NetBSD/sys/netinet/ip_mroute.c

1997 lines
44 KiB
C

/* $NetBSD: ip_mroute.c,v 1.42 1999/03/27 21:47:59 nathanw Exp $ */
/*
* IP multicast forwarding procedures
*
* Written by David Waitzman, BBN Labs, August 1988.
* Modified by Steve Deering, Stanford, February 1989.
* Modified by Mark J. Steiglitz, Stanford, May, 1991
* Modified by Van Jacobson, LBL, January 1993
* Modified by Ajit Thyagarajan, PARC, August 1993
* Modified by Bill Fenner, PARC, April 1994
* Modified by Charles M. Hannum, NetBSD, May 1995.
*
* MROUTING Revision: 1.2
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/route.h>
#include <net/raw_cb.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/in_pcb.h>
#include <netinet/udp.h>
#include <netinet/igmp.h>
#include <netinet/igmp_var.h>
#include <netinet/ip_mroute.h>
#include <machine/stdarg.h>
#define IP_MULTICASTOPTS 0
#define M_PULLUP(m, len) \
do { \
if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
(m) = m_pullup((m), (len)); \
} while (0)
/*
* Globals. All but ip_mrouter and ip_mrtproto could be static,
* except for netstat or debugging purposes.
*/
struct socket *ip_mrouter = 0;
int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
#define NO_RTE_FOUND 0x1
#define RTE_FOUND 0x2
#define MFCHASH(a, g) \
((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
u_long mfchash;
u_char nexpire[MFCTBLSIZ];
struct vif viftable[MAXVIFS];
struct mrtstat mrtstat;
u_int mrtdebug = 0; /* debug level */
#define DEBUG_MFC 0x02
#define DEBUG_FORWARD 0x04
#define DEBUG_EXPIRE 0x08
#define DEBUG_XMIT 0x10
u_int tbfdebug = 0; /* tbf debug level */
#ifdef RSVP_ISI
u_int rsvpdebug = 0; /* rsvp debug level */
extern struct socket *ip_rsvpd;
extern int rsvp_on;
#endif /* RSVP_ISI */
#define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
#define UPCALL_EXPIRE 6 /* number of timeouts */
/*
* Define the token bucket filter structures
*/
#define TBF_REPROCESS (hz / 100) /* 100x / second */
static int get_sg_cnt __P((struct sioc_sg_req *));
static int get_vif_cnt __P((struct sioc_vif_req *));
static int ip_mrouter_init __P((struct socket *, struct mbuf *));
static int get_version __P((struct mbuf *));
static int set_assert __P((struct mbuf *));
static int get_assert __P((struct mbuf *));
static int add_vif __P((struct mbuf *));
static int del_vif __P((struct mbuf *));
static void update_mfc __P((struct mfcctl *, struct mfc *));
static void expire_mfc __P((struct mfc *));
static int add_mfc __P((struct mbuf *));
#ifdef UPCALL_TIMING
static void collate __P((struct timeval *));
#endif
static int del_mfc __P((struct mbuf *));
static int socket_send __P((struct socket *, struct mbuf *,
struct sockaddr_in *));
static void expire_upcalls __P((void *));
#ifdef RSVP_ISI
static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *, vifi_t));
#else
static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *));
#endif
static void phyint_send __P((struct ip *, struct vif *, struct mbuf *));
static void encap_send __P((struct ip *, struct vif *, struct mbuf *));
static void tbf_control __P((struct vif *, struct mbuf *, struct ip *,
u_int32_t));
static void tbf_queue __P((struct vif *, struct mbuf *));
static void tbf_process_q __P((struct vif *));
static void tbf_reprocess_q __P((void *));
static int tbf_dq_sel __P((struct vif *, struct ip *));
static void tbf_send_packet __P((struct vif *, struct mbuf *));
static void tbf_update_tokens __P((struct vif *));
static int priority __P((struct vif *, struct ip *));
/*
* 'Interfaces' associated with decapsulator (so we can tell
* packets that went through it from ones that get reflected
* by a broken gateway). These interfaces are never linked into
* the system ifnet list & no routes point to them. I.e., packets
* can't be sent this way. They only exist as a placeholder for
* multicast source verification.
*/
#if 0
struct ifnet multicast_decap_if[MAXVIFS];
#endif
#define ENCAP_TTL 64
#define ENCAP_PROTO IPPROTO_IPIP /* 4 */
/* prototype IP hdr for encapsulated packets */
struct ip multicast_encap_iphdr = {
#if BYTE_ORDER == LITTLE_ENDIAN
sizeof(struct ip) >> 2, IPVERSION,
#else
IPVERSION, sizeof(struct ip) >> 2,
#endif
0, /* tos */
sizeof(struct ip), /* total length */
0, /* id */
0, /* frag offset */
ENCAP_TTL, ENCAP_PROTO,
0, /* checksum */
};
/*
* Private variables.
*/
static vifi_t numvifs = 0;
static int have_encap_tunnel = 0;
/*
* one-back cache used by mrt_ipip_input to locate a tunnel's vif
* given a datagram's src ip address.
*/
static struct in_addr last_encap_src;
static struct vif *last_encap_vif;
/*
* whether or not special PIM assert processing is enabled.
*/
static int pim_assert;
/*
* Rate limit for assert notification messages, in usec
*/
#define ASSERT_MSG_TIME 3000000
/*
* Find a route for a given origin IP address and Multicast group address
* Type of service parameter to be added in the future!!!
*/
#define MFCFIND(o, g, rt) { \
register struct mfc *_rt; \
(rt) = 0; \
++mrtstat.mrts_mfc_lookups; \
for (_rt = mfchashtbl[MFCHASH(o, g)].lh_first; \
_rt; _rt = _rt->mfc_hash.le_next) { \
if (in_hosteq(_rt->mfc_origin, (o)) && \
in_hosteq(_rt->mfc_mcastgrp, (g)) && \
_rt->mfc_stall == 0) { \
(rt) = _rt; \
break; \
} \
} \
if ((rt) == 0) \
++mrtstat.mrts_mfc_misses; \
}
/*
* Macros to compute elapsed time efficiently
* Borrowed from Van Jacobson's scheduling code
*/
#define TV_DELTA(a, b, delta) { \
register int xxs; \
delta = (a).tv_usec - (b).tv_usec; \
xxs = (a).tv_sec - (b).tv_sec; \
switch (xxs) { \
case 2: \
delta += 1000000; \
/* fall through */ \
case 1: \
delta += 1000000; \
/* fall through */ \
case 0: \
break; \
default: \
delta += (1000000 * xxs); \
break; \
} \
}
#ifdef UPCALL_TIMING
u_int32_t upcall_data[51];
#endif /* UPCALL_TIMING */
/*
* Handle MRT setsockopt commands to modify the multicast routing tables.
*/
int
ip_mrouter_set(so, optname, m)
struct socket *so;
int optname;
struct mbuf **m;
{
int error;
if (optname != MRT_INIT && so != ip_mrouter)
error = ENOPROTOOPT;
else
switch (optname) {
case MRT_INIT:
error = ip_mrouter_init(so, *m);
break;
case MRT_DONE:
error = ip_mrouter_done();
break;
case MRT_ADD_VIF:
error = add_vif(*m);
break;
case MRT_DEL_VIF:
error = del_vif(*m);
break;
case MRT_ADD_MFC:
error = add_mfc(*m);
break;
case MRT_DEL_MFC:
error = del_mfc(*m);
break;
case MRT_ASSERT:
error = set_assert(*m);
break;
default:
error = ENOPROTOOPT;
break;
}
if (*m)
m_free(*m);
return (error);
}
/*
* Handle MRT getsockopt commands
*/
int
ip_mrouter_get(so, optname, m)
struct socket *so;
int optname;
struct mbuf **m;
{
int error;
if (so != ip_mrouter)
error = ENOPROTOOPT;
else {
*m = m_get(M_WAIT, MT_SOOPTS);
switch (optname) {
case MRT_VERSION:
error = get_version(*m);
break;
case MRT_ASSERT:
error = get_assert(*m);
break;
default:
error = ENOPROTOOPT;
break;
}
if (error)
m_free(*m);
}
return (error);
}
/*
* Handle ioctl commands to obtain information from the cache
*/
int
mrt_ioctl(so, cmd, data)
struct socket *so;
u_long cmd;
caddr_t data;
{
int error;
if (so != ip_mrouter)
error = EINVAL;
else
switch (cmd) {
case SIOCGETVIFCNT:
error = get_vif_cnt((struct sioc_vif_req *)data);
break;
case SIOCGETSGCNT:
error = get_sg_cnt((struct sioc_sg_req *)data);
break;
default:
error = EINVAL;
break;
}
return (error);
}
/*
* returns the packet, byte, rpf-failure count for the source group provided
*/
static int
get_sg_cnt(req)
register struct sioc_sg_req *req;
{
register struct mfc *rt;
int s;
s = splsoftnet();
MFCFIND(req->src, req->grp, rt);
splx(s);
if (rt != 0) {
req->pktcnt = rt->mfc_pkt_cnt;
req->bytecnt = rt->mfc_byte_cnt;
req->wrong_if = rt->mfc_wrong_if;
} else
req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
return (0);
}
/*
* returns the input and output packet and byte counts on the vif provided
*/
static int
get_vif_cnt(req)
register struct sioc_vif_req *req;
{
register vifi_t vifi = req->vifi;
if (vifi >= numvifs)
return (EINVAL);
req->icount = viftable[vifi].v_pkt_in;
req->ocount = viftable[vifi].v_pkt_out;
req->ibytes = viftable[vifi].v_bytes_in;
req->obytes = viftable[vifi].v_bytes_out;
return (0);
}
/*
* Enable multicast routing
*/
static int
ip_mrouter_init(so, m)
struct socket *so;
struct mbuf *m;
{
int *v;
if (mrtdebug)
log(LOG_DEBUG,
"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
so->so_type, so->so_proto->pr_protocol);
if (so->so_type != SOCK_RAW ||
so->so_proto->pr_protocol != IPPROTO_IGMP)
return (EOPNOTSUPP);
if (m == 0 || m->m_len < sizeof(int))
return (EINVAL);
v = mtod(m, int *);
if (*v != 1)
return (EINVAL);
if (ip_mrouter != 0)
return (EADDRINUSE);
ip_mrouter = so;
mfchashtbl = hashinit(MFCTBLSIZ, M_MRTABLE, M_WAITOK, &mfchash);
bzero((caddr_t)nexpire, sizeof(nexpire));
pim_assert = 0;
timeout(expire_upcalls, (caddr_t)0, EXPIRE_TIMEOUT);
if (mrtdebug)
log(LOG_DEBUG, "ip_mrouter_init\n");
return (0);
}
/*
* Disable multicast routing
*/
int
ip_mrouter_done()
{
vifi_t vifi;
register struct vif *vifp;
int i;
int s;
s = splsoftnet();
/* Clear out all the vifs currently in use. */
for (vifi = 0; vifi < numvifs; vifi++) {
vifp = &viftable[vifi];
if (!in_nullhost(vifp->v_lcl_addr))
reset_vif(vifp);
}
numvifs = 0;
pim_assert = 0;
untimeout(expire_upcalls, (caddr_t)0);
/*
* Free all multicast forwarding cache entries.
*/
for (i = 0; i < MFCTBLSIZ; i++) {
register struct mfc *rt, *nrt;
for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
nrt = rt->mfc_hash.le_next;
expire_mfc(rt);
}
}
free(mfchashtbl, M_MRTABLE);
mfchashtbl = 0;
/* Reset de-encapsulation cache. */
have_encap_tunnel = 0;
ip_mrouter = 0;
splx(s);
if (mrtdebug)
log(LOG_DEBUG, "ip_mrouter_done\n");
return (0);
}
static int
get_version(m)
struct mbuf *m;
{
int *v = mtod(m, int *);
*v = 0x0305; /* XXX !!!! */
m->m_len = sizeof(int);
return (0);
}
/*
* Set PIM assert processing global
*/
static int
set_assert(m)
struct mbuf *m;
{
int *i;
if (m == 0 || m->m_len < sizeof(int))
return (EINVAL);
i = mtod(m, int *);
pim_assert = !!*i;
return (0);
}
/*
* Get PIM assert processing global
*/
static int
get_assert(m)
struct mbuf *m;
{
int *i = mtod(m, int *);
*i = pim_assert;
m->m_len = sizeof(int);
return (0);
}
static struct sockaddr_in sin = { sizeof(sin), AF_INET };
/*
* Add a vif to the vif table
*/
static int
add_vif(m)
struct mbuf *m;
{
register struct vifctl *vifcp;
register struct vif *vifp;
struct ifaddr *ifa;
struct ifnet *ifp;
struct ifreq ifr;
int error, s;
if (m == 0 || m->m_len < sizeof(struct vifctl))
return (EINVAL);
vifcp = mtod(m, struct vifctl *);
if (vifcp->vifc_vifi >= MAXVIFS)
return (EINVAL);
vifp = &viftable[vifcp->vifc_vifi];
if (!in_nullhost(vifp->v_lcl_addr))
return (EADDRINUSE);
/* Find the interface with an address in AF_INET family. */
sin.sin_addr = vifcp->vifc_lcl_addr;
ifa = ifa_ifwithaddr(sintosa(&sin));
if (ifa == 0)
return (EADDRNOTAVAIL);
if (vifcp->vifc_flags & VIFF_TUNNEL) {
if (vifcp->vifc_flags & VIFF_SRCRT) {
log(LOG_ERR, "Source routed tunnels not supported\n");
return (EOPNOTSUPP);
}
/* Create a fake encapsulation interface. */
ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
bzero(ifp, sizeof(*ifp));
sprintf(ifp->if_xname, "mdecap%d", vifcp->vifc_vifi);
/* Prepare cached route entry. */
bzero(&vifp->v_route, sizeof(vifp->v_route));
/* Tell mrt_ipip_input() to start looking at encapsulated packets. */
have_encap_tunnel = 1;
} else {
/* Use the physical interface associated with the address. */
ifp = ifa->ifa_ifp;
/* Make sure the interface supports multicast. */
if ((ifp->if_flags & IFF_MULTICAST) == 0)
return (EOPNOTSUPP);
/* Enable promiscuous reception of all IP multicasts. */
satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
if (error)
return (error);
}
s = splsoftnet();
/* Define parameters for the tbf structure. */
vifp->tbf_q = 0;
vifp->tbf_t = &vifp->tbf_q;
microtime(&vifp->tbf_last_pkt_t);
vifp->tbf_n_tok = 0;
vifp->tbf_q_len = 0;
vifp->tbf_max_q_len = MAXQSIZE;
vifp->v_flags = vifcp->vifc_flags;
vifp->v_threshold = vifcp->vifc_threshold;
/* scaling up here allows division by 1024 in critical code */
vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
vifp->v_ifp = ifp;
/* Initialize per vif pkt counters. */
vifp->v_pkt_in = 0;
vifp->v_pkt_out = 0;
vifp->v_bytes_in = 0;
vifp->v_bytes_out = 0;
#ifdef RSVP_ISI
vifp->v_rsvp_on = 0;
vifp->v_rsvpd = 0;
#endif /* RSVP_ISI */
splx(s);
/* Adjust numvifs up if the vifi is higher than numvifs. */
if (numvifs <= vifcp->vifc_vifi)
numvifs = vifcp->vifc_vifi + 1;
if (mrtdebug)
log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
vifcp->vifc_vifi,
ntohl(vifcp->vifc_lcl_addr.s_addr),
(vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
ntohl(vifcp->vifc_rmt_addr.s_addr),
vifcp->vifc_threshold,
vifcp->vifc_rate_limit);
return (0);
}
void
reset_vif(vifp)
register struct vif *vifp;
{
register struct mbuf *m, *n;
struct ifnet *ifp;
struct ifreq ifr;
for (m = vifp->tbf_q; m != 0; m = n) {
n = m->m_nextpkt;
m_freem(m);
}
if (vifp->v_flags & VIFF_TUNNEL) {
free(vifp->v_ifp, M_MRTABLE);
if (vifp == last_encap_vif) {
last_encap_vif = 0;
last_encap_src = zeroin_addr;
}
} else {
satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
ifp = vifp->v_ifp;
(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
}
bzero((caddr_t)vifp, sizeof(*vifp));
}
/*
* Delete a vif from the vif table
*/
static int
del_vif(m)
struct mbuf *m;
{
vifi_t *vifip;
register struct vif *vifp;
register vifi_t vifi;
int s;
if (m == 0 || m->m_len < sizeof(vifi_t))
return (EINVAL);
vifip = mtod(m, vifi_t *);
if (*vifip >= numvifs)
return (EINVAL);
vifp = &viftable[*vifip];
if (in_nullhost(vifp->v_lcl_addr))
return (EADDRNOTAVAIL);
s = splsoftnet();
reset_vif(vifp);
/* Adjust numvifs down */
for (vifi = numvifs; vifi > 0; vifi--)
if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
break;
numvifs = vifi;
splx(s);
if (mrtdebug)
log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
return (0);
}
static void
update_mfc(mfccp, rt)
struct mfcctl *mfccp;
struct mfc *rt;
{
vifi_t vifi;
rt->mfc_parent = mfccp->mfcc_parent;
for (vifi = 0; vifi < numvifs; vifi++)
rt->mfc_ttls[vifi] = mfccp->mfcc_ttls[vifi];
rt->mfc_expire = 0;
rt->mfc_stall = 0;
}
static void
expire_mfc(rt)
struct mfc *rt;
{
struct rtdetq *rte, *nrte;
for (rte = rt->mfc_stall; rte != 0; rte = nrte) {
nrte = rte->next;
m_freem(rte->m);
free(rte, M_MRTABLE);
}
LIST_REMOVE(rt, mfc_hash);
free(rt, M_MRTABLE);
}
/*
* Add an mfc entry
*/
static int
add_mfc(m)
struct mbuf *m;
{
struct mfcctl *mfccp;
struct mfc *rt;
u_int32_t hash = 0;
struct rtdetq *rte, *nrte;
register u_short nstl;
int s;
if (m == 0 || m->m_len < sizeof(struct mfcctl))
return (EINVAL);
mfccp = mtod(m, struct mfcctl *);
s = splsoftnet();
MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
/* If an entry already exists, just update the fields */
if (rt) {
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
ntohl(mfccp->mfcc_origin.s_addr),
ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent);
if (rt->mfc_expire)
nexpire[hash]--;
update_mfc(mfccp, rt);
splx(s);
return (0);
}
/*
* Find the entry for which the upcall was made and update
*/
nstl = 0;
hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
rt->mfc_stall != 0) {
if (nstl++)
log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
"multiple kernel entries",
ntohl(mfccp->mfcc_origin.s_addr),
ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent, rt->mfc_stall);
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %p\n",
ntohl(mfccp->mfcc_origin.s_addr),
ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent, rt->mfc_stall);
if (rt->mfc_expire)
nexpire[hash]--;
rte = rt->mfc_stall;
update_mfc(mfccp, rt);
/* free packets Qed at the end of this entry */
for (; rte != 0; rte = nrte) {
nrte = rte->next;
#ifdef RSVP_ISI
ip_mdq(rte->m, rte->ifp, rt, -1);
#else
ip_mdq(rte->m, rte->ifp, rt);
#endif /* RSVP_ISI */
m_freem(rte->m);
#ifdef UPCALL_TIMING
collate(&rte->t);
#endif /* UPCALL_TIMING */
free(rte, M_MRTABLE);
}
}
}
if (nstl == 0) {
/*
* No mfc; make a new one
*/
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG,"add_mfc no upcall o %x g %x p %x\n",
ntohl(mfccp->mfcc_origin.s_addr),
ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent);
rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
if (rt == 0) {
splx(s);
return (ENOBUFS);
}
rt->mfc_origin = mfccp->mfcc_origin;
rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
/* initialize pkt counters per src-grp */
rt->mfc_pkt_cnt = 0;
rt->mfc_byte_cnt = 0;
rt->mfc_wrong_if = 0;
timerclear(&rt->mfc_last_assert);
update_mfc(mfccp, rt);
/* insert new entry at head of hash chain */
LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
}
splx(s);
return (0);
}
#ifdef UPCALL_TIMING
/*
* collect delay statistics on the upcalls
*/
static void collate(t)
register struct timeval *t;
{
register u_int32_t d;
register struct timeval tp;
register u_int32_t delta;
microtime(&tp);
if (timercmp(t, &tp, <)) {
TV_DELTA(tp, *t, delta);
d = delta >> 10;
if (d > 50)
d = 50;
++upcall_data[d];
}
}
#endif /* UPCALL_TIMING */
/*
* Delete an mfc entry
*/
static int
del_mfc(m)
struct mbuf *m;
{
struct mfcctl *mfccp;
struct mfc *rt;
int s;
if (m == 0 || m->m_len < sizeof(struct mfcctl))
return (EINVAL);
mfccp = mtod(m, struct mfcctl *);
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
ntohl(mfccp->mfcc_origin.s_addr),
ntohl(mfccp->mfcc_mcastgrp.s_addr));
s = splsoftnet();
MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
if (rt == 0) {
splx(s);
return (EADDRNOTAVAIL);
}
LIST_REMOVE(rt, mfc_hash);
free(rt, M_MRTABLE);
splx(s);
return (0);
}
static int
socket_send(s, mm, src)
struct socket *s;
struct mbuf *mm;
struct sockaddr_in *src;
{
if (s) {
if (sbappendaddr(&s->so_rcv, sintosa(src), mm, (struct mbuf *)0) != 0) {
sorwakeup(s);
return (0);
}
}
m_freem(mm);
return (-1);
}
/*
* IP multicast forwarding function. This function assumes that the packet
* pointed to by "ip" has arrived on (or is about to be sent to) the interface
* pointed to by "ifp", and the packet is to be relayed to other networks
* that have members of the packet's destination IP multicast group.
*
* The packet is returned unscathed to the caller, unless it is
* erroneous, in which case a non-zero return value tells the caller to
* discard it.
*/
#define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
#define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
int
#ifdef RSVP_ISI
ip_mforward(m, ifp, imo)
#else
ip_mforward(m, ifp)
#endif /* RSVP_ISI */
struct mbuf *m;
struct ifnet *ifp;
#ifdef RSVP_ISI
struct ip_moptions *imo;
#endif /* RSVP_ISI */
{
register struct ip *ip = mtod(m, struct ip *);
register struct mfc *rt;
register u_char *ipoptions;
static int srctun = 0;
register struct mbuf *mm;
int s;
#ifdef RSVP_ISI
register struct vif *vifp;
vifi_t vifi;
#endif /* RSVP_ISI */
if (mrtdebug & DEBUG_FORWARD)
log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
(ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR) {
/*
* Packet arrived via a physical interface or
* an encapuslated tunnel.
*/
} else {
/*
* Packet arrived through a source-route tunnel.
* Source-route tunnels are no longer supported.
*/
if ((srctun++ % 1000) == 0)
log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
ntohl(ip->ip_src.s_addr));
return (1);
}
#ifdef RSVP_ISI
if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
if (ip->ip_ttl < 255)
ip->ip_ttl++; /* compensate for -1 in *_send routines */
if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
vifp = viftable + vifi;
printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
vifp->v_ifp->if_xname);
}
return (ip_mdq(m, ifp, (struct mfc *)0, vifi));
}
if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
ntohl(ip->ip_src), ntohl(ip->ip_dst));
}
#endif /* RSVP_ISI */
/*
* Don't forward a packet with time-to-live of zero or one,
* or a packet destined to a local-only group.
*/
if (ip->ip_ttl <= 1 ||
IN_LOCAL_GROUP(ip->ip_dst.s_addr))
return (0);
/*
* Determine forwarding vifs from the forwarding cache table
*/
s = splsoftnet();
MFCFIND(ip->ip_src, ip->ip_dst, rt);
/* Entry exists, so forward if necessary */
if (rt != 0) {
splx(s);
#ifdef RSVP_ISI
return (ip_mdq(m, ifp, rt, -1));
#else
return (ip_mdq(m, ifp, rt));
#endif /* RSVP_ISI */
} else {
/*
* If we don't have a route for packet's origin,
* Make a copy of the packet &
* send message to routing daemon
*/
register struct mbuf *mb0;
register struct rtdetq *rte;
register u_int32_t hash;
int hlen = ip->ip_hl << 2;
#ifdef UPCALL_TIMING
struct timeval tp;
microtime(&tp);
#endif /* UPCALL_TIMING */
mrtstat.mrts_no_route++;
if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
ntohl(ip->ip_src.s_addr),
ntohl(ip->ip_dst.s_addr));
/*
* Allocate mbufs early so that we don't do extra work if we are
* just going to fail anyway. Make sure to pullup the header so
* that other people can't step on it.
*/
rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
if (rte == 0) {
splx(s);
return (ENOBUFS);
}
mb0 = m_copy(m, 0, M_COPYALL);
M_PULLUP(mb0, hlen);
if (mb0 == 0) {
free(rte, M_MRTABLE);
splx(s);
return (ENOBUFS);
}
/* is there an upcall waiting for this packet? */
hash = MFCHASH(ip->ip_src, ip->ip_dst);
for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
rt->mfc_stall != 0)
break;
}
if (rt == 0) {
int i;
struct igmpmsg *im;
/* no upcall, so make a new entry */
rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
if (rt == 0) {
free(rte, M_MRTABLE);
m_freem(mb0);
splx(s);
return (ENOBUFS);
}
/* Make a copy of the header to send to the user level process */
mm = m_copy(m, 0, hlen);
M_PULLUP(mm, hlen);
if (mm == 0) {
free(rte, M_MRTABLE);
m_freem(mb0);
free(rt, M_MRTABLE);
splx(s);
return (ENOBUFS);
}
/*
* Send message to routing daemon to install
* a route into the kernel table
*/
sin.sin_addr = ip->ip_src;
im = mtod(mm, struct igmpmsg *);
im->im_msgtype = IGMPMSG_NOCACHE;
im->im_mbz = 0;
mrtstat.mrts_upcalls++;
if (socket_send(ip_mrouter, mm, &sin) < 0) {
log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
++mrtstat.mrts_upq_sockfull;
free(rte, M_MRTABLE);
m_freem(mb0);
free(rt, M_MRTABLE);
splx(s);
return (ENOBUFS);
}
/* insert new entry at head of hash chain */
rt->mfc_origin = ip->ip_src;
rt->mfc_mcastgrp = ip->ip_dst;
rt->mfc_pkt_cnt = 0;
rt->mfc_byte_cnt = 0;
rt->mfc_wrong_if = 0;
rt->mfc_expire = UPCALL_EXPIRE;
nexpire[hash]++;
for (i = 0; i < numvifs; i++)
rt->mfc_ttls[i] = 0;
rt->mfc_parent = -1;
/* link into table */
LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
/* Add this entry to the end of the queue */
rt->mfc_stall = rte;
} else {
/* determine if q has overflowed */
struct rtdetq **p;
register int npkts = 0;
for (p = &rt->mfc_stall; *p != 0; p = &(*p)->next)
if (++npkts > MAX_UPQ) {
mrtstat.mrts_upq_ovflw++;
free(rte, M_MRTABLE);
m_freem(mb0);
splx(s);
return (0);
}
/* Add this entry to the end of the queue */
*p = rte;
}
rte->next = 0;
rte->m = mb0;
rte->ifp = ifp;
#ifdef UPCALL_TIMING
rte->t = tp;
#endif /* UPCALL_TIMING */
splx(s);
return (0);
}
}
/*ARGSUSED*/
static void
expire_upcalls(v)
void *v;
{
int i;
int s;
s = splsoftnet();
for (i = 0; i < MFCTBLSIZ; i++) {
register struct mfc *rt, *nrt;
if (nexpire[i] == 0)
continue;
for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
nrt = rt->mfc_hash.le_next;
if (rt->mfc_expire == 0 ||
--rt->mfc_expire > 0)
continue;
nexpire[i]--;
++mrtstat.mrts_cache_cleanups;
if (mrtdebug & DEBUG_EXPIRE)
log(LOG_DEBUG,
"expire_upcalls: expiring (%x %x)\n",
ntohl(rt->mfc_origin.s_addr),
ntohl(rt->mfc_mcastgrp.s_addr));
expire_mfc(rt);
}
}
splx(s);
timeout(expire_upcalls, (caddr_t)0, EXPIRE_TIMEOUT);
}
/*
* Packet forwarding routine once entry in the cache is made
*/
static int
#ifdef RSVP_ISI
ip_mdq(m, ifp, rt, xmt_vif)
#else
ip_mdq(m, ifp, rt)
#endif /* RSVP_ISI */
register struct mbuf *m;
register struct ifnet *ifp;
register struct mfc *rt;
#ifdef RSVP_ISI
register vifi_t xmt_vif;
#endif /* RSVP_ISI */
{
register struct ip *ip = mtod(m, struct ip *);
register vifi_t vifi;
register struct vif *vifp;
register int plen = ntohs(ip->ip_len);
/*
* Macro to send packet on vif. Since RSVP packets don't get counted on
* input, they shouldn't get counted on output, so statistics keeping is
* seperate.
*/
#define MC_SEND(ip,vifp,m) { \
if ((vifp)->v_flags & VIFF_TUNNEL) \
encap_send((ip), (vifp), (m)); \
else \
phyint_send((ip), (vifp), (m)); \
}
#ifdef RSVP_ISI
/*
* If xmt_vif is not -1, send on only the requested vif.
*
* (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
*/
if (xmt_vif < numvifs) {
MC_SEND(ip, viftable + xmt_vif, m);
return (1);
}
#endif /* RSVP_ISI */
/*
* Don't forward if it didn't arrive from the parent vif for its origin.
*/
vifi = rt->mfc_parent;
if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
/* came in the wrong interface */
if (mrtdebug & DEBUG_FORWARD)
log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
ifp, vifi, viftable[vifi].v_ifp);
++mrtstat.mrts_wrong_if;
++rt->mfc_wrong_if;
/*
* If we are doing PIM assert processing, and we are forwarding
* packets on this interface, and it is a broadcast medium
* interface (and not a tunnel), send a message to the routing daemon.
*/
if (pim_assert && rt->mfc_ttls[vifi] &&
(ifp->if_flags & IFF_BROADCAST) &&
!(viftable[vifi].v_flags & VIFF_TUNNEL)) {
struct mbuf *mm;
struct igmpmsg *im;
int hlen = ip->ip_hl << 2;
struct timeval now;
register u_int32_t delta;
microtime(&now);
TV_DELTA(rt->mfc_last_assert, now, delta);
if (delta > ASSERT_MSG_TIME) {
mm = m_copy(m, 0, hlen);
M_PULLUP(mm, hlen);
if (mm == 0) {
return (ENOBUFS);
}
rt->mfc_last_assert = now;
im = mtod(mm, struct igmpmsg *);
im->im_msgtype = IGMPMSG_WRONGVIF;
im->im_mbz = 0;
im->im_vif = vifi;
sin.sin_addr = im->im_src;
socket_send(ip_mrouter, mm, &sin);
}
}
return (0);
}
/* If I sourced this packet, it counts as output, else it was input. */
if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
viftable[vifi].v_pkt_out++;
viftable[vifi].v_bytes_out += plen;
} else {
viftable[vifi].v_pkt_in++;
viftable[vifi].v_bytes_in += plen;
}
rt->mfc_pkt_cnt++;
rt->mfc_byte_cnt += plen;
/*
* For each vif, decide if a copy of the packet should be forwarded.
* Forward if:
* - the ttl exceeds the vif's threshold
* - there are group members downstream on interface
*/
for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
if ((rt->mfc_ttls[vifi] > 0) &&
(ip->ip_ttl > rt->mfc_ttls[vifi])) {
vifp->v_pkt_out++;
vifp->v_bytes_out += plen;
MC_SEND(ip, vifp, m);
}
return (0);
}
#ifdef RSVP_ISI
/*
* check if a vif number is legal/ok. This is used by ip_output, to export
* numvifs there,
*/
int
legal_vif_num(vif)
int vif;
{
if (vif >= 0 && vif < numvifs)
return (1);
else
return (0);
}
#endif /* RSVP_ISI */
static void
phyint_send(ip, vifp, m)
struct ip *ip;
struct vif *vifp;
struct mbuf *m;
{
register struct mbuf *mb_copy;
register int hlen = ip->ip_hl << 2;
/*
* Make a new reference to the packet; make sure that
* the IP header is actually copied, not just referenced,
* so that ip_output() only scribbles on the copy.
*/
mb_copy = m_copy(m, 0, M_COPYALL);
M_PULLUP(mb_copy, hlen);
if (mb_copy == 0)
return;
if (vifp->v_rate_limit <= 0)
tbf_send_packet(vifp, mb_copy);
else
tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
}
static void
encap_send(ip, vifp, m)
register struct ip *ip;
register struct vif *vifp;
register struct mbuf *m;
{
register struct mbuf *mb_copy;
register struct ip *ip_copy;
register int i, len = ip->ip_len + sizeof(multicast_encap_iphdr);
/*
* copy the old packet & pullup it's IP header into the
* new mbuf so we can modify it. Try to fill the new
* mbuf since if we don't the ethernet driver will.
*/
MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
if (mb_copy == 0)
return;
mb_copy->m_data += max_linkhdr;
mb_copy->m_pkthdr.len = len;
mb_copy->m_len = sizeof(multicast_encap_iphdr);
if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == 0) {
m_freem(mb_copy);
return;
}
i = MHLEN - max_linkhdr;
if (i > len)
i = len;
mb_copy = m_pullup(mb_copy, i);
if (mb_copy == 0)
return;
/*
* fill in the encapsulating IP header.
*/
ip_copy = mtod(mb_copy, struct ip *);
*ip_copy = multicast_encap_iphdr;
ip_copy->ip_id = htons(ip_id++);
ip_copy->ip_len = len;
ip_copy->ip_src = vifp->v_lcl_addr;
ip_copy->ip_dst = vifp->v_rmt_addr;
/*
* turn the encapsulated IP header back into a valid one.
*/
ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
--ip->ip_ttl;
HTONS(ip->ip_len);
HTONS(ip->ip_off);
ip->ip_sum = 0;
#if defined(LBL) && !defined(ultrix) && !defined(i386)
ip->ip_sum = ~oc_cksum((caddr_t)ip, ip->ip_hl << 2, 0);
#else
mb_copy->m_data += sizeof(multicast_encap_iphdr);
ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
mb_copy->m_data -= sizeof(multicast_encap_iphdr);
#endif
if (vifp->v_rate_limit <= 0)
tbf_send_packet(vifp, mb_copy);
else
tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
}
/*
* De-encapsulate a packet and feed it back through ip input (this
* routine is called whenever IP gets a packet with proto type
* ENCAP_PROTO and a local destination address).
*
* Return 1 if we handled the packet, 0 if we did not.
*
* Called from ipip_input().
*/
int
mrt_ipip_input(m, hlen)
struct mbuf *m;
int hlen;
{
register struct ip *ip = mtod(m, struct ip *);
register int s;
register struct ifqueue *ifq;
register struct vif *vifp;
if (!have_encap_tunnel)
return (0);
/*
* dump the packet if it's not to a multicast destination or if
* we don't have an encapsulating tunnel with the source.
* Note: This code assumes that the remote site IP address
* uniquely identifies the tunnel (i.e., that this site has
* at most one tunnel with the remote site).
*/
if (!IN_MULTICAST(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr)) {
++mrtstat.mrts_bad_tunnel;
return (0);
}
if (!in_hosteq(ip->ip_src, last_encap_src)) {
register struct vif *vife;
vifp = viftable;
vife = vifp + numvifs;
for (; vifp < vife; vifp++)
if (vifp->v_flags & VIFF_TUNNEL &&
in_hosteq(vifp->v_rmt_addr, ip->ip_src))
break;
if (vifp == vife) {
mrtstat.mrts_cant_tunnel++; /*XXX*/
if (mrtdebug)
log(LOG_DEBUG,
"ip_mforward: no tunnel with %x\n",
ntohl(ip->ip_src.s_addr));
return (0);
}
last_encap_vif = vifp;
last_encap_src = ip->ip_src;
} else
vifp = last_encap_vif;
m->m_data += hlen;
m->m_len -= hlen;
m->m_pkthdr.len -= hlen;
m->m_pkthdr.rcvif = vifp->v_ifp;
ifq = &ipintrq;
s = splimp();
if (IF_QFULL(ifq)) {
IF_DROP(ifq);
m_freem(m);
} else {
IF_ENQUEUE(ifq, m);
/*
* normally we would need a "schednetisr(NETISR_IP)"
* here but we were called by ip_input and it is going
* to loop back & try to dequeue the packet we just
* queued as soon as we return so we avoid the
* unnecessary software interrrupt.
*/
}
splx(s);
return (1);
}
/*
* Token bucket filter module
*/
static void
tbf_control(vifp, m, ip, len)
register struct vif *vifp;
register struct mbuf *m;
register struct ip *ip;
register u_int32_t len;
{
if (len > MAX_BKT_SIZE) {
/* drop if packet is too large */
mrtstat.mrts_pkt2large++;
m_freem(m);
return;
}
tbf_update_tokens(vifp);
/*
* If there are enough tokens, and the queue is empty, send this packet
* out immediately. Otherwise, try to insert it on this vif's queue.
*/
if (vifp->tbf_q_len == 0) {
if (len <= vifp->tbf_n_tok) {
vifp->tbf_n_tok -= len;
tbf_send_packet(vifp, m);
} else {
/* queue packet and timeout till later */
tbf_queue(vifp, m);
timeout(tbf_reprocess_q, vifp, TBF_REPROCESS);
}
} else {
if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
!tbf_dq_sel(vifp, ip)) {
/* queue length too much, and couldn't make room */
mrtstat.mrts_q_overflow++;
m_freem(m);
} else {
/* queue length low enough, or made room */
tbf_queue(vifp, m);
tbf_process_q(vifp);
}
}
}
/*
* adds a packet to the queue at the interface
*/
static void
tbf_queue(vifp, m)
register struct vif *vifp;
register struct mbuf *m;
{
register int s = splsoftnet();
/* insert at tail */
*vifp->tbf_t = m;
vifp->tbf_t = &m->m_nextpkt;
vifp->tbf_q_len++;
splx(s);
}
/*
* processes the queue at the interface
*/
static void
tbf_process_q(vifp)
register struct vif *vifp;
{
register struct mbuf *m;
register int len;
register int s = splsoftnet();
/*
* Loop through the queue at the interface and send as many packets
* as possible.
*/
for (m = vifp->tbf_q;
m != 0;
m = vifp->tbf_q) {
len = mtod(m, struct ip *)->ip_len;
/* determine if the packet can be sent */
if (len <= vifp->tbf_n_tok) {
/* if so,
* reduce no of tokens, dequeue the packet,
* send the packet.
*/
if ((vifp->tbf_q = m->m_nextpkt) == 0)
vifp->tbf_t = &vifp->tbf_q;
--vifp->tbf_q_len;
m->m_nextpkt = 0;
vifp->tbf_n_tok -= len;
tbf_send_packet(vifp, m);
} else
break;
}
splx(s);
}
static void
tbf_reprocess_q(arg)
void *arg;
{
register struct vif *vifp = arg;
if (ip_mrouter == 0)
return;
tbf_update_tokens(vifp);
tbf_process_q(vifp);
if (vifp->tbf_q_len != 0)
timeout(tbf_reprocess_q, vifp, TBF_REPROCESS);
}
/* function that will selectively discard a member of the queue
* based on the precedence value and the priority
*/
static int
tbf_dq_sel(vifp, ip)
register struct vif *vifp;
register struct ip *ip;
{
register u_int p;
register struct mbuf **mp, *m;
register int s = splsoftnet();
p = priority(vifp, ip);
for (mp = &vifp->tbf_q, m = *mp;
m != 0;
mp = &m->m_nextpkt, m = *mp) {
if (p > priority(vifp, mtod(m, struct ip *))) {
if ((*mp = m->m_nextpkt) == 0)
vifp->tbf_t = mp;
--vifp->tbf_q_len;
m_freem(m);
mrtstat.mrts_drop_sel++;
splx(s);
return (1);
}
}
splx(s);
return (0);
}
static void
tbf_send_packet(vifp, m)
register struct vif *vifp;
register struct mbuf *m;
{
int error;
int s = splsoftnet();
if (vifp->v_flags & VIFF_TUNNEL) {
/* If tunnel options */
ip_output(m, (struct mbuf *)0, &vifp->v_route,
IP_FORWARDING, (struct ip_moptions *)0);
} else {
/* if physical interface option, extract the options and then send */
struct ip_moptions imo;
imo.imo_multicast_ifp = vifp->v_ifp;
imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
imo.imo_multicast_loop = 1;
#ifdef RSVP_ISI
imo.imo_multicast_vif = -1;
#endif
error = ip_output(m, (struct mbuf *)0, (struct route *)0,
IP_FORWARDING|IP_MULTICASTOPTS, &imo);
if (mrtdebug & DEBUG_XMIT)
log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
(long)(vifp-viftable), error);
}
splx(s);
}
/* determine the current time and then
* the elapsed time (between the last time and time now)
* in milliseconds & update the no. of tokens in the bucket
*/
static void
tbf_update_tokens(vifp)
register struct vif *vifp;
{
struct timeval tp;
register u_int32_t tm;
register int s = splsoftnet();
microtime(&tp);
TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
/*
* This formula is actually
* "time in seconds" * "bytes/second".
*
* (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
*
* The (1000/1024) was introduced in add_vif to optimize
* this divide into a shift.
*/
vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
vifp->tbf_last_pkt_t = tp;
if (vifp->tbf_n_tok > MAX_BKT_SIZE)
vifp->tbf_n_tok = MAX_BKT_SIZE;
splx(s);
}
static int
priority(vifp, ip)
register struct vif *vifp;
register struct ip *ip;
{
register int prio;
/* temporary hack; may add general packet classifier some day */
/*
* The UDP port space is divided up into four priority ranges:
* [0, 16384) : unclassified - lowest priority
* [16384, 32768) : audio - highest priority
* [32768, 49152) : whiteboard - medium priority
* [49152, 65536) : video - low priority
*/
if (ip->ip_p == IPPROTO_UDP) {
struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
switch (ntohs(udp->uh_dport) & 0xc000) {
case 0x4000:
prio = 70;
break;
case 0x8000:
prio = 60;
break;
case 0xc000:
prio = 55;
break;
default:
prio = 50;
break;
}
if (tbfdebug > 1)
log(LOG_DEBUG, "port %x prio %d\n", ntohs(udp->uh_dport), prio);
} else
prio = 50;
return (prio);
}
/*
* End of token bucket filter modifications
*/
#ifdef RSVP_ISI
int
ip_rsvp_vif_init(so, m)
struct socket *so;
struct mbuf *m;
{
int i;
register int s;
if (rsvpdebug)
printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
so->so_type, so->so_proto->pr_protocol);
if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
return (EOPNOTSUPP);
/* Check mbuf. */
if (m == 0 || m->m_len != sizeof(int)) {
return (EINVAL);
}
i = *(mtod(m, int *));
if (rsvpdebug)
printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
s = splsoftnet();
/* Check vif. */
if (!legal_vif_num(i)) {
splx(s);
return (EADDRNOTAVAIL);
}
/* Check if socket is available. */
if (viftable[i].v_rsvpd != 0) {
splx(s);
return (EADDRINUSE);
}
viftable[i].v_rsvpd = so;
/* This may seem silly, but we need to be sure we don't over-increment
* the RSVP counter, in case something slips up.
*/
if (!viftable[i].v_rsvp_on) {
viftable[i].v_rsvp_on = 1;
rsvp_on++;
}
splx(s);
return (0);
}
int
ip_rsvp_vif_done(so, m)
struct socket *so;
struct mbuf *m;
{
int i;
register int s;
if (rsvpdebug)
printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
so->so_type, so->so_proto->pr_protocol);
if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
return (EOPNOTSUPP);
/* Check mbuf. */
if (m == 0 || m->m_len != sizeof(int)) {
return (EINVAL);
}
i = *(mtod(m, int *));
s = splsoftnet();
/* Check vif. */
if (!legal_vif_num(i)) {
splx(s);
return (EADDRNOTAVAIL);
}
if (rsvpdebug)
printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
viftable[i].v_rsvpd, so);
viftable[i].v_rsvpd = 0;
/* This may seem silly, but we need to be sure we don't over-decrement
* the RSVP counter, in case something slips up.
*/
if (viftable[i].v_rsvp_on) {
viftable[i].v_rsvp_on = 0;
rsvp_on--;
}
splx(s);
return (0);
}
void
ip_rsvp_force_done(so)
struct socket *so;
{
int vifi;
register int s;
/* Don't bother if it is not the right type of socket. */
if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
return;
s = splsoftnet();
/* The socket may be attached to more than one vif...this
* is perfectly legal.
*/
for (vifi = 0; vifi < numvifs; vifi++) {
if (viftable[vifi].v_rsvpd == so) {
viftable[vifi].v_rsvpd = 0;
/* This may seem silly, but we need to be sure we don't
* over-decrement the RSVP counter, in case something slips up.
*/
if (viftable[vifi].v_rsvp_on) {
viftable[vifi].v_rsvp_on = 0;
rsvp_on--;
}
}
}
splx(s);
return;
}
void
rsvp_input(m, ifp)
struct mbuf *m;
struct ifnet *ifp;
{
int vifi;
register struct ip *ip = mtod(m, struct ip *);
static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
register int s;
if (rsvpdebug)
printf("rsvp_input: rsvp_on %d\n",rsvp_on);
/* Can still get packets with rsvp_on = 0 if there is a local member
* of the group to which the RSVP packet is addressed. But in this
* case we want to throw the packet away.
*/
if (!rsvp_on) {
m_freem(m);
return;
}
/* If the old-style non-vif-associated socket is set, then use
* it and ignore the new ones.
*/
if (ip_rsvpd != 0) {
if (rsvpdebug)
printf("rsvp_input: Sending packet up old-style socket\n");
rip_input(m);
return;
}
s = splsoftnet();
if (rsvpdebug)
printf("rsvp_input: check vifs\n");
/* Find which vif the packet arrived on. */
for (vifi = 0; vifi < numvifs; vifi++) {
if (viftable[vifi].v_ifp == ifp)
break;
}
if (vifi == numvifs) {
/* Can't find vif packet arrived on. Drop packet. */
if (rsvpdebug)
printf("rsvp_input: Can't find vif for packet...dropping it.\n");
m_freem(m);
splx(s);
return;
}
if (rsvpdebug)
printf("rsvp_input: check socket\n");
if (viftable[vifi].v_rsvpd == 0) {
/* drop packet, since there is no specific socket for this
* interface */
if (rsvpdebug)
printf("rsvp_input: No socket defined for vif %d\n",vifi);
m_freem(m);
splx(s);
return;
}
rsvp_src.sin_addr = ip->ip_src;
if (rsvpdebug && m)
printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
m->m_len,sbspace(&viftable[vifi].v_rsvpd->so_rcv));
if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
if (rsvpdebug)
printf("rsvp_input: Failed to append to socket\n");
else
if (rsvpdebug)
printf("rsvp_input: send packet up\n");
splx(s);
}
#endif /* RSVP_ISI */