NetBSD/sys/compat/linux/i386/linux_machdep.c
drochner 81fd096b37 Since wscons can support VT_xxx ioctl()s, enable them if NWSDISPLAY > 0.
Implement KDGKBTYPE and KDGKBENT, this will make X servers happy.
1998-06-11 22:26:13 +00:00

710 lines
20 KiB
C

/* $NetBSD: linux_machdep.c,v 1.41 1998/06/11 22:26:13 drochner Exp $ */
/*
* Copyright (c) 1995 Frank van der Linden
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project
* by Frank van der Linden
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "opt_vm86.h"
#include "opt_user_ldt.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/signalvar.h>
#include <sys/kernel.h>
#include <sys/map.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/buf.h>
#include <sys/reboot.h>
#include <sys/conf.h>
#include <sys/exec.h>
#include <sys/file.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/device.h>
#include <sys/syscallargs.h>
#include <sys/filedesc.h>
#include <sys/exec_elf.h>
#include <compat/linux/linux_types.h>
#include <compat/linux/linux_signal.h>
#include <compat/linux/linux_syscallargs.h>
#include <compat/linux/linux_util.h>
#include <compat/linux/linux_ioctl.h>
#include <compat/linux/linux_exec.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/psl.h>
#include <machine/reg.h>
#include <machine/segments.h>
#include <machine/specialreg.h>
#include <machine/sysarch.h>
#include <machine/vm86.h>
#include <machine/vmparam.h>
#include <machine/linux_machdep.h>
/*
* To see whether pcvt is configured (for virtual console ioctl calls).
*/
#ifndef NVT
#include "vt.h"
#endif
#if NVT > 0
#include <arch/i386/isa/pcvt/pcvt_ioctl.h>
#endif
#include "wsdisplay.h"
#if (NWSDISPLAY > 0)
#include <sys/ioctl.h>
#include <dev/wscons/wsdisplay_usl_io.h>
#include "opt_xserver.h"
#endif
#ifdef USER_LDT
#include <machine/cpu.h>
int linux_read_ldt __P((struct proc *, struct linux_sys_modify_ldt_args *,
register_t *));
int linux_write_ldt __P((struct proc *, struct linux_sys_modify_ldt_args *,
register_t *));
#endif
/*
* Deal with some i386-specific things in the Linux emulation code.
*/
void
linux_setregs(p, epp, stack)
struct proc *p;
struct exec_package *epp;
u_long stack;
{
register struct pcb *pcb = &p->p_addr->u_pcb;
pcb->pcb_savefpu.sv_env.en_cw = __Linux_NPXCW__;
setregs(p, epp, stack);
}
/*
* Send an interrupt to process.
*
* Stack is set up to allow sigcode stored
* in u. to call routine, followed by kcall
* to sigreturn routine below. After sigreturn
* resets the signal mask, the stack, and the
* frame pointer, it returns to the user
* specified pc, psl.
*/
void
linux_sendsig(catcher, sig, mask, code)
sig_t catcher;
int sig, mask;
u_long code;
{
register struct proc *p = curproc;
register struct trapframe *tf;
struct linux_sigframe *fp, frame;
struct sigacts *psp = p->p_sigacts;
int oonstack;
extern char linux_sigcode[], linux_esigcode[];
tf = p->p_md.md_regs;
oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
/*
* Allocate space for the signal handler context.
*/
if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
(psp->ps_sigonstack & sigmask(sig))) {
fp = (struct linux_sigframe *)((caddr_t)psp->ps_sigstk.ss_sp +
psp->ps_sigstk.ss_size - sizeof(struct linux_sigframe));
psp->ps_sigstk.ss_flags |= SS_ONSTACK;
} else {
fp = (struct linux_sigframe *)tf->tf_esp - 1;
}
frame.sf_handler = catcher;
frame.sf_sig = bsd_to_linux_sig[sig];
/*
* Build the signal context to be used by sigreturn.
*/
frame.sf_sc.sc_mask = mask;
#ifdef VM86
if (tf->tf_eflags & PSL_VM) {
frame.sf_sc.sc_gs = tf->tf_vm86_gs;
frame.sf_sc.sc_fs = tf->tf_vm86_fs;
frame.sf_sc.sc_es = tf->tf_vm86_es;
frame.sf_sc.sc_ds = tf->tf_vm86_ds;
frame.sf_sc.sc_eflags = get_vflags(p);
} else
#endif
{
__asm("movl %%gs,%w0" : "=r" (frame.sf_sc.sc_gs));
__asm("movl %%fs,%w0" : "=r" (frame.sf_sc.sc_fs));
frame.sf_sc.sc_es = tf->tf_es;
frame.sf_sc.sc_ds = tf->tf_ds;
frame.sf_sc.sc_eflags = tf->tf_eflags;
}
frame.sf_sc.sc_edi = tf->tf_edi;
frame.sf_sc.sc_esi = tf->tf_esi;
frame.sf_sc.sc_ebp = tf->tf_ebp;
frame.sf_sc.sc_ebx = tf->tf_ebx;
frame.sf_sc.sc_edx = tf->tf_edx;
frame.sf_sc.sc_ecx = tf->tf_ecx;
frame.sf_sc.sc_eax = tf->tf_eax;
frame.sf_sc.sc_eip = tf->tf_eip;
frame.sf_sc.sc_cs = tf->tf_cs;
frame.sf_sc.sc_esp_at_signal = tf->tf_esp;
frame.sf_sc.sc_ss = tf->tf_ss;
frame.sf_sc.sc_err = tf->tf_err;
frame.sf_sc.sc_trapno = tf->tf_trapno;
if (copyout(&frame, fp, sizeof(frame)) != 0) {
/*
* Process has trashed its stack; give it an illegal
* instruction to halt it in its tracks.
*/
sigexit(p, SIGILL);
/* NOTREACHED */
}
/*
* Build context to run handler in.
*/
tf->tf_es = GSEL(GUDATA_SEL, SEL_UPL);
tf->tf_ds = GSEL(GUDATA_SEL, SEL_UPL);
tf->tf_eip = (int)(((char *)PS_STRINGS) -
(linux_esigcode - linux_sigcode));
tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL);
tf->tf_eflags &= ~(PSL_T|PSL_VM|PSL_AC);
tf->tf_esp = (int)fp;
tf->tf_ss = GSEL(GUDATA_SEL, SEL_UPL);
}
/*
* System call to cleanup state after a signal
* has been taken. Reset signal mask and
* stack state from context left by sendsig (above).
* Return to previous pc and psl as specified by
* context left by sendsig. Check carefully to
* make sure that the user has not modified the
* psl to gain improper privileges or to cause
* a machine fault.
*/
int
linux_sys_sigreturn(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct linux_sys_sigreturn_args /* {
syscallarg(struct linux_sigcontext *) scp;
} */ *uap = v;
struct linux_sigcontext *scp, context;
register struct trapframe *tf;
tf = p->p_md.md_regs;
/*
* The trampoline code hands us the context.
* It is unsafe to keep track of it ourselves, in the event that a
* program jumps out of a signal handler.
*/
scp = SCARG(uap, scp);
if (copyin((caddr_t)scp, &context, sizeof(*scp)) != 0)
return (EFAULT);
/*
* Restore signal context.
*/
#ifdef VM86
if (context.sc_eflags & PSL_VM) {
tf->tf_vm86_gs = context.sc_gs;
tf->tf_vm86_fs = context.sc_fs;
tf->tf_vm86_es = context.sc_es;
tf->tf_vm86_ds = context.sc_ds;
set_vflags(p, context.sc_eflags);
} else
#endif
{
/*
* Check for security violations. If we're returning to
* protected mode, the CPU will validate the segment registers
* automatically and generate a trap on violations. We handle
* the trap, rather than doing all of the checking here.
*/
if (((context.sc_eflags ^ tf->tf_eflags) & PSL_USERSTATIC) != 0 ||
!USERMODE(context.sc_cs, context.sc_eflags))
return (EINVAL);
/* %fs and %gs were restored by the trampoline. */
tf->tf_es = context.sc_es;
tf->tf_ds = context.sc_ds;
tf->tf_eflags = context.sc_eflags;
}
tf->tf_edi = context.sc_edi;
tf->tf_esi = context.sc_esi;
tf->tf_ebp = context.sc_ebp;
tf->tf_ebx = context.sc_ebx;
tf->tf_edx = context.sc_edx;
tf->tf_ecx = context.sc_ecx;
tf->tf_eax = context.sc_eax;
tf->tf_eip = context.sc_eip;
tf->tf_cs = context.sc_cs;
tf->tf_esp = context.sc_esp_at_signal;
tf->tf_ss = context.sc_ss;
p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
p->p_sigmask = context.sc_mask & ~sigcantmask;
return (EJUSTRETURN);
}
#ifdef USER_LDT
int
linux_read_ldt(p, uap, retval)
struct proc *p;
struct linux_sys_modify_ldt_args /* {
syscallarg(int) func;
syscallarg(void *) ptr;
syscallarg(size_t) bytecount;
} */ *uap;
register_t *retval;
{
struct i386_get_ldt_args gl;
int error;
caddr_t sg;
char *parms;
sg = stackgap_init(p->p_emul);
gl.start = 0;
gl.desc = SCARG(uap, ptr);
gl.num = SCARG(uap, bytecount) / sizeof(union descriptor);
parms = stackgap_alloc(&sg, sizeof(gl));
if ((error = copyout(&gl, parms, sizeof(gl))) != 0)
return (error);
if ((error = i386_get_ldt(p, parms, retval)) != 0)
return (error);
*retval *= sizeof(union descriptor);
return (0);
}
struct linux_ldt_info {
u_int entry_number;
u_long base_addr;
u_int limit;
u_int seg_32bit:1;
u_int contents:2;
u_int read_exec_only:1;
u_int limit_in_pages:1;
u_int seg_not_present:1;
};
int
linux_write_ldt(p, uap, retval)
struct proc *p;
struct linux_sys_modify_ldt_args /* {
syscallarg(int) func;
syscallarg(void *) ptr;
syscallarg(size_t) bytecount;
} */ *uap;
register_t *retval;
{
struct linux_ldt_info ldt_info;
struct segment_descriptor sd;
struct i386_set_ldt_args sl;
int error;
caddr_t sg;
char *parms;
if (SCARG(uap, bytecount) != sizeof(ldt_info))
return (EINVAL);
if ((error = copyin(SCARG(uap, ptr), &ldt_info, sizeof(ldt_info))) != 0)
return error;
if (ldt_info.contents == 3)
return (EINVAL);
sg = stackgap_init(p->p_emul);
sd.sd_lobase = ldt_info.base_addr & 0xffffff;
sd.sd_hibase = (ldt_info.base_addr >> 24) & 0xff;
sd.sd_lolimit = ldt_info.limit & 0xffff;
sd.sd_hilimit = (ldt_info.limit >> 16) & 0xf;
sd.sd_type =
16 | (ldt_info.contents << 2) | (!ldt_info.read_exec_only << 1);
sd.sd_dpl = SEL_UPL;
sd.sd_p = !ldt_info.seg_not_present;
sd.sd_def32 = ldt_info.seg_32bit;
sd.sd_gran = ldt_info.limit_in_pages;
sl.start = ldt_info.entry_number;
sl.desc = stackgap_alloc(&sg, sizeof(sd));
sl.num = 1;
#if 0
printf("linux_write_ldt: idx=%d, base=%x, limit=%x\n",
ldt_info.entry_number, ldt_info.base_addr, ldt_info.limit);
#endif
parms = stackgap_alloc(&sg, sizeof(sl));
if ((error = copyout(&sd, sl.desc, sizeof(sd))) != 0)
return (error);
if ((error = copyout(&sl, parms, sizeof(sl))) != 0)
return (error);
if ((error = i386_set_ldt(p, parms, retval)) != 0)
return (error);
*retval = 0;
return (0);
}
#endif /* USER_LDT */
int
linux_sys_modify_ldt(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct linux_sys_modify_ldt_args /* {
syscallarg(int) func;
syscallarg(void *) ptr;
syscallarg(size_t) bytecount;
} */ *uap = v;
switch (SCARG(uap, func)) {
#ifdef USER_LDT
case 0:
return (linux_read_ldt(p, uap, retval));
case 1:
return (linux_write_ldt(p, uap, retval));
#endif /* USER_LDT */
default:
return (ENOSYS);
}
}
/*
* XXX Pathetic hack to make svgalib work. This will fake the major
* device number of an opened VT so that svgalib likes it. grmbl.
* Should probably do it 'wrong the right way' and use a mapping
* array for all major device numbers, and map linux_mknod too.
*/
dev_t
linux_fakedev(dev)
dev_t dev;
{
#if (NVT > 0)
if (major(dev) == NETBSD_PCCONS_MAJOR)
return makedev(LINUX_CONS_MAJOR, (minor(dev) + 1));
#endif
#if (NWSDISPLAY > 0)
if (major(dev) == NETBSD_WSCONS_MAJOR)
return makedev(LINUX_CONS_MAJOR, (minor(dev) + 1));
#endif
return dev;
}
#if (NWSDISPLAY > 0) && defined(XSERVER)
/*
* That's not complete, but enough to get an X server running.
*/
#define NR_KEYS 128
static u_short plain_map[NR_KEYS] = {
0x0200, 0x001b, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035, 0x0036,
0x0037, 0x0038, 0x0039, 0x0030, 0x002d, 0x003d, 0x007f, 0x0009,
0x0b71, 0x0b77, 0x0b65, 0x0b72, 0x0b74, 0x0b79, 0x0b75, 0x0b69,
0x0b6f, 0x0b70, 0x005b, 0x005d, 0x0201, 0x0702, 0x0b61, 0x0b73,
0x0b64, 0x0b66, 0x0b67, 0x0b68, 0x0b6a, 0x0b6b, 0x0b6c, 0x003b,
0x0027, 0x0060, 0x0700, 0x005c, 0x0b7a, 0x0b78, 0x0b63, 0x0b76,
0x0b62, 0x0b6e, 0x0b6d, 0x002c, 0x002e, 0x002f, 0x0700, 0x030c,
0x0703, 0x0020, 0x0207, 0x0100, 0x0101, 0x0102, 0x0103, 0x0104,
0x0105, 0x0106, 0x0107, 0x0108, 0x0109, 0x0208, 0x0209, 0x0307,
0x0308, 0x0309, 0x030b, 0x0304, 0x0305, 0x0306, 0x030a, 0x0301,
0x0302, 0x0303, 0x0300, 0x0310, 0x0206, 0x0200, 0x003c, 0x010a,
0x010b, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200,
0x030e, 0x0702, 0x030d, 0x001c, 0x0701, 0x0205, 0x0114, 0x0603,
0x0118, 0x0601, 0x0602, 0x0117, 0x0600, 0x0119, 0x0115, 0x0116,
0x011a, 0x010c, 0x010d, 0x011b, 0x011c, 0x0110, 0x0311, 0x011d,
0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200,
}, shift_map[NR_KEYS] = {
0x0200, 0x001b, 0x0021, 0x0040, 0x0023, 0x0024, 0x0025, 0x005e,
0x0026, 0x002a, 0x0028, 0x0029, 0x005f, 0x002b, 0x007f, 0x0009,
0x0b51, 0x0b57, 0x0b45, 0x0b52, 0x0b54, 0x0b59, 0x0b55, 0x0b49,
0x0b4f, 0x0b50, 0x007b, 0x007d, 0x0201, 0x0702, 0x0b41, 0x0b53,
0x0b44, 0x0b46, 0x0b47, 0x0b48, 0x0b4a, 0x0b4b, 0x0b4c, 0x003a,
0x0022, 0x007e, 0x0700, 0x007c, 0x0b5a, 0x0b58, 0x0b43, 0x0b56,
0x0b42, 0x0b4e, 0x0b4d, 0x003c, 0x003e, 0x003f, 0x0700, 0x030c,
0x0703, 0x0020, 0x0207, 0x010a, 0x010b, 0x010c, 0x010d, 0x010e,
0x010f, 0x0110, 0x0111, 0x0112, 0x0113, 0x0213, 0x0203, 0x0307,
0x0308, 0x0309, 0x030b, 0x0304, 0x0305, 0x0306, 0x030a, 0x0301,
0x0302, 0x0303, 0x0300, 0x0310, 0x0206, 0x0200, 0x003e, 0x010a,
0x010b, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200,
0x030e, 0x0702, 0x030d, 0x0200, 0x0701, 0x0205, 0x0114, 0x0603,
0x020b, 0x0601, 0x0602, 0x0117, 0x0600, 0x020a, 0x0115, 0x0116,
0x011a, 0x010c, 0x010d, 0x011b, 0x011c, 0x0110, 0x0311, 0x011d,
0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200,
}, altgr_map[NR_KEYS] = {
0x0200, 0x0200, 0x0200, 0x0040, 0x0200, 0x0024, 0x0200, 0x0200,
0x007b, 0x005b, 0x005d, 0x007d, 0x005c, 0x0200, 0x0200, 0x0200,
0x0b71, 0x0b77, 0x0918, 0x0b72, 0x0b74, 0x0b79, 0x0b75, 0x0b69,
0x0b6f, 0x0b70, 0x0200, 0x007e, 0x0201, 0x0702, 0x0914, 0x0b73,
0x0917, 0x0919, 0x0b67, 0x0b68, 0x0b6a, 0x0b6b, 0x0b6c, 0x0200,
0x0200, 0x0200, 0x0700, 0x0200, 0x0b7a, 0x0b78, 0x0916, 0x0b76,
0x0915, 0x0b6e, 0x0b6d, 0x0200, 0x0200, 0x0200, 0x0700, 0x030c,
0x0703, 0x0200, 0x0207, 0x050c, 0x050d, 0x050e, 0x050f, 0x0510,
0x0511, 0x0512, 0x0513, 0x0514, 0x0515, 0x0208, 0x0202, 0x0911,
0x0912, 0x0913, 0x030b, 0x090e, 0x090f, 0x0910, 0x030a, 0x090b,
0x090c, 0x090d, 0x090a, 0x0310, 0x0206, 0x0200, 0x007c, 0x0516,
0x0517, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200,
0x030e, 0x0702, 0x030d, 0x0200, 0x0701, 0x0205, 0x0114, 0x0603,
0x0118, 0x0601, 0x0602, 0x0117, 0x0600, 0x0119, 0x0115, 0x0116,
0x011a, 0x010c, 0x010d, 0x011b, 0x011c, 0x0110, 0x0311, 0x011d,
0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200,
}, ctrl_map[NR_KEYS] = {
0x0200, 0x0200, 0x0200, 0x0000, 0x001b, 0x001c, 0x001d, 0x001e,
0x001f, 0x007f, 0x0200, 0x0200, 0x001f, 0x0200, 0x0008, 0x0200,
0x0011, 0x0017, 0x0005, 0x0012, 0x0014, 0x0019, 0x0015, 0x0009,
0x000f, 0x0010, 0x001b, 0x001d, 0x0201, 0x0702, 0x0001, 0x0013,
0x0004, 0x0006, 0x0007, 0x0008, 0x000a, 0x000b, 0x000c, 0x0200,
0x0007, 0x0000, 0x0700, 0x001c, 0x001a, 0x0018, 0x0003, 0x0016,
0x0002, 0x000e, 0x000d, 0x0200, 0x020e, 0x007f, 0x0700, 0x030c,
0x0703, 0x0000, 0x0207, 0x0100, 0x0101, 0x0102, 0x0103, 0x0104,
0x0105, 0x0106, 0x0107, 0x0108, 0x0109, 0x0208, 0x0204, 0x0307,
0x0308, 0x0309, 0x030b, 0x0304, 0x0305, 0x0306, 0x030a, 0x0301,
0x0302, 0x0303, 0x0300, 0x0310, 0x0206, 0x0200, 0x0200, 0x010a,
0x010b, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200,
0x030e, 0x0702, 0x030d, 0x001c, 0x0701, 0x0205, 0x0114, 0x0603,
0x0118, 0x0601, 0x0602, 0x0117, 0x0600, 0x0119, 0x0115, 0x0116,
0x011a, 0x010c, 0x010d, 0x011b, 0x011c, 0x0110, 0x0311, 0x011d,
0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200, 0x0200,
};
u_short *linux_keytabs[] = {
plain_map, shift_map, altgr_map, altgr_map, ctrl_map
};
#endif
/*
* We come here in a last attempt to satisfy a Linux ioctl() call
*/
int
linux_machdepioctl(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct linux_sys_ioctl_args /* {
syscallarg(int) fd;
syscallarg(u_long) com;
syscallarg(caddr_t) data;
} */ *uap = v;
struct sys_ioctl_args bia;
u_long com;
#if (NVT > 0) || (NWSDISPLAY > 0)
int error;
struct vt_mode lvt;
caddr_t bvtp, sg;
#endif
#if (NWSDISPLAY > 0) && defined(XSERVER)
struct kbentry kbe;
#endif
SCARG(&bia, fd) = SCARG(uap, fd);
SCARG(&bia, data) = SCARG(uap, data);
com = SCARG(uap, com);
switch (com) {
#if (NVT > 0) || (NWSDISPLAY > 0)
case LINUX_KDGKBMODE:
com = KDGKBMODE;
break;
case LINUX_KDSKBMODE:
com = KDSKBMODE;
if ((unsigned)SCARG(uap, data) == LINUX_K_MEDIUMRAW)
SCARG(&bia, data) = (caddr_t)K_RAW;
break;
case LINUX_KDMKTONE:
com = KDMKTONE;
break;
case LINUX_KDSETMODE:
com = KDSETMODE;
break;
case LINUX_KDENABIO:
com = KDENABIO;
break;
case LINUX_KDDISABIO:
com = KDDISABIO;
break;
case LINUX_KDGETLED:
com = KDGETLED;
break;
case LINUX_KDSETLED:
com = KDSETLED;
break;
case LINUX_VT_OPENQRY:
com = VT_OPENQRY;
break;
case LINUX_VT_GETMODE:
SCARG(&bia, com) = VT_GETMODE;
if ((error = sys_ioctl(p, &bia, retval)))
return error;
if ((error = copyin(SCARG(uap, data), (caddr_t)&lvt,
sizeof (struct vt_mode))))
return error;
lvt.relsig = bsd_to_linux_sig[lvt.relsig];
lvt.acqsig = bsd_to_linux_sig[lvt.acqsig];
lvt.frsig = bsd_to_linux_sig[lvt.frsig];
return copyout((caddr_t)&lvt, SCARG(uap, data),
sizeof (struct vt_mode));
case LINUX_VT_SETMODE:
com = VT_SETMODE;
if ((error = copyin(SCARG(uap, data), (caddr_t)&lvt,
sizeof (struct vt_mode))))
return error;
lvt.relsig = linux_to_bsd_sig[lvt.relsig];
lvt.acqsig = linux_to_bsd_sig[lvt.acqsig];
lvt.frsig = linux_to_bsd_sig[lvt.frsig];
sg = stackgap_init(p->p_emul);
bvtp = stackgap_alloc(&sg, sizeof (struct vt_mode));
if ((error = copyout(&lvt, bvtp, sizeof (struct vt_mode))))
return error;
SCARG(&bia, data) = bvtp;
break;
case LINUX_VT_RELDISP:
com = VT_RELDISP;
break;
case LINUX_VT_ACTIVATE:
com = VT_ACTIVATE;
break;
case LINUX_VT_WAITACTIVE:
com = VT_WAITACTIVE;
break;
#endif
#if (NWSDISPLAY > 0)
case LINUX_VT_GETSTATE:
com = VT_GETSTATE;
break;
#ifdef XSERVER
case LINUX_KDGKBTYPE:
/* This is what Linux does. */
return (subyte(SCARG(uap, data), KB_101));
case LINUX_KDGKBENT:
/*
* The Linux KDGKBENT ioctl is different from the
* SYSV original. So we handle it in machdep code.
* XXX We should use keyboard mapping information
* from wsdisplay, but this would be expensive.
*/
if ((error = copyin(SCARG(uap, data), &kbe,
sizeof(struct kbentry))))
return (error);
if (kbe.kb_table >= sizeof(linux_keytabs) / sizeof(u_short *)
|| kbe.kb_index >= NR_KEYS)
return (EINVAL);
kbe.kb_value = linux_keytabs[kbe.kb_table][kbe.kb_index];
return (copyout(&kbe, SCARG(uap, data),
sizeof(struct kbentry)));
#endif
#endif
default:
printf("linux_machdepioctl: invalid ioctl %08lx\n", com);
return EINVAL;
}
SCARG(&bia, com) = com;
return sys_ioctl(p, &bia, retval);
}
/*
* Set I/O permissions for a process. Just set the maximum level
* right away (ignoring the argument), otherwise we would have
* to rely on I/O permission maps, which are not implemented.
*/
int
linux_sys_iopl(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
#if 0
struct linux_sys_iopl_args /* {
syscallarg(int) level;
} */ *uap = v;
#endif
struct trapframe *fp = p->p_md.md_regs;
if (suser(p->p_ucred, &p->p_acflag) != 0)
return EPERM;
fp->tf_eflags |= PSL_IOPL;
*retval = 0;
return 0;
}
/*
* See above. If a root process tries to set access to an I/O port,
* just let it have the whole range.
*/
int
linux_sys_ioperm(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct linux_sys_ioperm_args /* {
syscallarg(unsigned int) lo;
syscallarg(unsigned int) hi;
syscallarg(int) val;
} */ *uap = v;
struct trapframe *fp = p->p_md.md_regs;
if (suser(p->p_ucred, &p->p_acflag) != 0)
return EPERM;
if (SCARG(uap, val))
fp->tf_eflags |= PSL_IOPL;
*retval = 0;
return 0;
}