NetBSD/sys/dev/pci/if_ste.c

1660 lines
41 KiB
C

/* $NetBSD: if_ste.c,v 1.44 2012/10/27 17:18:33 chs Exp $ */
/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the Sundance Tech. ST-201 10/100
* Ethernet controller.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.44 2012/10/27 17:18:33 chs Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/bpf.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_stereg.h>
/*
* Transmit descriptor list size.
*/
#define STE_NTXDESC 256
#define STE_NTXDESC_MASK (STE_NTXDESC - 1)
#define STE_NEXTTX(x) (((x) + 1) & STE_NTXDESC_MASK)
/*
* Receive descriptor list size.
*/
#define STE_NRXDESC 128
#define STE_NRXDESC_MASK (STE_NRXDESC - 1)
#define STE_NEXTRX(x) (((x) + 1) & STE_NRXDESC_MASK)
/*
* Control structures are DMA'd to the ST-201 chip. We allocate them in
* a single clump that maps to a single DMA segment to make several things
* easier.
*/
struct ste_control_data {
/*
* The transmit descriptors.
*/
struct ste_tfd scd_txdescs[STE_NTXDESC];
/*
* The receive descriptors.
*/
struct ste_rfd scd_rxdescs[STE_NRXDESC];
};
#define STE_CDOFF(x) offsetof(struct ste_control_data, x)
#define STE_CDTXOFF(x) STE_CDOFF(scd_txdescs[(x)])
#define STE_CDRXOFF(x) STE_CDOFF(scd_rxdescs[(x)])
/*
* Software state for transmit and receive jobs.
*/
struct ste_descsoft {
struct mbuf *ds_mbuf; /* head of our mbuf chain */
bus_dmamap_t ds_dmamap; /* our DMA map */
};
/*
* Software state per device.
*/
struct ste_softc {
device_t sc_dev; /* generic device information */
bus_space_tag_t sc_st; /* bus space tag */
bus_space_handle_t sc_sh; /* bus space handle */
bus_dma_tag_t sc_dmat; /* bus DMA tag */
struct ethercom sc_ethercom; /* ethernet common data */
void *sc_ih; /* interrupt cookie */
struct mii_data sc_mii; /* MII/media information */
callout_t sc_tick_ch; /* tick callout */
bus_dmamap_t sc_cddmamap; /* control data DMA map */
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
/*
* Software state for transmit and receive descriptors.
*/
struct ste_descsoft sc_txsoft[STE_NTXDESC];
struct ste_descsoft sc_rxsoft[STE_NRXDESC];
/*
* Control data structures.
*/
struct ste_control_data *sc_control_data;
#define sc_txdescs sc_control_data->scd_txdescs
#define sc_rxdescs sc_control_data->scd_rxdescs
int sc_txpending; /* number of Tx requests pending */
int sc_txdirty; /* first dirty Tx descriptor */
int sc_txlast; /* last used Tx descriptor */
int sc_rxptr; /* next ready Rx descriptor/descsoft */
int sc_txthresh; /* Tx threshold */
uint32_t sc_DMACtrl; /* prototype DMACtrl register */
uint16_t sc_IntEnable; /* prototype IntEnable register */
uint16_t sc_MacCtrl0; /* prototype MacCtrl0 register */
uint8_t sc_ReceiveMode; /* prototype ReceiveMode register */
};
#define STE_CDTXADDR(sc, x) ((sc)->sc_cddma + STE_CDTXOFF((x)))
#define STE_CDRXADDR(sc, x) ((sc)->sc_cddma + STE_CDRXOFF((x)))
#define STE_CDTXSYNC(sc, x, ops) \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
#define STE_CDRXSYNC(sc, x, ops) \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
#define STE_INIT_RXDESC(sc, x) \
do { \
struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
struct mbuf *__m = __ds->ds_mbuf; \
\
/* \
* Note: We scoot the packet forward 2 bytes in the buffer \
* so that the payload after the Ethernet header is aligned \
* to a 4-byte boundary. \
*/ \
__m->m_data = __m->m_ext.ext_buf + 2; \
__rfd->rfd_frag.frag_addr = \
htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2); \
__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST); \
__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x)))); \
__rfd->rfd_status = 0; \
STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
} while (/*CONSTCOND*/0)
#define STE_TIMEOUT 1000
static void ste_start(struct ifnet *);
static void ste_watchdog(struct ifnet *);
static int ste_ioctl(struct ifnet *, u_long, void *);
static int ste_init(struct ifnet *);
static void ste_stop(struct ifnet *, int);
static bool ste_shutdown(device_t, int);
static void ste_reset(struct ste_softc *, u_int32_t);
static void ste_setthresh(struct ste_softc *);
static void ste_txrestart(struct ste_softc *, u_int8_t);
static void ste_rxdrain(struct ste_softc *);
static int ste_add_rxbuf(struct ste_softc *, int);
static void ste_read_eeprom(struct ste_softc *, int, uint16_t *);
static void ste_tick(void *);
static void ste_stats_update(struct ste_softc *);
static void ste_set_filter(struct ste_softc *);
static int ste_intr(void *);
static void ste_txintr(struct ste_softc *);
static void ste_rxintr(struct ste_softc *);
static int ste_mii_readreg(device_t, int, int);
static void ste_mii_writereg(device_t, int, int, int);
static void ste_mii_statchg(struct ifnet *);
static int ste_match(device_t, cfdata_t, void *);
static void ste_attach(device_t, device_t, void *);
int ste_copy_small = 0;
CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
ste_match, ste_attach, NULL, NULL);
static uint32_t ste_mii_bitbang_read(device_t);
static void ste_mii_bitbang_write(device_t, uint32_t);
static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
ste_mii_bitbang_read,
ste_mii_bitbang_write,
{
PC_MgmtData, /* MII_BIT_MDO */
PC_MgmtData, /* MII_BIT_MDI */
PC_MgmtClk, /* MII_BIT_MDC */
PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
/*
* Devices supported by this driver.
*/
static const struct ste_product {
pci_vendor_id_t ste_vendor;
pci_product_id_t ste_product;
const char *ste_name;
} ste_products[] = {
{ PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_IP100A,
"IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter" },
{ PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST201,
"Sundance ST-201 10/100 Ethernet" },
{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL1002,
"D-Link DL-1002 10/100 Ethernet" },
{ 0, 0,
NULL },
};
static const struct ste_product *
ste_lookup(const struct pci_attach_args *pa)
{
const struct ste_product *sp;
for (sp = ste_products; sp->ste_name != NULL; sp++) {
if (PCI_VENDOR(pa->pa_id) == sp->ste_vendor &&
PCI_PRODUCT(pa->pa_id) == sp->ste_product)
return (sp);
}
return (NULL);
}
static int
ste_match(device_t parent, cfdata_t cf, void *aux)
{
struct pci_attach_args *pa = aux;
if (ste_lookup(pa) != NULL)
return (1);
return (0);
}
static void
ste_attach(device_t parent, device_t self, void *aux)
{
struct ste_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_space_tag_t iot, memt;
bus_space_handle_t ioh, memh;
bus_dma_segment_t seg;
int ioh_valid, memh_valid;
int i, rseg, error;
const struct ste_product *sp;
uint8_t enaddr[ETHER_ADDR_LEN];
uint16_t myea[ETHER_ADDR_LEN / 2];
sc->sc_dev = self;
callout_init(&sc->sc_tick_ch, 0);
sp = ste_lookup(pa);
if (sp == NULL) {
printf("\n");
panic("ste_attach: impossible");
}
printf(": %s\n", sp->ste_name);
/*
* Map the device.
*/
ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
PCI_MAPREG_TYPE_IO, 0,
&iot, &ioh, NULL, NULL) == 0);
memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
&memt, &memh, NULL, NULL) == 0);
if (memh_valid) {
sc->sc_st = memt;
sc->sc_sh = memh;
} else if (ioh_valid) {
sc->sc_st = iot;
sc->sc_sh = ioh;
} else {
aprint_error_dev(self, "unable to map device registers\n");
return;
}
sc->sc_dmat = pa->pa_dmat;
/* Enable bus mastering. */
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
PCI_COMMAND_MASTER_ENABLE);
/* power up chip */
if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
NULL)) && error != EOPNOTSUPP) {
aprint_error_dev(sc->sc_dev, "cannot activate %d\n",
error);
return;
}
/*
* Map and establish our interrupt.
*/
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
0)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct ste_control_data), 1,
sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
"error = %d\n", error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct ste_control_data), NULL,
0)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
error);
goto fail_3;
}
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < STE_NTXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
STE_NTXFRAGS, MCLBYTES, 0, 0,
&sc->sc_txsoft[i].ds_dmamap)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
"error = %d\n", i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < STE_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
"error = %d\n", i, error);
goto fail_5;
}
sc->sc_rxsoft[i].ds_mbuf = NULL;
}
/*
* Reset the chip to a known state.
*/
ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
/*
* Read the Ethernet address from the EEPROM.
*/
for (i = 0; i < 3; i++) {
ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
myea[i] = le16toh(myea[i]);
}
memcpy(enaddr, myea, sizeof(enaddr));
printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
ether_sprintf(enaddr));
/*
* Initialize our media structures and probe the MII.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = ste_mii_readreg;
sc->sc_mii.mii_writereg = ste_mii_writereg;
sc->sc_mii.mii_statchg = ste_mii_statchg;
sc->sc_ethercom.ec_mii = &sc->sc_mii;
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
ether_mediastatus);
mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
ifp = &sc->sc_ethercom.ec_if;
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ste_ioctl;
ifp->if_start = ste_start;
ifp->if_watchdog = ste_watchdog;
ifp->if_init = ste_init;
ifp->if_stop = ste_stop;
IFQ_SET_READY(&ifp->if_snd);
/*
* Default the transmit threshold to 128 bytes.
*/
sc->sc_txthresh = 128;
/*
* Disable MWI if the PCI layer tells us to.
*/
sc->sc_DMACtrl = 0;
if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
sc->sc_DMACtrl |= DC_MWIDisable;
/*
* We can support 802.1Q VLAN-sized frames.
*/
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/*
* Attach the interface.
*/
if_attach(ifp);
ether_ifattach(ifp, enaddr);
/*
* Make sure the interface is shutdown during reboot.
*/
if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_5:
for (i = 0; i < STE_NRXDESC; i++) {
if (sc->sc_rxsoft[i].ds_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxsoft[i].ds_dmamap);
}
fail_4:
for (i = 0; i < STE_NTXDESC; i++) {
if (sc->sc_txsoft[i].ds_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txsoft[i].ds_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
sizeof(struct ste_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_0:
return;
}
/*
* ste_shutdown:
*
* Make sure the interface is stopped at reboot time.
*/
static bool
ste_shutdown(device_t self, int howto)
{
struct ste_softc *sc;
sc = device_private(self);
ste_stop(&sc->sc_ethercom.ec_if, 1);
return true;
}
static void
ste_dmahalt_wait(struct ste_softc *sc)
{
int i;
for (i = 0; i < STE_TIMEOUT; i++) {
delay(2);
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
DC_DMAHaltBusy) == 0)
break;
}
if (i == STE_TIMEOUT)
printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
}
/*
* ste_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
static void
ste_start(struct ifnet *ifp)
{
struct ste_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
struct ste_descsoft *ds;
struct ste_tfd *tfd;
bus_dmamap_t dmamap;
int error, olasttx, nexttx, opending, seg, totlen;
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous number of pending transmissions
* and the current last descriptor in the list.
*/
opending = sc->sc_txpending;
olasttx = sc->sc_txlast;
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
while (sc->sc_txpending < STE_NTXDESC) {
/*
* Grab a packet off the queue.
*/
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
m = NULL;
/*
* Get the last and next available transmit descriptor.
*/
nexttx = STE_NEXTTX(sc->sc_txlast);
tfd = &sc->sc_txdescs[nexttx];
ds = &sc->sc_txsoft[nexttx];
dmamap = ds->ds_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the alloted number of segments, or we
* were short on resources. In this case, we'll copy
* and try again.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Tx mbuf\n",
device_xname(sc->sc_dev));
break;
}
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Tx "
"cluster\n", device_xname(sc->sc_dev));
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
printf("%s: unable to load Tx buffer, "
"error = %d\n", device_xname(sc->sc_dev), error);
break;
}
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m != NULL) {
m_freem(m0);
m0 = m;
}
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* Initialize the fragment list. */
for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
tfd->tfd_frags[seg].frag_addr =
htole32(dmamap->dm_segs[seg].ds_addr);
tfd->tfd_frags[seg].frag_len =
htole32(dmamap->dm_segs[seg].ds_len);
totlen += dmamap->dm_segs[seg].ds_len;
}
tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
/* Initialize the descriptor. */
tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
/* Sync the descriptor. */
STE_CDTXSYNC(sc, nexttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later,
* and remember what txdirty will be once the packet is
* done.
*/
ds->ds_mbuf = m0;
/* Advance the tx pointer. */
sc->sc_txpending++;
sc->sc_txlast = nexttx;
/*
* Pass the packet to any BPF listeners.
*/
bpf_mtap(ifp, m0);
}
if (sc->sc_txpending == STE_NTXDESC) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txpending != opending) {
/*
* We enqueued packets. If the transmitter was idle,
* reset the txdirty pointer.
*/
if (opending == 0)
sc->sc_txdirty = STE_NEXTTX(olasttx);
/*
* Cause a descriptor interrupt to happen on the
* last packet we enqueued, and also cause the
* DMA engine to wait after is has finished processing
* it.
*/
sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
sc->sc_txdescs[sc->sc_txlast].tfd_control |=
htole32(TFD_TxDMAIndicate);
STE_CDTXSYNC(sc, sc->sc_txlast,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Link up the new chain of descriptors to the
* last.
*/
sc->sc_txdescs[olasttx].tfd_next =
htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
STE_CDTXSYNC(sc, olasttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Kick the transmit DMA logic. Note that since we're
* using auto-polling, reading the Tx desc pointer will
* give it the nudge it needs to get going.
*/
if (bus_space_read_4(sc->sc_st, sc->sc_sh,
STE_TxDMAListPtr) == 0) {
bus_space_write_4(sc->sc_st, sc->sc_sh,
STE_DMACtrl, DC_TxDMAHalt);
ste_dmahalt_wait(sc);
bus_space_write_4(sc->sc_st, sc->sc_sh,
STE_TxDMAListPtr,
STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
bus_space_write_4(sc->sc_st, sc->sc_sh,
STE_DMACtrl, DC_TxDMAResume);
}
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* ste_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
static void
ste_watchdog(struct ifnet *ifp)
{
struct ste_softc *sc = ifp->if_softc;
printf("%s: device timeout\n", device_xname(sc->sc_dev));
ifp->if_oerrors++;
ste_txintr(sc);
ste_rxintr(sc);
(void) ste_init(ifp);
/* Try to get more packets going. */
ste_start(ifp);
}
/*
* ste_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
static int
ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct ste_softc *sc = ifp->if_softc;
int s, error;
s = splnet();
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
if (ifp->if_flags & IFF_RUNNING)
ste_set_filter(sc);
error = 0;
}
/* Try to get more packets going. */
ste_start(ifp);
splx(s);
return (error);
}
/*
* ste_intr:
*
* Interrupt service routine.
*/
static int
ste_intr(void *arg)
{
struct ste_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint16_t isr;
uint8_t txstat;
int wantinit;
if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
IS_InterruptStatus) == 0)
return (0);
for (wantinit = 0; wantinit == 0;) {
isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
if ((isr & sc->sc_IntEnable) == 0)
break;
/* Receive interrupts. */
if (isr & IE_RxDMAComplete)
ste_rxintr(sc);
/* Transmit interrupts. */
if (isr & (IE_TxDMAComplete|IE_TxComplete))
ste_txintr(sc);
/* Statistics overflow. */
if (isr & IE_UpdateStats)
ste_stats_update(sc);
/* Transmission errors. */
if (isr & IE_TxComplete) {
for (;;) {
txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
STE_TxStatus);
if ((txstat & TS_TxComplete) == 0)
break;
if (txstat & TS_TxUnderrun) {
sc->sc_txthresh += 32;
if (sc->sc_txthresh > 0x1ffc)
sc->sc_txthresh = 0x1ffc;
printf("%s: transmit underrun, new "
"threshold: %d bytes\n",
device_xname(sc->sc_dev),
sc->sc_txthresh);
ste_reset(sc, AC_TxReset | AC_DMA |
AC_FIFO | AC_Network);
ste_setthresh(sc);
bus_space_write_1(sc->sc_st, sc->sc_sh,
STE_TxDMAPollPeriod, 127);
ste_txrestart(sc,
bus_space_read_1(sc->sc_st,
sc->sc_sh, STE_TxFrameId));
}
if (txstat & TS_TxReleaseError) {
printf("%s: Tx FIFO release error\n",
device_xname(sc->sc_dev));
wantinit = 1;
}
if (txstat & TS_MaxCollisions) {
printf("%s: excessive collisions\n",
device_xname(sc->sc_dev));
wantinit = 1;
}
if (txstat & TS_TxStatusOverflow) {
printf("%s: status overflow\n",
device_xname(sc->sc_dev));
wantinit = 1;
}
bus_space_write_2(sc->sc_st, sc->sc_sh,
STE_TxStatus, 0);
}
}
/* Host interface errors. */
if (isr & IE_HostError) {
printf("%s: Host interface error\n",
device_xname(sc->sc_dev));
wantinit = 1;
}
}
if (wantinit)
ste_init(ifp);
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
sc->sc_IntEnable);
/* Try to get more packets going. */
ste_start(ifp);
return (1);
}
/*
* ste_txintr:
*
* Helper; handle transmit interrupts.
*/
static void
ste_txintr(struct ste_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ste_descsoft *ds;
uint32_t control;
int i;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (i = sc->sc_txdirty; sc->sc_txpending != 0;
i = STE_NEXTTX(i), sc->sc_txpending--) {
ds = &sc->sc_txsoft[i];
STE_CDTXSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
control = le32toh(sc->sc_txdescs[i].tfd_control);
if ((control & TFD_TxDMAComplete) == 0)
break;
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
/* Update the dirty transmit buffer pointer. */
sc->sc_txdirty = i;
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (sc->sc_txpending == 0)
ifp->if_timer = 0;
}
/*
* ste_rxintr:
*
* Helper; handle receive interrupts.
*/
static void
ste_rxintr(struct ste_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ste_descsoft *ds;
struct mbuf *m;
uint32_t status;
int i, len;
for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
ds = &sc->sc_rxsoft[i];
STE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status = le32toh(sc->sc_rxdescs[i].rfd_status);
if ((status & RFD_RxDMAComplete) == 0)
break;
/*
* If the packet had an error, simply recycle the
* buffer. Note, we count the error later in the
* periodic stats update.
*/
if (status & RFD_RxFrameError) {
STE_INIT_RXDESC(sc, i);
continue;
}
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* No errors; receive the packet. Note, we have
* configured the chip to not include the CRC at
* the end of the packet.
*/
len = RFD_RxDMAFrameLen(status);
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*
* Otherwise, we add a new buffer to the receive
* chain. If this fails, we drop the packet and
* recycle the old buffer.
*/
if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
goto dropit;
m->m_data += 2;
memcpy(mtod(m, void *),
mtod(ds->ds_mbuf, void *), len);
STE_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
} else {
m = ds->ds_mbuf;
if (ste_add_rxbuf(sc, i) != 0) {
dropit:
ifp->if_ierrors++;
STE_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat,
ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
continue;
}
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
/*
* Pass this up to any BPF listeners, but only
* pass if up the stack if it's for us.
*/
bpf_mtap(ifp, m);
/* Pass it on. */
(*ifp->if_input)(ifp, m);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
}
/*
* ste_tick:
*
* One second timer, used to tick the MII.
*/
static void
ste_tick(void *arg)
{
struct ste_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
ste_stats_update(sc);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
}
/*
* ste_stats_update:
*
* Read the ST-201 statistics counters.
*/
static void
ste_stats_update(struct ste_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
ifp->if_opackets +=
(u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK);
ifp->if_ipackets +=
(u_int) bus_space_read_2(st, sh, STE_FramesReceivedOK);
ifp->if_collisions +=
(u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
(u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
(u_int) bus_space_read_1(st, sh, STE_SingleColFrames);
(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
ifp->if_ierrors +=
(u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors);
ifp->if_oerrors +=
(u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
(u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
bus_space_read_1(st, sh, STE_CarrierSenseErrors);
(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
}
/*
* ste_reset:
*
* Perform a soft reset on the ST-201.
*/
static void
ste_reset(struct ste_softc *sc, u_int32_t rstbits)
{
uint32_t ac;
int i;
ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
delay(50000);
for (i = 0; i < STE_TIMEOUT; i++) {
delay(1000);
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
AC_ResetBusy) == 0)
break;
}
if (i == STE_TIMEOUT)
printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
delay(1000);
}
/*
* ste_setthresh:
*
* set the various transmit threshold registers
*/
static void
ste_setthresh(struct ste_softc *sc)
{
/* set the TX threhold */
bus_space_write_2(sc->sc_st, sc->sc_sh,
STE_TxStartThresh, sc->sc_txthresh);
/* Urgent threshold: set to sc_txthresh / 2 */
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
sc->sc_txthresh >> 6);
/* Burst threshold: use default value (256 bytes) */
}
/*
* restart TX at the given frame ID in the transmitter ring
*/
static void
ste_txrestart(struct ste_softc *sc, u_int8_t id)
{
u_int32_t control;
STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
control = le32toh(sc->sc_txdescs[id].tfd_control);
control &= ~TFD_TxDMAComplete;
sc->sc_txdescs[id].tfd_control = htole32(control);
STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
ste_dmahalt_wait(sc);
bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
STE_CDTXADDR(sc, id));
bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
}
/*
* ste_init: [ ifnet interface function ]
*
* Initialize the interface. Must be called at splnet().
*/
static int
ste_init(struct ifnet *ifp)
{
struct ste_softc *sc = ifp->if_softc;
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct ste_descsoft *ds;
int i, error = 0;
/*
* Cancel any pending I/O.
*/
ste_stop(ifp, 0);
/*
* Reset the chip to a known state.
*/
ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
/*
* Initialize the transmit descriptor ring.
*/
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
sc->sc_txpending = 0;
sc->sc_txdirty = 0;
sc->sc_txlast = STE_NTXDESC - 1;
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < STE_NRXDESC; i++) {
ds = &sc->sc_rxsoft[i];
if (ds->ds_mbuf == NULL) {
if ((error = ste_add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
device_xname(sc->sc_dev), i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
ste_rxdrain(sc);
goto out;
}
} else
STE_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
/* Set the station address. */
for (i = 0; i < ETHER_ADDR_LEN; i++)
bus_space_write_1(st, sh, STE_StationAddress0 + 1,
CLLADDR(ifp->if_sadl)[i]);
/* Set up the receive filter. */
ste_set_filter(sc);
/*
* Give the receive ring to the chip.
*/
bus_space_write_4(st, sh, STE_RxDMAListPtr,
STE_CDRXADDR(sc, sc->sc_rxptr));
/*
* We defer giving the transmit ring to the chip until we
* transmit the first packet.
*/
/*
* Initialize the Tx auto-poll period. It's OK to make this number
* large (127 is the max) -- we explicitly kick the transmit engine
* when there's actually a packet. We are using auto-polling only
* to make the interface to the transmit engine not suck.
*/
bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
/* ..and the Rx auto-poll period. */
bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
/* Initialize the Tx start threshold. */
ste_setthresh(sc);
/* Set the FIFO release threshold to 512 bytes. */
bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
/* Set maximum packet size for VLAN. */
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
else
bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
/*
* Initialize the interrupt mask.
*/
sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
IE_TxDMAComplete | IE_RxDMAComplete;
bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
/*
* Start the receive DMA engine.
*/
bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
/*
* Initialize MacCtrl0 -- do it before setting the media,
* as setting the media will actually program the register.
*/
sc->sc_MacCtrl0 = MC0_IFSSelect(0);
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
/*
* Set the current media.
*/
if ((error = ether_mediachange(ifp)) != 0)
goto out;
/*
* Start the MAC.
*/
bus_space_write_2(st, sh, STE_MacCtrl1,
MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
/*
* Start the one second MII clock.
*/
callout_reset(&sc->sc_tick_ch, hz, ste_tick, sc);
/*
* ...all done!
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
out:
if (error)
printf("%s: interface not running\n", device_xname(sc->sc_dev));
return (error);
}
/*
* ste_drain:
*
* Drain the receive queue.
*/
static void
ste_rxdrain(struct ste_softc *sc)
{
struct ste_descsoft *ds;
int i;
for (i = 0; i < STE_NRXDESC; i++) {
ds = &sc->sc_rxsoft[i];
if (ds->ds_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
}
}
/*
* ste_stop: [ ifnet interface function ]
*
* Stop transmission on the interface.
*/
static void
ste_stop(struct ifnet *ifp, int disable)
{
struct ste_softc *sc = ifp->if_softc;
struct ste_descsoft *ds;
int i;
/*
* Stop the one second clock.
*/
callout_stop(&sc->sc_tick_ch);
/* Down the MII. */
mii_down(&sc->sc_mii);
/*
* Disable interrupts.
*/
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
/*
* Stop receiver, transmitter, and stats update.
*/
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
/*
* Stop the transmit and receive DMA.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
DC_RxDMAHalt | DC_TxDMAHalt);
ste_dmahalt_wait(sc);
/*
* Release any queued transmit buffers.
*/
for (i = 0; i < STE_NTXDESC; i++) {
ds = &sc->sc_txsoft[i];
if (ds->ds_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
}
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
if (disable)
ste_rxdrain(sc);
}
static int
ste_eeprom_wait(struct ste_softc *sc)
{
int i;
for (i = 0; i < STE_TIMEOUT; i++) {
delay(1000);
if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
EC_EepromBusy) == 0)
return (0);
}
return (1);
}
/*
* ste_read_eeprom:
*
* Read data from the serial EEPROM.
*/
static void
ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
{
if (ste_eeprom_wait(sc))
printf("%s: EEPROM failed to come ready\n",
device_xname(sc->sc_dev));
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
if (ste_eeprom_wait(sc))
printf("%s: EEPROM read timed out\n",
device_xname(sc->sc_dev));
*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
}
/*
* ste_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
static int
ste_add_rxbuf(struct ste_softc *sc, int idx)
{
struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (ds->ds_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
ds->ds_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
device_xname(sc->sc_dev), idx, error);
panic("ste_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
STE_INIT_RXDESC(sc, idx);
return (0);
}
/*
* ste_set_filter:
*
* Set up the receive filter.
*/
static void
ste_set_filter(struct ste_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t crc;
uint16_t mchash[4];
sc->sc_ReceiveMode = RM_ReceiveUnicast;
if (ifp->if_flags & IFF_BROADCAST)
sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
if (ifp->if_flags & IFF_PROMISC) {
sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
goto allmulti;
}
/*
* Set up the multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the low-order
* 6 bits as an index into the 64 bit multicast hash table. The
* high order bits select the register, while the rest of the bits
* select the bit within the register.
*/
memset(mchash, 0, sizeof(mchash));
ETHER_FIRST_MULTI(step, ec, enm);
if (enm == NULL)
goto done;
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
/* Just want the 6 least significant bits. */
crc &= 0x3f;
/* Set the corresponding bit in the hash table. */
mchash[crc >> 4] |= 1 << (crc & 0xf);
ETHER_NEXT_MULTI(step, enm);
}
sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
ifp->if_flags &= ~IFF_ALLMULTI;
goto done;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
sc->sc_ReceiveMode |= RM_ReceiveMulticast;
done:
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
/*
* Program the multicast hash table.
*/
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
mchash[0]);
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
mchash[1]);
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
mchash[2]);
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
mchash[3]);
}
bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
sc->sc_ReceiveMode);
}
/*
* ste_mii_readreg: [mii interface function]
*
* Read a PHY register on the MII of the ST-201.
*/
static int
ste_mii_readreg(device_t self, int phy, int reg)
{
return (mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg));
}
/*
* ste_mii_writereg: [mii interface function]
*
* Write a PHY register on the MII of the ST-201.
*/
static void
ste_mii_writereg(device_t self, int phy, int reg, int val)
{
mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
}
/*
* ste_mii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
static void
ste_mii_statchg(struct ifnet *ifp)
{
struct ste_softc *sc = ifp->if_softc;
if (sc->sc_mii.mii_media_active & IFM_FDX)
sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
else
sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
/* XXX 802.1x flow-control? */
bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
}
/*
* ste_mii_bitbang_read: [mii bit-bang interface function]
*
* Read the MII serial port for the MII bit-bang module.
*/
static uint32_t
ste_mii_bitbang_read(device_t self)
{
struct ste_softc *sc = device_private(self);
return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
}
/*
* ste_mii_bitbang_write: [mii big-bang interface function]
*
* Write the MII serial port for the MII bit-bang module.
*/
static void
ste_mii_bitbang_write(device_t self, uint32_t val)
{
struct ste_softc *sc = device_private(self);
bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
}