NetBSD/sys/arch/x68k/dev/ms.c

338 lines
8.0 KiB
C

/* $NetBSD: ms.c,v 1.2 1996/05/21 15:32:31 oki Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ms.c 8.1 (Berkeley) 6/11/93
*/
/*
* Mouse driver.
*/
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/tty.h>
#include <x68k/dev/event_var.h>
#include <machine/vuid_event.h>
#include <x68k/x68k/iodevice.h>
/*
* Mouse state. A SHARP X1/X680x0 mouse is a fairly simple device,
* producing three-byte blobs of the form:
*
* b dx dy
*
* where b is the button state, encoded as 0x80|(buttons)---there are
* two buttons (2=left, 1=right)---and dx,dy are X and Y delta values.
*/
struct ms_softc {
short ms_byteno; /* input byte number, for decode */
char ms_mb; /* mouse button state */
char ms_ub; /* user button state */
int ms_dx; /* delta-x */
int ms_dy; /* delta-y */
struct tty *ms_mouse; /* downlink for output to mouse */
void (*ms_open) __P((struct tty *)); /* enable dataflow */
void (*ms_close) __P((struct tty *));/* disable dataflow */
volatile int ms_ready; /* event queue is ready */
struct evvar ms_events; /* event queue state */
} ms_softc;
/*
* Attach the mouse serial (down-link) interface.
* Do we need to set it to 4800 baud, 8 bits?
* Test by power cycling and not booting Human68k before BSD?
*/
void
ms_serial(tp, iopen, iclose)
struct tty *tp;
void (*iopen)(), (*iclose)();
{
ms_softc.ms_mouse = tp;
ms_softc.ms_open = iopen;
ms_softc.ms_close = iclose;
}
void
ms_modem(onoff)
register int onoff;
{
static int oonoff;
if (ms_softc.ms_ready == 1) {
if (ms_softc.ms_byteno == -1)
ms_softc.ms_byteno = onoff = 0;
if (oonoff != onoff) {
zs_msmodem(onoff);
oonoff = onoff;
}
}
}
void
ms_rint(c)
register int c;
{
register struct firm_event *fe;
register struct ms_softc *ms = &ms_softc;
register int mb, ub, d, get, put, any;
static const char to_one[] = { 1, 2, 3 };
static const int to_id[] = { MS_LEFT, MS_RIGHT, MS_MIDDLE };
/*
* Discard input if not ready. Drop sync on parity or framing
* error; gain sync on button byte.
*/
if (ms->ms_ready == 0)
return;
if (c & (TTY_FE|TTY_PE)) {
log(LOG_WARNING,
"mouse input parity or framing error (0x%x)\n", c);
ms->ms_byteno = -1;
return;
}
/*
* Run the decode loop, adding to the current information.
* We add, rather than replace, deltas, so that if the event queue
* fills, we accumulate data for when it opens up again.
*/
switch (ms->ms_byteno) {
case -1:
return;
case 0:
/* buttons */
ms->ms_byteno = 1;
ms->ms_mb = c & 0x7;
return;
case 1:
/* delta-x */
ms->ms_byteno = 2;
ms->ms_dx += (char)c;
return;
case 2:
/* delta-y */
ms->ms_byteno = -1 /* wait for button-byte again */;
ms->ms_dy += (char)c;
break;
default:
panic("ms_rint");
/* NOTREACHED */
}
/*
* We have at least one event (mouse button, delta-X, or
* delta-Y; possibly all three, and possibly three separate
* button events). Deliver these events until we are out
* of changes or out of room. As events get delivered,
* mark them `unchanged'.
*/
any = 0;
get = ms->ms_events.ev_get;
put = ms->ms_events.ev_put;
fe = &ms->ms_events.ev_q[put];
/* NEXT prepares to put the next event, backing off if necessary */
#define NEXT \
if ((++put) % EV_QSIZE == get) { \
put--; \
goto out; \
}
/* ADVANCE completes the `put' of the event */
#define ADVANCE \
fe++; \
if (put >= EV_QSIZE) { \
put = 0; \
fe = &ms->ms_events.ev_q[0]; \
} \
any = 1
mb = ms->ms_mb;
ub = ms->ms_ub;
while ((d = mb ^ ub) != 0) {
/*
* Mouse button change. Convert up to three changes
* to the `first' change, and drop it into the event queue.
*/
NEXT;
d = to_one[d - 1]; /* from 1..7 to {1,2,4} */
fe->id = to_id[d - 1]; /* from {1,2,4} to ID */
fe->value = mb & d ? VKEY_DOWN : VKEY_UP;
fe->time = time;
ADVANCE;
ub ^= d;
}
if (ms->ms_dx) {
NEXT;
fe->id = LOC_X_DELTA;
fe->value = ms->ms_dx;
fe->time = time;
ADVANCE;
ms->ms_dx = 0;
}
if (ms->ms_dy) {
NEXT;
fe->id = LOC_Y_DELTA;
fe->value = -ms->ms_dy; /* XXX? */
fe->time = time;
ADVANCE;
ms->ms_dy = 0;
}
out:
if (any) {
ms->ms_ub = ub;
ms->ms_events.ev_put = put;
EV_WAKEUP(&ms->ms_events);
}
}
int
msopen(dev, flags, mode, p)
dev_t dev;
int flags, mode;
struct proc *p;
{
if (ms_softc.ms_events.ev_io)
return (EBUSY);
ms_softc.ms_events.ev_io = p;
ev_init(&ms_softc.ms_events); /* may cause sleep */
ms_softc.ms_ready = 1; /* start accepting events */
(*ms_softc.ms_open)(ms_softc.ms_mouse);
return (0);
}
int
msclose(dev, flags, mode, p)
dev_t dev;
int flags, mode;
struct proc *p;
{
ms_modem(0);
ms_softc.ms_ready = 0; /* stop accepting events */
ev_fini(&ms_softc.ms_events);
(*ms_softc.ms_close)(ms_softc.ms_mouse);
ms_softc.ms_events.ev_io = NULL;
return (0);
}
int
msread(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
return (ev_read(&ms_softc.ms_events, uio, flags));
}
/* this routine should not exist, but is convenient to write here for now */
int
mswrite(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
return (EOPNOTSUPP);
}
int
msioctl(dev, cmd, data, flag, p)
dev_t dev;
u_long cmd;
register caddr_t data;
int flag;
struct proc *p;
{
switch (cmd) {
case FIONBIO: /* we will remove this someday (soon???) */
return (0);
case FIOASYNC:
ms_softc.ms_events.ev_async = *(int *)data != 0;
return (0);
case TIOCSPGRP:
if (*(int *)data != ms_softc.ms_events.ev_io->p_pgid)
return (EPERM);
return (0);
case VUIDGFORMAT:
/* we only do firm_events */
*(int *)data = VUID_FIRM_EVENT;
return (0);
case VUIDSFORMAT:
if (*(int *)data != VUID_FIRM_EVENT)
return (EINVAL);
return (0);
}
return (ENOTTY);
}
int
msselect(dev, rw, p)
dev_t dev;
int rw;
struct proc *p;
{
return (ev_select(&ms_softc.ms_events, rw, p));
}
void
mouseattach(){} /* XXX pseudo-device */