|
|
if (r1 & IWM_CSR_INT_BIT_FH_TX) {
|
|
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
|
|
sc->sc_fw_chunk_done = 1;
|
|
wakeup(&sc->sc_fw);
|
|
}
|
|
|
|
if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
|
|
if (iwm_check_rfkill(sc) && (ifp->if_flags & IFF_UP))
|
|
goto fatal;
|
|
}
|
|
|
|
if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
|
|
IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
|
|
if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
|
|
IWM_WRITE_1(sc,
|
|
IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
|
|
isperiodic = 1;
|
|
}
|
|
|
|
if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) ||
|
|
isperiodic) {
|
|
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
|
|
|
|
iwm_notif_intr(sc);
|
|
|
|
/* enable periodic interrupt, see above */
|
|
if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) &&
|
|
!isperiodic)
|
|
IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
|
|
IWM_CSR_INT_PERIODIC_ENA);
|
|
}
|
|
|
|
out_ena:
|
|
iwm_restore_interrupts(sc);
|
|
}
|
|
|
|
/*
|
|
* Autoconf glue-sniffing
|
|
*/
|
|
|
|
static const pci_product_id_t iwm_devices[] = {
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_7260_1,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_7260_2,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_3160_1,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_3160_2,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_7265_1,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_7265_2,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_3165_1,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_3165_2,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_3168,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_8260_1,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_8260_2,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_4165_1,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_4165_2,
|
|
PCI_PRODUCT_INTEL_WIFI_LINK_8265,
|
|
};
|
|
|
|
static int
|
|
iwm_match(device_t parent, cfdata_t match __unused, void *aux)
|
|
{
|
|
struct pci_attach_args *pa = aux;
|
|
|
|
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
|
|
return 0;
|
|
|
|
for (size_t i = 0; i < __arraycount(iwm_devices); i++)
|
|
if (PCI_PRODUCT(pa->pa_id) == iwm_devices[i])
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwm_preinit(struct iwm_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = IC2IFP(&sc->sc_ic);
|
|
int err;
|
|
|
|
if (ISSET(sc->sc_flags, IWM_FLAG_ATTACHED))
|
|
return 0;
|
|
|
|
err = iwm_start_hw(sc);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "could not initialize hardware\n");
|
|
return err;
|
|
}
|
|
|
|
err = iwm_run_init_mvm_ucode(sc, 1);
|
|
iwm_stop_device(sc);
|
|
if (err)
|
|
return err;
|
|
|
|
sc->sc_flags |= IWM_FLAG_ATTACHED;
|
|
|
|
aprint_normal_dev(sc->sc_dev, "hw rev 0x%x, fw ver %s, address %s\n",
|
|
sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK, sc->sc_fwver,
|
|
ether_sprintf(sc->sc_nvm.hw_addr));
|
|
|
|
#ifndef IEEE80211_NO_HT
|
|
if (sc->sc_nvm.sku_cap_11n_enable)
|
|
iwm_setup_ht_rates(sc);
|
|
#endif
|
|
|
|
/* not all hardware can do 5GHz band */
|
|
if (sc->sc_nvm.sku_cap_band_52GHz_enable)
|
|
ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
|
|
|
|
ether_ifdetach(ifp);
|
|
/*
|
|
* XXX
|
|
* ether_ifdetach() overwrites ifp->if_ioctl, so restore it here.
|
|
*/
|
|
ifp->if_ioctl = iwm_ioctl;
|
|
ieee80211_ifattach(ic);
|
|
|
|
ic->ic_node_alloc = iwm_node_alloc;
|
|
|
|
/* Override 802.11 state transition machine. */
|
|
sc->sc_newstate = ic->ic_newstate;
|
|
ic->ic_newstate = iwm_newstate;
|
|
ieee80211_media_init(ic, iwm_media_change, ieee80211_media_status);
|
|
ieee80211_announce(ic);
|
|
|
|
iwm_radiotap_attach(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
iwm_attach_hook(device_t dev)
|
|
{
|
|
struct iwm_softc *sc = device_private(dev);
|
|
|
|
iwm_preinit(sc);
|
|
}
|
|
|
|
static void
|
|
iwm_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct iwm_softc *sc = device_private(self);
|
|
struct pci_attach_args *pa = aux;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &sc->sc_ec.ec_if;
|
|
pcireg_t reg, memtype;
|
|
char intrbuf[PCI_INTRSTR_LEN];
|
|
const char *intrstr;
|
|
int err;
|
|
int txq_i;
|
|
const struct sysctlnode *node;
|
|
|
|
sc->sc_dev = self;
|
|
sc->sc_pct = pa->pa_pc;
|
|
sc->sc_pcitag = pa->pa_tag;
|
|
sc->sc_dmat = pa->pa_dmat;
|
|
sc->sc_pciid = pa->pa_id;
|
|
|
|
pci_aprint_devinfo(pa, NULL);
|
|
|
|
if (workqueue_create(&sc->sc_nswq, "iwmns",
|
|
iwm_newstate_cb, sc, PRI_NONE, IPL_NET, 0))
|
|
panic("%s: could not create workqueue: newstate",
|
|
device_xname(self));
|
|
sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwm_softintr, sc);
|
|
if (sc->sc_soft_ih == NULL)
|
|
panic("%s: could not establish softint", device_xname(self));
|
|
|
|
/*
|
|
* Get the offset of the PCI Express Capability Structure in PCI
|
|
* Configuration Space.
|
|
*/
|
|
err = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
|
|
PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
|
|
if (err == 0) {
|
|
aprint_error_dev(self,
|
|
"PCIe capability structure not found!\n");
|
|
return;
|
|
}
|
|
|
|
/* Clear device-specific "PCI retry timeout" register (41h). */
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
|
|
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
|
|
|
|
/* Enable bus-mastering */
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
|
|
reg |= PCI_COMMAND_MASTER_ENABLE;
|
|
pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
|
|
|
|
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
|
|
err = pci_mapreg_map(pa, PCI_MAPREG_START, memtype, 0,
|
|
&sc->sc_st, &sc->sc_sh, NULL, &sc->sc_sz);
|
|
if (err) {
|
|
aprint_error_dev(self, "can't map mem space\n");
|
|
return;
|
|
}
|
|
|
|
/* Install interrupt handler. */
|
|
err = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
|
|
if (err) {
|
|
aprint_error_dev(self, "can't allocate interrupt\n");
|
|
return;
|
|
}
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
|
|
if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
|
|
CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
|
|
else
|
|
SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
|
|
pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
|
|
intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
|
|
sizeof(intrbuf));
|
|
sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
|
|
IPL_NET, iwm_intr, sc, device_xname(self));
|
|
if (sc->sc_ih == NULL) {
|
|
aprint_error_dev(self, "can't establish interrupt");
|
|
if (intrstr != NULL)
|
|
aprint_error(" at %s", intrstr);
|
|
aprint_error("\n");
|
|
return;
|
|
}
|
|
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
|
|
|
|
sc->sc_wantresp = IWM_CMD_RESP_IDLE;
|
|
|
|
sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
|
|
switch (PCI_PRODUCT(sc->sc_pciid)) {
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_3160_1:
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_3160_2:
|
|
sc->sc_fwname = "iwlwifi-3160-17.ucode";
|
|
sc->host_interrupt_operation_mode = 1;
|
|
sc->apmg_wake_up_wa = 1;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_3165_1:
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_3165_2:
|
|
sc->sc_fwname = "iwlwifi-7265D-22.ucode";
|
|
sc->host_interrupt_operation_mode = 0;
|
|
sc->apmg_wake_up_wa = 1;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_3168:
|
|
sc->sc_fwname = "iwlwifi-3168-22.ucode";
|
|
sc->host_interrupt_operation_mode = 0;
|
|
sc->apmg_wake_up_wa = 1;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_7260_1:
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_7260_2:
|
|
sc->sc_fwname = "iwlwifi-7260-17.ucode";
|
|
sc->host_interrupt_operation_mode = 1;
|
|
sc->apmg_wake_up_wa = 1;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_7265_1:
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_7265_2:
|
|
sc->sc_fwname = (sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK) ==
|
|
IWM_CSR_HW_REV_TYPE_7265D ?
|
|
"iwlwifi-7265D-22.ucode": "iwlwifi-7265-17.ucode";
|
|
sc->host_interrupt_operation_mode = 0;
|
|
sc->apmg_wake_up_wa = 1;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_8260_1:
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_8260_2:
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_4165_1:
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_4165_2:
|
|
sc->sc_fwname = "iwlwifi-8000C-22.ucode";
|
|
sc->host_interrupt_operation_mode = 0;
|
|
sc->apmg_wake_up_wa = 0;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
|
|
break;
|
|
case PCI_PRODUCT_INTEL_WIFI_LINK_8265:
|
|
sc->sc_fwname = "iwlwifi-8265-22.ucode";
|
|
sc->host_interrupt_operation_mode = 0;
|
|
sc->apmg_wake_up_wa = 0;
|
|
sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
|
|
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
|
|
break;
|
|
default:
|
|
aprint_error_dev(self, "unknown product %#x",
|
|
PCI_PRODUCT(sc->sc_pciid));
|
|
return;
|
|
}
|
|
DPRINTF(("%s: firmware=%s\n", DEVNAME(sc), sc->sc_fwname));
|
|
|
|
/*
|
|
* In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
|
|
* changed, and now the revision step also includes bit 0-1 (no more
|
|
* "dash" value). To keep hw_rev backwards compatible - we'll store it
|
|
* in the old format.
|
|
*/
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
|
|
sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
|
|
(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
|
|
|
|
if (iwm_prepare_card_hw(sc) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not initialize hardware\n");
|
|
return;
|
|
}
|
|
|
|
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
|
|
uint32_t hw_step;
|
|
|
|
/*
|
|
* In order to recognize C step the driver should read the
|
|
* chip version id located at the AUX bus MISC address.
|
|
*/
|
|
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
|
|
DELAY(2);
|
|
|
|
err = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
|
|
25000);
|
|
if (!err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"failed to wake up the nic\n");
|
|
return;
|
|
}
|
|
|
|
if (iwm_nic_lock(sc)) {
|
|
hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
|
|
hw_step |= IWM_ENABLE_WFPM;
|
|
iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
|
|
hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
|
|
hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
|
|
if (hw_step == 0x3)
|
|
sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
|
|
(IWM_SILICON_C_STEP << 2);
|
|
iwm_nic_unlock(sc);
|
|
} else {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"failed to lock the nic\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate DMA memory for firmware transfers.
|
|
* Must be aligned on a 16-byte boundary.
|
|
*/
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, sc->sc_fwdmasegsz,
|
|
16);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate memory for firmware\n");
|
|
return;
|
|
}
|
|
|
|
/* Allocate "Keep Warm" page, used internally by the card. */
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate keep warm page\n");
|
|
goto fail1;
|
|
}
|
|
|
|
/* Allocate interrupt cause table (ICT).*/
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, IWM_ICT_SIZE,
|
|
1 << IWM_ICT_PADDR_SHIFT);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate ICT table\n");
|
|
goto fail2;
|
|
}
|
|
|
|
/* TX scheduler rings must be aligned on a 1KB boundary. */
|
|
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
|
|
__arraycount(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate TX scheduler rings\n");
|
|
goto fail3;
|
|
}
|
|
|
|
for (txq_i = 0; txq_i < __arraycount(sc->txq); txq_i++) {
|
|
err = iwm_alloc_tx_ring(sc, &sc->txq[txq_i], txq_i);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate TX ring %d\n", txq_i);
|
|
goto fail4;
|
|
}
|
|
}
|
|
|
|
err = iwm_alloc_rx_ring(sc, &sc->rxq);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "could not allocate RX ring\n");
|
|
goto fail5;
|
|
}
|
|
|
|
/* Clear pending interrupts. */
|
|
IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
|
|
|
|
if ((err = sysctl_createv(&sc->sc_clog, 0, NULL, &node,
|
|
0, CTLTYPE_NODE, device_xname(sc->sc_dev),
|
|
SYSCTL_DESCR("iwm per-controller controls"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_HW, iwm_sysctl_root_num, CTL_CREATE,
|
|
CTL_EOL)) != 0) {
|
|
aprint_normal_dev(sc->sc_dev,
|
|
"couldn't create iwm per-controller sysctl node\n");
|
|
}
|
|
if (err == 0) {
|
|
int iwm_nodenum = node->sysctl_num;
|
|
|
|
/* Reload firmware sysctl node */
|
|
if ((err = sysctl_createv(&sc->sc_clog, 0, NULL, &node,
|
|
CTLFLAG_READWRITE, CTLTYPE_INT, "fw_loaded",
|
|
SYSCTL_DESCR("Reload firmware"),
|
|
iwm_sysctl_fw_loaded_handler, 0, (void *)sc, 0,
|
|
CTL_HW, iwm_sysctl_root_num, iwm_nodenum, CTL_CREATE,
|
|
CTL_EOL)) != 0) {
|
|
aprint_normal_dev(sc->sc_dev,
|
|
"couldn't create load_fw sysctl node\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Attach interface
|
|
*/
|
|
ic->ic_ifp = ifp;
|
|
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
|
|
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
|
|
ic->ic_state = IEEE80211_S_INIT;
|
|
|
|
/* Set device capabilities. */
|
|
ic->ic_caps =
|
|
IEEE80211_C_WEP | /* WEP */
|
|
IEEE80211_C_WPA | /* 802.11i */
|
|
#ifdef notyet
|
|
IEEE80211_C_SCANALL | /* device scans all channels at once */
|
|
IEEE80211_C_SCANALLBAND | /* device scans all bands at once */
|
|
#endif
|
|
IEEE80211_C_SHSLOT | /* short slot time supported */
|
|
IEEE80211_C_SHPREAMBLE; /* short preamble supported */
|
|
|
|
#ifndef IEEE80211_NO_HT
|
|
ic->ic_htcaps = IEEE80211_HTCAP_SGI20;
|
|
ic->ic_htxcaps = 0;
|
|
ic->ic_txbfcaps = 0;
|
|
ic->ic_aselcaps = 0;
|
|
ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4 | 0x3 /* 64k */);
|
|
#endif
|
|
|
|
/* all hardware can do 2.4GHz band */
|
|
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
|
|
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
|
|
|
|
for (int i = 0; i < __arraycount(sc->sc_phyctxt); i++) {
|
|
sc->sc_phyctxt[i].id = i;
|
|
}
|
|
|
|
sc->sc_amrr.amrr_min_success_threshold = 1;
|
|
sc->sc_amrr.amrr_max_success_threshold = 15;
|
|
|
|
/* IBSS channel undefined for now. */
|
|
ic->ic_ibss_chan = &ic->ic_channels[1];
|
|
|
|
#if 0
|
|
ic->ic_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
|
|
#endif
|
|
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_init = iwm_init;
|
|
ifp->if_stop = iwm_stop;
|
|
ifp->if_ioctl = iwm_ioctl;
|
|
ifp->if_start = iwm_start;
|
|
ifp->if_watchdog = iwm_watchdog;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
memcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
|
|
|
|
err = if_initialize(ifp);
|
|
if (err != 0) {
|
|
aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
|
|
err);
|
|
goto fail6;
|
|
}
|
|
#if 0
|
|
ieee80211_ifattach(ic);
|
|
#else
|
|
/*
|
|
* XXX
|
|
* To avoid setting ifp->if_hwdl in if_set_sadl(), we fake
|
|
* ic->ic_myaddr as local address.
|
|
*/
|
|
ic->ic_myaddr[0] = 0x02;
|
|
ether_ifattach(ifp, ic->ic_myaddr); /* XXX */
|
|
#endif
|
|
/* Use common softint-based if_input */
|
|
ifp->if_percpuq = if_percpuq_create(ifp);
|
|
if_register(ifp);
|
|
|
|
callout_init(&sc->sc_calib_to, 0);
|
|
callout_setfunc(&sc->sc_calib_to, iwm_calib_timeout, sc);
|
|
callout_init(&sc->sc_led_blink_to, 0);
|
|
callout_setfunc(&sc->sc_led_blink_to, iwm_led_blink_timeout, sc);
|
|
#ifndef IEEE80211_NO_HT
|
|
if (workqueue_create(&sc->sc_setratewq, "iwmsr",
|
|
iwm_setrates_task, sc, PRI_NONE, IPL_NET, 0))
|
|
panic("%s: could not create workqueue: setrates",
|
|
device_xname(self));
|
|
if (workqueue_create(&sc->sc_bawq, "iwmba",
|
|
iwm_ba_task, sc, PRI_NONE, IPL_NET, 0))
|
|
panic("%s: could not create workqueue: blockack",
|
|
device_xname(self));
|
|
if (workqueue_create(&sc->sc_htprowq, "iwmhtpro",
|
|
iwm_htprot_task, sc, PRI_NONE, IPL_NET, 0))
|
|
panic("%s: could not create workqueue: htprot",
|
|
device_xname(self));
|
|
#endif
|
|
|
|
if (pmf_device_register(self, NULL, NULL))
|
|
pmf_class_network_register(self, ifp);
|
|
else
|
|
aprint_error_dev(self, "couldn't establish power handler\n");
|
|
|
|
/*
|
|
* We can't do normal attach before the file system is mounted
|
|
* because we cannot read the MAC address without loading the
|
|
* firmware from disk. So we postpone until mountroot is done.
|
|
* Notably, this will require a full driver unload/load cycle
|
|
* (or reboot) in case the firmware is not present when the
|
|
* hook runs.
|
|
*/
|
|
config_mountroot(self, iwm_attach_hook);
|
|
|
|
return;
|
|
|
|
fail6: iwm_free_rx_ring(sc, &sc->rxq);
|
|
fail5: while (--txq_i >= 0)
|
|
iwm_free_tx_ring(sc, &sc->txq[txq_i]);
|
|
fail4: iwm_dma_contig_free(&sc->sched_dma);
|
|
fail3: if (sc->ict_dma.vaddr != NULL)
|
|
iwm_dma_contig_free(&sc->ict_dma);
|
|
fail2: iwm_dma_contig_free(&sc->kw_dma);
|
|
fail1: iwm_dma_contig_free(&sc->fw_dma);
|
|
}
|
|
|
|
void
|
|
iwm_radiotap_attach(struct iwm_softc *sc)
|
|
{
|
|
struct ifnet *ifp = IC2IFP(&sc->sc_ic);
|
|
|
|
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
|
|
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
|
|
&sc->sc_drvbpf);
|
|
|
|
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
|
|
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
|
|
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWM_RX_RADIOTAP_PRESENT);
|
|
|
|
sc->sc_txtap_len = sizeof sc->sc_txtapu;
|
|
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
|
|
sc->sc_txtap.wt_ihdr.it_present = htole32(IWM_TX_RADIOTAP_PRESENT);
|
|
}
|
|
|
|
#if 0
|
|
static void
|
|
iwm_init_task(void *arg)
|
|
{
|
|
struct iwm_softc *sc = arg;
|
|
struct ifnet *ifp = IC2IFP(&sc->sc_ic);
|
|
int s;
|
|
|
|
rw_enter_write(&sc->ioctl_rwl);
|
|
s = splnet();
|
|
|
|
iwm_stop(ifp, 0);
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
|
|
iwm_init(ifp);
|
|
|
|
splx(s);
|
|
rw_exit(&sc->ioctl_rwl);
|
|
}
|
|
|
|
static void
|
|
iwm_wakeup(struct iwm_softc *sc)
|
|
{
|
|
pcireg_t reg;
|
|
|
|
/* Clear device-specific "PCI retry timeout" register (41h). */
|
|
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
|
|
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
|
|
|
|
iwm_init_task(sc);
|
|
}
|
|
|
|
static int
|
|
iwm_activate(device_t self, enum devact act)
|
|
{
|
|
struct iwm_softc *sc = device_private(self);
|
|
struct ifnet *ifp = IC2IFP(&sc->sc_ic);
|
|
|
|
switch (act) {
|
|
case DVACT_DEACTIVATE:
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
iwm_stop(ifp, 0);
|
|
return 0;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
CFATTACH_DECL_NEW(iwm, sizeof(struct iwm_softc), iwm_match, iwm_attach,
|
|
NULL, NULL);
|
|
|
|
static int
|
|
iwm_sysctl_fw_loaded_handler(SYSCTLFN_ARGS)
|
|
{
|
|
struct sysctlnode node;
|
|
struct iwm_softc *sc;
|
|
int err, t;
|
|
|
|
node = *rnode;
|
|
sc = node.sysctl_data;
|
|
t = ISSET(sc->sc_flags, IWM_FLAG_FW_LOADED) ? 1 : 0;
|
|
node.sysctl_data = &t;
|
|
err = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (err || newp == NULL)
|
|
return err;
|
|
|
|
if (t == 0)
|
|
CLR(sc->sc_flags, IWM_FLAG_FW_LOADED);
|
|
return 0;
|
|
}
|
|
|
|
SYSCTL_SETUP(sysctl_iwm, "sysctl iwm(4) subtree setup")
|
|
{
|
|
const struct sysctlnode *rnode;
|
|
#ifdef IWM_DEBUG
|
|
const struct sysctlnode *cnode;
|
|
#endif /* IWM_DEBUG */
|
|
int rc;
|
|
|
|
if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
|
|
CTLFLAG_PERMANENT, CTLTYPE_NODE, "iwm",
|
|
SYSCTL_DESCR("iwm global controls"),
|
|
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
|
|
goto err;
|
|
|
|
iwm_sysctl_root_num = rnode->sysctl_num;
|
|
|
|
#ifdef IWM_DEBUG
|
|
/* control debugging printfs */
|
|
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
|
|
"debug", SYSCTL_DESCR("Enable debugging output"),
|
|
NULL, 0, &iwm_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
|
|
goto err;
|
|
#endif /* IWM_DEBUG */
|
|
|
|
return;
|
|
|
|
err:
|
|
aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
|
|
}
|