159f41eca4
of using on-stack memory, so that this wouldn't eventually cause kernel panic if the process get swapped out and another process runs kqueue_scan() problem pointed out in kern/24220 by Stephan Uphoff
1433 lines
34 KiB
C
1433 lines
34 KiB
C
/* $NetBSD: kern_event.c,v 1.19 2004/02/14 11:56:28 jdolecek Exp $ */
|
|
/*-
|
|
* Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.19 2004/02/14 11:56:28 jdolecek Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/file.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/select.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/event.h>
|
|
#include <sys/eventvar.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/syscallargs.h>
|
|
|
|
static int kqueue_scan(struct file *fp, size_t maxevents,
|
|
struct kevent *ulistp, const struct timespec *timeout,
|
|
struct proc *p, register_t *retval);
|
|
static void kqueue_wakeup(struct kqueue *kq);
|
|
|
|
static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
|
|
struct ucred *cred, int flags);
|
|
static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
|
|
struct ucred *cred, int flags);
|
|
static int kqueue_ioctl(struct file *fp, u_long com, void *data,
|
|
struct proc *p);
|
|
static int kqueue_fcntl(struct file *fp, u_int com, void *data,
|
|
struct proc *p);
|
|
static int kqueue_poll(struct file *fp, int events, struct proc *p);
|
|
static int kqueue_kqfilter(struct file *fp, struct knote *kn);
|
|
static int kqueue_stat(struct file *fp, struct stat *sp, struct proc *p);
|
|
static int kqueue_close(struct file *fp, struct proc *p);
|
|
|
|
static struct fileops kqueueops = {
|
|
kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
|
|
kqueue_stat, kqueue_close, kqueue_kqfilter
|
|
};
|
|
|
|
static void knote_attach(struct knote *kn, struct filedesc *fdp);
|
|
static void knote_drop(struct knote *kn, struct proc *p,
|
|
struct filedesc *fdp);
|
|
static void knote_enqueue(struct knote *kn);
|
|
static void knote_dequeue(struct knote *kn);
|
|
|
|
static void filt_kqdetach(struct knote *kn);
|
|
static int filt_kqueue(struct knote *kn, long hint);
|
|
static int filt_procattach(struct knote *kn);
|
|
static void filt_procdetach(struct knote *kn);
|
|
static int filt_proc(struct knote *kn, long hint);
|
|
static int filt_fileattach(struct knote *kn);
|
|
static void filt_timerexpire(void *knx);
|
|
static int filt_timerattach(struct knote *kn);
|
|
static void filt_timerdetach(struct knote *kn);
|
|
static int filt_timer(struct knote *kn, long hint);
|
|
|
|
static const struct filterops kqread_filtops =
|
|
{ 1, NULL, filt_kqdetach, filt_kqueue };
|
|
static const struct filterops proc_filtops =
|
|
{ 0, filt_procattach, filt_procdetach, filt_proc };
|
|
static const struct filterops file_filtops =
|
|
{ 1, filt_fileattach, NULL, NULL };
|
|
static struct filterops timer_filtops =
|
|
{ 0, filt_timerattach, filt_timerdetach, filt_timer };
|
|
|
|
struct pool kqueue_pool;
|
|
struct pool knote_pool;
|
|
static int kq_ncallouts = 0;
|
|
static int kq_calloutmax = (4 * 1024);
|
|
|
|
MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");
|
|
|
|
#define KNOTE_ACTIVATE(kn) \
|
|
do { \
|
|
kn->kn_status |= KN_ACTIVE; \
|
|
if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
|
|
knote_enqueue(kn); \
|
|
} while(0)
|
|
|
|
#define KN_HASHSIZE 64 /* XXX should be tunable */
|
|
#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
|
|
|
|
extern const struct filterops sig_filtops;
|
|
|
|
/*
|
|
* Table for for all system-defined filters.
|
|
* These should be listed in the numeric order of the EVFILT_* defines.
|
|
* If filtops is NULL, the filter isn't implemented in NetBSD.
|
|
* End of list is when name is NULL.
|
|
*/
|
|
struct kfilter {
|
|
const char *name; /* name of filter */
|
|
uint32_t filter; /* id of filter */
|
|
const struct filterops *filtops;/* operations for filter */
|
|
};
|
|
|
|
/* System defined filters */
|
|
static const struct kfilter sys_kfilters[] = {
|
|
{ "EVFILT_READ", EVFILT_READ, &file_filtops },
|
|
{ "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
|
|
{ "EVFILT_AIO", EVFILT_AIO, NULL },
|
|
{ "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
|
|
{ "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
|
|
{ "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
|
|
{ "EVFILT_TIMER", EVFILT_TIMER, &timer_filtops },
|
|
{ NULL, 0, NULL }, /* end of list */
|
|
};
|
|
|
|
/* User defined kfilters */
|
|
static struct kfilter *user_kfilters; /* array */
|
|
static int user_kfilterc; /* current offset */
|
|
static int user_kfiltermaxc; /* max size so far */
|
|
|
|
/*
|
|
* kqueue_init:
|
|
*
|
|
* Initialize the kqueue/knote facility.
|
|
*/
|
|
void
|
|
kqueue_init(void)
|
|
{
|
|
|
|
pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl",
|
|
NULL);
|
|
pool_init(&knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl",
|
|
NULL);
|
|
}
|
|
|
|
/*
|
|
* Find kfilter entry by name, or NULL if not found.
|
|
*/
|
|
static const struct kfilter *
|
|
kfilter_byname_sys(const char *name)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; sys_kfilters[i].name != NULL; i++) {
|
|
if (strcmp(name, sys_kfilters[i].name) == 0)
|
|
return (&sys_kfilters[i]);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static struct kfilter *
|
|
kfilter_byname_user(const char *name)
|
|
{
|
|
int i;
|
|
|
|
/* user_kfilters[] could be NULL if no filters were registered */
|
|
if (!user_kfilters)
|
|
return (NULL);
|
|
|
|
for (i = 0; user_kfilters[i].name != NULL; i++) {
|
|
if (user_kfilters[i].name != '\0' &&
|
|
strcmp(name, user_kfilters[i].name) == 0)
|
|
return (&user_kfilters[i]);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static const struct kfilter *
|
|
kfilter_byname(const char *name)
|
|
{
|
|
const struct kfilter *kfilter;
|
|
|
|
if ((kfilter = kfilter_byname_sys(name)) != NULL)
|
|
return (kfilter);
|
|
|
|
return (kfilter_byname_user(name));
|
|
}
|
|
|
|
/*
|
|
* Find kfilter entry by filter id, or NULL if not found.
|
|
* Assumes entries are indexed in filter id order, for speed.
|
|
*/
|
|
static const struct kfilter *
|
|
kfilter_byfilter(uint32_t filter)
|
|
{
|
|
const struct kfilter *kfilter;
|
|
|
|
if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
|
|
kfilter = &sys_kfilters[filter];
|
|
else if (user_kfilters != NULL &&
|
|
filter < EVFILT_SYSCOUNT + user_kfilterc)
|
|
/* it's a user filter */
|
|
kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
|
|
else
|
|
return (NULL); /* out of range */
|
|
KASSERT(kfilter->filter == filter); /* sanity check! */
|
|
return (kfilter);
|
|
}
|
|
|
|
/*
|
|
* Register a new kfilter. Stores the entry in user_kfilters.
|
|
* Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
|
|
* If retfilter != NULL, the new filterid is returned in it.
|
|
*/
|
|
int
|
|
kfilter_register(const char *name, const struct filterops *filtops,
|
|
int *retfilter)
|
|
{
|
|
struct kfilter *kfilter;
|
|
void *space;
|
|
int len;
|
|
|
|
if (name == NULL || name[0] == '\0' || filtops == NULL)
|
|
return (EINVAL); /* invalid args */
|
|
if (kfilter_byname(name) != NULL)
|
|
return (EEXIST); /* already exists */
|
|
if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
|
|
return (EINVAL); /* too many */
|
|
|
|
/* check if need to grow user_kfilters */
|
|
if (user_kfilterc + 1 > user_kfiltermaxc) {
|
|
/*
|
|
* Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
|
|
* want to traverse user_kfilters as an array.
|
|
*/
|
|
user_kfiltermaxc += KFILTER_EXTENT;
|
|
kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
|
|
M_KEVENT, M_WAITOK);
|
|
|
|
/* copy existing user_kfilters */
|
|
if (user_kfilters != NULL)
|
|
memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
|
|
user_kfilterc * sizeof(struct kfilter *));
|
|
/* zero new sections */
|
|
memset((caddr_t)kfilter +
|
|
user_kfilterc * sizeof(struct kfilter *), 0,
|
|
(user_kfiltermaxc - user_kfilterc) *
|
|
sizeof(struct kfilter *));
|
|
/* switch to new kfilter */
|
|
if (user_kfilters != NULL)
|
|
free(user_kfilters, M_KEVENT);
|
|
user_kfilters = kfilter;
|
|
}
|
|
len = strlen(name) + 1; /* copy name */
|
|
space = malloc(len, M_KEVENT, M_WAITOK);
|
|
memcpy(space, name, len);
|
|
user_kfilters[user_kfilterc].name = space;
|
|
|
|
user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
|
|
|
|
len = sizeof(struct filterops); /* copy filtops */
|
|
space = malloc(len, M_KEVENT, M_WAITOK);
|
|
memcpy(space, filtops, len);
|
|
user_kfilters[user_kfilterc].filtops = space;
|
|
|
|
if (retfilter != NULL)
|
|
*retfilter = user_kfilters[user_kfilterc].filter;
|
|
user_kfilterc++; /* finally, increment count */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unregister a kfilter previously registered with kfilter_register.
|
|
* This retains the filter id, but clears the name and frees filtops (filter
|
|
* operations), so that the number isn't reused during a boot.
|
|
* Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
|
|
*/
|
|
int
|
|
kfilter_unregister(const char *name)
|
|
{
|
|
struct kfilter *kfilter;
|
|
|
|
if (name == NULL || name[0] == '\0')
|
|
return (EINVAL); /* invalid name */
|
|
|
|
if (kfilter_byname_sys(name) != NULL)
|
|
return (EINVAL); /* can't detach system filters */
|
|
|
|
kfilter = kfilter_byname_user(name);
|
|
if (kfilter == NULL) /* not found */
|
|
return (ENOENT);
|
|
|
|
if (kfilter->name[0] != '\0') {
|
|
/* XXX Cast away const (but we know it's safe. */
|
|
free((void *) kfilter->name, M_KEVENT);
|
|
kfilter->name = ""; /* mark as `not implemented' */
|
|
}
|
|
if (kfilter->filtops != NULL) {
|
|
/* XXX Cast away const (but we know it's safe. */
|
|
free((void *) kfilter->filtops, M_KEVENT);
|
|
kfilter->filtops = NULL; /* mark as `not implemented' */
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
|
|
* descriptors. Calls struct fileops kqfilter method for given file descriptor.
|
|
*/
|
|
static int
|
|
filt_fileattach(struct knote *kn)
|
|
{
|
|
struct file *fp;
|
|
|
|
fp = kn->kn_fp;
|
|
return ((*fp->f_ops->fo_kqfilter)(fp, kn));
|
|
}
|
|
|
|
/*
|
|
* Filter detach method for EVFILT_READ on kqueue descriptor.
|
|
*/
|
|
static void
|
|
filt_kqdetach(struct knote *kn)
|
|
{
|
|
struct kqueue *kq;
|
|
|
|
kq = (struct kqueue *)kn->kn_fp->f_data;
|
|
SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
|
|
}
|
|
|
|
/*
|
|
* Filter event method for EVFILT_READ on kqueue descriptor.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_kqueue(struct knote *kn, long hint)
|
|
{
|
|
struct kqueue *kq;
|
|
|
|
kq = (struct kqueue *)kn->kn_fp->f_data;
|
|
kn->kn_data = kq->kq_count;
|
|
return (kn->kn_data > 0);
|
|
}
|
|
|
|
/*
|
|
* Filter attach method for EVFILT_PROC.
|
|
*/
|
|
static int
|
|
filt_procattach(struct knote *kn)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = pfind(kn->kn_id);
|
|
if (p == NULL)
|
|
return (ESRCH);
|
|
|
|
/*
|
|
* Fail if it's not owned by you, or the last exec gave us
|
|
* setuid/setgid privs (unless you're root).
|
|
*/
|
|
if ((p->p_cred->p_ruid != curproc->p_cred->p_ruid ||
|
|
(p->p_flag & P_SUGID))
|
|
&& suser(curproc->p_ucred, &curproc->p_acflag) != 0)
|
|
return (EACCES);
|
|
|
|
kn->kn_ptr.p_proc = p;
|
|
kn->kn_flags |= EV_CLEAR; /* automatically set */
|
|
|
|
/*
|
|
* internal flag indicating registration done by kernel
|
|
*/
|
|
if (kn->kn_flags & EV_FLAG1) {
|
|
kn->kn_data = kn->kn_sdata; /* ppid */
|
|
kn->kn_fflags = NOTE_CHILD;
|
|
kn->kn_flags &= ~EV_FLAG1;
|
|
}
|
|
|
|
/* XXXSMP lock the process? */
|
|
SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Filter detach method for EVFILT_PROC.
|
|
*
|
|
* The knote may be attached to a different process, which may exit,
|
|
* leaving nothing for the knote to be attached to. So when the process
|
|
* exits, the knote is marked as DETACHED and also flagged as ONESHOT so
|
|
* it will be deleted when read out. However, as part of the knote deletion,
|
|
* this routine is called, so a check is needed to avoid actually performing
|
|
* a detach, because the original process might not exist any more.
|
|
*/
|
|
static void
|
|
filt_procdetach(struct knote *kn)
|
|
{
|
|
struct proc *p;
|
|
|
|
if (kn->kn_status & KN_DETACHED)
|
|
return;
|
|
|
|
p = kn->kn_ptr.p_proc;
|
|
KASSERT(p->p_stat == SZOMB || pfind(kn->kn_id) == p);
|
|
|
|
/* XXXSMP lock the process? */
|
|
SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
|
|
}
|
|
|
|
/*
|
|
* Filter event method for EVFILT_PROC.
|
|
*/
|
|
static int
|
|
filt_proc(struct knote *kn, long hint)
|
|
{
|
|
u_int event;
|
|
|
|
/*
|
|
* mask off extra data
|
|
*/
|
|
event = (u_int)hint & NOTE_PCTRLMASK;
|
|
|
|
/*
|
|
* if the user is interested in this event, record it.
|
|
*/
|
|
if (kn->kn_sfflags & event)
|
|
kn->kn_fflags |= event;
|
|
|
|
/*
|
|
* process is gone, so flag the event as finished.
|
|
*/
|
|
if (event == NOTE_EXIT) {
|
|
/*
|
|
* Detach the knote from watched process and mark
|
|
* it as such. We can't leave this to kqueue_scan(),
|
|
* since the process might not exist by then. And we
|
|
* have to do this now, since psignal KNOTE() is called
|
|
* also for zombies and we might end up reading freed
|
|
* memory if the kevent would already be picked up
|
|
* and knote g/c'ed.
|
|
*/
|
|
kn->kn_fop->f_detach(kn);
|
|
kn->kn_status |= KN_DETACHED;
|
|
|
|
/* Mark as ONESHOT, so that the knote it g/c'ed when read */
|
|
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* process forked, and user wants to track the new process,
|
|
* so attach a new knote to it, and immediately report an
|
|
* event with the parent's pid.
|
|
*/
|
|
if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
|
|
struct kevent kev;
|
|
int error;
|
|
|
|
/*
|
|
* register knote with new process.
|
|
*/
|
|
kev.ident = hint & NOTE_PDATAMASK; /* pid */
|
|
kev.filter = kn->kn_filter;
|
|
kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
|
|
kev.fflags = kn->kn_sfflags;
|
|
kev.data = kn->kn_id; /* parent */
|
|
kev.udata = kn->kn_kevent.udata; /* preserve udata */
|
|
error = kqueue_register(kn->kn_kq, &kev, NULL);
|
|
if (error)
|
|
kn->kn_fflags |= NOTE_TRACKERR;
|
|
}
|
|
|
|
return (kn->kn_fflags != 0);
|
|
}
|
|
|
|
static void
|
|
filt_timerexpire(void *knx)
|
|
{
|
|
struct knote *kn = knx;
|
|
int tticks;
|
|
|
|
kn->kn_data++;
|
|
KNOTE_ACTIVATE(kn);
|
|
|
|
if ((kn->kn_flags & EV_ONESHOT) == 0) {
|
|
tticks = mstohz(kn->kn_sdata);
|
|
callout_schedule((struct callout *)kn->kn_hook, tticks);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* data contains amount of time to sleep, in milliseconds
|
|
*/
|
|
static int
|
|
filt_timerattach(struct knote *kn)
|
|
{
|
|
struct callout *calloutp;
|
|
int tticks;
|
|
|
|
if (kq_ncallouts >= kq_calloutmax)
|
|
return (ENOMEM);
|
|
kq_ncallouts++;
|
|
|
|
tticks = mstohz(kn->kn_sdata);
|
|
|
|
/* if the supplied value is under our resolution, use 1 tick */
|
|
if (tticks == 0) {
|
|
if (kn->kn_sdata == 0)
|
|
return (EINVAL);
|
|
tticks = 1;
|
|
}
|
|
|
|
kn->kn_flags |= EV_CLEAR; /* automatically set */
|
|
MALLOC(calloutp, struct callout *, sizeof(*calloutp),
|
|
M_KEVENT, 0);
|
|
callout_init(calloutp);
|
|
callout_reset(calloutp, tticks, filt_timerexpire, kn);
|
|
kn->kn_hook = calloutp;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
filt_timerdetach(struct knote *kn)
|
|
{
|
|
struct callout *calloutp;
|
|
|
|
calloutp = (struct callout *)kn->kn_hook;
|
|
callout_stop(calloutp);
|
|
FREE(calloutp, M_KEVENT);
|
|
kq_ncallouts--;
|
|
}
|
|
|
|
static int
|
|
filt_timer(struct knote *kn, long hint)
|
|
{
|
|
return (kn->kn_data != 0);
|
|
}
|
|
|
|
/*
|
|
* filt_seltrue:
|
|
*
|
|
* This filter "event" routine simulates seltrue().
|
|
*/
|
|
int
|
|
filt_seltrue(struct knote *kn, long hint)
|
|
{
|
|
|
|
/*
|
|
* We don't know how much data can be read/written,
|
|
* but we know that it *can* be. This is about as
|
|
* good as select/poll does as well.
|
|
*/
|
|
kn->kn_data = 0;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* This provides full kqfilter entry for device switch tables, which
|
|
* has same effect as filter using filt_seltrue() as filter method.
|
|
*/
|
|
static void
|
|
filt_seltruedetach(struct knote *kn)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
static const struct filterops seltrue_filtops =
|
|
{ 1, NULL, filt_seltruedetach, filt_seltrue };
|
|
|
|
int
|
|
seltrue_kqfilter(dev_t dev, struct knote *kn)
|
|
{
|
|
switch (kn->kn_filter) {
|
|
case EVFILT_READ:
|
|
case EVFILT_WRITE:
|
|
kn->kn_fop = &seltrue_filtops;
|
|
break;
|
|
default:
|
|
return (1);
|
|
}
|
|
|
|
/* Nothing more to do */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* kqueue(2) system call.
|
|
*/
|
|
int
|
|
sys_kqueue(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct filedesc *fdp;
|
|
struct kqueue *kq;
|
|
struct file *fp;
|
|
struct proc *p;
|
|
int fd, error;
|
|
|
|
p = l->l_proc;
|
|
fdp = p->p_fd;
|
|
error = falloc(p, &fp, &fd); /* setup a new file descriptor */
|
|
if (error)
|
|
return (error);
|
|
fp->f_flag = FREAD | FWRITE;
|
|
fp->f_type = DTYPE_KQUEUE;
|
|
fp->f_ops = &kqueueops;
|
|
kq = pool_get(&kqueue_pool, PR_WAITOK);
|
|
memset((char *)kq, 0, sizeof(struct kqueue));
|
|
simple_lock_init(&kq->kq_lock);
|
|
TAILQ_INIT(&kq->kq_head);
|
|
fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
|
|
*retval = fd;
|
|
if (fdp->fd_knlistsize < 0)
|
|
fdp->fd_knlistsize = 0; /* this process has a kq */
|
|
kq->kq_fdp = fdp;
|
|
FILE_SET_MATURE(fp);
|
|
FILE_UNUSE(fp, p); /* falloc() does FILE_USE() */
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* kevent(2) system call.
|
|
*/
|
|
int
|
|
sys_kevent(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys_kevent_args /* {
|
|
syscallarg(int) fd;
|
|
syscallarg(const struct kevent *) changelist;
|
|
syscallarg(size_t) nchanges;
|
|
syscallarg(struct kevent *) eventlist;
|
|
syscallarg(size_t) nevents;
|
|
syscallarg(const struct timespec *) timeout;
|
|
} */ *uap = v;
|
|
struct kevent *kevp;
|
|
struct kqueue *kq;
|
|
struct file *fp;
|
|
struct timespec ts;
|
|
struct proc *p;
|
|
size_t i, n;
|
|
int nerrors, error;
|
|
|
|
p = l->l_proc;
|
|
/* check that we're dealing with a kq */
|
|
fp = fd_getfile(p->p_fd, SCARG(uap, fd));
|
|
if (fp == NULL)
|
|
return (EBADF);
|
|
|
|
if (fp->f_type != DTYPE_KQUEUE) {
|
|
simple_unlock(&fp->f_slock);
|
|
return (EBADF);
|
|
}
|
|
|
|
FILE_USE(fp);
|
|
|
|
if (SCARG(uap, timeout) != NULL) {
|
|
error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
|
|
if (error)
|
|
goto done;
|
|
SCARG(uap, timeout) = &ts;
|
|
}
|
|
|
|
kq = (struct kqueue *)fp->f_data;
|
|
nerrors = 0;
|
|
|
|
/* traverse list of events to register */
|
|
while (SCARG(uap, nchanges) > 0) {
|
|
/* copyin a maximum of KQ_EVENTS at each pass */
|
|
n = MIN(SCARG(uap, nchanges), KQ_NEVENTS);
|
|
error = copyin(SCARG(uap, changelist), kq->kq_kev,
|
|
n * sizeof(struct kevent));
|
|
if (error)
|
|
goto done;
|
|
for (i = 0; i < n; i++) {
|
|
kevp = &kq->kq_kev[i];
|
|
kevp->flags &= ~EV_SYSFLAGS;
|
|
/* register each knote */
|
|
error = kqueue_register(kq, kevp, p);
|
|
if (error) {
|
|
if (SCARG(uap, nevents) != 0) {
|
|
kevp->flags = EV_ERROR;
|
|
kevp->data = error;
|
|
error = copyout((caddr_t)kevp,
|
|
(caddr_t)SCARG(uap, eventlist),
|
|
sizeof(*kevp));
|
|
if (error)
|
|
goto done;
|
|
SCARG(uap, eventlist)++;
|
|
SCARG(uap, nevents)--;
|
|
nerrors++;
|
|
} else {
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
SCARG(uap, nchanges) -= n; /* update the results */
|
|
SCARG(uap, changelist) += n;
|
|
}
|
|
if (nerrors) {
|
|
*retval = nerrors;
|
|
error = 0;
|
|
goto done;
|
|
}
|
|
|
|
/* actually scan through the events */
|
|
error = kqueue_scan(fp, SCARG(uap, nevents), SCARG(uap, eventlist),
|
|
SCARG(uap, timeout), p, retval);
|
|
done:
|
|
FILE_UNUSE(fp, p);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Register a given kevent kev onto the kqueue
|
|
*/
|
|
int
|
|
kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
|
|
{
|
|
const struct kfilter *kfilter;
|
|
struct filedesc *fdp;
|
|
struct file *fp;
|
|
struct knote *kn;
|
|
int s, error;
|
|
|
|
fdp = kq->kq_fdp;
|
|
fp = NULL;
|
|
kn = NULL;
|
|
error = 0;
|
|
kfilter = kfilter_byfilter(kev->filter);
|
|
if (kfilter == NULL || kfilter->filtops == NULL) {
|
|
/* filter not found nor implemented */
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* search if knote already exists */
|
|
if (kfilter->filtops->f_isfd) {
|
|
/* monitoring a file descriptor */
|
|
if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
|
|
return (EBADF); /* validate descriptor */
|
|
FILE_USE(fp);
|
|
|
|
if (kev->ident < fdp->fd_knlistsize) {
|
|
SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
|
|
if (kq == kn->kn_kq &&
|
|
kev->filter == kn->kn_filter)
|
|
break;
|
|
}
|
|
} else {
|
|
/*
|
|
* not monitoring a file descriptor, so
|
|
* lookup knotes in internal hash table
|
|
*/
|
|
if (fdp->fd_knhashmask != 0) {
|
|
struct klist *list;
|
|
|
|
list = &fdp->fd_knhash[
|
|
KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
|
|
SLIST_FOREACH(kn, list, kn_link)
|
|
if (kev->ident == kn->kn_id &&
|
|
kq == kn->kn_kq &&
|
|
kev->filter == kn->kn_filter)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
|
|
error = ENOENT; /* filter not found */
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* kn now contains the matching knote, or NULL if no match
|
|
*/
|
|
if (kev->flags & EV_ADD) {
|
|
/* add knote */
|
|
|
|
if (kn == NULL) {
|
|
/* create new knote */
|
|
kn = pool_get(&knote_pool, PR_WAITOK);
|
|
if (kn == NULL) {
|
|
error = ENOMEM;
|
|
goto done;
|
|
}
|
|
kn->kn_fp = fp;
|
|
kn->kn_kq = kq;
|
|
kn->kn_fop = kfilter->filtops;
|
|
|
|
/*
|
|
* apply reference count to knote structure, and
|
|
* do not release it at the end of this routine.
|
|
*/
|
|
fp = NULL;
|
|
|
|
kn->kn_sfflags = kev->fflags;
|
|
kn->kn_sdata = kev->data;
|
|
kev->fflags = 0;
|
|
kev->data = 0;
|
|
kn->kn_kevent = *kev;
|
|
|
|
knote_attach(kn, fdp);
|
|
if ((error = kfilter->filtops->f_attach(kn)) != 0) {
|
|
knote_drop(kn, p, fdp);
|
|
goto done;
|
|
}
|
|
} else {
|
|
/* modify existing knote */
|
|
|
|
/*
|
|
* The user may change some filter values after the
|
|
* initial EV_ADD, but doing so will not reset any
|
|
* filter which have already been triggered.
|
|
*/
|
|
kn->kn_sfflags = kev->fflags;
|
|
kn->kn_sdata = kev->data;
|
|
kn->kn_kevent.udata = kev->udata;
|
|
}
|
|
|
|
s = splsched();
|
|
if (kn->kn_fop->f_event(kn, 0))
|
|
KNOTE_ACTIVATE(kn);
|
|
splx(s);
|
|
|
|
} else if (kev->flags & EV_DELETE) { /* delete knote */
|
|
kn->kn_fop->f_detach(kn);
|
|
knote_drop(kn, p, fdp);
|
|
goto done;
|
|
}
|
|
|
|
/* disable knote */
|
|
if ((kev->flags & EV_DISABLE) &&
|
|
((kn->kn_status & KN_DISABLED) == 0)) {
|
|
s = splsched();
|
|
kn->kn_status |= KN_DISABLED;
|
|
splx(s);
|
|
}
|
|
|
|
/* enable knote */
|
|
if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
|
|
s = splsched();
|
|
kn->kn_status &= ~KN_DISABLED;
|
|
if ((kn->kn_status & KN_ACTIVE) &&
|
|
((kn->kn_status & KN_QUEUED) == 0))
|
|
knote_enqueue(kn);
|
|
splx(s);
|
|
}
|
|
|
|
done:
|
|
if (fp != NULL)
|
|
FILE_UNUSE(fp, p);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Scan through the list of events on fp (for a maximum of maxevents),
|
|
* returning the results in to ulistp. Timeout is determined by tsp; if
|
|
* NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
|
|
* as appropriate.
|
|
*/
|
|
static int
|
|
kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
|
|
const struct timespec *tsp, struct proc *p, register_t *retval)
|
|
{
|
|
struct kqueue *kq;
|
|
struct kevent *kevp;
|
|
struct timeval atv;
|
|
struct knote *kn, *marker=NULL;
|
|
size_t count, nkev;
|
|
int s, timeout, error;
|
|
|
|
kq = (struct kqueue *)fp->f_data;
|
|
count = maxevents;
|
|
nkev = error = 0;
|
|
if (count == 0)
|
|
goto done;
|
|
|
|
if (tsp) { /* timeout supplied */
|
|
TIMESPEC_TO_TIMEVAL(&atv, tsp);
|
|
if (itimerfix(&atv)) {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
s = splclock();
|
|
timeradd(&atv, &time, &atv); /* calc. time to wait until */
|
|
splx(s);
|
|
timeout = hzto(&atv);
|
|
if (timeout <= 0)
|
|
timeout = -1; /* do poll */
|
|
} else {
|
|
/* no timeout, wait forever */
|
|
timeout = 0;
|
|
}
|
|
|
|
MALLOC(marker, struct knote *, sizeof(*marker), M_KEVENT, M_WAITOK);
|
|
memset(marker, 0, sizeof(*marker));
|
|
|
|
goto start;
|
|
|
|
retry:
|
|
if (tsp) {
|
|
/*
|
|
* We have to recalculate the timeout on every retry.
|
|
*/
|
|
timeout = hzto(&atv);
|
|
if (timeout <= 0)
|
|
goto done;
|
|
}
|
|
|
|
start:
|
|
kevp = kq->kq_kev;
|
|
s = splsched();
|
|
simple_lock(&kq->kq_lock);
|
|
if (kq->kq_count == 0) {
|
|
if (timeout < 0) {
|
|
error = EWOULDBLOCK;
|
|
simple_unlock(&kq->kq_lock);
|
|
} else {
|
|
kq->kq_state |= KQ_SLEEP;
|
|
error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK,
|
|
"kqread", timeout, &kq->kq_lock);
|
|
}
|
|
splx(s);
|
|
if (error == 0)
|
|
goto retry;
|
|
/* don't restart after signals... */
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
else if (error == EWOULDBLOCK)
|
|
error = 0;
|
|
goto done;
|
|
}
|
|
|
|
/* mark end of knote list */
|
|
TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
|
|
simple_unlock(&kq->kq_lock);
|
|
|
|
while (count) { /* while user wants data ... */
|
|
simple_lock(&kq->kq_lock);
|
|
kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
|
|
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
|
|
if (kn == marker) { /* if it's our marker, stop */
|
|
/* What if it's some else's marker? */
|
|
simple_unlock(&kq->kq_lock);
|
|
splx(s);
|
|
if (count == maxevents)
|
|
goto retry;
|
|
goto done;
|
|
}
|
|
kq->kq_count--;
|
|
simple_unlock(&kq->kq_lock);
|
|
|
|
if (kn->kn_status & KN_DISABLED) {
|
|
/* don't want disabled events */
|
|
kn->kn_status &= ~KN_QUEUED;
|
|
continue;
|
|
}
|
|
if ((kn->kn_flags & EV_ONESHOT) == 0 &&
|
|
kn->kn_fop->f_event(kn, 0) == 0) {
|
|
/*
|
|
* non-ONESHOT event that hasn't
|
|
* triggered again, so de-queue.
|
|
*/
|
|
kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
|
|
continue;
|
|
}
|
|
*kevp = kn->kn_kevent;
|
|
kevp++;
|
|
nkev++;
|
|
if (kn->kn_flags & EV_ONESHOT) {
|
|
/* delete ONESHOT events after retrieval */
|
|
kn->kn_status &= ~KN_QUEUED;
|
|
splx(s);
|
|
kn->kn_fop->f_detach(kn);
|
|
knote_drop(kn, p, p->p_fd);
|
|
s = splsched();
|
|
} else if (kn->kn_flags & EV_CLEAR) {
|
|
/* clear state after retrieval */
|
|
kn->kn_data = 0;
|
|
kn->kn_fflags = 0;
|
|
kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
|
|
} else {
|
|
/* add event back on list */
|
|
simple_lock(&kq->kq_lock);
|
|
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
|
|
kq->kq_count++;
|
|
simple_unlock(&kq->kq_lock);
|
|
}
|
|
count--;
|
|
if (nkev == KQ_NEVENTS) {
|
|
/* do copyouts in KQ_NEVENTS chunks */
|
|
splx(s);
|
|
error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
|
|
sizeof(struct kevent) * nkev);
|
|
ulistp += nkev;
|
|
nkev = 0;
|
|
kevp = kq->kq_kev;
|
|
s = splsched();
|
|
if (error)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* remove marker */
|
|
simple_lock(&kq->kq_lock);
|
|
TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
|
|
simple_unlock(&kq->kq_lock);
|
|
splx(s);
|
|
done:
|
|
if (marker)
|
|
FREE(marker, M_KEVENT);
|
|
|
|
if (nkev != 0) {
|
|
/* copyout remaining events */
|
|
error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
|
|
sizeof(struct kevent) * nkev);
|
|
}
|
|
*retval = maxevents - count;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* struct fileops read method for a kqueue descriptor.
|
|
* Not implemented.
|
|
* XXX: This could be expanded to call kqueue_scan, if desired.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static int
|
|
kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
|
|
struct ucred *cred, int flags)
|
|
{
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* struct fileops write method for a kqueue descriptor.
|
|
* Not implemented.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static int
|
|
kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
|
|
struct ucred *cred, int flags)
|
|
{
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* struct fileops ioctl method for a kqueue descriptor.
|
|
*
|
|
* Two ioctls are currently supported. They both use struct kfilter_mapping:
|
|
* KFILTER_BYNAME find name for filter, and return result in
|
|
* name, which is of size len.
|
|
* KFILTER_BYFILTER find filter for name. len is ignored.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static int
|
|
kqueue_ioctl(struct file *fp, u_long com, void *data, struct proc *p)
|
|
{
|
|
struct kfilter_mapping *km;
|
|
const struct kfilter *kfilter;
|
|
char *name;
|
|
int error;
|
|
|
|
km = (struct kfilter_mapping *)data;
|
|
error = 0;
|
|
|
|
switch (com) {
|
|
case KFILTER_BYFILTER: /* convert filter -> name */
|
|
kfilter = kfilter_byfilter(km->filter);
|
|
if (kfilter != NULL)
|
|
error = copyoutstr(kfilter->name, km->name, km->len,
|
|
NULL);
|
|
else
|
|
error = ENOENT;
|
|
break;
|
|
|
|
case KFILTER_BYNAME: /* convert name -> filter */
|
|
MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
|
|
error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
|
|
if (error) {
|
|
FREE(name, M_KEVENT);
|
|
break;
|
|
}
|
|
kfilter = kfilter_byname(name);
|
|
if (kfilter != NULL)
|
|
km->filter = kfilter->filter;
|
|
else
|
|
error = ENOENT;
|
|
FREE(name, M_KEVENT);
|
|
break;
|
|
|
|
default:
|
|
error = ENOTTY;
|
|
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* struct fileops fcntl method for a kqueue descriptor.
|
|
* Not implemented.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static int
|
|
kqueue_fcntl(struct file *fp, u_int com, void *data, struct proc *p)
|
|
{
|
|
|
|
return (ENOTTY);
|
|
}
|
|
|
|
/*
|
|
* struct fileops poll method for a kqueue descriptor.
|
|
* Determine if kqueue has events pending.
|
|
*/
|
|
static int
|
|
kqueue_poll(struct file *fp, int events, struct proc *p)
|
|
{
|
|
struct kqueue *kq;
|
|
int revents;
|
|
|
|
kq = (struct kqueue *)fp->f_data;
|
|
revents = 0;
|
|
if (events & (POLLIN | POLLRDNORM)) {
|
|
if (kq->kq_count) {
|
|
revents |= events & (POLLIN | POLLRDNORM);
|
|
} else {
|
|
selrecord(p, &kq->kq_sel);
|
|
}
|
|
}
|
|
return (revents);
|
|
}
|
|
|
|
/*
|
|
* struct fileops stat method for a kqueue descriptor.
|
|
* Returns dummy info, with st_size being number of events pending.
|
|
*/
|
|
static int
|
|
kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
|
|
{
|
|
struct kqueue *kq;
|
|
|
|
kq = (struct kqueue *)fp->f_data;
|
|
memset((void *)st, 0, sizeof(*st));
|
|
st->st_size = kq->kq_count;
|
|
st->st_blksize = sizeof(struct kevent);
|
|
st->st_mode = S_IFIFO;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* struct fileops close method for a kqueue descriptor.
|
|
* Cleans up kqueue.
|
|
*/
|
|
static int
|
|
kqueue_close(struct file *fp, struct proc *p)
|
|
{
|
|
struct kqueue *kq;
|
|
struct filedesc *fdp;
|
|
struct knote **knp, *kn, *kn0;
|
|
int i;
|
|
|
|
kq = (struct kqueue *)fp->f_data;
|
|
fdp = p->p_fd;
|
|
for (i = 0; i < fdp->fd_knlistsize; i++) {
|
|
knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
|
|
kn = *knp;
|
|
while (kn != NULL) {
|
|
kn0 = SLIST_NEXT(kn, kn_link);
|
|
if (kq == kn->kn_kq) {
|
|
kn->kn_fop->f_detach(kn);
|
|
FILE_UNUSE(kn->kn_fp, p);
|
|
pool_put(&knote_pool, kn);
|
|
*knp = kn0;
|
|
} else {
|
|
knp = &SLIST_NEXT(kn, kn_link);
|
|
}
|
|
kn = kn0;
|
|
}
|
|
}
|
|
if (fdp->fd_knhashmask != 0) {
|
|
for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
|
|
knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
|
|
kn = *knp;
|
|
while (kn != NULL) {
|
|
kn0 = SLIST_NEXT(kn, kn_link);
|
|
if (kq == kn->kn_kq) {
|
|
kn->kn_fop->f_detach(kn);
|
|
/* XXX non-fd release of kn->kn_ptr */
|
|
pool_put(&knote_pool, kn);
|
|
*knp = kn0;
|
|
} else {
|
|
knp = &SLIST_NEXT(kn, kn_link);
|
|
}
|
|
kn = kn0;
|
|
}
|
|
}
|
|
}
|
|
pool_put(&kqueue_pool, kq);
|
|
fp->f_data = NULL;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* wakeup a kqueue
|
|
*/
|
|
static void
|
|
kqueue_wakeup(struct kqueue *kq)
|
|
{
|
|
int s;
|
|
|
|
s = splsched();
|
|
simple_lock(&kq->kq_lock);
|
|
if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
|
|
kq->kq_state &= ~KQ_SLEEP;
|
|
wakeup(kq); /* ... wakeup */
|
|
}
|
|
|
|
/* Notify select/poll and kevent. */
|
|
selnotify(&kq->kq_sel, 0);
|
|
simple_unlock(&kq->kq_lock);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* struct fileops kqfilter method for a kqueue descriptor.
|
|
* Event triggered when monitored kqueue changes.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static int
|
|
kqueue_kqfilter(struct file *fp, struct knote *kn)
|
|
{
|
|
struct kqueue *kq;
|
|
|
|
KASSERT(fp == kn->kn_fp);
|
|
kq = (struct kqueue *)kn->kn_fp->f_data;
|
|
if (kn->kn_filter != EVFILT_READ)
|
|
return (1);
|
|
kn->kn_fop = &kqread_filtops;
|
|
SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Walk down a list of knotes, activating them if their event has triggered.
|
|
*/
|
|
void
|
|
knote(struct klist *list, long hint)
|
|
{
|
|
struct knote *kn;
|
|
|
|
SLIST_FOREACH(kn, list, kn_selnext)
|
|
if (kn->kn_fop->f_event(kn, hint))
|
|
KNOTE_ACTIVATE(kn);
|
|
}
|
|
|
|
/*
|
|
* Remove all knotes from a specified klist
|
|
*/
|
|
void
|
|
knote_remove(struct proc *p, struct klist *list)
|
|
{
|
|
struct knote *kn;
|
|
|
|
while ((kn = SLIST_FIRST(list)) != NULL) {
|
|
kn->kn_fop->f_detach(kn);
|
|
knote_drop(kn, p, p->p_fd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove all knotes referencing a specified fd
|
|
*/
|
|
void
|
|
knote_fdclose(struct proc *p, int fd)
|
|
{
|
|
struct filedesc *fdp;
|
|
struct klist *list;
|
|
|
|
fdp = p->p_fd;
|
|
list = &fdp->fd_knlist[fd];
|
|
knote_remove(p, list);
|
|
}
|
|
|
|
/*
|
|
* Attach a new knote to a file descriptor
|
|
*/
|
|
static void
|
|
knote_attach(struct knote *kn, struct filedesc *fdp)
|
|
{
|
|
struct klist *list;
|
|
int size;
|
|
|
|
if (! kn->kn_fop->f_isfd) {
|
|
/* if knote is not on an fd, store on internal hash table */
|
|
if (fdp->fd_knhashmask == 0)
|
|
fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
|
|
M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
|
|
list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* otherwise, knote is on an fd.
|
|
* knotes are stored in fd_knlist indexed by kn->kn_id.
|
|
*/
|
|
if (fdp->fd_knlistsize <= kn->kn_id) {
|
|
/* expand list, it's too small */
|
|
size = fdp->fd_knlistsize;
|
|
while (size <= kn->kn_id) {
|
|
/* grow in KQ_EXTENT chunks */
|
|
size += KQ_EXTENT;
|
|
}
|
|
list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
|
|
if (fdp->fd_knlist) {
|
|
/* copy existing knlist */
|
|
memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
|
|
fdp->fd_knlistsize * sizeof(struct klist *));
|
|
}
|
|
/*
|
|
* Zero new memory. Stylistically, SLIST_INIT() should be
|
|
* used here, but that does same thing as the memset() anyway.
|
|
*/
|
|
memset(&list[fdp->fd_knlistsize], 0,
|
|
(size - fdp->fd_knlistsize) * sizeof(struct klist *));
|
|
|
|
/* switch to new knlist */
|
|
if (fdp->fd_knlist != NULL)
|
|
free(fdp->fd_knlist, M_KEVENT);
|
|
fdp->fd_knlistsize = size;
|
|
fdp->fd_knlist = list;
|
|
}
|
|
|
|
/* get list head for this fd */
|
|
list = &fdp->fd_knlist[kn->kn_id];
|
|
done:
|
|
/* add new knote */
|
|
SLIST_INSERT_HEAD(list, kn, kn_link);
|
|
kn->kn_status = 0;
|
|
}
|
|
|
|
/*
|
|
* Drop knote.
|
|
* Should be called at spl == 0, since we don't want to hold spl
|
|
* while calling FILE_UNUSE and free.
|
|
*/
|
|
static void
|
|
knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp)
|
|
{
|
|
struct klist *list;
|
|
|
|
if (kn->kn_fop->f_isfd)
|
|
list = &fdp->fd_knlist[kn->kn_id];
|
|
else
|
|
list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
|
|
|
|
SLIST_REMOVE(list, kn, knote, kn_link);
|
|
if (kn->kn_status & KN_QUEUED)
|
|
knote_dequeue(kn);
|
|
if (kn->kn_fop->f_isfd)
|
|
FILE_UNUSE(kn->kn_fp, p);
|
|
pool_put(&knote_pool, kn);
|
|
}
|
|
|
|
|
|
/*
|
|
* Queue new event for knote.
|
|
*/
|
|
static void
|
|
knote_enqueue(struct knote *kn)
|
|
{
|
|
struct kqueue *kq;
|
|
int s;
|
|
|
|
kq = kn->kn_kq;
|
|
KASSERT((kn->kn_status & KN_QUEUED) == 0);
|
|
|
|
s = splsched();
|
|
simple_lock(&kq->kq_lock);
|
|
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
|
|
kn->kn_status |= KN_QUEUED;
|
|
kq->kq_count++;
|
|
simple_unlock(&kq->kq_lock);
|
|
splx(s);
|
|
kqueue_wakeup(kq);
|
|
}
|
|
|
|
/*
|
|
* Dequeue event for knote.
|
|
*/
|
|
static void
|
|
knote_dequeue(struct knote *kn)
|
|
{
|
|
struct kqueue *kq;
|
|
int s;
|
|
|
|
KASSERT(kn->kn_status & KN_QUEUED);
|
|
kq = kn->kn_kq;
|
|
|
|
s = splsched();
|
|
simple_lock(&kq->kq_lock);
|
|
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
|
|
kn->kn_status &= ~KN_QUEUED;
|
|
kq->kq_count--;
|
|
simple_unlock(&kq->kq_lock);
|
|
splx(s);
|
|
}
|