NetBSD/sys/arch/sgimips/mace/pci_mace.c
rumble aa71bc7886 Generalise pci/pci_machdep.c further and move all mace-specific code into
mace/pci_mace.c in preparation for pci devices on the gio(4) bus.
2006-08-30 23:35:10 +00:00

628 lines
17 KiB
C

/* $NetBSD: pci_mace.c,v 1.8 2006/08/30 23:35:10 rumble Exp $ */
/*
* Copyright (c) 2001,2003 Christopher Sekiya
* Copyright (c) 2000 Soren S. Jorvang
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the
* NetBSD Project. See http://www.NetBSD.org/ for
* information about NetBSD.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pci_mace.c,v 1.8 2006/08/30 23:35:10 rumble Exp $");
#include "opt_pci.h"
#include "pci.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <machine/cpu.h>
#include <machine/locore.h>
#include <machine/autoconf.h>
#include <machine/vmparam.h>
#include <machine/bus.h>
#include <machine/machtype.h>
#include <mips/cache.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>
#ifdef PCI_NETBSD_CONFIGURE
#include <sys/extent.h>
#include <sys/malloc.h>
#include <dev/pci/pciconf.h>
#endif
#include <sgimips/mace/macereg.h>
#include <sgimips/mace/macevar.h>
#include <sgimips/mace/pcireg_mace.h>
#ifndef PCI_NETBSD_CONFIGURE
#include <sgimips/pci/pci_addr_fixup.h>
#define PCIBIOS_PRINTV(arg) \
do { \
printf arg; \
} while (0)
#define PCIBIOS_PRINTVN(n, arg) \
do { \
printf arg; \
} while (0)
#define PAGE_ALIGN(x) (((x) + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1))
#define MEG_ALIGN(x) (((x) + 0x100000 - 1) & ~(0x100000 - 1))
#endif
struct macepci_softc {
struct device sc_dev;
struct sgimips_pci_chipset sc_pc;
};
static int macepci_match(struct device *, struct cfdata *, void *);
static void macepci_attach(struct device *, struct device *, void *);
static int macepci_bus_maxdevs(pci_chipset_tag_t, int);
static pcireg_t macepci_conf_read(pci_chipset_tag_t, pcitag_t, int);
static void macepci_conf_write(pci_chipset_tag_t, pcitag_t, int, pcireg_t);
static int macepci_intr_map(struct pci_attach_args *, pci_intr_handle_t *);
static const char *
macepci_intr_string(pci_chipset_tag_t, pci_intr_handle_t);
static int macepci_intr(void *);
#ifndef PCI_NETBSD_CONFIGURE
struct pciaddr pciaddr;
int pciaddr_do_resource_allocate(pci_chipset_tag_t pc, pcitag_t tag, int mapreg, void *ctx, int type, bus_addr_t *addr, bus_size_t size);
unsigned int ioaddr_base = 0x1000;
unsigned int memaddr_base = 0x80100000;
#endif
CFATTACH_DECL(macepci, sizeof(struct macepci_softc),
macepci_match, macepci_attach, NULL, NULL);
static int
macepci_match(struct device *parent, struct cfdata *match, void *aux)
{
return (1);
}
static void
macepci_attach(struct device *parent, struct device *self, void *aux)
{
struct macepci_softc *sc = (struct macepci_softc *)self;
pci_chipset_tag_t pc = &sc->sc_pc;
struct mace_attach_args *maa = aux;
struct pcibus_attach_args pba;
u_int32_t control;
int rev;
#ifndef PCI_NETBSD_CONFIGURE
pcitag_t devtag;
int device;
#endif
if (bus_space_subregion(maa->maa_st, maa->maa_sh,
maa->maa_offset, 0, &pc->ioh) )
panic("macepci_attach: couldn't map");
pc->iot = maa->maa_st;
rev = bus_space_read_4(pc->iot, pc->ioh, MACEPCI_REVISION);
printf(": rev %d\n", rev);
pc->pc_bus_maxdevs = macepci_bus_maxdevs;
pc->pc_conf_read = macepci_conf_read;
pc->pc_conf_write = macepci_conf_write;
pc->pc_intr_map = macepci_intr_map;
pc->pc_intr_string = macepci_intr_string;
pc->intr_establish = mace_intr_establish;
pc->intr_disestablish = mace_intr_disestablish;
bus_space_write_4(pc->iot, pc->ioh, MACE_PCI_ERROR_ADDR, 0);
bus_space_write_4(pc->iot, pc->ioh, MACE_PCI_ERROR_FLAGS, 0);
/* Turn on PCI error interrupts */
bus_space_write_4(pc->iot, pc->ioh, MACE_PCI_CONTROL,
MACE_PCI_CONTROL_SERR_ENA |
MACE_PCI_CONTROL_PARITY_ERR |
MACE_PCI_CONTROL_PARK_LIU |
MACE_PCI_CONTROL_OVERRUN_INT |
MACE_PCI_CONTROL_PARITY_INT |
MACE_PCI_CONTROL_SERR_INT |
MACE_PCI_CONTROL_IT_INT |
MACE_PCI_CONTROL_RE_INT |
MACE_PCI_CONTROL_DPED_INT |
MACE_PCI_CONTROL_TAR_INT |
MACE_PCI_CONTROL_MAR_INT);
#ifndef PCI_NETBSD_CONFIGURE
/* Must fix up all PCI devices, ahc_pci expects proper i/o mapping */
for (device = 1; device < 4; device++) {
const struct pci_quirkdata *qd;
int function, nfuncs;
pcireg_t bhlcr, id;
devtag = pci_make_tag(pc, 0, device, 0);
id = pci_conf_read(pc, devtag, PCI_ID_REG);
/* Invalid vendor ID value? */
if (PCI_VENDOR(id) == PCI_VENDOR_INVALID)
continue;
/* XXX Not invalid, but we've done this ~forever. */
if (PCI_VENDOR(id) == 0)
continue;
qd = pci_lookup_quirkdata(PCI_VENDOR(id), PCI_PRODUCT(id));
bhlcr = pci_conf_read(pc, devtag, PCI_BHLC_REG);
if (PCI_HDRTYPE_MULTIFN(bhlcr) ||
(qd != NULL &&
(qd->quirks & PCI_QUIRK_MULTIFUNCTION) != 0))
nfuncs = 8;
else
nfuncs = 1;
for (function = 0; function < nfuncs; function++) {
devtag = pci_make_tag(pc, 0, device, function);
id = pci_conf_read(pc, devtag, PCI_ID_REG);
/* Invalid vendor ID value? */
if (PCI_VENDOR(id) == PCI_VENDOR_INVALID)
continue;
/* Not invalid, but we've done this ~forever */
if (PCI_VENDOR(id) == 0)
continue;
pciaddr_resource_manage(pc, devtag, NULL, NULL);
}
}
#endif
/*
* Enable all MACE PCI interrupts. They will be masked by
* the CRIME code.
*/
control = bus_space_read_4(pc->iot, pc->ioh, MACEPCI_CONTROL);
control |= CONTROL_INT_MASK;
bus_space_write_4(pc->iot, pc->ioh, MACEPCI_CONTROL, control);
#if NPCI > 0
#ifdef PCI_NETBSD_CONFIGURE
pc->pc_ioext = extent_create("macepciio", 0x00001000, 0x01ffffff,
M_DEVBUF, NULL, 0, EX_NOWAIT);
pc->pc_memext = extent_create("macepcimem", 0x80100000, 0x81ffffff,
M_DEVBUF, NULL, 0, EX_NOWAIT);
pci_configure_bus(pc, pc->pc_ioext, pc->pc_memext, NULL, 0,
mips_dcache_align);
#endif
memset(&pba, 0, sizeof pba);
/*XXX*/ pba.pba_iot = SGIMIPS_BUS_SPACE_IO;
/*XXX*/ pba.pba_memt = SGIMIPS_BUS_SPACE_MEM;
pba.pba_dmat = &pci_bus_dma_tag;
pba.pba_dmat64 = NULL;
pba.pba_bus = 0;
pba.pba_bridgetag = NULL;
pba.pba_flags = PCI_FLAGS_IO_ENABLED | PCI_FLAGS_MEM_ENABLED |
PCI_FLAGS_MRL_OKAY | PCI_FLAGS_MRM_OKAY | PCI_FLAGS_MWI_OKAY;
pba.pba_pc = pc;
#ifdef MACEPCI_IO_WAS_BUGGY
if (rev == 0)
pba.pba_flags &= ~PCI_FLAGS_IO_ENABLED; /* Buggy? */
#endif
cpu_intr_establish(maa->maa_intr, IPL_NONE, macepci_intr, sc);
config_found_ia(self, "pcibus", &pba, pcibusprint);
#endif
}
int
macepci_bus_maxdevs(pci_chipset_tag_t pc, int busno)
{
if (busno == 0)
return 5; /* 2 on-board SCSI chips, slots 0, 1 and 2 */
else
return 0; /* XXX */
}
pcireg_t
macepci_conf_read(pci_chipset_tag_t pc, pcitag_t tag, int reg)
{
pcireg_t data;
bus_space_write_4(pc->iot, pc->ioh, MACE_PCI_CONFIG_ADDR, (tag | reg));
data = bus_space_read_4(pc->iot, pc->ioh, MACE_PCI_CONFIG_DATA);
bus_space_write_4(pc->iot, pc->ioh, MACE_PCI_CONFIG_ADDR, 0);
return data;
}
void
macepci_conf_write(pci_chipset_tag_t pc, pcitag_t tag, int reg, pcireg_t data)
{
/* XXX O2 soren */
if (tag == 0)
return;
bus_space_write_4(pc->iot, pc->ioh, MACE_PCI_CONFIG_ADDR, (tag | reg));
bus_space_write_4(pc->iot, pc->ioh, MACE_PCI_CONFIG_DATA, data);
bus_space_write_4(pc->iot, pc->ioh, MACE_PCI_CONFIG_ADDR, 0);
}
int
macepci_intr_map(struct pci_attach_args *pa, pci_intr_handle_t *ihp)
{
pci_chipset_tag_t pc = pa->pa_pc;
pcitag_t intrtag = pa->pa_intrtag;
int pin = pa->pa_intrpin;
int bus, dev, func, start;
pci_decompose_tag(pc, intrtag, &bus, &dev, &func);
if (dev < 3 && pin != PCI_INTERRUPT_PIN_A)
panic("SCSI0 and SCSI1 must be hardwired!");
switch (pin) {
default:
case PCI_INTERRUPT_PIN_NONE:
return -1;
case PCI_INTERRUPT_PIN_A:
/*
* Each of SCSI{0,1}, & slots 0 - 2 has dedicated interrupt
* for pin A?
*/
*ihp = dev + 7;
return 0;
case PCI_INTERRUPT_PIN_B:
start = 0;
break;
case PCI_INTERRUPT_PIN_C:
start = 1;
break;
case PCI_INTERRUPT_PIN_D:
start = 2;
break;
}
/* Pins B,C,D are mapped to PCI_SHARED0 - PCI_SHARED2 interrupts */
*ihp = 13 /* PCI_SHARED0 */ + (start + dev - 3) % 3;
return 0;
}
const char *
macepci_intr_string(pci_chipset_tag_t pc, pci_intr_handle_t ih)
{
static char irqstr[32];
sprintf(irqstr, "crime interrupt %d", ih);
return irqstr;
}
/*
* Handle PCI error interrupts.
*/
int
macepci_intr(void *arg)
{
struct macepci_softc *sc = (struct macepci_softc *)arg;
pci_chipset_tag_t pc = &sc->sc_pc;
u_int32_t error, address;
error = bus_space_read_4(pc->iot, pc->ioh, MACE_PCI_ERROR_FLAGS);
address = bus_space_read_4(pc->iot, pc->ioh, MACE_PCI_ERROR_ADDR);
while (error & 0xffc00000) {
if (error & MACE_PERR_MASTER_ABORT) {
/*
* this seems to be a more-or-less normal error
* condition (e.g., "pcictl pci0 list" generates
* a _lot_ of these errors, so no message for now
* while I figure out if I missed a trick somewhere.
*/
error &= ~MACE_PERR_MASTER_ABORT;
bus_space_write_4(pc->iot, pc->ioh,
MACE_PCI_ERROR_FLAGS, error);
}
if (error & MACE_PERR_TARGET_ABORT) {
printf("mace: target abort at %x\n", address);
error &= ~MACE_PERR_TARGET_ABORT;
bus_space_write_4(pc->iot, pc->ioh,
MACE_PCI_ERROR_FLAGS, error);
}
if (error & MACE_PERR_DATA_PARITY_ERR) {
printf("mace: parity error at %x\n", address);
error &= ~MACE_PERR_DATA_PARITY_ERR;
bus_space_write_4(pc->iot, pc->ioh,
MACE_PCI_ERROR_FLAGS, error);
}
if (error & MACE_PERR_RETRY_ERR) {
printf("mace: retry error at %x\n", address);
error &= ~MACE_PERR_RETRY_ERR;
bus_space_write_4(pc->iot, pc->ioh,
MACE_PCI_ERROR_FLAGS, error);
}
if (error & MACE_PERR_ILLEGAL_CMD) {
printf("mace: illegal command at %x\n", address);
error &= ~MACE_PERR_ILLEGAL_CMD;
bus_space_write_4(pc->iot, pc->ioh,
MACE_PCI_ERROR_FLAGS, error);
}
if (error & MACE_PERR_SYSTEM_ERR) {
printf("mace: system error at %x\n", address);
error &= ~MACE_PERR_SYSTEM_ERR;
bus_space_write_4(pc->iot, pc->ioh,
MACE_PCI_ERROR_FLAGS, error);
}
if (error & MACE_PERR_INTERRUPT_TEST) {
printf("mace: interrupt test at %x\n", address);
error &= ~MACE_PERR_INTERRUPT_TEST;
bus_space_write_4(pc->iot, pc->ioh,
MACE_PCI_ERROR_FLAGS, error);
}
if (error & MACE_PERR_PARITY_ERR) {
printf("mace: parity error at %x\n", address);
error &= ~MACE_PERR_PARITY_ERR;
bus_space_write_4(pc->iot, pc->ioh,
MACE_PCI_ERROR_FLAGS, error);
}
if (error & MACE_PERR_RSVD) {
printf("mace: reserved condition at %x\n", address);
error &= ~MACE_PERR_RSVD;
bus_space_write_4(pc->iot, pc->ioh,
MACE_PCI_ERROR_FLAGS, error);
}
if (error & MACE_PERR_OVERRUN) {
printf("mace: overrun at %x\n", address);
error &= ~MACE_PERR_OVERRUN;
bus_space_write_4(pc->iot, pc->ioh,
MACE_PCI_ERROR_FLAGS, error);
}
}
return 0;
}
#ifndef PCI_NETBSD_CONFIGURE
/* PCI Address fixup routines */
void
pciaddr_resource_manage(pci_chipset_tag_t pc, pcitag_t tag,
pciaddr_resource_manage_func_t func, void *ctx)
{
pcireg_t val, mask;
bus_addr_t addr;
bus_size_t size;
int error, mapreg, type, reg_start, reg_end, width;
val = macepci_conf_read(pc, tag, PCI_BHLC_REG);
switch (PCI_HDRTYPE_TYPE(val)) {
default:
printf("WARNING: unknown PCI device header.");
pciaddr.nbogus++;
return;
case 0:
reg_start = PCI_MAPREG_START;
reg_end = PCI_MAPREG_END;
break;
case 1: /* PCI-PCI bridge */
reg_start = PCI_MAPREG_START;
reg_end = PCI_MAPREG_PPB_END;
break;
case 2: /* PCI-CardBus bridge */
reg_start = PCI_MAPREG_START;
reg_end = PCI_MAPREG_PCB_END;
break;
}
error = 0;
for (mapreg = reg_start; mapreg < reg_end; mapreg += width) {
/* inquire PCI device bus space requirement */
val = macepci_conf_read(pc, tag, mapreg);
macepci_conf_write(pc, tag, mapreg, ~0);
mask = macepci_conf_read(pc, tag, mapreg);
macepci_conf_write(pc, tag, mapreg, val);
type = PCI_MAPREG_TYPE(val);
width = 4;
if (type == PCI_MAPREG_TYPE_MEM) {
size = PCI_MAPREG_MEM_SIZE(mask);
/*
* XXXrkb: for MEM64 BARs, to be totally kosher
* about the requested size, need to read mask
* from top 32bits of BAR and stir that into the
* size calculation, like so:
*
* case PCI_MAPREG_MEM_TYPE_64BIT:
* bar64 = pci_conf_read(pb->pc, tag, br + 4);
* pci_conf_write(pb->pc, tag, br + 4, 0xffffffff);
* mask64 = pci_conf_read(pb->pc, tag, br + 4);
* pci_conf_write(pb->pc, tag, br + 4, bar64);
* size = (u_int64_t) PCI_MAPREG_MEM64_SIZE(
* (((u_int64_t) mask64) << 32) | mask);
* width = 8;
*
* Fortunately, anything with all-zeros mask in the
* lower 32-bits will have size no less than 1 << 32,
* which we're not prepared to deal with, so I don't
* feel bad punting on it...
*/
if (PCI_MAPREG_MEM_TYPE(val) ==
PCI_MAPREG_MEM_TYPE_64BIT) {
/*
* XXX We could examine the upper 32 bits
* XXX of the BAR here, but we are totally
* XXX unprepared to handle a non-zero value,
* XXX either here or anywhere else in the
* XXX sgimips code (not sure about MI code).
* XXX
* XXX So just arrange to skip the top 32
* XXX bits of the BAR and zero then out
* XXX if the BAR is in use.
*/
width = 8;
if (size != 0)
macepci_conf_write(pc, tag,
mapreg + 4, 0);
}
} else {
/*
* Upper 16 bits must be one. Devices may hardwire
* them to zero, though, per PCI 2.2, 6.2.5.1, p 203.
*/
mask |= 0xffff0000;
size = PCI_MAPREG_IO_SIZE(mask);
}
if (size == 0) /* unused register */
continue;
addr = pciaddr_ioaddr(val);
/* reservation/allocation phase */
error += pciaddr_do_resource_allocate(pc, tag, mapreg,
ctx, type, &addr, size);
#if 0
PCIBIOS_PRINTV(("\n\t%02xh %s 0x%08x 0x%08x",
mapreg, type ? "port" : "mem ",
(unsigned int)addr, (unsigned int)size));
#endif
}
/* enable/disable PCI device */
val = macepci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
if (error == 0)
val |= (PCI_COMMAND_IO_ENABLE |
PCI_COMMAND_MEM_ENABLE |
PCI_COMMAND_MASTER_ENABLE |
PCI_COMMAND_SPECIAL_ENABLE |
PCI_COMMAND_INVALIDATE_ENABLE |
PCI_COMMAND_PARITY_ENABLE);
else
val &= ~(PCI_COMMAND_IO_ENABLE |
PCI_COMMAND_MEM_ENABLE |
PCI_COMMAND_MASTER_ENABLE);
macepci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, val);
if (error)
pciaddr.nbogus++;
}
bus_addr_t
pciaddr_ioaddr(u_int32_t val)
{
return ((PCI_MAPREG_TYPE(val) == PCI_MAPREG_TYPE_MEM) ?
PCI_MAPREG_MEM_ADDR(val) : PCI_MAPREG_IO_ADDR(val));
}
int
pciaddr_do_resource_allocate(pci_chipset_tag_t pc, pcitag_t tag, int mapreg,
void *ctx, int type, bus_addr_t *addr, bus_size_t size)
{
switch (type) {
case PCI_MAPREG_TYPE_IO:
*addr = ioaddr_base;
ioaddr_base += PAGE_ALIGN(size);
break;
case PCI_MAPREG_TYPE_MEM:
*addr = memaddr_base;
memaddr_base += MEG_ALIGN(size);
break;
default:
PCIBIOS_PRINTV(("attempt to remap unknown region (addr 0x%lx, "
"size 0x%lx, type %d)\n", *addr, size, type));
return 0;
}
/* write new address to PCI device configuration header */
macepci_conf_write(pc, tag, mapreg, *addr);
/* check */
#ifdef PCIBIOSVERBOSE
if (!pcibiosverbose)
#endif
{
printf("pci_addr_fixup: ");
pciaddr_print_devid(pc, tag);
}
if (pciaddr_ioaddr(macepci_conf_read(pc, tag, mapreg)) != *addr) {
macepci_conf_write(pc, tag, mapreg, 0); /* clear */
printf("fixup failed. (new address=%#x)\n", (unsigned)*addr);
return (1);
}
#ifdef PCIBIOSVERBOSE
if (!pcibiosverbose)
#endif
printf("new address 0x%08x (size 0x%x)\n", (unsigned)*addr,
(unsigned)size);
return (0);
}
void
pciaddr_print_devid(pci_chipset_tag_t pc, pcitag_t tag)
{
int bus, device, function;
pcireg_t id;
id = macepci_conf_read(pc, tag, PCI_ID_REG);
pci_decompose_tag(pc, tag, &bus, &device, &function);
printf("%03d:%02d:%d 0x%04x 0x%04x ", bus, device, function,
PCI_VENDOR(id), PCI_PRODUCT(id));
}
#endif