NetBSD/sys/arch/pc532/pc532/mem.c
1994-10-26 08:23:50 +00:00

302 lines
7.7 KiB
C

/* $NetBSD: mem.c,v 1.8 1994/10/26 08:25:10 cgd Exp $ */
/*-
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1986, 1990 The Regents of the University of
* California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department, and code derived from software contributed to
* Berkeley by William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: mem.c 1.13 89/10/08$
*
* @(#)mem.c 7.2 (Berkeley) 5/9/91
*/
/*
* Memory special file
*/
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/buf.h>
#include <sys/systm.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/fcntl.h>
#include <machine/cpu.h>
#include <vm/vm.h>
extern char *vmmap; /* poor name! */
#ifndef NO_RTC
int have_rtc = 1; /* For access to rtc. */
#else
int have_rtc = 0; /* For no rtc. */
#endif
#define ROM_ORIGIN 0xFFF00000 /* Mapped origin! */
/* Do the actual reading and writing of the rtc. We have to read
and write the entire contents at a time. rw = 0 => read,
rw = 1 => write. */
void rw_rtc (unsigned char *buffer, int rw)
{
static unsigned char magic[8] =
{0xc5, 0x3a, 0xa3, 0x5c, 0xc5, 0x3a, 0xa3, 0x5c};
volatile unsigned char * const rom_p = (unsigned char *)ROM_ORIGIN;
unsigned char *bp;
unsigned char dummy; /* To defeat optimization */
/* Read or write to the real time chip. Address line A0 functions as
* data input, A2 is used as the /write signal. Accesses to the RTC
* are always done to one of the addresses (unmapped):
*
* 0x10000000 - write a '0' bit
* 0x10000001 - write a '1' bit
* 0x10000004 - read a bit
*
* Data is output from the RTC using D0. To read or write time
* information, the chip has to be activated first, to distinguish
* clock accesses from normal ROM reads. This is done by writing,
* bit by bit, a magic pattern to the chip. Before that, a dummy read
* assures that the chip's pattern comparison register pointer is
* reset. The RTC register file is always read or written wholly,
* even if we are only interested in a part of it.
*/
/* Activate the real time chip */
dummy = rom_p[4]; /* Synchronize the comparison reg. */
for (bp=magic; bp<magic+8; bp++) {
int i;
for (i=0; i<8; i++)
dummy = rom_p[ (*bp>>i) & 0x01 ];
}
if (rw == 0) {
/* Read the time from the RTC. Do this even this is
a write, since the user might have only given
partial data and the RTC must always be written
completely.
*/
for (bp=buffer; bp<buffer+8; bp++) {
int i;
for (i=0; i<8; i++) {
*bp >>= 1;
*bp |= ((rom_p[4] & 0x01) ? 0x80 : 0x00);
}
}
} else {
/* Write to the RTC */
for (bp=buffer; bp<buffer+8; bp++) {
int i;
for (i=0; i<8; i++)
dummy = rom_p[ (*bp>>i) & 0x01 ];
}
}
}
/*ARGSUSED*/
mmrw(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
register int o;
register u_int c, v;
register struct iovec *iov;
int error = 0;
caddr_t zbuf = NULL;
/* /dev/rtc support. */
unsigned char buffer[8];
while (uio->uio_resid > 0 && error == 0) {
iov = uio->uio_iov;
if (iov->iov_len == 0) {
uio->uio_iov++;
uio->uio_iovcnt--;
if (uio->uio_iovcnt < 0)
panic("mmrw");
continue;
}
switch (minor(dev)) {
/* minor device 0 is physical memory */
case 0:
v = uio->uio_offset;
pmap_enter(kernel_pmap, vmmap, v,
uio->uio_rw == UIO_READ ? VM_PROT_READ : VM_PROT_WRITE,
TRUE);
o = (int)uio->uio_offset & PGOFSET;
c = (u_int)(NBPG - ((int)iov->iov_base & PGOFSET));
c = min(c, (u_int)(NBPG - o));
c = min(c, (u_int)iov->iov_len);
error = uiomove((caddr_t)&vmmap[o], (int)c, uio);
pmap_remove(kernel_pmap, vmmap, &vmmap[NBPG]);
continue;
/* minor device 1 is kernel memory */
case 1:
c = iov->iov_len;
if (!kernacc((caddr_t)(long)uio->uio_offset, c,
uio->uio_rw == UIO_READ ? B_READ : B_WRITE))
return(EFAULT);
error = uiomove((caddr_t)(long)uio->uio_offset, (int)c, uio);
continue;
/* minor device 2 is EOF/RATHOLE */
case 2:
if (uio->uio_rw == UIO_READ)
return (0);
c = iov->iov_len;
break;
#ifdef DEV_RTC
/* minor device 3 is the realtime clock. */
case 3:
if (!have_rtc)
return (ENXIO);
/* Calc offsets and lengths. */
v = uio->uio_offset;
if (v > 8) return(0); /* EOF */
c = iov->iov_len;
if (v+c > 8) c = 8-v;
rw_rtc ( buffer, 0 ); /* Read the rtc. */
error = uiomove((caddr_t)&buffer[v], (int)c, uio);
if (uio->uio_rw == UIO_READ || error)
return (error);
rw_rtc ( buffer, 1 ); /* Write the rtc. */
return (error);
#endif
/* minor device 12 (/dev/zero) is source of nulls on read, rathole on write */
case 12:
if (uio->uio_rw == UIO_WRITE) {
c = iov->iov_len;
break;
}
if (zbuf == NULL) {
zbuf = (caddr_t)
malloc(CLBYTES, M_TEMP, M_WAITOK);
bzero(zbuf, CLBYTES);
}
c = min(iov->iov_len, CLBYTES);
error = uiomove(zbuf, (int)c, uio);
continue;
default:
return (ENXIO);
}
if (error)
break;
iov->iov_base += c;
iov->iov_len -= c;
uio->uio_offset += c;
uio->uio_resid -= c;
}
if (zbuf)
free(zbuf, M_TEMP);
return (error);
}
/* Ram disk stuff.... */
#ifdef RAMD_SIZE
#ifndef RAMD_ADR
#define RAMD_ADR 0x200000
#endif
u_char ram_disk[RAMD_SIZE];
int rdopen(dev_t dev, int flag)
{
if (minor(dev) == 0)
return (0);
else
return (ENXIO);
}
int rdclose()
{
return (0);
}
int rdstrategy(struct buf *bp)
{ int loc, size;
char *adr;
if (minor(bp->b_dev) == 0)
loc = bp->b_blkno*DEV_BSIZE;
else
return (EINVAL);
size = bp->b_bcount;
adr = (char *) bp->b_un.b_addr;
if (loc > sizeof(ram_disk)) return (EINVAL);
if (loc+size > sizeof(ram_disk)) return (EINVAL);
if (bp->b_flags & B_READ)
bcopy (&ram_disk[loc], adr, size);
else
bcopy (adr, &ram_disk[loc], size);
biodone(bp);
return 0;
}
int rdsize(dev_t dev)
{
if (minor(dev) == 0)
return (RAMD_SIZE / DEV_BSIZE);
else
return (0);
}
void load_ram_disk()
{
bcopy ((char *)RAMD_ADR, ram_disk, RAMD_SIZE);
}
#endif