NetBSD/sys/net/radix.c
2009-03-15 20:30:05 +00:00

1078 lines
26 KiB
C

/* $NetBSD: radix.c,v 1.42 2009/03/15 20:30:05 cegger Exp $ */
/*
* Copyright (c) 1988, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)radix.c 8.6 (Berkeley) 10/17/95
*/
/*
* Routines to build and maintain radix trees for routing lookups.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.42 2009/03/15 20:30:05 cegger Exp $");
#ifndef _NET_RADIX_H_
#include <sys/param.h>
#ifdef _KERNEL
#include "opt_inet.h"
#include <sys/systm.h>
#include <sys/malloc.h>
#define M_DONTWAIT M_NOWAIT
#include <sys/domain.h>
#else
#include <stdlib.h>
#endif
#include <machine/stdarg.h>
#include <sys/syslog.h>
#include <net/radix.h>
#endif
typedef void (*rn_printer_t)(void *, const char *fmt, ...);
int max_keylen;
struct radix_mask *rn_mkfreelist;
struct radix_node_head *mask_rnhead;
static char *addmask_key;
static const char normal_chars[] =
{0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
static char *rn_zeros, *rn_ones;
#define rn_masktop (mask_rnhead->rnh_treetop)
static int rn_satisfies_leaf(const char *, struct radix_node *, int);
static int rn_lexobetter(const void *, const void *);
static struct radix_mask *rn_new_radix_mask(struct radix_node *,
struct radix_mask *);
static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
void *);
static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
void *);
static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
const char *);
#define SUBTREE_OPEN "[ "
#define SUBTREE_CLOSE " ]"
#ifdef RN_DEBUG
static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
#endif /* RN_DEBUG */
/*
* The data structure for the keys is a radix tree with one way
* branching removed. The index rn_b at an internal node n represents a bit
* position to be tested. The tree is arranged so that all descendants
* of a node n have keys whose bits all agree up to position rn_b - 1.
* (We say the index of n is rn_b.)
*
* There is at least one descendant which has a one bit at position rn_b,
* and at least one with a zero there.
*
* A route is determined by a pair of key and mask. We require that the
* bit-wise logical and of the key and mask to be the key.
* We define the index of a route to associated with the mask to be
* the first bit number in the mask where 0 occurs (with bit number 0
* representing the highest order bit).
*
* We say a mask is normal if every bit is 0, past the index of the mask.
* If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
* and m is a normal mask, then the route applies to every descendant of n.
* If the index(m) < rn_b, this implies the trailing last few bits of k
* before bit b are all 0, (and hence consequently true of every descendant
* of n), so the route applies to all descendants of the node as well.
*
* Similar logic shows that a non-normal mask m such that
* index(m) <= index(n) could potentially apply to many children of n.
* Thus, for each non-host route, we attach its mask to a list at an internal
* node as high in the tree as we can go.
*
* The present version of the code makes use of normal routes in short-
* circuiting an explicit mask and compare operation when testing whether
* a key satisfies a normal route, and also in remembering the unique leaf
* that governs a subtree.
*/
struct radix_node *
rn_search(
const void *v_arg,
struct radix_node *head)
{
const u_char * const v = v_arg;
struct radix_node *x;
for (x = head; x->rn_b >= 0;) {
if (x->rn_bmask & v[x->rn_off])
x = x->rn_r;
else
x = x->rn_l;
}
return x;
}
struct radix_node *
rn_search_m(
const void *v_arg,
struct radix_node *head,
const void *m_arg)
{
struct radix_node *x;
const u_char * const v = v_arg;
const u_char * const m = m_arg;
for (x = head; x->rn_b >= 0;) {
if ((x->rn_bmask & m[x->rn_off]) &&
(x->rn_bmask & v[x->rn_off]))
x = x->rn_r;
else
x = x->rn_l;
}
return x;
}
int
rn_refines(
const void *m_arg,
const void *n_arg)
{
const char *m = m_arg;
const char *n = n_arg;
const char *lim = n + *(const u_char *)n;
const char *lim2 = lim;
int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
int masks_are_equal = 1;
if (longer > 0)
lim -= longer;
while (n < lim) {
if (*n & ~(*m))
return 0;
if (*n++ != *m++)
masks_are_equal = 0;
}
while (n < lim2)
if (*n++)
return 0;
if (masks_are_equal && (longer < 0))
for (lim2 = m - longer; m < lim2; )
if (*m++)
return 1;
return !masks_are_equal;
}
struct radix_node *
rn_lookup(
const void *v_arg,
const void *m_arg,
struct radix_node_head *head)
{
struct radix_node *x;
const char *netmask = NULL;
if (m_arg) {
if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
return NULL;
netmask = x->rn_key;
}
x = rn_match(v_arg, head);
if (x != NULL && netmask != NULL) {
while (x != NULL && x->rn_mask != netmask)
x = x->rn_dupedkey;
}
return x;
}
static int
rn_satisfies_leaf(
const char *trial,
struct radix_node *leaf,
int skip)
{
const char *cp = trial;
const char *cp2 = leaf->rn_key;
const char *cp3 = leaf->rn_mask;
const char *cplim;
int length = min(*(const u_char *)cp, *(const u_char *)cp2);
if (cp3 == 0)
cp3 = rn_ones;
else
length = min(length, *(const u_char *)cp3);
cplim = cp + length; cp3 += skip; cp2 += skip;
for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
if ((*cp ^ *cp2) & *cp3)
return 0;
return 1;
}
struct radix_node *
rn_match(
const void *v_arg,
struct radix_node_head *head)
{
const char * const v = v_arg;
struct radix_node *t = head->rnh_treetop;
struct radix_node *top = t;
struct radix_node *x;
struct radix_node *saved_t;
const char *cp = v;
const char *cp2;
const char *cplim;
int off = t->rn_off;
int vlen = *(const u_char *)cp;
int matched_off;
int test, b, rn_b;
/*
* Open code rn_search(v, top) to avoid overhead of extra
* subroutine call.
*/
for (; t->rn_b >= 0; ) {
if (t->rn_bmask & cp[t->rn_off])
t = t->rn_r;
else
t = t->rn_l;
}
/*
* See if we match exactly as a host destination
* or at least learn how many bits match, for normal mask finesse.
*
* It doesn't hurt us to limit how many bytes to check
* to the length of the mask, since if it matches we had a genuine
* match and the leaf we have is the most specific one anyway;
* if it didn't match with a shorter length it would fail
* with a long one. This wins big for class B&C netmasks which
* are probably the most common case...
*/
if (t->rn_mask)
vlen = *(const u_char *)t->rn_mask;
cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
for (; cp < cplim; cp++, cp2++)
if (*cp != *cp2)
goto on1;
/*
* This extra grot is in case we are explicitly asked
* to look up the default. Ugh!
*/
if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
t = t->rn_dupedkey;
return t;
on1:
test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
for (b = 7; (test >>= 1) > 0;)
b--;
matched_off = cp - v;
b += matched_off << 3;
rn_b = -1 - b;
/*
* If there is a host route in a duped-key chain, it will be first.
*/
if ((saved_t = t)->rn_mask == 0)
t = t->rn_dupedkey;
for (; t; t = t->rn_dupedkey)
/*
* Even if we don't match exactly as a host,
* we may match if the leaf we wound up at is
* a route to a net.
*/
if (t->rn_flags & RNF_NORMAL) {
if (rn_b <= t->rn_b)
return t;
} else if (rn_satisfies_leaf(v, t, matched_off))
return t;
t = saved_t;
/* start searching up the tree */
do {
struct radix_mask *m;
t = t->rn_p;
m = t->rn_mklist;
if (m) {
/*
* If non-contiguous masks ever become important
* we can restore the masking and open coding of
* the search and satisfaction test and put the
* calculation of "off" back before the "do".
*/
do {
if (m->rm_flags & RNF_NORMAL) {
if (rn_b <= m->rm_b)
return m->rm_leaf;
} else {
off = min(t->rn_off, matched_off);
x = rn_search_m(v, t, m->rm_mask);
while (x && x->rn_mask != m->rm_mask)
x = x->rn_dupedkey;
if (x && rn_satisfies_leaf(v, x, off))
return x;
}
m = m->rm_mklist;
} while (m);
}
} while (t != top);
return NULL;
}
static void
rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
const char *delim)
{
(*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
rn->rn_l, rn->rn_r);
}
#ifdef RN_DEBUG
int rn_debug = 1;
static void
rn_dbg_print(void *arg, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vlog(LOG_DEBUG, fmt, ap);
va_end(ap);
}
static void
rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
{
struct radix_node *dup, *rn;
const char *delim;
if (printer == NULL)
return;
rn = rn_walkfirst(h->rnh_treetop, printer, arg);
for (;;) {
/* Process leaves */
delim = "";
for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
if ((dup->rn_flags & RNF_ROOT) != 0)
continue;
rn_nodeprint(dup, printer, arg, delim);
delim = ", ";
}
rn = rn_walknext(rn, printer, arg);
if (rn->rn_flags & RNF_ROOT)
return;
}
/* NOTREACHED */
}
#define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn))
#endif /* RN_DEBUG */
struct radix_node *
rn_newpair(
const void *v,
int b,
struct radix_node nodes[2])
{
struct radix_node *tt = nodes;
struct radix_node *t = tt + 1;
t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
t->rn_l = tt; t->rn_off = b >> 3;
tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
tt->rn_flags = t->rn_flags = RNF_ACTIVE;
return t;
}
struct radix_node *
rn_insert(
const void *v_arg,
struct radix_node_head *head,
int *dupentry,
struct radix_node nodes[2])
{
struct radix_node *top = head->rnh_treetop;
struct radix_node *t = rn_search(v_arg, top);
struct radix_node *tt;
const char *v = v_arg;
int head_off = top->rn_off;
int vlen = *((const u_char *)v);
const char *cp = v + head_off;
int b;
/*
* Find first bit at which v and t->rn_key differ
*/
{
const char *cp2 = t->rn_key + head_off;
const char *cplim = v + vlen;
int cmp_res;
while (cp < cplim)
if (*cp2++ != *cp++)
goto on1;
*dupentry = 1;
return t;
on1:
*dupentry = 0;
cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
for (b = (cp - v) << 3; cmp_res; b--)
cmp_res >>= 1;
}
{
struct radix_node *p, *x = top;
cp = v;
do {
p = x;
if (cp[x->rn_off] & x->rn_bmask)
x = x->rn_r;
else x = x->rn_l;
} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
#ifdef RN_DEBUG
if (rn_debug)
log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
#endif
t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
if ((cp[p->rn_off] & p->rn_bmask) == 0)
p->rn_l = t;
else
p->rn_r = t;
x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
if ((cp[t->rn_off] & t->rn_bmask) == 0) {
t->rn_r = x;
} else {
t->rn_r = tt; t->rn_l = x;
}
#ifdef RN_DEBUG
if (rn_debug) {
log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
traverse(head, p);
}
#endif /* RN_DEBUG */
}
return tt;
}
struct radix_node *
rn_addmask(
const void *n_arg,
int search,
int skip)
{
const char *netmask = n_arg;
const char *cp;
const char *cplim;
struct radix_node *x;
struct radix_node *saved_x;
int b = 0, mlen, j;
int maskduplicated, m0, isnormal;
static int last_zeroed = 0;
if ((mlen = *(const u_char *)netmask) > max_keylen)
mlen = max_keylen;
if (skip == 0)
skip = 1;
if (mlen <= skip)
return mask_rnhead->rnh_nodes;
if (skip > 1)
memmove(addmask_key + 1, rn_ones + 1, skip - 1);
if ((m0 = mlen) > skip)
memmove(addmask_key + skip, netmask + skip, mlen - skip);
/*
* Trim trailing zeroes.
*/
for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
cp--;
mlen = cp - addmask_key;
if (mlen <= skip) {
if (m0 >= last_zeroed)
last_zeroed = mlen;
return mask_rnhead->rnh_nodes;
}
if (m0 < last_zeroed)
memset(addmask_key + m0, 0, last_zeroed - m0);
*addmask_key = last_zeroed = mlen;
x = rn_search(addmask_key, rn_masktop);
if (memcmp(addmask_key, x->rn_key, mlen) != 0)
x = 0;
if (x || search)
return x;
R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
if ((saved_x = x) == NULL)
return NULL;
memset(x, 0, max_keylen + 2 * sizeof (*x));
cp = netmask = (void *)(x + 2);
memmove(x + 2, addmask_key, mlen);
x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
if (maskduplicated) {
log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
Free(saved_x);
return x;
}
/*
* Calculate index of mask, and check for normalcy.
*/
cplim = netmask + mlen; isnormal = 1;
for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
cp++;
if (cp != cplim) {
for (j = 0x80; (j & *cp) != 0; j >>= 1)
b++;
if (*cp != normal_chars[b] || cp != (cplim - 1))
isnormal = 0;
}
b += (cp - netmask) << 3;
x->rn_b = -1 - b;
if (isnormal)
x->rn_flags |= RNF_NORMAL;
return x;
}
static int /* XXX: arbitrary ordering for non-contiguous masks */
rn_lexobetter(
const void *m_arg,
const void *n_arg)
{
const u_char *mp = m_arg;
const u_char *np = n_arg;
const u_char *lim;
if (*mp > *np)
return 1; /* not really, but need to check longer one first */
if (*mp == *np)
for (lim = mp + *mp; mp < lim;)
if (*mp++ > *np++)
return 1;
return 0;
}
static struct radix_mask *
rn_new_radix_mask(
struct radix_node *tt,
struct radix_mask *next)
{
struct radix_mask *m;
MKGet(m);
if (m == NULL) {
log(LOG_ERR, "Mask for route not entered\n");
return NULL;
}
memset(m, 0, sizeof(*m));
m->rm_b = tt->rn_b;
m->rm_flags = tt->rn_flags;
if (tt->rn_flags & RNF_NORMAL)
m->rm_leaf = tt;
else
m->rm_mask = tt->rn_mask;
m->rm_mklist = next;
tt->rn_mklist = m;
return m;
}
struct radix_node *
rn_addroute(
const void *v_arg,
const void *n_arg,
struct radix_node_head *head,
struct radix_node treenodes[2])
{
const char *v = v_arg, *netmask = n_arg;
struct radix_node *t, *x = NULL, *tt;
struct radix_node *saved_tt, *top = head->rnh_treetop;
short b = 0, b_leaf = 0;
int keyduplicated;
const char *mmask;
struct radix_mask *m, **mp;
/*
* In dealing with non-contiguous masks, there may be
* many different routes which have the same mask.
* We will find it useful to have a unique pointer to
* the mask to speed avoiding duplicate references at
* nodes and possibly save time in calculating indices.
*/
if (netmask != NULL) {
if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
return NULL;
b_leaf = x->rn_b;
b = -1 - x->rn_b;
netmask = x->rn_key;
}
/*
* Deal with duplicated keys: attach node to previous instance
*/
saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
if (keyduplicated) {
for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
if (tt->rn_mask == netmask)
return NULL;
if (netmask == NULL ||
(tt->rn_mask != NULL &&
(b_leaf < tt->rn_b || /* index(netmask) > node */
rn_refines(netmask, tt->rn_mask) ||
rn_lexobetter(netmask, tt->rn_mask))))
break;
}
/*
* If the mask is not duplicated, we wouldn't
* find it among possible duplicate key entries
* anyway, so the above test doesn't hurt.
*
* We sort the masks for a duplicated key the same way as
* in a masklist -- most specific to least specific.
* This may require the unfortunate nuisance of relocating
* the head of the list.
*
* We also reverse, or doubly link the list through the
* parent pointer.
*/
if (tt == saved_tt) {
struct radix_node *xx = x;
/* link in at head of list */
(tt = treenodes)->rn_dupedkey = t;
tt->rn_flags = t->rn_flags;
tt->rn_p = x = t->rn_p;
t->rn_p = tt;
if (x->rn_l == t)
x->rn_l = tt;
else
x->rn_r = tt;
saved_tt = tt;
x = xx;
} else {
(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
t->rn_dupedkey = tt;
tt->rn_p = t;
if (tt->rn_dupedkey)
tt->rn_dupedkey->rn_p = tt;
}
tt->rn_key = v;
tt->rn_b = -1;
tt->rn_flags = RNF_ACTIVE;
}
/*
* Put mask in tree.
*/
if (netmask != NULL) {
tt->rn_mask = netmask;
tt->rn_b = x->rn_b;
tt->rn_flags |= x->rn_flags & RNF_NORMAL;
}
t = saved_tt->rn_p;
if (keyduplicated)
goto on2;
b_leaf = -1 - t->rn_b;
if (t->rn_r == saved_tt)
x = t->rn_l;
else
x = t->rn_r;
/* Promote general routes from below */
if (x->rn_b < 0) {
for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
x->rn_mklist == NULL) {
*mp = m = rn_new_radix_mask(x, NULL);
if (m != NULL)
mp = &m->rm_mklist;
}
}
} else if (x->rn_mklist != NULL) {
/*
* Skip over masks whose index is > that of new node
*/
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
if (m->rm_b >= b_leaf)
break;
t->rn_mklist = m;
*mp = NULL;
}
on2:
/* Add new route to highest possible ancestor's list */
if (netmask == NULL || b > t->rn_b)
return tt; /* can't lift at all */
b_leaf = tt->rn_b;
do {
x = t;
t = t->rn_p;
} while (b <= t->rn_b && x != top);
/*
* Search through routes associated with node to
* insert new route according to index.
* Need same criteria as when sorting dupedkeys to avoid
* double loop on deletion.
*/
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
if (m->rm_b < b_leaf)
continue;
if (m->rm_b > b_leaf)
break;
if (m->rm_flags & RNF_NORMAL) {
mmask = m->rm_leaf->rn_mask;
if (tt->rn_flags & RNF_NORMAL) {
log(LOG_ERR, "Non-unique normal route,"
" mask not entered\n");
return tt;
}
} else
mmask = m->rm_mask;
if (mmask == netmask) {
m->rm_refs++;
tt->rn_mklist = m;
return tt;
}
if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
break;
}
*mp = rn_new_radix_mask(tt, *mp);
return tt;
}
struct radix_node *
rn_delete1(
const void *v_arg,
const void *netmask_arg,
struct radix_node_head *head,
struct radix_node *rn)
{
struct radix_node *t, *p, *x, *tt;
struct radix_mask *m, *saved_m, **mp;
struct radix_node *dupedkey, *saved_tt, *top;
const char *v, *netmask;
int b, head_off, vlen;
v = v_arg;
netmask = netmask_arg;
x = head->rnh_treetop;
tt = rn_search(v, x);
head_off = x->rn_off;
vlen = *(const u_char *)v;
saved_tt = tt;
top = x;
if (tt == NULL ||
memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
return NULL;
/*
* Delete our route from mask lists.
*/
if (netmask != NULL) {
if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
return NULL;
netmask = x->rn_key;
while (tt->rn_mask != netmask)
if ((tt = tt->rn_dupedkey) == NULL)
return NULL;
}
if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
goto on1;
if (tt->rn_flags & RNF_NORMAL) {
if (m->rm_leaf != tt || m->rm_refs > 0) {
log(LOG_ERR, "rn_delete: inconsistent annotation\n");
return NULL; /* dangling ref could cause disaster */
}
} else {
if (m->rm_mask != tt->rn_mask) {
log(LOG_ERR, "rn_delete: inconsistent annotation\n");
goto on1;
}
if (--m->rm_refs >= 0)
goto on1;
}
b = -1 - tt->rn_b;
t = saved_tt->rn_p;
if (b > t->rn_b)
goto on1; /* Wasn't lifted at all */
do {
x = t;
t = t->rn_p;
} while (b <= t->rn_b && x != top);
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
if (m == saved_m) {
*mp = m->rm_mklist;
MKFree(m);
break;
}
}
if (m == NULL) {
log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
if (tt->rn_flags & RNF_NORMAL)
return NULL; /* Dangling ref to us */
}
on1:
/*
* Eliminate us from tree
*/
if (tt->rn_flags & RNF_ROOT)
return NULL;
#ifdef RN_DEBUG
if (rn_debug)
log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
#endif
t = tt->rn_p;
dupedkey = saved_tt->rn_dupedkey;
if (dupedkey != NULL) {
/*
* Here, tt is the deletion target, and
* saved_tt is the head of the dupedkey chain.
*/
if (tt == saved_tt) {
x = dupedkey;
x->rn_p = t;
if (t->rn_l == tt)
t->rn_l = x;
else
t->rn_r = x;
} else {
/* find node in front of tt on the chain */
for (x = p = saved_tt;
p != NULL && p->rn_dupedkey != tt;)
p = p->rn_dupedkey;
if (p != NULL) {
p->rn_dupedkey = tt->rn_dupedkey;
if (tt->rn_dupedkey != NULL)
tt->rn_dupedkey->rn_p = p;
} else
log(LOG_ERR, "rn_delete: couldn't find us\n");
}
t = tt + 1;
if (t->rn_flags & RNF_ACTIVE) {
*++x = *t;
p = t->rn_p;
if (p->rn_l == t)
p->rn_l = x;
else
p->rn_r = x;
x->rn_l->rn_p = x;
x->rn_r->rn_p = x;
}
goto out;
}
if (t->rn_l == tt)
x = t->rn_r;
else
x = t->rn_l;
p = t->rn_p;
if (p->rn_r == t)
p->rn_r = x;
else
p->rn_l = x;
x->rn_p = p;
/*
* Demote routes attached to us.
*/
if (t->rn_mklist == NULL)
;
else if (x->rn_b >= 0) {
for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
;
*mp = t->rn_mklist;
} else {
/* If there are any key,mask pairs in a sibling
duped-key chain, some subset will appear sorted
in the same order attached to our mklist */
for (m = t->rn_mklist;
m != NULL && x != NULL;
x = x->rn_dupedkey) {
if (m == x->rn_mklist) {
struct radix_mask *mm = m->rm_mklist;
x->rn_mklist = NULL;
if (--(m->rm_refs) < 0)
MKFree(m);
m = mm;
}
}
if (m != NULL) {
log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
m, x);
}
}
/*
* We may be holding an active internal node in the tree.
*/
x = tt + 1;
if (t != x) {
*t = *x;
t->rn_l->rn_p = t;
t->rn_r->rn_p = t;
p = x->rn_p;
if (p->rn_l == x)
p->rn_l = t;
else
p->rn_r = t;
}
out:
#ifdef RN_DEBUG
if (rn_debug) {
log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
traverse(head, tt);
}
#endif /* RN_DEBUG */
tt->rn_flags &= ~RNF_ACTIVE;
tt[1].rn_flags &= ~RNF_ACTIVE;
return tt;
}
struct radix_node *
rn_delete(
const void *v_arg,
const void *netmask_arg,
struct radix_node_head *head)
{
return rn_delete1(v_arg, netmask_arg, head, NULL);
}
static struct radix_node *
rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
{
/* If at right child go back up, otherwise, go right */
while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
if (printer != NULL)
(*printer)(arg, SUBTREE_CLOSE);
rn = rn->rn_p;
}
if (printer)
rn_nodeprint(rn->rn_p, printer, arg, "");
/* Find the next *leaf* since next node might vanish, too */
for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
if (printer != NULL)
(*printer)(arg, SUBTREE_OPEN);
rn = rn->rn_l;
}
return rn;
}
static struct radix_node *
rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
{
/* First time through node, go left */
while (rn->rn_b >= 0) {
if (printer != NULL)
(*printer)(arg, SUBTREE_OPEN);
rn = rn->rn_l;
}
return rn;
}
int
rn_walktree(
struct radix_node_head *h,
int (*f)(struct radix_node *, void *),
void *w)
{
int error;
struct radix_node *base, *next, *rn;
/*
* This gets complicated because we may delete the node
* while applying the function f to it, so we need to calculate
* the successor node in advance.
*/
rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
for (;;) {
base = rn;
next = rn_walknext(rn, NULL, NULL);
/* Process leaves */
while ((rn = base) != NULL) {
base = rn->rn_dupedkey;
if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
return error;
}
rn = next;
if (rn->rn_flags & RNF_ROOT)
return 0;
}
/* NOTREACHED */
}
int
rn_inithead(void **head, int off)
{
struct radix_node_head *rnh;
if (*head != NULL)
return 1;
R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
if (rnh == NULL)
return 0;
*head = rnh;
return rn_inithead0(rnh, off);
}
int
rn_inithead0(struct radix_node_head *rnh, int off)
{
struct radix_node *t;
struct radix_node *tt;
struct radix_node *ttt;
memset(rnh, 0, sizeof(*rnh));
t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
ttt = rnh->rnh_nodes + 2;
t->rn_r = ttt;
t->rn_p = t;
tt = t->rn_l;
tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
tt->rn_b = -1 - off;
*ttt = *tt;
ttt->rn_key = rn_ones;
rnh->rnh_addaddr = rn_addroute;
rnh->rnh_deladdr = rn_delete;
rnh->rnh_matchaddr = rn_match;
rnh->rnh_lookup = rn_lookup;
rnh->rnh_treetop = t;
return 1;
}
void
rn_init(void)
{
char *cp, *cplim;
#ifdef _KERNEL
static int initialized;
__link_set_decl(domains, struct domain);
struct domain *const *dpp;
if (initialized)
return;
initialized = 1;
__link_set_foreach(dpp, domains) {
if ((*dpp)->dom_maxrtkey > max_keylen)
max_keylen = (*dpp)->dom_maxrtkey;
}
#endif
if (max_keylen == 0) {
log(LOG_ERR,
"rn_init: radix functions require max_keylen be set\n");
return;
}
R_Malloc(rn_zeros, char *, 3 * max_keylen);
if (rn_zeros == NULL)
panic("rn_init");
memset(rn_zeros, 0, 3 * max_keylen);
rn_ones = cp = rn_zeros + max_keylen;
addmask_key = cplim = rn_ones + max_keylen;
while (cp < cplim)
*cp++ = -1;
if (rn_inithead((void *)&mask_rnhead, 0) == 0)
panic("rn_init 2");
}