NetBSD/sys/dev/acpi/acpi_cpu_pstate.c
2011-11-15 07:43:37 +00:00

1023 lines
20 KiB
C

/* $NetBSD: acpi_cpu_pstate.c,v 1.53 2011/11/15 07:43:37 jruoho Exp $ */
/*-
* Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen@iki.fi>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.53 2011/11/15 07:43:37 jruoho Exp $");
#include <sys/param.h>
#include <sys/cpufreq.h>
#include <sys/kmem.h>
#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_cpu.h>
#define _COMPONENT ACPI_BUS_COMPONENT
ACPI_MODULE_NAME ("acpi_cpu_pstate")
static ACPI_STATUS acpicpu_pstate_pss(struct acpicpu_softc *);
static ACPI_STATUS acpicpu_pstate_pss_add(struct acpicpu_pstate *,
ACPI_OBJECT *);
static ACPI_STATUS acpicpu_pstate_xpss(struct acpicpu_softc *);
static ACPI_STATUS acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
ACPI_OBJECT *);
static ACPI_STATUS acpicpu_pstate_pct(struct acpicpu_softc *);
static ACPI_STATUS acpicpu_pstate_dep(struct acpicpu_softc *);
static int acpicpu_pstate_max(struct acpicpu_softc *);
static int acpicpu_pstate_min(struct acpicpu_softc *);
static void acpicpu_pstate_change(struct acpicpu_softc *);
static void acpicpu_pstate_reset(struct acpicpu_softc *);
static void acpicpu_pstate_bios(void);
extern struct acpicpu_softc **acpicpu_sc;
void
acpicpu_pstate_attach(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
const char *str;
ACPI_HANDLE tmp;
ACPI_STATUS rv;
rv = acpicpu_pstate_pss(sc);
if (ACPI_FAILURE(rv)) {
str = "_PSS";
goto fail;
}
/*
* Append additional information from the extended _PSS,
* if available. Note that XPSS can not be used on Intel
* systems that use either _PDC or _OSC. From the XPSS
* method specification:
*
* "The platform must not require the use of the
* optional _PDC or _OSC methods to coordinate
* between the operating system and firmware for
* the purposes of enabling specific processor
* power management features or implementations."
*/
if (sc->sc_cap == 0) {
rv = acpicpu_pstate_xpss(sc);
if (ACPI_SUCCESS(rv))
sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
}
rv = acpicpu_pstate_pct(sc);
if (ACPI_FAILURE(rv)) {
str = "_PCT";
goto fail;
}
/*
* The ACPI 3.0 and 4.0 specifications mandate three
* objects for P-states: _PSS, _PCT, and _PPC. A less
* strict wording is however used in the earlier 2.0
* standard, and some systems conforming to ACPI 2.0
* do not have _PPC, the method for dynamic maximum.
*/
rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
if (ACPI_FAILURE(rv))
aprint_debug_dev(self, "_PPC missing\n");
/*
* Carry out MD initialization.
*/
rv = acpicpu_md_pstate_init(sc);
if (rv != 0) {
rv = AE_SUPPORT;
goto fail;
}
/*
* Query the optional _PSD.
*/
rv = acpicpu_pstate_dep(sc);
if (ACPI_SUCCESS(rv))
sc->sc_flags |= ACPICPU_FLAG_P_DEP;
sc->sc_pstate_current = 0;
sc->sc_flags |= ACPICPU_FLAG_P;
acpicpu_pstate_bios();
acpicpu_pstate_reset(sc);
return;
fail:
switch (rv) {
case AE_NOT_FOUND:
return;
case AE_SUPPORT:
aprint_verbose_dev(self, "P-states not supported\n");
return;
default:
aprint_error_dev(self, "failed to evaluate "
"%s: %s\n", str, AcpiFormatException(rv));
}
}
void
acpicpu_pstate_detach(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
size_t size;
if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
return;
(void)acpicpu_md_pstate_stop();
size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
if (sc->sc_pstate != NULL)
kmem_free(sc->sc_pstate, size);
sc->sc_flags &= ~ACPICPU_FLAG_P;
}
void
acpicpu_pstate_start(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
if (acpicpu_md_pstate_start(sc) == 0)
return;
sc->sc_flags &= ~ACPICPU_FLAG_P;
aprint_error_dev(self, "failed to start P-states\n");
}
void
acpicpu_pstate_suspend(void *aux)
{
struct acpicpu_softc *sc;
device_t self = aux;
/*
* Reset any dynamic limits.
*/
sc = device_private(self);
mutex_enter(&sc->sc_mtx);
acpicpu_pstate_reset(sc);
mutex_exit(&sc->sc_mtx);
}
void
acpicpu_pstate_resume(void *aux)
{
/* Nothing. */
}
void
acpicpu_pstate_callback(void *aux)
{
struct acpicpu_softc *sc;
device_t self = aux;
uint32_t freq;
sc = device_private(self);
mutex_enter(&sc->sc_mtx);
acpicpu_pstate_change(sc);
freq = sc->sc_pstate[sc->sc_pstate_max].ps_freq;
if (sc->sc_pstate_saved == 0)
sc->sc_pstate_saved = sc->sc_pstate_current;
if (sc->sc_pstate_saved <= freq) {
freq = sc->sc_pstate_saved;
sc->sc_pstate_saved = 0;
}
mutex_exit(&sc->sc_mtx);
cpufreq_set(sc->sc_ci, freq);
}
static ACPI_STATUS
acpicpu_pstate_pss(struct acpicpu_softc *sc)
{
struct acpicpu_pstate *ps;
ACPI_OBJECT *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
uint32_t count;
uint32_t i, j;
rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
if (ACPI_FAILURE(rv))
return rv;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
sc->sc_pstate_count = obj->Package.Count;
if (sc->sc_pstate_count == 0) {
rv = AE_NOT_EXIST;
goto out;
}
if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
rv = AE_LIMIT;
goto out;
}
sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
sizeof(struct acpicpu_pstate), KM_SLEEP);
if (sc->sc_pstate == NULL) {
rv = AE_NO_MEMORY;
goto out;
}
for (count = i = 0; i < sc->sc_pstate_count; i++) {
ps = &sc->sc_pstate[i];
rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
if (ACPI_FAILURE(rv)) {
aprint_error_dev(sc->sc_dev, "failed to add "
"P-state: %s\n", AcpiFormatException(rv));
ps->ps_freq = 0;
continue;
}
for (j = 0; j < i; j++) {
if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
ps->ps_freq = 0;
break;
}
}
if (ps->ps_freq != 0)
count++;
}
rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
out:
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static ACPI_STATUS
acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
{
ACPI_OBJECT *elm;
int i;
if (obj->Type != ACPI_TYPE_PACKAGE)
return AE_TYPE;
if (obj->Package.Count != 6)
return AE_BAD_DATA;
elm = obj->Package.Elements;
for (i = 0; i < 6; i++) {
if (elm[i].Type != ACPI_TYPE_INTEGER)
return AE_TYPE;
if (elm[i].Integer.Value > UINT32_MAX)
return AE_AML_NUMERIC_OVERFLOW;
}
ps->ps_freq = elm[0].Integer.Value;
ps->ps_power = elm[1].Integer.Value;
ps->ps_latency = elm[2].Integer.Value;
ps->ps_latency_bm = elm[3].Integer.Value;
ps->ps_control = elm[4].Integer.Value;
ps->ps_status = elm[5].Integer.Value;
if (ps->ps_freq == 0 || ps->ps_freq > 9999)
return AE_BAD_DECIMAL_CONSTANT;
/*
* Sanity check also the latency levels. Some systems may
* report a value zero, but we keep one microsecond as the
* lower bound; see for instance AMD family 12h,
*
* Advanced Micro Devices: BIOS and Kernel Developer's
* Guide (BKDG) for AMD Family 12h Processors. Section
* 2.5.3.1.9.2, Revision 3.02, October, 2011.
*/
if (ps->ps_latency == 0 || ps->ps_latency > 1000)
ps->ps_latency = 1;
return AE_OK;
}
static ACPI_STATUS
acpicpu_pstate_xpss(struct acpicpu_softc *sc)
{
struct acpicpu_pstate *ps;
ACPI_OBJECT *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
uint32_t i = 0;
rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
if (ACPI_FAILURE(rv))
goto out;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
if (obj->Package.Count != sc->sc_pstate_count) {
rv = AE_LIMIT;
goto out;
}
while (i < sc->sc_pstate_count) {
ps = &sc->sc_pstate[i];
acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
i++;
}
out:
if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
aprint_error_dev(sc->sc_dev, "failed to evaluate "
"XPSS: %s\n", AcpiFormatException(rv));
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static ACPI_STATUS
acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
{
ACPI_OBJECT *elm;
int i;
if (obj->Type != ACPI_TYPE_PACKAGE)
return AE_TYPE;
if (obj->Package.Count != 8)
return AE_BAD_DATA;
elm = obj->Package.Elements;
for (i = 0; i < 4; i++) {
if (elm[i].Type != ACPI_TYPE_INTEGER)
return AE_TYPE;
if (elm[i].Integer.Value > UINT32_MAX)
return AE_AML_NUMERIC_OVERFLOW;
}
for (; i < 8; i++) {
if (elm[i].Type != ACPI_TYPE_BUFFER)
return AE_TYPE;
if (elm[i].Buffer.Length != 8)
return AE_LIMIT;
}
/*
* Only overwrite the elements that were
* not available from the conventional _PSS.
*/
if (ps->ps_freq == 0)
ps->ps_freq = elm[0].Integer.Value;
if (ps->ps_power == 0)
ps->ps_power = elm[1].Integer.Value;
if (ps->ps_latency == 0)
ps->ps_latency = elm[2].Integer.Value;
if (ps->ps_latency_bm == 0)
ps->ps_latency_bm = elm[3].Integer.Value;
if (ps->ps_control == 0)
ps->ps_control = ACPI_GET64(elm[4].Buffer.Pointer);
if (ps->ps_status == 0)
ps->ps_status = ACPI_GET64(elm[5].Buffer.Pointer);
if (ps->ps_control_mask == 0)
ps->ps_control_mask = ACPI_GET64(elm[6].Buffer.Pointer);
if (ps->ps_status_mask == 0)
ps->ps_status_mask = ACPI_GET64(elm[7].Buffer.Pointer);
ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
if (ps->ps_freq == 0 || ps->ps_freq > 9999)
return AE_BAD_DECIMAL_CONSTANT;
if (ps->ps_latency == 0 || ps->ps_latency > 1000)
ps->ps_latency = 1;
return AE_OK;
}
static ACPI_STATUS
acpicpu_pstate_pct(struct acpicpu_softc *sc)
{
static const size_t size = sizeof(struct acpicpu_reg);
struct acpicpu_reg *reg[2];
struct acpicpu_pstate *ps;
ACPI_OBJECT *elm, *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
uint8_t width;
uint32_t i;
rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
if (ACPI_FAILURE(rv))
return rv;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
if (obj->Package.Count != 2) {
rv = AE_LIMIT;
goto out;
}
for (i = 0; i < 2; i++) {
elm = &obj->Package.Elements[i];
if (elm->Type != ACPI_TYPE_BUFFER) {
rv = AE_TYPE;
goto out;
}
if (size > elm->Buffer.Length) {
rv = AE_AML_BAD_RESOURCE_LENGTH;
goto out;
}
reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
switch (reg[i]->reg_spaceid) {
case ACPI_ADR_SPACE_SYSTEM_IO:
if (reg[i]->reg_addr == 0) {
rv = AE_AML_ILLEGAL_ADDRESS;
goto out;
}
width = reg[i]->reg_bitwidth;
if (width + reg[i]->reg_bitoffset > 32) {
rv = AE_AML_BAD_RESOURCE_VALUE;
goto out;
}
if (width != 8 && width != 16 && width != 32) {
rv = AE_AML_BAD_RESOURCE_VALUE;
goto out;
}
break;
case ACPI_ADR_SPACE_FIXED_HARDWARE:
if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
if (reg[i]->reg_bitwidth != 64) {
rv = AE_AML_BAD_RESOURCE_VALUE;
goto out;
}
if (reg[i]->reg_bitoffset != 0) {
rv = AE_AML_BAD_RESOURCE_VALUE;
goto out;
}
break;
}
if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
rv = AE_SUPPORT;
goto out;
}
break;
default:
rv = AE_AML_INVALID_SPACE_ID;
goto out;
}
}
if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
rv = AE_AML_INVALID_SPACE_ID;
goto out;
}
(void)memcpy(&sc->sc_pstate_control, reg[0], size);
(void)memcpy(&sc->sc_pstate_status, reg[1], size);
if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
/*
* At the very least, mandate that
* XPSS supplies the control address.
*/
if (sc->sc_pstate_control.reg_addr == 0) {
rv = AE_AML_BAD_RESOURCE_LENGTH;
goto out;
}
/*
* If XPSS is present, copy the supplied
* MSR addresses to the P-state structures.
*/
for (i = 0; i < sc->sc_pstate_count; i++) {
ps = &sc->sc_pstate[i];
if (ps->ps_freq == 0)
continue;
ps->ps_status_addr = sc->sc_pstate_status.reg_addr;
ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
}
}
out:
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static ACPI_STATUS
acpicpu_pstate_dep(struct acpicpu_softc *sc)
{
ACPI_OBJECT *elm, *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
uint32_t val;
uint8_t i, n;
rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSD", &buf);
if (ACPI_FAILURE(rv))
goto out;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
if (obj->Package.Count != 1) {
rv = AE_LIMIT;
goto out;
}
elm = &obj->Package.Elements[0];
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
n = elm->Package.Count;
if (n != 5) {
rv = AE_LIMIT;
goto out;
}
elm = elm->Package.Elements;
for (i = 0; i < n; i++) {
if (elm[i].Type != ACPI_TYPE_INTEGER) {
rv = AE_TYPE;
goto out;
}
if (elm[i].Integer.Value > UINT32_MAX) {
rv = AE_AML_NUMERIC_OVERFLOW;
goto out;
}
}
val = elm[1].Integer.Value;
if (val != 0)
aprint_debug_dev(sc->sc_dev, "invalid revision in _PSD\n");
val = elm[3].Integer.Value;
if (val < ACPICPU_DEP_SW_ALL || val > ACPICPU_DEP_HW_ALL) {
rv = AE_AML_BAD_RESOURCE_VALUE;
goto out;
}
val = elm[4].Integer.Value;
if (val > sc->sc_ncpus) {
rv = AE_BAD_VALUE;
goto out;
}
sc->sc_pstate_dep.dep_domain = elm[2].Integer.Value;
sc->sc_pstate_dep.dep_type = elm[3].Integer.Value;
sc->sc_pstate_dep.dep_ncpus = elm[4].Integer.Value;
out:
if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
aprint_debug_dev(sc->sc_dev, "failed to evaluate "
"_PSD: %s\n", AcpiFormatException(rv));
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static int
acpicpu_pstate_max(struct acpicpu_softc *sc)
{
ACPI_INTEGER val;
ACPI_STATUS rv;
/*
* Evaluate the currently highest P-state that can be used.
* If available, we can use either this state or any lower
* power (i.e. higher numbered) state from the _PSS object.
* Note that the return value must match the _OST parameter.
*/
rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
if (sc->sc_pstate[val].ps_freq != 0) {
sc->sc_pstate_max = val;
return 0;
}
}
return 1;
}
static int
acpicpu_pstate_min(struct acpicpu_softc *sc)
{
ACPI_INTEGER val;
ACPI_STATUS rv;
/*
* The _PDL object defines the minimum when passive cooling
* is being performed. If available, we can use the returned
* state or any higher power (i.e. lower numbered) state.
*/
rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
if (sc->sc_pstate[val].ps_freq == 0)
return 1;
if (val >= sc->sc_pstate_max) {
sc->sc_pstate_min = val;
return 0;
}
}
return 1;
}
static void
acpicpu_pstate_change(struct acpicpu_softc *sc)
{
static ACPI_STATUS rv = AE_OK;
ACPI_OBJECT_LIST arg;
ACPI_OBJECT obj[2];
static int val = 0;
acpicpu_pstate_reset(sc);
/*
* Cache the checks as the optional
* _PDL and _OST are rarely present.
*/
if (val == 0)
val = acpicpu_pstate_min(sc);
arg.Count = 2;
arg.Pointer = obj;
obj[0].Type = ACPI_TYPE_INTEGER;
obj[1].Type = ACPI_TYPE_INTEGER;
obj[0].Integer.Value = ACPICPU_P_NOTIFY;
obj[1].Integer.Value = acpicpu_pstate_max(sc);
if (ACPI_FAILURE(rv))
return;
rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
}
static void
acpicpu_pstate_reset(struct acpicpu_softc *sc)
{
sc->sc_pstate_max = 0;
sc->sc_pstate_min = sc->sc_pstate_count - 1;
}
static void
acpicpu_pstate_bios(void)
{
const uint8_t val = AcpiGbl_FADT.PstateControl;
const uint32_t addr = AcpiGbl_FADT.SmiCommand;
if (addr == 0 || val == 0)
return;
(void)AcpiOsWritePort(addr, val, 8);
}
void
acpicpu_pstate_get(void *aux, void *cpu_freq)
{
struct acpicpu_pstate *ps = NULL;
struct cpu_info *ci = curcpu();
struct acpicpu_softc *sc;
uint32_t freq, i, val = 0;
uint64_t addr;
uint8_t width;
int rv;
sc = acpicpu_sc[ci->ci_acpiid];
if (__predict_false(sc == NULL)) {
rv = ENXIO;
goto fail;
}
if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
rv = ENODEV;
goto fail;
}
mutex_enter(&sc->sc_mtx);
/*
* Use the cached value, if available.
*/
if (sc->sc_pstate_current != 0) {
*(uint32_t *)cpu_freq = sc->sc_pstate_current;
mutex_exit(&sc->sc_mtx);
return;
}
mutex_exit(&sc->sc_mtx);
switch (sc->sc_pstate_status.reg_spaceid) {
case ACPI_ADR_SPACE_FIXED_HARDWARE:
rv = acpicpu_md_pstate_get(sc, &freq);
if (__predict_false(rv != 0))
goto fail;
break;
case ACPI_ADR_SPACE_SYSTEM_IO:
addr = sc->sc_pstate_status.reg_addr;
width = sc->sc_pstate_status.reg_bitwidth;
(void)AcpiOsReadPort(addr, &val, width);
if (val == 0) {
rv = EIO;
goto fail;
}
for (i = 0; i < sc->sc_pstate_count; i++) {
if (sc->sc_pstate[i].ps_freq == 0)
continue;
if (val == sc->sc_pstate[i].ps_status) {
ps = &sc->sc_pstate[i];
break;
}
}
if (ps == NULL) {
rv = EIO;
goto fail;
}
freq = ps->ps_freq;
break;
default:
rv = ENOTTY;
goto fail;
}
mutex_enter(&sc->sc_mtx);
sc->sc_pstate_current = freq;
*(uint32_t *)cpu_freq = freq;
mutex_exit(&sc->sc_mtx);
return;
fail:
aprint_error_dev(sc->sc_dev, "failed "
"to get frequency (err %d)\n", rv);
mutex_enter(&sc->sc_mtx);
sc->sc_pstate_current = 0;
*(uint32_t *)cpu_freq = 0;
mutex_exit(&sc->sc_mtx);
}
void
acpicpu_pstate_set(void *aux, void *cpu_freq)
{
struct acpicpu_pstate *ps = NULL;
struct cpu_info *ci = curcpu();
struct acpicpu_softc *sc;
uint32_t freq, i, val;
uint64_t addr;
uint8_t width;
int rv;
freq = *(uint32_t *)cpu_freq;
sc = acpicpu_sc[ci->ci_acpiid];
if (__predict_false(sc == NULL)) {
rv = ENXIO;
goto fail;
}
if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
rv = ENODEV;
goto fail;
}
mutex_enter(&sc->sc_mtx);
if (sc->sc_pstate_current == freq) {
mutex_exit(&sc->sc_mtx);
return;
}
/*
* Verify that the requested frequency is available.
*
* The access needs to be protected since the currently
* available maximum and minimum may change dynamically.
*/
for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
if (__predict_false(sc->sc_pstate[i].ps_freq == 0))
continue;
if (sc->sc_pstate[i].ps_freq == freq) {
ps = &sc->sc_pstate[i];
break;
}
}
mutex_exit(&sc->sc_mtx);
if (__predict_false(ps == NULL)) {
rv = EINVAL;
goto fail;
}
switch (sc->sc_pstate_control.reg_spaceid) {
case ACPI_ADR_SPACE_FIXED_HARDWARE:
rv = acpicpu_md_pstate_set(ps);
if (__predict_false(rv != 0))
goto fail;
break;
case ACPI_ADR_SPACE_SYSTEM_IO:
addr = sc->sc_pstate_control.reg_addr;
width = sc->sc_pstate_control.reg_bitwidth;
(void)AcpiOsWritePort(addr, ps->ps_control, width);
addr = sc->sc_pstate_status.reg_addr;
width = sc->sc_pstate_status.reg_bitwidth;
/*
* Some systems take longer to respond
* than the reported worst-case latency.
*/
for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
(void)AcpiOsReadPort(addr, &val, width);
if (val == ps->ps_status)
break;
DELAY(ps->ps_latency);
}
if (i == ACPICPU_P_STATE_RETRY) {
rv = EAGAIN;
goto fail;
}
break;
default:
rv = ENOTTY;
goto fail;
}
mutex_enter(&sc->sc_mtx);
ps->ps_evcnt.ev_count++;
sc->sc_pstate_current = freq;
mutex_exit(&sc->sc_mtx);
return;
fail:
if (rv != EINVAL)
aprint_error_dev(sc->sc_dev, "failed to set "
"frequency to %u (err %d)\n", freq, rv);
mutex_enter(&sc->sc_mtx);
sc->sc_pstate_current = 0;
mutex_exit(&sc->sc_mtx);
}