NetBSD/sys/dev/pci/if_age.c

2286 lines
62 KiB
C

/* $NetBSD: if_age.c,v 1.38 2010/04/05 07:20:24 joerg Exp $ */
/* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
/*-
* Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.38 2010/04/05 07:20:24 joerg Exp $");
#include "vlan.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/callout.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/if_types.h>
#include <net/if_vlanvar.h>
#include <net/bpf.h>
#include <sys/rnd.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_agereg.h>
static int age_match(device_t, cfdata_t, void *);
static void age_attach(device_t, device_t, void *);
static int age_detach(device_t, int);
static bool age_resume(device_t, const pmf_qual_t *);
static int age_miibus_readreg(device_t, int, int);
static void age_miibus_writereg(device_t, int, int, int);
static void age_miibus_statchg(device_t);
static int age_init(struct ifnet *);
static int age_ioctl(struct ifnet *, u_long, void *);
static void age_start(struct ifnet *);
static void age_watchdog(struct ifnet *);
static void age_mediastatus(struct ifnet *, struct ifmediareq *);
static int age_mediachange(struct ifnet *);
static int age_intr(void *);
static int age_dma_alloc(struct age_softc *);
static void age_dma_free(struct age_softc *);
static void age_get_macaddr(struct age_softc *, uint8_t[]);
static void age_phy_reset(struct age_softc *);
static int age_encap(struct age_softc *, struct mbuf **);
static void age_init_tx_ring(struct age_softc *);
static int age_init_rx_ring(struct age_softc *);
static void age_init_rr_ring(struct age_softc *);
static void age_init_cmb_block(struct age_softc *);
static void age_init_smb_block(struct age_softc *);
static int age_newbuf(struct age_softc *, struct age_rxdesc *, int);
static void age_mac_config(struct age_softc *);
static void age_txintr(struct age_softc *, int);
static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
static void age_rxintr(struct age_softc *, int);
static void age_tick(void *);
static void age_reset(struct age_softc *);
static void age_stop(struct ifnet *, int);
static void age_stats_update(struct age_softc *);
static void age_stop_txmac(struct age_softc *);
static void age_stop_rxmac(struct age_softc *);
static void age_rxvlan(struct age_softc *sc);
static void age_rxfilter(struct age_softc *);
CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
age_match, age_attach, age_detach, NULL);
int agedebug = 0;
#define DPRINTF(x) do { if (agedebug) printf x; } while (0)
#define ETHER_ALIGN 2
#define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
static int
age_match(device_t dev, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
}
static void
age_attach(device_t parent, device_t self, void *aux)
{
struct age_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
pci_intr_handle_t ih;
const char *intrstr;
struct ifnet *ifp = &sc->sc_ec.ec_if;
pcireg_t memtype;
int error = 0;
aprint_naive("\n");
aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
sc->sc_dev = self;
sc->sc_dmat = pa->pa_dmat;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
/*
* Allocate IO memory
*/
memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
break;
default:
aprint_error_dev(self, "invalid base address register\n");
break;
}
if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
&sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
aprint_error_dev(self, "could not map mem space\n");
return;
}
if (pci_intr_map(pa, &ih) != 0) {
aprint_error_dev(self, "could not map interrupt\n");
goto fail;
}
/*
* Allocate IRQ
*/
intrstr = pci_intr_string(sc->sc_pct, ih);
sc->sc_irq_handle = pci_intr_establish(sc->sc_pct, ih, IPL_NET,
age_intr, sc);
if (sc->sc_irq_handle == NULL) {
aprint_error_dev(self, "could not establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
goto fail;
}
aprint_normal_dev(self, "%s\n", intrstr);
/* Set PHY address. */
sc->age_phyaddr = AGE_PHY_ADDR;
/* Reset PHY. */
age_phy_reset(sc);
/* Reset the ethernet controller. */
age_reset(sc);
/* Get PCI and chip id/revision. */
sc->age_rev = PCI_REVISION(pa->pa_class);
sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
MASTER_CHIP_REV_SHIFT;
aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);
if (agedebug) {
aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
}
/* Set max allowable DMA size. */
sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
/* Allocate DMA stuffs */
error = age_dma_alloc(sc);
if (error)
goto fail;
callout_init(&sc->sc_tick_ch, 0);
callout_setfunc(&sc->sc_tick_ch, age_tick, sc);
/* Load station address. */
age_get_macaddr(sc, sc->sc_enaddr);
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(sc->sc_enaddr));
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = age_init;
ifp->if_ioctl = age_ioctl;
ifp->if_start = age_start;
ifp->if_stop = age_stop;
ifp->if_watchdog = age_watchdog;
ifp->if_baudrate = IF_Gbps(1);
IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
IFQ_SET_READY(&ifp->if_snd);
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Rx;
#ifdef AGE_CHECKSUM
ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
IFCAP_CSUM_TCPv4_Tx |
IFCAP_CSUM_UDPv4_Tx;
#endif
#if NVLAN > 0
sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
#endif
/* Set up MII bus. */
sc->sc_miibus.mii_ifp = ifp;
sc->sc_miibus.mii_readreg = age_miibus_readreg;
sc->sc_miibus.mii_writereg = age_miibus_writereg;
sc->sc_miibus.mii_statchg = age_miibus_statchg;
sc->sc_ec.ec_mii = &sc->sc_miibus;
ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
age_mediastatus);
mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, MIIF_DOPAUSE);
if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
aprint_error_dev(self, "no PHY found!\n");
ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
0, NULL);
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
} else
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
if_attach(ifp);
ether_ifattach(ifp, sc->sc_enaddr);
if (pmf_device_register(self, NULL, age_resume))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
return;
fail:
age_dma_free(sc);
if (sc->sc_irq_handle != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
sc->sc_irq_handle = NULL;
}
if (sc->sc_mem_size) {
bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
sc->sc_mem_size = 0;
}
}
static int
age_detach(device_t self, int flags)
{
struct age_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ec.ec_if;
int s;
pmf_device_deregister(self);
s = splnet();
age_stop(ifp, 0);
splx(s);
mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
age_dma_free(sc);
if (sc->sc_irq_handle != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
sc->sc_irq_handle = NULL;
}
if (sc->sc_mem_size) {
bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
sc->sc_mem_size = 0;
}
return 0;
}
/*
* Read a PHY register on the MII of the L1.
*/
static int
age_miibus_readreg(device_t dev, int phy, int reg)
{
struct age_softc *sc = device_private(dev);
uint32_t v;
int i;
if (phy != sc->age_phyaddr)
return 0;
CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
DELAY(1);
v = CSR_READ_4(sc, AGE_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0) {
printf("%s: phy read timeout: phy %d, reg %d\n",
device_xname(sc->sc_dev), phy, reg);
return 0;
}
return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
}
/*
* Write a PHY register on the MII of the L1.
*/
static void
age_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct age_softc *sc = device_private(dev);
uint32_t v;
int i;
if (phy != sc->age_phyaddr)
return;
CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
(val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
DELAY(1);
v = CSR_READ_4(sc, AGE_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0) {
printf("%s: phy write timeout: phy %d, reg %d\n",
device_xname(sc->sc_dev), phy, reg);
}
}
/*
* Callback from MII layer when media changes.
*/
static void
age_miibus_statchg(device_t dev)
{
struct age_softc *sc = device_private(dev);
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct mii_data *mii;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
mii = &sc->sc_miibus;
sc->age_flags &= ~AGE_FLAG_LINK;
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
case IFM_1000_T:
sc->age_flags |= AGE_FLAG_LINK;
break;
default:
break;
}
}
/* Stop Rx/Tx MACs. */
age_stop_rxmac(sc);
age_stop_txmac(sc);
/* Program MACs with resolved speed/duplex/flow-control. */
if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
uint32_t reg;
age_mac_config(sc);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
/* Restart DMA engine and Tx/Rx MAC. */
CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
}
/*
* Get the current interface media status.
*/
static void
age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct age_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
}
/*
* Set hardware to newly-selected media.
*/
static int
age_mediachange(struct ifnet *ifp)
{
struct age_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
int error;
if (mii->mii_instance != 0) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
return error;
}
static int
age_intr(void *arg)
{
struct age_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct cmb *cmb;
uint32_t status;
status = CSR_READ_4(sc, AGE_INTR_STATUS);
if (status == 0 || (status & AGE_INTRS) == 0)
return 0;
cmb = sc->age_rdata.age_cmb_block;
if (cmb == NULL) {
/* Happens when bringing up the interface
* w/o having a carrier. Ack. the interrupt.
*/
CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
return 0;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
status = le32toh(cmb->intr_status);
if ((status & AGE_INTRS) == 0)
goto back;
sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
TPD_CONS_SHIFT;
sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
RRD_PROD_SHIFT;
/* Let hardware know CMB was served. */
cmb->intr_status = 0;
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
sc->age_cdata.age_cmb_block_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
if (ifp->if_flags & IFF_RUNNING) {
if (status & INTR_CMB_RX)
age_rxintr(sc, sc->age_rr_prod);
if (status & INTR_CMB_TX)
age_txintr(sc, sc->age_tpd_cons);
if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
if (status & INTR_DMA_RD_TO_RST)
printf("%s: DMA read error! -- resetting\n",
device_xname(sc->sc_dev));
if (status & INTR_DMA_WR_TO_RST)
printf("%s: DMA write error! -- resetting\n",
device_xname(sc->sc_dev));
age_init(ifp);
}
if (!IFQ_IS_EMPTY(&ifp->if_snd))
age_start(ifp);
if (status & INTR_SMB)
age_stats_update(sc);
}
/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
sc->age_cdata.age_cmb_block_map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
back:
/* Re-enable interrupts. */
CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
return 1;
}
static void
age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
{
uint32_t ea[2], reg;
int i, vpdc;
reg = CSR_READ_4(sc, AGE_SPI_CTRL);
if ((reg & SPI_VPD_ENB) != 0) {
/* Get VPD stored in TWSI EEPROM. */
reg &= ~SPI_VPD_ENB;
CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
}
if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
PCI_CAP_VPD, &vpdc, NULL)) {
/*
* PCI VPD capability found, let TWSI reload EEPROM.
* This will set Ethernet address of controller.
*/
CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
TWSI_CTRL_SW_LD_START);
for (i = 100; i > 0; i++) {
DELAY(1000);
reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
if ((reg & TWSI_CTRL_SW_LD_START) == 0)
break;
}
if (i == 0)
printf("%s: reloading EEPROM timeout!\n",
device_xname(sc->sc_dev));
} else {
if (agedebug)
printf("%s: PCI VPD capability not found!\n",
device_xname(sc->sc_dev));
}
ea[0] = CSR_READ_4(sc, AGE_PAR0);
ea[1] = CSR_READ_4(sc, AGE_PAR1);
eaddr[0] = (ea[1] >> 8) & 0xFF;
eaddr[1] = (ea[1] >> 0) & 0xFF;
eaddr[2] = (ea[0] >> 24) & 0xFF;
eaddr[3] = (ea[0] >> 16) & 0xFF;
eaddr[4] = (ea[0] >> 8) & 0xFF;
eaddr[5] = (ea[0] >> 0) & 0xFF;
}
static void
age_phy_reset(struct age_softc *sc)
{
uint16_t reg, pn;
int i, linkup;
/* Reset PHY. */
CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
DELAY(2000);
CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
DELAY(2000);
#define ATPHY_DBG_ADDR 0x1D
#define ATPHY_DBG_DATA 0x1E
#define ATPHY_CDTC 0x16
#define PHY_CDTC_ENB 0x0001
#define PHY_CDTC_POFF 8
#define ATPHY_CDTS 0x1C
#define PHY_CDTS_STAT_OK 0x0000
#define PHY_CDTS_STAT_SHORT 0x0100
#define PHY_CDTS_STAT_OPEN 0x0200
#define PHY_CDTS_STAT_INVAL 0x0300
#define PHY_CDTS_STAT_MASK 0x0300
/* Check power saving mode. Magic from Linux. */
age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
for (linkup = 0, pn = 0; pn < 4; pn++) {
age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
(pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
for (i = 200; i > 0; i--) {
DELAY(1000);
reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
ATPHY_CDTC);
if ((reg & PHY_CDTC_ENB) == 0)
break;
}
DELAY(1000);
reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
ATPHY_CDTS);
if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
linkup++;
break;
}
}
age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
if (linkup == 0) {
age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
ATPHY_DBG_ADDR, 0);
age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
ATPHY_DBG_DATA, 0x124E);
age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
ATPHY_DBG_ADDR, 1);
reg = age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
ATPHY_DBG_DATA);
age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
ATPHY_DBG_DATA, reg | 0x03);
/* XXX */
DELAY(1500 * 1000);
age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
ATPHY_DBG_ADDR, 0);
age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
ATPHY_DBG_DATA, 0x024E);
}
#undef ATPHY_DBG_ADDR
#undef ATPHY_DBG_DATA
#undef ATPHY_CDTC
#undef PHY_CDTC_ENB
#undef PHY_CDTC_POFF
#undef ATPHY_CDTS
#undef PHY_CDTS_STAT_OK
#undef PHY_CDTS_STAT_SHORT
#undef PHY_CDTS_STAT_OPEN
#undef PHY_CDTS_STAT_INVAL
#undef PHY_CDTS_STAT_MASK
}
static int
age_dma_alloc(struct age_softc *sc)
{
struct age_txdesc *txd;
struct age_rxdesc *rxd;
int nsegs, error, i;
/*
* Create DMA stuffs for TX ring
*/
error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
if (error) {
sc->age_cdata.age_tx_ring_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for TX ring */
error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
&nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for Tx ring, "
"error = %i\n", device_xname(sc->sc_dev), error);
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);
/* Load the DMA map for Tx ring. */
error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Tx ring, "
"error = %i\n", device_xname(sc->sc_dev), error);
bus_dmamem_free(sc->sc_dmat,
&sc->age_rdata.age_tx_ring_seg, 1);
return error;
}
sc->age_rdata.age_tx_ring_paddr =
sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
/*
* Create DMA stuffs for RX ring
*/
error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
if (error) {
sc->age_cdata.age_rx_ring_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for RX ring */
error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
&nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for Rx ring, "
"error = %i.\n", device_xname(sc->sc_dev), error);
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);
/* Load the DMA map for Rx ring. */
error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Rx ring, "
"error = %i.\n", device_xname(sc->sc_dev), error);
bus_dmamem_free(sc->sc_dmat,
&sc->age_rdata.age_rx_ring_seg, 1);
return error;
}
sc->age_rdata.age_rx_ring_paddr =
sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
/*
* Create DMA stuffs for RX return ring
*/
error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
if (error) {
sc->age_cdata.age_rr_ring_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for RX return ring */
error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
&nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for Rx "
"return ring, error = %i.\n",
device_xname(sc->sc_dev), error);
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);
/* Load the DMA map for Rx return ring. */
error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Rx return ring, "
"error = %i\n", device_xname(sc->sc_dev), error);
bus_dmamem_free(sc->sc_dmat,
&sc->age_rdata.age_rr_ring_seg, 1);
return error;
}
sc->age_rdata.age_rr_ring_paddr =
sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
/*
* Create DMA stuffs for CMB block
*/
error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
&sc->age_cdata.age_cmb_block_map);
if (error) {
sc->age_cdata.age_cmb_block_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for CMB block */
error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
&nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for "
"CMB block, error = %i\n", device_xname(sc->sc_dev), error);
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
/* Load the DMA map for CMB block. */
error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for CMB block, "
"error = %i\n", device_xname(sc->sc_dev), error);
bus_dmamem_free(sc->sc_dmat,
&sc->age_rdata.age_cmb_block_seg, 1);
return error;
}
sc->age_rdata.age_cmb_block_paddr =
sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
/*
* Create DMA stuffs for SMB block
*/
error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
&sc->age_cdata.age_smb_block_map);
if (error) {
sc->age_cdata.age_smb_block_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for SMB block */
error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
&nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for "
"SMB block, error = %i\n", device_xname(sc->sc_dev), error);
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);
/* Load the DMA map for SMB block */
error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for SMB block, "
"error = %i\n", device_xname(sc->sc_dev), error);
bus_dmamem_free(sc->sc_dmat,
&sc->age_rdata.age_smb_block_seg, 1);
return error;
}
sc->age_rdata.age_smb_block_paddr =
sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < AGE_TX_RING_CNT; i++) {
txd = &sc->age_cdata.age_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
&txd->tx_dmamap);
if (error) {
txd->tx_dmamap = NULL;
printf("%s: could not create Tx dmamap, error = %i.\n",
device_xname(sc->sc_dev), error);
return error;
}
}
/* Create DMA maps for Rx buffers. */
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
if (error) {
sc->age_cdata.age_rx_sparemap = NULL;
printf("%s: could not create spare Rx dmamap, error = %i.\n",
device_xname(sc->sc_dev), error);
return error;
}
for (i = 0; i < AGE_RX_RING_CNT; i++) {
rxd = &sc->age_cdata.age_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
if (error) {
rxd->rx_dmamap = NULL;
printf("%s: could not create Rx dmamap, error = %i.\n",
device_xname(sc->sc_dev), error);
return error;
}
}
return 0;
}
static void
age_dma_free(struct age_softc *sc)
{
struct age_txdesc *txd;
struct age_rxdesc *rxd;
int i;
/* Tx buffers */
for (i = 0; i < AGE_TX_RING_CNT; i++) {
txd = &sc->age_cdata.age_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
/* Rx buffers */
for (i = 0; i < AGE_RX_RING_CNT; i++) {
rxd = &sc->age_cdata.age_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->age_cdata.age_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
sc->age_cdata.age_rx_sparemap = NULL;
}
/* Tx ring. */
if (sc->age_cdata.age_tx_ring_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
if (sc->age_cdata.age_tx_ring_map != NULL &&
sc->age_rdata.age_tx_ring != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->age_rdata.age_tx_ring_seg, 1);
sc->age_rdata.age_tx_ring = NULL;
sc->age_cdata.age_tx_ring_map = NULL;
/* Rx ring. */
if (sc->age_cdata.age_rx_ring_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
if (sc->age_cdata.age_rx_ring_map != NULL &&
sc->age_rdata.age_rx_ring != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->age_rdata.age_rx_ring_seg, 1);
sc->age_rdata.age_rx_ring = NULL;
sc->age_cdata.age_rx_ring_map = NULL;
/* Rx return ring. */
if (sc->age_cdata.age_rr_ring_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
if (sc->age_cdata.age_rr_ring_map != NULL &&
sc->age_rdata.age_rr_ring != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->age_rdata.age_rr_ring_seg, 1);
sc->age_rdata.age_rr_ring = NULL;
sc->age_cdata.age_rr_ring_map = NULL;
/* CMB block */
if (sc->age_cdata.age_cmb_block_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
if (sc->age_cdata.age_cmb_block_map != NULL &&
sc->age_rdata.age_cmb_block != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->age_rdata.age_cmb_block_seg, 1);
sc->age_rdata.age_cmb_block = NULL;
sc->age_cdata.age_cmb_block_map = NULL;
/* SMB block */
if (sc->age_cdata.age_smb_block_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
if (sc->age_cdata.age_smb_block_map != NULL &&
sc->age_rdata.age_smb_block != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->age_rdata.age_smb_block_seg, 1);
sc->age_rdata.age_smb_block = NULL;
sc->age_cdata.age_smb_block_map = NULL;
}
static void
age_start(struct ifnet *ifp)
{
struct age_softc *sc = ifp->if_softc;
struct mbuf *m_head;
int enq;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
enq = 0;
for (;;) {
IFQ_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (age_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
enq = 1;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
bpf_mtap(ifp, m_head);
}
if (enq) {
/* Update mbox. */
AGE_COMMIT_MBOX(sc);
/* Set a timeout in case the chip goes out to lunch. */
ifp->if_timer = AGE_TX_TIMEOUT;
}
}
static void
age_watchdog(struct ifnet *ifp)
{
struct age_softc *sc = ifp->if_softc;
if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
printf("%s: watchdog timeout (missed link)\n",
device_xname(sc->sc_dev));
ifp->if_oerrors++;
age_init(ifp);
return;
}
if (sc->age_cdata.age_tx_cnt == 0) {
printf("%s: watchdog timeout (missed Tx interrupts) "
"-- recovering\n", device_xname(sc->sc_dev));
if (!IFQ_IS_EMPTY(&ifp->if_snd))
age_start(ifp);
return;
}
printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
ifp->if_oerrors++;
age_init(ifp);
if (!IFQ_IS_EMPTY(&ifp->if_snd))
age_start(ifp);
}
static int
age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct age_softc *sc = ifp->if_softc;
int s, error;
s = splnet();
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
age_rxfilter(sc);
error = 0;
}
splx(s);
return error;
}
static void
age_mac_config(struct age_softc *sc)
{
struct mii_data *mii;
uint32_t reg;
mii = &sc->sc_miibus;
reg = CSR_READ_4(sc, AGE_MAC_CFG);
reg &= ~MAC_CFG_FULL_DUPLEX;
reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
reg &= ~MAC_CFG_SPEED_MASK;
/* Reprogram MAC with resolved speed/duplex. */
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
reg |= MAC_CFG_SPEED_10_100;
break;
case IFM_1000_T:
reg |= MAC_CFG_SPEED_1000;
break;
}
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
reg |= MAC_CFG_FULL_DUPLEX;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
reg |= MAC_CFG_TX_FC;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
reg |= MAC_CFG_RX_FC;
}
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
static bool
age_resume(device_t dv, const pmf_qual_t *qual)
{
struct age_softc *sc = device_private(dv);
uint16_t cmd;
/*
* Clear INTx emulation disable for hardware that
* is set in resume event. From Linux.
*/
cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
pci_conf_write(sc->sc_pct, sc->sc_pcitag,
PCI_COMMAND_STATUS_REG, cmd);
}
return true;
}
static int
age_encap(struct age_softc *sc, struct mbuf **m_head)
{
struct age_txdesc *txd, *txd_last;
struct tx_desc *desc;
struct mbuf *m;
bus_dmamap_t map;
uint32_t cflags, poff, vtag;
int error, i, nsegs, prod;
#if NVLAN > 0
struct m_tag *mtag;
#endif
m = *m_head;
cflags = vtag = 0;
poff = 0;
prod = sc->age_cdata.age_tx_prod;
txd = &sc->age_cdata.age_txdesc[prod];
txd_last = txd;
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
if (error == EFBIG) {
error = 0;
*m_head = m_pullup(*m_head, MHLEN);
if (*m_head == NULL) {
printf("%s: can't defrag TX mbuf\n",
device_xname(sc->sc_dev));
return ENOBUFS;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load defragged TX mbuf\n",
device_xname(sc->sc_dev));
m_freem(*m_head);
*m_head = NULL;
return error;
}
} else if (error) {
printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
return error;
}
nsegs = map->dm_nsegs;
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return EIO;
}
/* Check descriptor overrun. */
if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
bus_dmamap_unload(sc->sc_dmat, map);
return ENOBUFS;
}
m = *m_head;
/* Configure Tx IP/TCP/UDP checksum offload. */
if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
cflags |= AGE_TD_CSUM;
if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
cflags |= AGE_TD_TCPCSUM;
if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
cflags |= AGE_TD_UDPCSUM;
/* Set checksum start offset. */
cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
}
#if NVLAN > 0
/* Configure VLAN hardware tag insertion. */
if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
vtag = AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
cflags |= AGE_TD_INSERT_VLAN_TAG;
}
#endif
desc = NULL;
for (i = 0; i < nsegs; i++) {
desc = &sc->age_rdata.age_tx_ring[prod];
desc->addr = htole64(map->dm_segs[i].ds_addr);
desc->len =
htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
desc->flags = htole32(cflags);
sc->age_cdata.age_tx_cnt++;
AGE_DESC_INC(prod, AGE_TX_RING_CNT);
}
/* Update producer index. */
sc->age_cdata.age_tx_prod = prod;
/* Set EOP on the last descriptor. */
prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
desc = &sc->age_rdata.age_tx_ring[prod];
desc->flags |= htole32(AGE_TD_EOP);
/* Swap dmamap of the first and the last. */
txd = &sc->age_cdata.age_txdesc[prod];
map = txd_last->tx_dmamap;
txd_last->tx_dmamap = txd->tx_dmamap;
txd->tx_dmamap = map;
txd->tx_m = m;
/* Sync descriptors. */
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
return 0;
}
static void
age_txintr(struct age_softc *sc, int tpd_cons)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct age_txdesc *txd;
int cons, prog;
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
cons = sc->age_cdata.age_tx_cons;
for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
if (sc->age_cdata.age_tx_cnt <= 0)
break;
prog++;
ifp->if_flags &= ~IFF_OACTIVE;
sc->age_cdata.age_tx_cnt--;
txd = &sc->age_cdata.age_txdesc[cons];
/*
* Clear Tx descriptors, it's not required but would
* help debugging in case of Tx issues.
*/
txd->tx_desc->addr = 0;
txd->tx_desc->len = 0;
txd->tx_desc->flags = 0;
if (txd->tx_m == NULL)
continue;
/* Reclaim transmitted mbufs. */
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
if (prog > 0) {
sc->age_cdata.age_tx_cons = cons;
/*
* Unarm watchdog timer only when there are no pending
* Tx descriptors in queue.
*/
if (sc->age_cdata.age_tx_cnt == 0)
ifp->if_timer = 0;
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
sc->age_cdata.age_tx_ring_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
}
}
/* Receive a frame. */
static void
age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct age_rxdesc *rxd;
struct rx_desc *desc;
struct mbuf *mp, *m;
uint32_t status, index;
int count, nsegs, pktlen;
int rx_cons;
status = le32toh(rxrd->flags);
index = le32toh(rxrd->index);
rx_cons = AGE_RX_CONS(index);
nsegs = AGE_RX_NSEGS(index);
sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
if ((status & AGE_RRD_ERROR) != 0 &&
(status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
/*
* We want to pass the following frames to upper
* layer regardless of error status of Rx return
* ring.
*
* o IP/TCP/UDP checksum is bad.
* o frame length and protocol specific length
* does not match.
*/
sc->age_cdata.age_rx_cons += nsegs;
sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
return;
}
pktlen = 0;
for (count = 0; count < nsegs; count++,
AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
rxd = &sc->age_cdata.age_rxdesc[rx_cons];
mp = rxd->rx_m;
desc = rxd->rx_desc;
/* Add a new receive buffer to the ring. */
if (age_newbuf(sc, rxd, 0) != 0) {
ifp->if_iqdrops++;
/* Reuse Rx buffers. */
if (sc->age_cdata.age_rxhead != NULL) {
m_freem(sc->age_cdata.age_rxhead);
AGE_RXCHAIN_RESET(sc);
}
break;
}
/* The length of the first mbuf is computed last. */
if (count != 0) {
mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
pktlen += mp->m_len;
}
/* Chain received mbufs. */
if (sc->age_cdata.age_rxhead == NULL) {
sc->age_cdata.age_rxhead = mp;
sc->age_cdata.age_rxtail = mp;
} else {
mp->m_flags &= ~M_PKTHDR;
sc->age_cdata.age_rxprev_tail =
sc->age_cdata.age_rxtail;
sc->age_cdata.age_rxtail->m_next = mp;
sc->age_cdata.age_rxtail = mp;
}
if (count == nsegs - 1) {
/*
* It seems that L1 controller has no way
* to tell hardware to strip CRC bytes.
*/
sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
if (nsegs > 1) {
/* Remove the CRC bytes in chained mbufs. */
pktlen -= ETHER_CRC_LEN;
if (mp->m_len <= ETHER_CRC_LEN) {
sc->age_cdata.age_rxtail =
sc->age_cdata.age_rxprev_tail;
sc->age_cdata.age_rxtail->m_len -=
(ETHER_CRC_LEN - mp->m_len);
sc->age_cdata.age_rxtail->m_next = NULL;
m_freem(mp);
} else {
mp->m_len -= ETHER_CRC_LEN;
}
}
m = sc->age_cdata.age_rxhead;
m->m_flags |= M_PKTHDR;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = sc->age_cdata.age_rxlen;
/* Set the first mbuf length. */
m->m_len = sc->age_cdata.age_rxlen - pktlen;
/*
* Set checksum information.
* It seems that L1 controller can compute partial
* checksum. The partial checksum value can be used
* to accelerate checksum computation for fragmented
* TCP/UDP packets. Upper network stack already
* takes advantage of the partial checksum value in
* IP reassembly stage. But I'm not sure the
* correctness of the partial hardware checksum
* assistance due to lack of data sheet. If it is
* proven to work on L1 I'll enable it.
*/
if (status & AGE_RRD_IPV4) {
if (status & AGE_RRD_IPCSUM_NOK)
m->m_pkthdr.csum_flags |=
M_CSUM_IPv4_BAD;
if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
(status & AGE_RRD_TCP_UDPCSUM_NOK)) {
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
}
/*
* Don't mark bad checksum for TCP/UDP frames
* as fragmented frames may always have set
* bad checksummed bit of descriptor status.
*/
}
#if NVLAN > 0
/* Check for VLAN tagged frames. */
if (status & AGE_RRD_VLAN) {
uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
VLAN_INPUT_TAG(ifp, m, AGE_RX_VLAN_TAG(vtag),
continue);
}
#endif
bpf_mtap(ifp, m);
/* Pass it on. */
ether_input(ifp, m);
/* Reset mbuf chains. */
AGE_RXCHAIN_RESET(sc);
}
}
if (count != nsegs) {
sc->age_cdata.age_rx_cons += nsegs;
sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
} else
sc->age_cdata.age_rx_cons = rx_cons;
}
static void
age_rxintr(struct age_softc *sc, int rr_prod)
{
struct rx_rdesc *rxrd;
int rr_cons, nsegs, pktlen, prog;
rr_cons = sc->age_cdata.age_rr_cons;
if (rr_cons == rr_prod)
return;
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
sc->age_cdata.age_rr_ring_map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
for (prog = 0; rr_cons != rr_prod; prog++) {
rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
if (nsegs == 0)
break;
/*
* Check number of segments against received bytes
* Non-matching value would indicate that hardware
* is still trying to update Rx return descriptors.
* I'm not sure whether this check is really needed.
*/
pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
(MCLBYTES - ETHER_ALIGN)))
break;
/* Received a frame. */
age_rxeof(sc, rxrd);
/* Clear return ring. */
rxrd->index = 0;
AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
}
if (prog > 0) {
/* Update the consumer index. */
sc->age_cdata.age_rr_cons = rr_cons;
/* Sync descriptors. */
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
sc->age_cdata.age_rr_ring_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* Notify hardware availability of new Rx buffers. */
AGE_COMMIT_MBOX(sc);
}
}
static void
age_tick(void *xsc)
{
struct age_softc *sc = xsc;
struct mii_data *mii = &sc->sc_miibus;
int s;
s = splnet();
mii_tick(mii);
splx(s);
callout_schedule(&sc->sc_tick_ch, hz);
}
static void
age_reset(struct age_softc *sc)
{
uint32_t reg;
int i;
CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
CSR_READ_4(sc, AGE_MASTER_CFG);
DELAY(1000);
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
break;
DELAY(10);
}
if (i == 0)
printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
reg);
/* Initialize PCIe module. From Linux. */
CSR_WRITE_4(sc, 0x12FC, 0x6500);
CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
}
static int
age_init(struct ifnet *ifp)
{
struct age_softc *sc = ifp->if_softc;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
bus_addr_t paddr;
uint32_t reg, fsize;
uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
int error;
/*
* Cancel any pending I/O.
*/
age_stop(ifp, 0);
/*
* Reset the chip to a known state.
*/
age_reset(sc);
/* Initialize descriptors. */
error = age_init_rx_ring(sc);
if (error != 0) {
printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
age_stop(ifp, 0);
return error;
}
age_init_rr_ring(sc);
age_init_tx_ring(sc);
age_init_cmb_block(sc);
age_init_smb_block(sc);
/* Reprogram the station address. */
memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
CSR_WRITE_4(sc, AGE_PAR0,
eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
/* Set descriptor base addresses. */
paddr = sc->age_rdata.age_tx_ring_paddr;
CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
paddr = sc->age_rdata.age_rx_ring_paddr;
CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
paddr = sc->age_rdata.age_rr_ring_paddr;
CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
paddr = sc->age_rdata.age_tx_ring_paddr;
CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
paddr = sc->age_rdata.age_cmb_block_paddr;
CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
paddr = sc->age_rdata.age_smb_block_paddr;
CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
/* Set Rx/Rx return descriptor counter. */
CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
DESC_RRD_CNT_MASK) |
((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
/* Set Tx descriptor counter. */
CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
(AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
/* Tell hardware that we're ready to load descriptors. */
CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
/*
* Initialize mailbox register.
* Updated producer/consumer index information is exchanged
* through this mailbox register. However Tx producer and
* Rx return consumer/Rx producer are all shared such that
* it's hard to separate code path between Tx and Rx without
* locking. If L1 hardware have a separate mail box register
* for Tx and Rx consumer/producer management we could have
* indepent Tx/Rx handler which in turn Rx handler could have
* been run without any locking.
*/
AGE_COMMIT_MBOX(sc);
/* Configure IPG/IFG parameters. */
CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
/* Set parameters for half-duplex media. */
CSR_WRITE_4(sc, AGE_HDPX_CFG,
((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
HDPX_CFG_LCOL_MASK) |
((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
HDPX_CFG_ABEBT_MASK) |
((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
HDPX_CFG_JAMIPG_MASK));
/* Configure interrupt moderation timer. */
sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
reg = CSR_READ_4(sc, AGE_MASTER_CFG);
reg &= ~MASTER_MTIMER_ENB;
if (AGE_USECS(sc->age_int_mod) == 0)
reg &= ~MASTER_ITIMER_ENB;
else
reg |= MASTER_ITIMER_ENB;
CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
if (agedebug)
printf("%s: interrupt moderation is %d us.\n",
device_xname(sc->sc_dev), sc->age_int_mod);
CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
if (ifp->if_mtu < ETHERMTU)
sc->age_max_frame_size = ETHERMTU;
else
sc->age_max_frame_size = ifp->if_mtu;
sc->age_max_frame_size += ETHER_HDR_LEN +
sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
/* Configure jumbo frame. */
fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
(((fsize / sizeof(uint64_t)) <<
RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
RXQ_JUMBO_CFG_RRD_TIMER_MASK));
/* Configure flow-control parameters. From Linux. */
if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
/*
* Magic workaround for old-L1.
* Don't know which hw revision requires this magic.
*/
CSR_WRITE_4(sc, 0x12FC, 0x6500);
/*
* Another magic workaround for flow-control mode
* change. From Linux.
*/
CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
}
/*
* TODO
* Should understand pause parameter relationships between FIFO
* size and number of Rx descriptors and Rx return descriptors.
*
* Magic parameters came from Linux.
*/
switch (sc->age_chip_rev) {
case 0x8001:
case 0x9001:
case 0x9002:
case 0x9003:
rxf_hi = AGE_RX_RING_CNT / 16;
rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
rrd_lo = AGE_RR_RING_CNT / 16;
break;
default:
reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
rxf_lo = reg / 16;
if (rxf_lo < 192)
rxf_lo = 192;
rxf_hi = (reg * 7) / 8;
if (rxf_hi < rxf_lo)
rxf_hi = rxf_lo + 16;
reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
rrd_lo = reg / 8;
rrd_hi = (reg * 7) / 8;
if (rrd_lo < 2)
rrd_lo = 2;
if (rrd_hi < rrd_lo)
rrd_hi = rrd_lo + 3;
break;
}
CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
RXQ_FIFO_PAUSE_THRESH_HI_MASK));
CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
RXQ_RRD_PAUSE_THRESH_LO_MASK) |
((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
RXQ_RRD_PAUSE_THRESH_HI_MASK));
/* Configure RxQ. */
CSR_WRITE_4(sc, AGE_RXQ_CFG,
((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
RXQ_CFG_RD_BURST_MASK) |
((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
/* Configure TxQ. */
CSR_WRITE_4(sc, AGE_TXQ_CFG,
((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
TXQ_CFG_TPD_BURST_MASK) |
((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
TXQ_CFG_TX_FIFO_BURST_MASK) |
((TXQ_CFG_TPD_FETCH_DEFAULT <<
TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
TXQ_CFG_ENB);
/* Configure DMA parameters. */
CSR_WRITE_4(sc, AGE_DMA_CFG,
DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
/* Configure CMB DMA write threshold. */
CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
CMB_WR_THRESH_RRD_MASK) |
((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
CMB_WR_THRESH_TPD_MASK));
/* Set CMB/SMB timer and enable them. */
CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
/* Request SMB updates for every seconds. */
CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
/*
* Disable all WOL bits as WOL can interfere normal Rx
* operation.
*/
CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
/*
* Configure Tx/Rx MACs.
* - Auto-padding for short frames.
* - Enable CRC generation.
* Start with full-duplex/1000Mbps media. Actual reconfiguration
* of MAC is followed after link establishment.
*/
CSR_WRITE_4(sc, AGE_MAC_CFG,
MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
MAC_CFG_PREAMBLE_MASK));
/* Set up the receive filter. */
age_rxfilter(sc);
age_rxvlan(sc);
reg = CSR_READ_4(sc, AGE_MAC_CFG);
reg |= MAC_CFG_RXCSUM_ENB;
/* Ack all pending interrupts and clear it. */
CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
/* Finally enable Tx/Rx MAC. */
CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
sc->age_flags &= ~AGE_FLAG_LINK;
/* Switch to the current media. */
mii = &sc->sc_miibus;
mii_mediachg(mii);
callout_schedule(&sc->sc_tick_ch, hz);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
return 0;
}
static void
age_stop(struct ifnet *ifp, int disable)
{
struct age_softc *sc = ifp->if_softc;
struct age_txdesc *txd;
struct age_rxdesc *rxd;
uint32_t reg;
int i;
callout_stop(&sc->sc_tick_ch);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
sc->age_flags &= ~AGE_FLAG_LINK;
mii_down(&sc->sc_miibus);
/*
* Disable interrupts.
*/
CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
/* Stop CMB/SMB updates. */
CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
/* Stop Rx/Tx MAC. */
age_stop_rxmac(sc);
age_stop_txmac(sc);
/* Stop DMA. */
CSR_WRITE_4(sc, AGE_DMA_CFG,
CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
/* Stop TxQ/RxQ. */
CSR_WRITE_4(sc, AGE_TXQ_CFG,
CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
CSR_WRITE_4(sc, AGE_RXQ_CFG,
CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
break;
DELAY(10);
}
if (i == 0)
printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
device_xname(sc->sc_dev), reg);
/* Reclaim Rx buffers that have been processed. */
if (sc->age_cdata.age_rxhead != NULL)
m_freem(sc->age_cdata.age_rxhead);
AGE_RXCHAIN_RESET(sc);
/*
* Free RX and TX mbufs still in the queues.
*/
for (i = 0; i < AGE_RX_RING_CNT; i++) {
rxd = &sc->age_cdata.age_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < AGE_TX_RING_CNT; i++) {
txd = &sc->age_cdata.age_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
static void
age_stats_update(struct age_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct age_stats *stat;
struct smb *smb;
stat = &sc->age_stat;
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
smb = sc->age_rdata.age_smb_block;
if (smb->updated == 0)
return;
/* Rx stats. */
stat->rx_frames += smb->rx_frames;
stat->rx_bcast_frames += smb->rx_bcast_frames;
stat->rx_mcast_frames += smb->rx_mcast_frames;
stat->rx_pause_frames += smb->rx_pause_frames;
stat->rx_control_frames += smb->rx_control_frames;
stat->rx_crcerrs += smb->rx_crcerrs;
stat->rx_lenerrs += smb->rx_lenerrs;
stat->rx_bytes += smb->rx_bytes;
stat->rx_runts += smb->rx_runts;
stat->rx_fragments += smb->rx_fragments;
stat->rx_pkts_64 += smb->rx_pkts_64;
stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
stat->rx_pkts_truncated += smb->rx_pkts_truncated;
stat->rx_fifo_oflows += smb->rx_fifo_oflows;
stat->rx_desc_oflows += smb->rx_desc_oflows;
stat->rx_alignerrs += smb->rx_alignerrs;
stat->rx_bcast_bytes += smb->rx_bcast_bytes;
stat->rx_mcast_bytes += smb->rx_mcast_bytes;
stat->rx_pkts_filtered += smb->rx_pkts_filtered;
/* Tx stats. */
stat->tx_frames += smb->tx_frames;
stat->tx_bcast_frames += smb->tx_bcast_frames;
stat->tx_mcast_frames += smb->tx_mcast_frames;
stat->tx_pause_frames += smb->tx_pause_frames;
stat->tx_excess_defer += smb->tx_excess_defer;
stat->tx_control_frames += smb->tx_control_frames;
stat->tx_deferred += smb->tx_deferred;
stat->tx_bytes += smb->tx_bytes;
stat->tx_pkts_64 += smb->tx_pkts_64;
stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
stat->tx_single_colls += smb->tx_single_colls;
stat->tx_multi_colls += smb->tx_multi_colls;
stat->tx_late_colls += smb->tx_late_colls;
stat->tx_excess_colls += smb->tx_excess_colls;
stat->tx_underrun += smb->tx_underrun;
stat->tx_desc_underrun += smb->tx_desc_underrun;
stat->tx_lenerrs += smb->tx_lenerrs;
stat->tx_pkts_truncated += smb->tx_pkts_truncated;
stat->tx_bcast_bytes += smb->tx_bcast_bytes;
stat->tx_mcast_bytes += smb->tx_mcast_bytes;
/* Update counters in ifnet. */
ifp->if_opackets += smb->tx_frames;
ifp->if_collisions += smb->tx_single_colls +
smb->tx_multi_colls + smb->tx_late_colls +
smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
ifp->if_oerrors += smb->tx_excess_colls +
smb->tx_late_colls + smb->tx_underrun +
smb->tx_pkts_truncated;
ifp->if_ipackets += smb->rx_frames;
ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
smb->rx_runts + smb->rx_pkts_truncated +
smb->rx_fifo_oflows + smb->rx_desc_oflows +
smb->rx_alignerrs;
/* Update done, clear. */
smb->updated = 0;
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
static void
age_stop_txmac(struct age_softc *sc)
{
uint32_t reg;
int i;
reg = CSR_READ_4(sc, AGE_MAC_CFG);
if ((reg & MAC_CFG_TX_ENB) != 0) {
reg &= ~MAC_CFG_TX_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
/* Stop Tx DMA engine. */
reg = CSR_READ_4(sc, AGE_DMA_CFG);
if ((reg & DMA_CFG_RD_ENB) != 0) {
reg &= ~DMA_CFG_RD_ENB;
CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
}
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
(IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
break;
DELAY(10);
}
if (i == 0)
printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
}
static void
age_stop_rxmac(struct age_softc *sc)
{
uint32_t reg;
int i;
reg = CSR_READ_4(sc, AGE_MAC_CFG);
if ((reg & MAC_CFG_RX_ENB) != 0) {
reg &= ~MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
/* Stop Rx DMA engine. */
reg = CSR_READ_4(sc, AGE_DMA_CFG);
if ((reg & DMA_CFG_WR_ENB) != 0) {
reg &= ~DMA_CFG_WR_ENB;
CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
}
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
(IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
break;
DELAY(10);
}
if (i == 0)
printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
}
static void
age_init_tx_ring(struct age_softc *sc)
{
struct age_ring_data *rd;
struct age_txdesc *txd;
int i;
sc->age_cdata.age_tx_prod = 0;
sc->age_cdata.age_tx_cons = 0;
sc->age_cdata.age_tx_cnt = 0;
rd = &sc->age_rdata;
memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
for (i = 0; i < AGE_TX_RING_CNT; i++) {
txd = &sc->age_cdata.age_txdesc[i];
txd->tx_desc = &rd->age_tx_ring[i];
txd->tx_m = NULL;
}
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
static int
age_init_rx_ring(struct age_softc *sc)
{
struct age_ring_data *rd;
struct age_rxdesc *rxd;
int i;
sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
rd = &sc->age_rdata;
memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
for (i = 0; i < AGE_RX_RING_CNT; i++) {
rxd = &sc->age_cdata.age_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_desc = &rd->age_rx_ring[i];
if (age_newbuf(sc, rxd, 1) != 0)
return ENOBUFS;
}
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
return 0;
}
static void
age_init_rr_ring(struct age_softc *sc)
{
struct age_ring_data *rd;
sc->age_cdata.age_rr_cons = 0;
AGE_RXCHAIN_RESET(sc);
rd = &sc->age_rdata;
memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
static void
age_init_cmb_block(struct age_softc *sc)
{
struct age_ring_data *rd;
rd = &sc->age_rdata;
memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
static void
age_init_smb_block(struct age_softc *sc)
{
struct age_ring_data *rd;
rd = &sc->age_rdata;
memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
static int
age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
{
struct rx_desc *desc;
struct mbuf *m;
bus_dmamap_t map;
int error;
MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
if (m == NULL)
return ENOBUFS;
MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
return ENOBUFS;
}
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
error = bus_dmamap_load_mbuf(sc->sc_dmat,
sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
if (error != 0) {
if (!error) {
bus_dmamap_unload(sc->sc_dmat,
sc->age_cdata.age_rx_sparemap);
error = EFBIG;
printf("%s: too many segments?!\n",
device_xname(sc->sc_dev));
}
m_freem(m);
if (init)
printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
return error;
}
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
sc->age_cdata.age_rx_sparemap = map;
rxd->rx_m = m;
desc = rxd->rx_desc;
desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
desc->len =
htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
AGE_RD_LEN_SHIFT);
return 0;
}
static void
age_rxvlan(struct age_softc *sc)
{
uint32_t reg;
reg = CSR_READ_4(sc, AGE_MAC_CFG);
reg &= ~MAC_CFG_VLAN_TAG_STRIP;
if (sc->sc_ec.ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
reg |= MAC_CFG_VLAN_TAG_STRIP;
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}
static void
age_rxfilter(struct age_softc *sc)
{
struct ethercom *ec = &sc->sc_ec;
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Always accept broadcast frames.
*/
rxcfg |= MAC_CFG_BCAST;
if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
rxcfg |= MAC_CFG_PROMISC;
else
rxcfg |= MAC_CFG_ALLMULTI;
mchash[0] = mchash[1] = 0xFFFFFFFF;
} else {
/* Program new filter. */
memset(mchash, 0, sizeof(mchash));
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
}
CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
}