94cd08a535
Add a way to instruct the upper layer to don't bother w/ new requests if/when a device queue is full/busy or the device is unavailabale at that time Use scsipi_inquiry_data instead of its own inquiry structure
1444 lines
36 KiB
C
1444 lines
36 KiB
C
/* $NetBSD: adw.c,v 1.21 2000/05/14 18:25:49 dante Exp $ */
|
|
|
|
/*
|
|
* Generic driver for the Advanced Systems Inc. SCSI controllers
|
|
*
|
|
* Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Author: Baldassare Dante Profeta <dante@mclink.it>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/device.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/user.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
|
|
#include <dev/scsipi/scsi_all.h>
|
|
#include <dev/scsipi/scsipi_all.h>
|
|
#include <dev/scsipi/scsiconf.h>
|
|
|
|
#include <dev/ic/adwlib.h>
|
|
#include <dev/ic/adw.h>
|
|
|
|
#ifndef DDB
|
|
#define Debugger() panic("should call debugger here (adw.c)")
|
|
#endif /* ! DDB */
|
|
|
|
/******************************************************************************/
|
|
|
|
|
|
static int adw_alloc_controls __P((ADW_SOFTC *));
|
|
static int adw_alloc_carriers __P((ADW_SOFTC *));
|
|
static int adw_create_carriers __P((ADW_SOFTC *));
|
|
static int adw_create_ccbs __P((ADW_SOFTC *, ADW_CCB *, int));
|
|
static void adw_free_ccb __P((ADW_SOFTC *, ADW_CCB *));
|
|
static void adw_reset_ccb __P((ADW_CCB *));
|
|
static int adw_init_ccb __P((ADW_SOFTC *, ADW_CCB *));
|
|
static ADW_CCB *adw_get_ccb __P((ADW_SOFTC *, int));
|
|
static int adw_queue_ccb __P((ADW_SOFTC *, ADW_CCB *, int));
|
|
|
|
static int adw_scsi_cmd __P((struct scsipi_xfer *));
|
|
static int adw_build_req __P((struct scsipi_xfer *, ADW_CCB *, int));
|
|
static void adw_build_sglist __P((ADW_CCB *, ADW_SCSI_REQ_Q *, ADW_SG_BLOCK *));
|
|
static void adwminphys __P((struct buf *));
|
|
static void adw_isr_callback __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
|
|
static void adw_async_callback __P((ADW_SOFTC *, u_int8_t));
|
|
|
|
static void adw_print_info __P((ADW_SOFTC *, int));
|
|
|
|
static int adw_poll __P((ADW_SOFTC *, struct scsipi_xfer *, int));
|
|
static void adw_timeout __P((void *));
|
|
static void adw_reset_bus __P((ADW_SOFTC *, struct scsipi_xfer *));
|
|
|
|
|
|
/******************************************************************************/
|
|
|
|
|
|
/* the below structure is so we have a default dev struct for our link struct */
|
|
struct scsipi_device adw_dev =
|
|
{
|
|
NULL, /* Use default error handler */
|
|
NULL, /* have a queue, served by this */
|
|
NULL, /* have no async handler */
|
|
NULL, /* Use default 'done' routine */
|
|
};
|
|
|
|
|
|
/******************************************************************************/
|
|
/* Control Blocks routines */
|
|
/******************************************************************************/
|
|
|
|
|
|
static int
|
|
adw_alloc_controls(sc)
|
|
ADW_SOFTC *sc;
|
|
{
|
|
bus_dma_segment_t seg;
|
|
int error, rseg;
|
|
|
|
/*
|
|
* Allocate the control structure.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct adw_control),
|
|
NBPG, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
|
|
printf("%s: unable to allocate control structures,"
|
|
" error = %d\n", sc->sc_dev.dv_xname, error);
|
|
return (error);
|
|
}
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
|
|
sizeof(struct adw_control), (caddr_t *) & sc->sc_control,
|
|
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
|
|
printf("%s: unable to map control structures, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create and load the DMA map used for the control blocks.
|
|
*/
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct adw_control),
|
|
1, sizeof(struct adw_control), 0, BUS_DMA_NOWAIT,
|
|
&sc->sc_dmamap_control)) != 0) {
|
|
printf("%s: unable to create control DMA map, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
return (error);
|
|
}
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap_control,
|
|
sc->sc_control, sizeof(struct adw_control), NULL,
|
|
BUS_DMA_NOWAIT)) != 0) {
|
|
printf("%s: unable to load control DMA map, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
adw_alloc_carriers(sc)
|
|
ADW_SOFTC *sc;
|
|
{
|
|
bus_dma_segment_t seg;
|
|
int error, rseg;
|
|
|
|
/*
|
|
* Allocate the control structure.
|
|
*/
|
|
sc->sc_control->carriers = malloc(sizeof(ADW_CARRIER) * ADW_MAX_CARRIER,
|
|
M_DEVBUF, M_WAITOK);
|
|
if(!sc->sc_control->carriers) {
|
|
printf("%s: malloc() failed in allocating carrier structures\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(ADW_CARRIER) * ADW_MAX_CARRIER,
|
|
0x10, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
|
|
printf("%s: unable to allocate carrier structures,"
|
|
" error = %d\n", sc->sc_dev.dv_xname, error);
|
|
return (error);
|
|
}
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
|
|
sizeof(ADW_CARRIER) * ADW_MAX_CARRIER,
|
|
(caddr_t *) &sc->sc_control->carriers,
|
|
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
|
|
printf("%s: unable to map carrier structures,"
|
|
" error = %d\n", sc->sc_dev.dv_xname, error);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create and load the DMA map used for the control blocks.
|
|
*/
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(ADW_CARRIER) * ADW_MAX_CARRIER, 1,
|
|
sizeof(ADW_CARRIER) * ADW_MAX_CARRIER, 0,BUS_DMA_NOWAIT,
|
|
&sc->sc_dmamap_carrier)) != 0) {
|
|
printf("%s: unable to create carriers DMA map,"
|
|
" error = %d\n", sc->sc_dev.dv_xname, error);
|
|
return (error);
|
|
}
|
|
if ((error = bus_dmamap_load(sc->sc_dmat,
|
|
sc->sc_dmamap_carrier, sc->sc_control->carriers,
|
|
sizeof(ADW_CARRIER) * ADW_MAX_CARRIER, NULL,
|
|
BUS_DMA_NOWAIT)) != 0) {
|
|
printf("%s: unable to load carriers DMA map,"
|
|
" error = %d\n", sc->sc_dev.dv_xname, error);
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Create a set of Carriers and add them to the free list. Called once
|
|
* by adw_init(). We return the number of Carriers successfully created.
|
|
*/
|
|
static int
|
|
adw_create_carriers(sc)
|
|
ADW_SOFTC *sc;
|
|
{
|
|
ADW_CARRIER *carr;
|
|
u_int32_t carr_next = NULL;
|
|
int i;
|
|
|
|
for(i=0; i < ADW_MAX_CARRIER; i++) {
|
|
carr = (ADW_CARRIER *)(((u_int8_t *)sc->sc_control->carriers) +
|
|
(sizeof(ADW_CARRIER) * i));
|
|
carr->carr_ba = ADW_CARRIER_BADDR(sc, carr);
|
|
carr->carr_id = i;
|
|
carr->next_ba = carr_next;
|
|
carr_next = carr->carr_ba;
|
|
}
|
|
sc->carr_freelist = carr;
|
|
return (i);
|
|
}
|
|
|
|
|
|
/*
|
|
* Given a physical address, find the Carrier that it corresponds to.
|
|
*/
|
|
inline ADW_CARRIER *
|
|
adw_carrier_phys_kv(sc, carr_phys)
|
|
ADW_SOFTC *sc;
|
|
u_int32_t carr_phys;
|
|
{
|
|
return (ADW_CARRIER_VADDR(sc, carr_phys));
|
|
}
|
|
|
|
|
|
/*
|
|
* Create a set of ccbs and add them to the free list. Called once
|
|
* by adw_init(). We return the number of CCBs successfully created.
|
|
*/
|
|
static int
|
|
adw_create_ccbs(sc, ccbstore, count)
|
|
ADW_SOFTC *sc;
|
|
ADW_CCB *ccbstore;
|
|
int count;
|
|
{
|
|
ADW_CCB *ccb;
|
|
int i, error;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
ccb = &ccbstore[i];
|
|
if ((error = adw_init_ccb(sc, ccb)) != 0) {
|
|
printf("%s: unable to initialize ccb, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
return (i);
|
|
}
|
|
TAILQ_INSERT_TAIL(&sc->sc_free_ccb, ccb, chain);
|
|
}
|
|
|
|
return (i);
|
|
}
|
|
|
|
|
|
/*
|
|
* A ccb is put onto the free list.
|
|
*/
|
|
static void
|
|
adw_free_ccb(sc, ccb)
|
|
ADW_SOFTC *sc;
|
|
ADW_CCB *ccb;
|
|
{
|
|
int s;
|
|
|
|
s = splbio();
|
|
|
|
adw_reset_ccb(ccb);
|
|
TAILQ_INSERT_HEAD(&sc->sc_free_ccb, ccb, chain);
|
|
|
|
/*
|
|
* If there were none, wake anybody waiting for one to come free,
|
|
* starting with queued entries.
|
|
*/
|
|
if (ccb->chain.tqe_next == 0)
|
|
wakeup(&sc->sc_free_ccb);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
|
|
static void
|
|
adw_reset_ccb(ccb)
|
|
ADW_CCB *ccb;
|
|
{
|
|
|
|
ccb->flags = 0;
|
|
}
|
|
|
|
|
|
static int
|
|
adw_init_ccb(sc, ccb)
|
|
ADW_SOFTC *sc;
|
|
ADW_CCB *ccb;
|
|
{
|
|
int hashnum, error;
|
|
|
|
/*
|
|
* Create the DMA map for this CCB.
|
|
*/
|
|
error = bus_dmamap_create(sc->sc_dmat,
|
|
(ADW_MAX_SG_LIST - 1) * PAGE_SIZE,
|
|
ADW_MAX_SG_LIST, (ADW_MAX_SG_LIST - 1) * PAGE_SIZE,
|
|
0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->dmamap_xfer);
|
|
if (error) {
|
|
printf("%s: unable to create CCB DMA map, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* put in the phystokv hash table
|
|
* Never gets taken out.
|
|
*/
|
|
ccb->hashkey = sc->sc_dmamap_control->dm_segs[0].ds_addr +
|
|
ADW_CCB_OFF(ccb);
|
|
hashnum = CCB_HASH(ccb->hashkey);
|
|
ccb->nexthash = sc->sc_ccbhash[hashnum];
|
|
sc->sc_ccbhash[hashnum] = ccb;
|
|
adw_reset_ccb(ccb);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Get a free ccb
|
|
*
|
|
* If there are none, see if we can allocate a new one
|
|
*/
|
|
static ADW_CCB *
|
|
adw_get_ccb(sc, flags)
|
|
ADW_SOFTC *sc;
|
|
int flags;
|
|
{
|
|
ADW_CCB *ccb = 0;
|
|
int s;
|
|
|
|
s = splbio();
|
|
|
|
/*
|
|
* If we can and have to, sleep waiting for one to come free
|
|
* but only if we can't allocate a new one.
|
|
*/
|
|
for (;;) {
|
|
ccb = sc->sc_free_ccb.tqh_first;
|
|
if (ccb) {
|
|
TAILQ_REMOVE(&sc->sc_free_ccb, ccb, chain);
|
|
break;
|
|
}
|
|
if ((flags & XS_CTL_NOSLEEP) != 0)
|
|
goto out;
|
|
|
|
tsleep(&sc->sc_free_ccb, PRIBIO, "adwccb", 0);
|
|
}
|
|
|
|
ccb->flags |= CCB_ALLOC;
|
|
|
|
out:
|
|
splx(s);
|
|
return (ccb);
|
|
}
|
|
|
|
|
|
/*
|
|
* Given a physical address, find the ccb that it corresponds to.
|
|
*/
|
|
ADW_CCB *
|
|
adw_ccb_phys_kv(sc, ccb_phys)
|
|
ADW_SOFTC *sc;
|
|
u_int32_t ccb_phys;
|
|
{
|
|
int hashnum = CCB_HASH(ccb_phys);
|
|
ADW_CCB *ccb = sc->sc_ccbhash[hashnum];
|
|
|
|
while (ccb) {
|
|
if (ccb->hashkey == ccb_phys)
|
|
break;
|
|
ccb = ccb->nexthash;
|
|
}
|
|
return (ccb);
|
|
}
|
|
|
|
|
|
/*
|
|
* Queue a CCB to be sent to the controller, and send it if possible.
|
|
*/
|
|
static int
|
|
adw_queue_ccb(sc, ccb, retry)
|
|
ADW_SOFTC *sc;
|
|
ADW_CCB *ccb;
|
|
int retry;
|
|
{
|
|
int errcode = ADW_SUCCESS;
|
|
|
|
if(!retry) {
|
|
TAILQ_INSERT_TAIL(&sc->sc_waiting_ccb, ccb, chain);
|
|
}
|
|
|
|
while ((ccb = sc->sc_waiting_ccb.tqh_first) != NULL) {
|
|
|
|
errcode = AdvExeScsiQueue(sc, &ccb->scsiq);
|
|
switch(errcode) {
|
|
case ADW_SUCCESS:
|
|
break;
|
|
|
|
case ADW_BUSY:
|
|
printf("ADW_BUSY\n");
|
|
return(ADW_BUSY);
|
|
|
|
case ADW_ERROR:
|
|
printf("ADW_ERROR\n");
|
|
TAILQ_REMOVE(&sc->sc_waiting_ccb, ccb, chain);
|
|
return(ADW_ERROR);
|
|
}
|
|
|
|
TAILQ_REMOVE(&sc->sc_waiting_ccb, ccb, chain);
|
|
TAILQ_INSERT_TAIL(&sc->sc_pending_ccb, ccb, chain);
|
|
|
|
if ((ccb->xs->xs_control & XS_CTL_POLL) == 0)
|
|
callout_reset(&ccb->xs->xs_callout,
|
|
(ccb->timeout * hz) / 1000, adw_timeout, ccb);
|
|
}
|
|
|
|
return(errcode);
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
/* SCSI layer interfacing routines */
|
|
/******************************************************************************/
|
|
|
|
|
|
int
|
|
adw_init(sc)
|
|
ADW_SOFTC *sc;
|
|
{
|
|
u_int16_t warn_code;
|
|
|
|
|
|
sc->cfg.lib_version = (ADW_LIB_VERSION_MAJOR << 8) |
|
|
ADW_LIB_VERSION_MINOR;
|
|
sc->cfg.chip_version =
|
|
ADW_GET_CHIP_VERSION(sc->sc_iot, sc->sc_ioh, sc->bus_type);
|
|
|
|
/*
|
|
* Reset the chip to start and allow register writes.
|
|
*/
|
|
if (ADW_FIND_SIGNATURE(sc->sc_iot, sc->sc_ioh) == 0) {
|
|
panic("adw_init: adw_find_signature failed");
|
|
} else {
|
|
AdvResetChip(sc->sc_iot, sc->sc_ioh);
|
|
|
|
switch(sc->chip_type) {
|
|
case ADV_CHIP_ASC3550:
|
|
warn_code = AdvInitFrom3550EEP(sc);
|
|
break;
|
|
|
|
case ADV_CHIP_ASC38C0800:
|
|
warn_code = AdvInitFrom38C0800EEP(sc);
|
|
break;
|
|
|
|
case ADV_CHIP_ASC38C1600:
|
|
warn_code = AdvInitFrom38C1600EEP(sc);
|
|
break;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
if (warn_code & ASC_WARN_EEPROM_CHKSUM)
|
|
printf("%s: Bad checksum found. "
|
|
"Setting default values\n",
|
|
sc->sc_dev.dv_xname);
|
|
if (warn_code & ASC_WARN_EEPROM_TERMINATION)
|
|
printf("%s: Bad bus termination setting."
|
|
"Using automatic termination.\n",
|
|
sc->sc_dev.dv_xname);
|
|
}
|
|
|
|
sc->isr_callback = (ADW_CALLBACK) adw_isr_callback;
|
|
sc->async_callback = (ADW_CALLBACK) adw_async_callback;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
adw_attach(sc)
|
|
ADW_SOFTC *sc;
|
|
{
|
|
int i, error;
|
|
|
|
|
|
TAILQ_INIT(&sc->sc_free_ccb);
|
|
TAILQ_INIT(&sc->sc_waiting_ccb);
|
|
TAILQ_INIT(&sc->sc_pending_ccb);
|
|
TAILQ_INIT(&sc->sc_queue);
|
|
|
|
|
|
/*
|
|
* Allocate the Control Blocks.
|
|
*/
|
|
error = adw_alloc_controls(sc);
|
|
if (error)
|
|
return; /* (error) */ ;
|
|
|
|
bzero(sc->sc_control, sizeof(struct adw_control));
|
|
|
|
/*
|
|
* Create and initialize the Control Blocks.
|
|
*/
|
|
i = adw_create_ccbs(sc, sc->sc_control->ccbs, ADW_MAX_CCB);
|
|
if (i == 0) {
|
|
printf("%s: unable to create Control Blocks\n",
|
|
sc->sc_dev.dv_xname);
|
|
return; /* (ENOMEM) */ ;
|
|
} else if (i != ADW_MAX_CCB) {
|
|
printf("%s: WARNING: only %d of %d Control Blocks"
|
|
" created\n",
|
|
sc->sc_dev.dv_xname, i, ADW_MAX_CCB);
|
|
}
|
|
|
|
/*
|
|
* Create and initialize the Carriers.
|
|
*/
|
|
error = adw_alloc_carriers(sc);
|
|
if (error)
|
|
return; /* (error) */ ;
|
|
|
|
bzero(sc->sc_control->carriers, sizeof(ADW_CARRIER) * ADW_MAX_CARRIER);
|
|
|
|
i = adw_create_carriers(sc);
|
|
if (i == 0) {
|
|
printf("%s: unable to create Carriers\n",
|
|
sc->sc_dev.dv_xname);
|
|
return; /* (ENOMEM) */ ;
|
|
} else if (i != ADW_MAX_CARRIER) {
|
|
printf("%s: WARNING: only %d of %d Carriers created\n",
|
|
sc->sc_dev.dv_xname, i, ADW_MAX_CARRIER);
|
|
}
|
|
|
|
/*
|
|
* Zero's the freeze_device status
|
|
*/
|
|
bzero(sc->sc_freeze_dev, sizeof(sc->sc_freeze_dev));
|
|
|
|
/*
|
|
* Initialize the adapter
|
|
*/
|
|
switch(sc->chip_type) {
|
|
case ADV_CHIP_ASC3550:
|
|
error = AdvInitAsc3550Driver(sc);
|
|
break;
|
|
|
|
case ADV_CHIP_ASC38C0800:
|
|
error = AdvInitAsc38C0800Driver(sc);
|
|
break;
|
|
|
|
case ADV_CHIP_ASC38C1600:
|
|
error = AdvInitAsc38C1600Driver(sc);
|
|
break;
|
|
|
|
default:
|
|
return;
|
|
}
|
|
|
|
switch (error) {
|
|
case ASC_IERR_BIST_PRE_TEST:
|
|
panic("%s: BIST pre-test error",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
|
|
case ASC_IERR_BIST_RAM_TEST:
|
|
panic("%s: BIST RAM test error",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
|
|
case ASC_IERR_MCODE_CHKSUM:
|
|
panic("%s: Microcode checksum error",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
|
|
case ASC_IERR_ILLEGAL_CONNECTION:
|
|
panic("%s: All three connectors are in use",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
|
|
case ASC_IERR_REVERSED_CABLE:
|
|
panic("%s: Cable is reversed",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
|
|
case ASC_IERR_HVD_DEVICE:
|
|
panic("%s: HVD attached to LVD connector",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
|
|
case ASC_IERR_SINGLE_END_DEVICE:
|
|
panic("%s: single-ended device is attached to"
|
|
" one of the connectors",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
|
|
case ASC_IERR_NO_CARRIER:
|
|
panic("%s: no carrier",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
|
|
case ASC_WARN_BUSRESET_ERROR:
|
|
printf("%s: WARNING: Bus Reset Error\n",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Fill in the adapter.
|
|
*/
|
|
sc->sc_adapter.scsipi_cmd = adw_scsi_cmd;
|
|
sc->sc_adapter.scsipi_minphys = adwminphys;
|
|
|
|
/*
|
|
* fill in the prototype scsipi_link.
|
|
*/
|
|
sc->sc_link.scsipi_scsi.channel = SCSI_CHANNEL_ONLY_ONE;
|
|
sc->sc_link.adapter_softc = sc;
|
|
sc->sc_link.scsipi_scsi.adapter_target = sc->chip_scsi_id;
|
|
sc->sc_link.adapter = &sc->sc_adapter;
|
|
sc->sc_link.device = &adw_dev;
|
|
sc->sc_link.openings = 4;
|
|
sc->sc_link.scsipi_scsi.max_target = ADW_MAX_TID;
|
|
sc->sc_link.scsipi_scsi.max_lun = 7;
|
|
sc->sc_link.type = BUS_SCSI;
|
|
|
|
|
|
config_found(&sc->sc_dev, &sc->sc_link, scsiprint);
|
|
}
|
|
|
|
|
|
static void
|
|
adwminphys(bp)
|
|
struct buf *bp;
|
|
{
|
|
|
|
if (bp->b_bcount > ((ADW_MAX_SG_LIST - 1) * PAGE_SIZE))
|
|
bp->b_bcount = ((ADW_MAX_SG_LIST - 1) * PAGE_SIZE);
|
|
minphys(bp);
|
|
}
|
|
|
|
|
|
/*
|
|
* start a scsi operation given the command and the data address.
|
|
* Also needs the unit, target and lu.
|
|
*/
|
|
static int
|
|
adw_scsi_cmd(xs)
|
|
struct scsipi_xfer *xs;
|
|
{
|
|
struct scsipi_link *sc_link = xs->sc_link;
|
|
ADW_SOFTC *sc = sc_link->adapter_softc;
|
|
ADW_CCB *ccb;
|
|
int s, fromqueue = 1, dontqueue = 0, nowait = 0, retry = 0;
|
|
int flags;
|
|
|
|
s = splbio(); /* protect the queue */
|
|
|
|
/*
|
|
* If we're running the queue from adw_done(), we've been
|
|
* called with the first queue entry as our argument.
|
|
*/
|
|
if (xs == TAILQ_FIRST(&sc->sc_queue)) {
|
|
if(sc->sc_freeze_dev[xs->sc_link->scsipi_scsi.target]) {
|
|
splx(s);
|
|
return (TRY_AGAIN_LATER);
|
|
}
|
|
|
|
TAILQ_REMOVE(&sc->sc_queue, xs, adapter_q);
|
|
fromqueue = 1;
|
|
nowait = 1;
|
|
} else {
|
|
if(sc->sc_freeze_dev[xs->sc_link->scsipi_scsi.target]) {
|
|
splx(s);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
return (TRY_AGAIN_LATER);
|
|
}
|
|
|
|
/* Polled requests can't be queued for later. */
|
|
dontqueue = xs->xs_control & XS_CTL_POLL;
|
|
|
|
/*
|
|
* If there are jobs in the queue, run them first.
|
|
*/
|
|
if (TAILQ_FIRST(&sc->sc_queue) != NULL) {
|
|
/*
|
|
* If we can't queue, we have to abort, since
|
|
* we have to preserve order.
|
|
*/
|
|
if (dontqueue) {
|
|
splx(s);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
return (TRY_AGAIN_LATER);
|
|
}
|
|
/*
|
|
* Swap with the first queue entry.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&sc->sc_queue, xs, adapter_q);
|
|
xs = TAILQ_FIRST(&sc->sc_queue);
|
|
TAILQ_REMOVE(&sc->sc_queue, xs, adapter_q);
|
|
fromqueue = 1;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* get a ccb to use. If the transfer
|
|
* is from a buf (possibly from interrupt time)
|
|
* then we can't allow it to sleep
|
|
*/
|
|
|
|
flags = xs->xs_control;
|
|
if (nowait)
|
|
flags |= XS_CTL_NOSLEEP;
|
|
if ((ccb = adw_get_ccb(sc, flags)) == NULL) {
|
|
/*
|
|
* If we can't queue, we lose.
|
|
*/
|
|
if (dontqueue) {
|
|
splx(s);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
return (TRY_AGAIN_LATER);
|
|
}
|
|
/*
|
|
* Stuff ourselves into the queue, in front
|
|
* if we came off in the first place.
|
|
*/
|
|
if (fromqueue)
|
|
TAILQ_INSERT_HEAD(&sc->sc_queue, xs, adapter_q);
|
|
else
|
|
TAILQ_INSERT_TAIL(&sc->sc_queue, xs, adapter_q);
|
|
splx(s);
|
|
return (SUCCESSFULLY_QUEUED);
|
|
}
|
|
splx(s); /* done playing with the queue */
|
|
|
|
ccb->xs = xs;
|
|
ccb->timeout = xs->timeout;
|
|
|
|
if (adw_build_req(xs, ccb, flags)) {
|
|
retryagain:
|
|
s = splbio();
|
|
retry = adw_queue_ccb(sc, ccb, retry);
|
|
splx(s);
|
|
|
|
switch(retry) {
|
|
case ADW_BUSY:
|
|
goto retryagain;
|
|
|
|
case ADW_ERROR:
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
return (COMPLETE);
|
|
}
|
|
|
|
/*
|
|
* Usually return SUCCESSFULLY QUEUED
|
|
*/
|
|
if ((xs->xs_control & XS_CTL_POLL) == 0)
|
|
return (SUCCESSFULLY_QUEUED);
|
|
|
|
/*
|
|
* If we can't use interrupts, poll on completion
|
|
*/
|
|
if (adw_poll(sc, xs, ccb->timeout)) {
|
|
adw_timeout(ccb);
|
|
if (adw_poll(sc, xs, ccb->timeout))
|
|
adw_timeout(ccb);
|
|
}
|
|
}
|
|
return (COMPLETE);
|
|
}
|
|
|
|
|
|
/*
|
|
* Build a request structure for the Wide Boards.
|
|
*/
|
|
static int
|
|
adw_build_req(xs, ccb, flags)
|
|
struct scsipi_xfer *xs;
|
|
ADW_CCB *ccb;
|
|
int flags;
|
|
{
|
|
struct scsipi_link *sc_link = xs->sc_link;
|
|
ADW_SOFTC *sc = sc_link->adapter_softc;
|
|
bus_dma_tag_t dmat = sc->sc_dmat;
|
|
ADW_SCSI_REQ_Q *scsiqp;
|
|
int error;
|
|
|
|
scsiqp = &ccb->scsiq;
|
|
bzero(scsiqp, sizeof(ADW_SCSI_REQ_Q));
|
|
|
|
/*
|
|
* Set the ADW_SCSI_REQ_Q 'ccb_ptr' to point to the
|
|
* physical CCB structure.
|
|
*/
|
|
scsiqp->ccb_ptr = ccb->hashkey;
|
|
|
|
/*
|
|
* Build the ADW_SCSI_REQ_Q request.
|
|
*/
|
|
|
|
/*
|
|
* Set CDB length and copy it to the request structure.
|
|
* For wide boards a CDB length maximum of 16 bytes
|
|
* is supported.
|
|
*/
|
|
bcopy(xs->cmd, &scsiqp->cdb, ((scsiqp->cdb_len = xs->cmdlen) <= 12)?
|
|
xs->cmdlen : 12 );
|
|
if(xs->cmdlen > 12)
|
|
bcopy(&(xs->cmd[12]), &scsiqp->cdb16, xs->cmdlen - 12);
|
|
|
|
scsiqp->target_id = sc_link->scsipi_scsi.target;
|
|
scsiqp->target_lun = sc_link->scsipi_scsi.lun;
|
|
|
|
scsiqp->vsense_addr = &ccb->scsi_sense;
|
|
scsiqp->sense_addr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
|
|
ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsi_sense);
|
|
scsiqp->sense_len = sizeof(struct scsipi_sense_data);
|
|
|
|
/*
|
|
* Build ADW_SCSI_REQ_Q for a scatter-gather buffer command.
|
|
*/
|
|
if (xs->datalen) {
|
|
/*
|
|
* Map the DMA transfer.
|
|
*/
|
|
#ifdef TFS
|
|
if (xs->xs_control & SCSI_DATA_UIO) {
|
|
error = bus_dmamap_load_uio(dmat,
|
|
ccb->dmamap_xfer, (struct uio *) xs->data,
|
|
(flags & XS_CTL_NOSLEEP) ?
|
|
BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
|
|
} else
|
|
#endif /* TFS */
|
|
{
|
|
error = bus_dmamap_load(dmat,
|
|
ccb->dmamap_xfer, xs->data, xs->datalen, NULL,
|
|
(flags & XS_CTL_NOSLEEP) ?
|
|
BUS_DMA_NOWAIT : BUS_DMA_WAITOK);
|
|
}
|
|
|
|
if (error) {
|
|
if (error == EFBIG) {
|
|
printf("%s: adw_scsi_cmd, more than %d dma"
|
|
" segments\n",
|
|
sc->sc_dev.dv_xname, ADW_MAX_SG_LIST);
|
|
} else {
|
|
printf("%s: adw_scsi_cmd, error %d loading"
|
|
" dma map\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
}
|
|
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
adw_free_ccb(sc, ccb);
|
|
return (0);
|
|
}
|
|
bus_dmamap_sync(dmat, ccb->dmamap_xfer, 0,
|
|
ccb->dmamap_xfer->dm_mapsize,
|
|
(xs->xs_control & XS_CTL_DATA_IN) ?
|
|
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Build scatter-gather list.
|
|
*/
|
|
scsiqp->data_cnt = xs->datalen;
|
|
scsiqp->vdata_addr = xs->data;
|
|
scsiqp->data_addr = ccb->dmamap_xfer->dm_segs[0].ds_addr;
|
|
bzero(ccb->sg_block, sizeof(ADW_SG_BLOCK) * ADW_NUM_SG_BLOCK);
|
|
adw_build_sglist(ccb, scsiqp, ccb->sg_block);
|
|
} else {
|
|
/*
|
|
* No data xfer, use non S/G values.
|
|
*/
|
|
scsiqp->data_cnt = 0;
|
|
scsiqp->vdata_addr = 0;
|
|
scsiqp->data_addr = 0;
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* Build scatter-gather list for Wide Boards.
|
|
*/
|
|
static void
|
|
adw_build_sglist(ccb, scsiqp, sg_block)
|
|
ADW_CCB *ccb;
|
|
ADW_SCSI_REQ_Q *scsiqp;
|
|
ADW_SG_BLOCK *sg_block;
|
|
{
|
|
u_long sg_block_next_addr; /* block and its next */
|
|
u_int32_t sg_block_physical_addr;
|
|
int i; /* how many SG entries */
|
|
bus_dma_segment_t *sg_list = &ccb->dmamap_xfer->dm_segs[0];
|
|
int sg_elem_cnt = ccb->dmamap_xfer->dm_nsegs;
|
|
|
|
|
|
sg_block_next_addr = (u_long) sg_block; /* allow math operation */
|
|
sg_block_physical_addr = ccb->hashkey +
|
|
offsetof(struct adw_ccb, sg_block[0]);
|
|
scsiqp->sg_real_addr = sg_block_physical_addr;
|
|
|
|
/*
|
|
* If there are more than NO_OF_SG_PER_BLOCK dma segments (hw sg-list)
|
|
* then split the request into multiple sg-list blocks.
|
|
*/
|
|
|
|
do {
|
|
for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
|
|
sg_block->sg_list[i].sg_addr = sg_list->ds_addr;
|
|
sg_block->sg_list[i].sg_count = sg_list->ds_len;
|
|
|
|
if (--sg_elem_cnt == 0) {
|
|
/* last entry, get out */
|
|
sg_block->sg_cnt = i + i;
|
|
sg_block->sg_ptr = NULL; /* next link = NULL */
|
|
return;
|
|
}
|
|
sg_list++;
|
|
}
|
|
sg_block_next_addr += sizeof(ADW_SG_BLOCK);
|
|
sg_block_physical_addr += sizeof(ADW_SG_BLOCK);
|
|
|
|
sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
|
|
sg_block->sg_ptr = sg_block_physical_addr;
|
|
sg_block = (ADW_SG_BLOCK *) sg_block_next_addr; /* virt. addr */
|
|
} while (1);
|
|
}
|
|
|
|
|
|
int
|
|
adw_intr(arg)
|
|
void *arg;
|
|
{
|
|
ADW_SOFTC *sc = arg;
|
|
struct scsipi_xfer *xs;
|
|
|
|
|
|
if(AdvISR(sc) != ADW_FALSE) {
|
|
/*
|
|
* If there are queue entries in the software queue, try to
|
|
* run the first one. We should be more or less guaranteed
|
|
* to succeed, since we just freed a CCB.
|
|
*
|
|
* NOTE: adw_scsi_cmd() relies on our calling it with
|
|
* the first entry in the queue.
|
|
*/
|
|
if ((xs = TAILQ_FIRST(&sc->sc_queue)) != NULL)
|
|
(void) adw_scsi_cmd(xs);
|
|
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Poll a particular unit, looking for a particular xs
|
|
*/
|
|
static int
|
|
adw_poll(sc, xs, count)
|
|
ADW_SOFTC *sc;
|
|
struct scsipi_xfer *xs;
|
|
int count;
|
|
{
|
|
|
|
/* timeouts are in msec, so we loop in 1000 usec cycles */
|
|
while (count) {
|
|
adw_intr(sc);
|
|
if (xs->xs_status & XS_STS_DONE)
|
|
return (0);
|
|
delay(1000); /* only happens in boot so ok */
|
|
count--;
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
|
|
static void
|
|
adw_timeout(arg)
|
|
void *arg;
|
|
{
|
|
ADW_CCB *ccb = arg;
|
|
struct scsipi_xfer *xs = ccb->xs;
|
|
struct scsipi_link *sc_link = xs->sc_link;
|
|
ADW_SOFTC *sc = sc_link->adapter_softc;
|
|
int s;
|
|
|
|
scsi_print_addr(sc_link);
|
|
printf("timed out");
|
|
|
|
s = splbio();
|
|
|
|
if (ccb->flags & CCB_ABORTED) {
|
|
/*
|
|
* Abort Timed Out
|
|
*
|
|
* No more opportunities. Lets try resetting the bus and
|
|
* reinitialize the host adapter.
|
|
*/
|
|
callout_stop(&xs->xs_callout);
|
|
printf(" AGAIN. Resetting SCSI Bus\n");
|
|
adw_reset_bus(sc, xs);
|
|
splx(s);
|
|
return;
|
|
} else if (ccb->flags & CCB_ABORTING) {
|
|
/*
|
|
* Abort the operation that has timed out.
|
|
*
|
|
* Second opportunity.
|
|
*/
|
|
printf("\n");
|
|
xs->error = XS_TIMEOUT;
|
|
ccb->flags |= CCB_ABORTED;
|
|
#if 0
|
|
/*
|
|
* - XXX - 3.3a microcode is BROKEN!!!
|
|
*
|
|
* We cannot abort a CCB, so we can only hope the command
|
|
* get completed before the next timeout, otherwise a
|
|
* Bus Reset will arrive inexorably.
|
|
*/
|
|
/*
|
|
* ADW_ABORT_CCB() makes the board to generate an interrupt
|
|
*
|
|
* - XXX - The above assertion MUST be verified (and this
|
|
* code changed as well [callout_*()]), when the
|
|
* ADW_ABORT_CCB will be working again
|
|
*/
|
|
ADW_ABORT_CCB(sc, ccb);
|
|
#endif
|
|
/*
|
|
* waiting for multishot callout_reset() let's restart it
|
|
* by hand so the next time a timeout event will occour
|
|
* we will reset the bus.
|
|
*/
|
|
callout_reset(&xs->xs_callout,
|
|
(ccb->timeout * hz) / 1000, adw_timeout, ccb);
|
|
} else {
|
|
/*
|
|
* Abort the operation that has timed out.
|
|
*
|
|
* First opportunity.
|
|
*/
|
|
printf("\n");
|
|
xs->error = XS_TIMEOUT;
|
|
ccb->flags |= CCB_ABORTING;
|
|
#if 0
|
|
/*
|
|
* - XXX - 3.3a microcode is BROKEN!!!
|
|
*
|
|
* We cannot abort a CCB, so we can only hope the command
|
|
* get completed before the next 2 timeout, otherwise a
|
|
* Bus Reset will arrive inexorably.
|
|
*/
|
|
/*
|
|
* ADW_ABORT_CCB() makes the board to generate an interrupt
|
|
*
|
|
* - XXX - The above assertion MUST be verified (and this
|
|
* code changed as well [callout_*()]), when the
|
|
* ADW_ABORT_CCB will be working again
|
|
*/
|
|
ADW_ABORT_CCB(sc, ccb);
|
|
#endif
|
|
/*
|
|
* waiting for multishot callout_reset() let's restart it
|
|
* by hand so to give a second opportunity to the command
|
|
* which timed-out.
|
|
*/
|
|
callout_reset(&xs->xs_callout,
|
|
(ccb->timeout * hz) / 1000, adw_timeout, ccb);
|
|
}
|
|
|
|
splx(s);
|
|
}
|
|
|
|
|
|
static void
|
|
adw_reset_bus(sc, xs)
|
|
ADW_SOFTC *sc;
|
|
struct scsipi_xfer *xs;
|
|
{
|
|
ADW_CCB *ccb;
|
|
int s;
|
|
|
|
s = splbio();
|
|
AdvResetSCSIBus(sc);
|
|
while((ccb = TAILQ_LAST(&sc->sc_pending_ccb,
|
|
adw_pending_ccb)) != NULL) {
|
|
callout_stop(&ccb->xs->xs_callout);
|
|
TAILQ_REMOVE(&sc->sc_pending_ccb, ccb, chain);
|
|
TAILQ_INSERT_HEAD(&sc->sc_waiting_ccb, ccb, chain);
|
|
}
|
|
adw_queue_ccb(sc, TAILQ_FIRST(&sc->sc_waiting_ccb), 1);
|
|
splx(s);
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
/* Host Adapter and Peripherals Information Routines */
|
|
/******************************************************************************/
|
|
|
|
|
|
static void
|
|
adw_print_info(sc, tid)
|
|
ADW_SOFTC *sc;
|
|
int tid;
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int16_t wdtr_able, wdtr_done, wdtr;
|
|
u_int16_t sdtr_able, sdtr_done, sdtr, period;
|
|
static int wdtr_reneg = 0, sdtr_reneg = 0;
|
|
|
|
if (tid == 0){
|
|
wdtr_reneg = sdtr_reneg = 0;
|
|
}
|
|
|
|
printf("%s: target %d ", sc->sc_dev.dv_xname, tid);
|
|
|
|
ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, wdtr_able);
|
|
if(wdtr_able & ADW_TID_TO_TIDMASK(tid)) {
|
|
ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE, wdtr_done);
|
|
ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_DEVICE_HSHK_CFG_TABLE +
|
|
(2 * tid), wdtr);
|
|
printf("using %d-bits wide, ", (wdtr & 0x8000)? 16 : 8);
|
|
if((wdtr_done & ADW_TID_TO_TIDMASK(tid)) == 0)
|
|
wdtr_reneg = 1;
|
|
} else {
|
|
printf("wide transfers disabled, ");
|
|
}
|
|
|
|
ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
|
|
if(sdtr_able & ADW_TID_TO_TIDMASK(tid)) {
|
|
ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE, sdtr_done);
|
|
ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_DEVICE_HSHK_CFG_TABLE +
|
|
(2 * tid), sdtr);
|
|
sdtr &= ~0x8000;
|
|
if((sdtr & 0x1F) != 0) {
|
|
if((sdtr & 0x1F00) == 0x1100){
|
|
printf("80.0 MHz");
|
|
} else if((sdtr & 0x1F00) == 0x1000){
|
|
printf("40.0 MHz");
|
|
} else {
|
|
/* <= 20.0 MHz */
|
|
period = (((sdtr >> 8) * 25) + 50)/4;
|
|
if(period == 0) {
|
|
/* Should never happen. */
|
|
printf("? MHz");
|
|
} else {
|
|
printf("%d.%d MHz", 250/period,
|
|
ADW_TENTHS(250, period));
|
|
}
|
|
}
|
|
printf(" synchronous transfers\n");
|
|
} else {
|
|
printf("asynchronous transfers\n");
|
|
}
|
|
if((sdtr_done & ADW_TID_TO_TIDMASK(tid)) == 0)
|
|
sdtr_reneg = 1;
|
|
} else {
|
|
printf("synchronous transfers disabled\n");
|
|
}
|
|
|
|
if(wdtr_reneg || sdtr_reneg) {
|
|
printf("%s: target %d %s", sc->sc_dev.dv_xname, tid,
|
|
(wdtr_reneg)? ((sdtr_reneg)? "wide/sync" : "wide") :
|
|
((sdtr_reneg)? "sync" : "") );
|
|
printf(" renegotiation pending before next command.\n");
|
|
}
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
/* WIDE boards Interrupt callbacks */
|
|
/******************************************************************************/
|
|
|
|
|
|
/*
|
|
* adw_isr_callback() - Second Level Interrupt Handler called by AdvISR()
|
|
*
|
|
* Interrupt callback function for the Wide SCSI Adv Library.
|
|
*
|
|
* Notice:
|
|
* Intrrupts are disabled by the caller (AdvISR() function), and will be
|
|
* enabled at the end of the caller.
|
|
*/
|
|
static void
|
|
adw_isr_callback(sc, scsiq)
|
|
ADW_SOFTC *sc;
|
|
ADW_SCSI_REQ_Q *scsiq;
|
|
{
|
|
bus_dma_tag_t dmat = sc->sc_dmat;
|
|
ADW_CCB *ccb;
|
|
struct scsipi_xfer *xs;
|
|
struct scsipi_sense_data *s1, *s2;
|
|
|
|
|
|
ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
|
|
|
|
callout_stop(&ccb->xs->xs_callout);
|
|
|
|
xs = ccb->xs;
|
|
|
|
/*
|
|
* If we were a data transfer, unload the map that described
|
|
* the data buffer.
|
|
*/
|
|
if (xs->datalen) {
|
|
bus_dmamap_sync(dmat, ccb->dmamap_xfer, 0,
|
|
ccb->dmamap_xfer->dm_mapsize,
|
|
(xs->xs_control & XS_CTL_DATA_IN) ?
|
|
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(dmat, ccb->dmamap_xfer);
|
|
}
|
|
|
|
if ((ccb->flags & CCB_ALLOC) == 0) {
|
|
printf("%s: exiting ccb not allocated!\n", sc->sc_dev.dv_xname);
|
|
Debugger();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* 'done_status' contains the command's ending status.
|
|
* 'host_status' conatins the host adapter status.
|
|
* 'scsi_status' contains the scsi peripheral status.
|
|
*/
|
|
if ((scsiq->host_status == QHSTA_NO_ERROR) &&
|
|
((scsiq->done_status == QD_NO_ERROR) ||
|
|
(scsiq->done_status == QD_WITH_ERROR))) {
|
|
switch (scsiq->host_status) {
|
|
case SCSI_STATUS_GOOD:
|
|
if ((scsiq->cdb[0] == INQUIRY) &&
|
|
(scsiq->target_lun == 0)) {
|
|
adw_print_info(sc, scsiq->target_id);
|
|
}
|
|
xs->error = XS_NOERROR;
|
|
xs->resid = scsiq->data_cnt;
|
|
sc->sc_freeze_dev[scsiq->target_id] = 0;
|
|
break;
|
|
|
|
case SCSI_STATUS_CHECK_CONDITION:
|
|
case SCSI_STATUS_CMD_TERMINATED:
|
|
s1 = &ccb->scsi_sense;
|
|
s2 = &xs->sense.scsi_sense;
|
|
*s2 = *s1;
|
|
xs->error = XS_SENSE;
|
|
sc->sc_freeze_dev[scsiq->target_id] = 1;
|
|
break;
|
|
|
|
default:
|
|
xs->error = XS_BUSY;
|
|
sc->sc_freeze_dev[scsiq->target_id] = 1;
|
|
break;
|
|
}
|
|
} else if (scsiq->done_status == QD_ABORTED_BY_HOST) {
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
} else {
|
|
switch (scsiq->host_status) {
|
|
case QHSTA_M_SEL_TIMEOUT:
|
|
xs->error = XS_SELTIMEOUT;
|
|
break;
|
|
|
|
case QHSTA_M_SXFR_OFF_UFLW:
|
|
case QHSTA_M_SXFR_OFF_OFLW:
|
|
case QHSTA_M_DATA_OVER_RUN:
|
|
printf("%s: Overrun/Overflow/Underflow condition\n",
|
|
sc->sc_dev.dv_xname);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
break;
|
|
|
|
case QHSTA_M_SXFR_DESELECTED:
|
|
case QHSTA_M_UNEXPECTED_BUS_FREE:
|
|
printf("%s: Unexpected BUS free\n",sc->sc_dev.dv_xname);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
break;
|
|
|
|
case QHSTA_M_SCSI_BUS_RESET:
|
|
case QHSTA_M_SCSI_BUS_RESET_UNSOL:
|
|
printf("%s: BUS Reset\n", sc->sc_dev.dv_xname);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
break;
|
|
|
|
case QHSTA_M_BUS_DEVICE_RESET:
|
|
printf("%s: Device Reset\n", sc->sc_dev.dv_xname);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
break;
|
|
|
|
case QHSTA_M_QUEUE_ABORTED:
|
|
printf("%s: Queue Aborted\n", sc->sc_dev.dv_xname);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
break;
|
|
|
|
case QHSTA_M_SXFR_SDMA_ERR:
|
|
case QHSTA_M_SXFR_SXFR_PERR:
|
|
case QHSTA_M_RDMA_PERR:
|
|
/*
|
|
* DMA Error. This should *NEVER* happen!
|
|
*
|
|
* Lets try resetting the bus and reinitialize
|
|
* the host adapter.
|
|
*/
|
|
printf("%s: DMA Error. Reseting bus\n",
|
|
sc->sc_dev.dv_xname);
|
|
adw_reset_bus(sc, xs);
|
|
xs->error = XS_BUSY;
|
|
break;
|
|
|
|
case QHSTA_M_WTM_TIMEOUT:
|
|
case QHSTA_M_SXFR_WD_TMO:
|
|
/* The SCSI bus hung in a phase */
|
|
printf("%s: Watch Dog timer expired. Reseting bus\n",
|
|
sc->sc_dev.dv_xname);
|
|
adw_reset_bus(sc, xs);
|
|
xs->error = XS_BUSY;
|
|
break;
|
|
|
|
case QHSTA_M_SXFR_XFR_PH_ERR:
|
|
printf("%s: Transfer Error\n", sc->sc_dev.dv_xname);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
break;
|
|
|
|
case QHSTA_M_BAD_CMPL_STATUS_IN:
|
|
/* No command complete after a status message */
|
|
printf("%s: Bad Completion Status\n",
|
|
sc->sc_dev.dv_xname);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
break;
|
|
|
|
case QHSTA_M_AUTO_REQ_SENSE_FAIL:
|
|
printf("%s: Auto Sense Failed\n", sc->sc_dev.dv_xname);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
break;
|
|
|
|
case QHSTA_M_INVALID_DEVICE:
|
|
printf("%s: Invalid Device\n", sc->sc_dev.dv_xname);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
break;
|
|
|
|
case QHSTA_M_NO_AUTO_REQ_SENSE:
|
|
/*
|
|
* User didn't request sense, but we got a
|
|
* check condition.
|
|
*/
|
|
printf("%s: Unexpected Check Condition\n",
|
|
sc->sc_dev.dv_xname);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
break;
|
|
|
|
case QHSTA_M_SXFR_UNKNOWN_ERROR:
|
|
printf("%s: Unknown Error\n", sc->sc_dev.dv_xname);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
break;
|
|
|
|
default:
|
|
panic("%s: Unhandled Host Status Error %x",
|
|
sc->sc_dev.dv_xname, scsiq->host_status);
|
|
}
|
|
}
|
|
|
|
TAILQ_REMOVE(&sc->sc_pending_ccb, ccb, chain);
|
|
adw_free_ccb(sc, ccb);
|
|
xs->xs_status |= XS_STS_DONE;
|
|
scsipi_done(xs);
|
|
}
|
|
|
|
|
|
/*
|
|
* adv_async_callback() - Adv Library asynchronous event callback function.
|
|
*/
|
|
static void
|
|
adw_async_callback(sc, code)
|
|
ADW_SOFTC *sc;
|
|
u_int8_t code;
|
|
{
|
|
switch (code) {
|
|
case ADV_ASYNC_SCSI_BUS_RESET_DET:
|
|
/* The firmware detected a SCSI Bus reset. */
|
|
printf("%s: SCSI Bus reset detected\n", sc->sc_dev.dv_xname);
|
|
break;
|
|
|
|
case ADV_ASYNC_RDMA_FAILURE:
|
|
/*
|
|
* Handle RDMA failure by resetting the SCSI Bus and
|
|
* possibly the chip if it is unresponsive.
|
|
*/
|
|
printf("%s: RDMA failure. Resetting the SCSI Bus and"
|
|
" the adapter\n", sc->sc_dev.dv_xname);
|
|
AdvResetSCSIBus(sc);
|
|
break;
|
|
|
|
case ADV_HOST_SCSI_BUS_RESET:
|
|
/* Host generated SCSI bus reset occurred. */
|
|
printf("%s: Host generated SCSI bus reset occurred\n",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
|
|
case ADV_ASYNC_CARRIER_READY_FAILURE:
|
|
/* Carrier Ready failure. */
|
|
printf("%s: Carrier Ready failure!\n", sc->sc_dev.dv_xname);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|