NetBSD/sys/ufs/lfs/lfs_segment.c
perseant 86b0e2dc16 Fix a problem in my changes of Dec 14th, that prevents removed vnodes
from being inactivated under some conditions.  Removed vnodes are now
inactivated when the VDIROP flag is cleared, and to prevent block
accounting problems this clearing has been postponed until
lfs_segunlock.
2000-01-16 05:56:14 +00:00

1723 lines
47 KiB
C

/* $NetBSD: lfs_segment.c,v 1.39 2000/01/16 05:56:14 perseant Exp $ */
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
*/
#define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/kernel.h>
#include <sys/resourcevar.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/vnode.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <miscfs/specfs/specdev.h>
#include <miscfs/fifofs/fifo.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_extern.h>
extern int count_lock_queue __P((void));
extern struct simplelock vnode_free_list_slock; /* XXX */
/*
* Determine if it's OK to start a partial in this segment, or if we need
* to go on to a new segment.
*/
#define LFS_PARTIAL_FITS(fs) \
((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
1 << (fs)->lfs_fsbtodb)
void lfs_callback __P((struct buf *));
int lfs_gather __P((struct lfs *, struct segment *,
struct vnode *, int (*) __P((struct lfs *, struct buf *))));
int lfs_gatherblock __P((struct segment *, struct buf *, int *));
void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
int lfs_match_fake __P((struct lfs *, struct buf *));
int lfs_match_data __P((struct lfs *, struct buf *));
int lfs_match_dindir __P((struct lfs *, struct buf *));
int lfs_match_indir __P((struct lfs *, struct buf *));
int lfs_match_tindir __P((struct lfs *, struct buf *));
void lfs_newseg __P((struct lfs *));
void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
void lfs_supercallback __P((struct buf *));
void lfs_updatemeta __P((struct segment *));
int lfs_vref __P((struct vnode *));
void lfs_vunref __P((struct vnode *));
void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
int lfs_writeseg __P((struct lfs *, struct segment *));
void lfs_writesuper __P((struct lfs *, daddr_t));
int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
struct segment *sp, int dirops));
int lfs_allclean_wakeup; /* Cleaner wakeup address. */
int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
int lfs_dirvcount = 0; /* # active dirops */
/* Statistics Counters */
int lfs_dostats = 1;
struct lfs_stats lfs_stats;
/* op values to lfs_writevnodes */
#define VN_REG 0
#define VN_DIROP 1
#define VN_EMPTY 2
#define VN_CLEAN 3
#define LFS_MAX_ACTIVE 10
/*
* XXX KS - Set modification time on the Ifile, so the cleaner can
* read the fs mod time off of it. We don't set IN_UPDATE here,
* since we don't really need this to be flushed to disk (and in any
* case that wouldn't happen to the Ifile until we checkpoint).
*/
void
lfs_imtime(fs)
struct lfs *fs;
{
struct timespec ts;
struct inode *ip;
TIMEVAL_TO_TIMESPEC(&time, &ts);
ip = VTOI(fs->lfs_ivnode);
ip->i_ffs_mtime = ts.tv_sec;
ip->i_ffs_mtimensec = ts.tv_nsec;
}
/*
* Ifile and meta data blocks are not marked busy, so segment writes MUST be
* single threaded. Currently, there are two paths into lfs_segwrite, sync()
* and getnewbuf(). They both mark the file system busy. Lfs_vflush()
* explicitly marks the file system busy. So lfs_segwrite is safe. I think.
*/
#define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
#define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
#define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
int
lfs_vflush(vp)
struct vnode *vp;
{
struct inode *ip;
struct lfs *fs;
struct segment *sp;
struct buf *bp, *nbp, *tbp, *tnbp;
int error, s;
ip = VTOI(vp);
fs = VFSTOUFS(vp->v_mount)->um_lfs;
if(ip->i_flag & IN_CLEANING) {
#ifdef DEBUG_LFS
ivndebug(vp,"vflush/in_cleaning");
#endif
ip->i_flag &= ~IN_CLEANING;
if(ip->i_flag & IN_MODIFIED) {
fs->lfs_uinodes--;
} else
ip->i_flag |= IN_MODIFIED;
/*
* Toss any cleaning buffers that have real counterparts
* to avoid losing new data
*/
s = splbio();
for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
nbp = bp->b_vnbufs.le_next;
if(bp->b_flags & B_CALL) {
for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
tbp=tnbp)
{
tnbp = tbp->b_vnbufs.le_next;
if(tbp->b_vp == bp->b_vp
&& tbp->b_lblkno == bp->b_lblkno
&& tbp != bp)
{
lfs_freebuf(bp);
}
}
}
}
splx(s);
}
/* If the node is being written, wait until that is done */
if(WRITEINPROG(vp)) {
#ifdef DEBUG_LFS
ivndebug(vp,"vflush/writeinprog");
#endif
tsleep(vp, PRIBIO+1, "lfs_vw", 0);
}
/* Protect against VXLOCK deadlock in vinvalbuf() */
lfs_seglock(fs, SEGM_SYNC);
/* If we're supposed to flush a freed inode, just toss it */
/* XXX - seglock, so these buffers can't be gathered, right? */
if(ip->i_ffs_mode == 0) {
printf("lfs_vflush: ino %d is freed, not flushing\n",
ip->i_number);
s = splbio();
for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
nbp = bp->b_vnbufs.le_next;
/* Copied from lfs_writeseg */
if (bp->b_flags & B_CALL) {
/* if B_CALL, it was created with newbuf */
lfs_freebuf(bp);
} else {
bremfree(bp);
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
B_LOCKED | B_GATHERED);
bp->b_flags |= B_DONE;
reassignbuf(bp, vp);
brelse(bp);
}
}
splx(s);
if(ip->i_flag & IN_CLEANING)
fs->lfs_uinodes--;
if(ip->i_flag & IN_MODIFIED)
fs->lfs_uinodes--;
ip->i_flag &= ~(IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING);
printf("lfs_vflush: done not flushing ino %d\n",
ip->i_number);
lfs_segunlock(fs);
return 0;
}
SET_FLUSHING(fs,vp);
if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
CLR_FLUSHING(fs,vp);
lfs_segunlock(fs);
return error;
}
sp = fs->lfs_sp;
if (vp->v_dirtyblkhd.lh_first == NULL) {
lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
} else if((ip->i_flag & IN_CLEANING) && (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
#ifdef DEBUG_LFS
ivndebug(vp,"vflush/clean");
#endif
lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
}
else if(lfs_dostats) {
if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & (IN_MODIFIED|IN_UPDATE|IN_ACCESS|IN_CHANGE|IN_CLEANING)))
++lfs_stats.vflush_invoked;
#ifdef DEBUG_LFS
ivndebug(vp,"vflush");
#endif
}
#ifdef DIAGNOSTIC
/* XXX KS This actually can happen right now, though it shouldn't(?) */
if(vp->v_flag & VDIROP) {
printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
/* panic("VDIROP being flushed...this can\'t happen"); */
}
if(vp->v_usecount<0) {
printf("usecount=%ld\n",vp->v_usecount);
panic("lfs_vflush: usecount<0");
}
#endif
do {
do {
if (vp->v_dirtyblkhd.lh_first != NULL)
lfs_writefile(fs, sp, vp);
} while (lfs_writeinode(fs, sp, ip));
} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
if(lfs_dostats) {
++lfs_stats.nwrites;
if (sp->seg_flags & SEGM_SYNC)
++lfs_stats.nsync_writes;
if (sp->seg_flags & SEGM_CKP)
++lfs_stats.ncheckpoints;
}
lfs_segunlock(fs);
CLR_FLUSHING(fs,vp);
return (0);
}
#ifdef DEBUG_LFS_VERBOSE
# define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
#else
# define vndebug(vp,str)
#endif
int
lfs_writevnodes(fs, mp, sp, op)
struct lfs *fs;
struct mount *mp;
struct segment *sp;
int op;
{
struct inode *ip;
struct vnode *vp;
int inodes_written=0, only_cleaning;
#ifndef LFS_NO_BACKVP_HACK
/* BEGIN HACK */
#define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
#define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
#define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
/* Find last vnode. */
loop: for (vp = mp->mnt_vnodelist.lh_first;
vp && vp->v_mntvnodes.le_next != NULL;
vp = vp->v_mntvnodes.le_next);
for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
#else
loop:
for (vp = mp->mnt_vnodelist.lh_first;
vp != NULL;
vp = vp->v_mntvnodes.le_next) {
#endif
/*
* If the vnode that we are about to sync is no longer
* associated with this mount point, start over.
*/
if (vp->v_mount != mp)
goto loop;
ip = VTOI(vp);
if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
(op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
vndebug(vp,"dirop");
continue;
}
if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
vndebug(vp,"empty");
continue;
}
if (vp->v_type == VNON) {
continue;
}
if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
&& vp != fs->lfs_flushvp
&& !(ip->i_flag & IN_CLEANING)) {
vndebug(vp,"cleaning");
continue;
}
if (lfs_vref(vp)) {
vndebug(vp,"vref");
continue;
}
#if 0 /* XXX KS - if we skip the ifile, things could go badly for us. */
if(WRITEINPROG(vp)) {
lfs_vunref(vp);
#ifdef DEBUG_LFS
ivndebug(vp,"writevnodes/writeinprog");
#endif
continue;
}
#endif
only_cleaning = 0;
/*
* Write the inode/file if dirty and it's not the
* the IFILE.
*/
if ((ip->i_flag &
(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING) ||
vp->v_dirtyblkhd.lh_first != NULL))
{
only_cleaning = ((ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))==IN_CLEANING);
if(ip->i_number != LFS_IFILE_INUM
&& vp->v_dirtyblkhd.lh_first != NULL)
{
lfs_writefile(fs, sp, vp);
}
if(vp->v_dirtyblkhd.lh_first != NULL) {
if(WRITEINPROG(vp)) {
#ifdef DEBUG_LFS
ivndebug(vp,"writevnodes/write2");
#endif
} else if(!(ip->i_flag & (IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE|IN_CLEANING))) {
#ifdef DEBUG_LFS
printf("<%d>",ip->i_number);
#endif
ip->i_flag |= IN_MODIFIED;
++fs->lfs_uinodes;
}
}
(void) lfs_writeinode(fs, sp, ip);
inodes_written++;
}
if(lfs_clean_vnhead && only_cleaning)
lfs_vunref_head(vp);
else
lfs_vunref(vp);
}
return inodes_written;
}
int
lfs_segwrite(mp, flags)
struct mount *mp;
int flags; /* Do a checkpoint. */
{
struct buf *bp;
struct inode *ip;
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
SEGUSE *segusep;
ufs_daddr_t ibno;
int do_ckp, error, i;
int writer_set = 0;
int need_unlock = 0;
fs = VFSTOUFS(mp)->um_lfs;
lfs_imtime(fs);
/*
* If we are not the cleaner, and we have fewer than MIN_FREE_SEGS
* clean segments, wait until cleaner writes.
*/
if(!(flags & SEGM_CLEAN)
&& (!fs->lfs_seglock || !(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
{
do {
if (fs->lfs_nclean <= MIN_FREE_SEGS
|| fs->lfs_avail <= 0)
{
wakeup(&lfs_allclean_wakeup);
wakeup(&fs->lfs_nextseg);
error = tsleep(&fs->lfs_avail, PRIBIO + 1,
"lfs_avail", 0);
if (error) {
return (error);
}
}
} while (fs->lfs_nclean <= MIN_FREE_SEGS || fs->lfs_avail <= 0);
}
/*
* Allocate a segment structure and enough space to hold pointers to
* the maximum possible number of buffers which can be described in a
* single summary block.
*/
do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
sp = fs->lfs_sp;
/*
* If lfs_flushvp is non-NULL, we are called from lfs_vflush,
* in which case we have to flush *all* buffers off of this vnode.
* We don't care about other nodes, but write any non-dirop nodes
* anyway in anticipation of another getnewvnode().
*
* If we're cleaning we only write cleaning and ifile blocks, and
* no dirops, since otherwise we'd risk corruption in a crash.
*/
if(sp->seg_flags & SEGM_CLEAN)
lfs_writevnodes(fs, mp, sp, VN_CLEAN);
else {
lfs_writevnodes(fs, mp, sp, VN_REG);
if(!fs->lfs_dirops || !fs->lfs_flushvp) {
while(fs->lfs_dirops)
if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
"lfs writer", 0)))
{
free(sp->bpp, M_SEGMENT);
free(sp, M_SEGMENT);
return (error);
}
fs->lfs_writer++;
writer_set=1;
lfs_writevnodes(fs, mp, sp, VN_DIROP);
((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
}
}
/*
* If we are doing a checkpoint, mark everything since the
* last checkpoint as no longer ACTIVE.
*/
if (do_ckp) {
for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
--ibno >= fs->lfs_cleansz; ) {
if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
panic("lfs_segwrite: ifile read");
segusep = (SEGUSE *)bp->b_data;
for (i = fs->lfs_sepb; i--; segusep++)
segusep->su_flags &= ~SEGUSE_ACTIVE;
/* But the current segment is still ACTIVE */
if (fs->lfs_curseg/fs->lfs_sepb==(ibno-fs->lfs_cleansz))
((SEGUSE *)(bp->b_data))[fs->lfs_curseg%fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
error = VOP_BWRITE(bp);
}
}
if (do_ckp || fs->lfs_doifile) {
redo:
vp = fs->lfs_ivnode;
/*
* Depending on the circumstances of our calling, the ifile
* inode might be locked. If it is, and if it is locked by
* us, we should VREF instead of vget here.
*/
need_unlock = 0;
if(VOP_ISLOCKED(vp)
&& vp->v_lock.lk_lockholder == curproc->p_pid) {
VREF(vp);
} else {
while (vget(vp, LK_EXCLUSIVE))
continue;
need_unlock = 1;
}
ip = VTOI(vp);
if (vp->v_dirtyblkhd.lh_first != NULL)
lfs_writefile(fs, sp, vp);
(void)lfs_writeinode(fs, sp, ip);
/* Only vput if we used vget() above. */
if(need_unlock)
vput(vp);
else
vrele(vp);
if (lfs_writeseg(fs, sp) && do_ckp)
goto redo;
} else {
(void) lfs_writeseg(fs, sp);
}
/*
* If the I/O count is non-zero, sleep until it reaches zero.
* At the moment, the user's process hangs around so we can
* sleep.
*/
fs->lfs_doifile = 0;
if(writer_set && --fs->lfs_writer==0)
wakeup(&fs->lfs_dirops);
if(lfs_dostats) {
++lfs_stats.nwrites;
if (sp->seg_flags & SEGM_SYNC)
++lfs_stats.nsync_writes;
if (sp->seg_flags & SEGM_CKP)
++lfs_stats.ncheckpoints;
}
lfs_segunlock(fs);
return (0);
}
/*
* Write the dirty blocks associated with a vnode.
*/
void
lfs_writefile(fs, sp, vp)
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
{
struct buf *bp;
struct finfo *fip;
IFILE *ifp;
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(struct finfo))
(void) lfs_writeseg(fs, sp);
sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
if(vp->v_flag & VDIROP)
((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
fip = sp->fip;
fip->fi_nblocks = 0;
fip->fi_ino = VTOI(vp)->i_number;
LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
fip->fi_version = ifp->if_version;
brelse(bp);
if(sp->seg_flags & SEGM_CLEAN)
{
lfs_gather(fs, sp, vp, lfs_match_fake);
/*
* For a file being flushed, we need to write *all* blocks.
* This means writing the cleaning blocks first, and then
* immediately following with any non-cleaning blocks.
* The same is true of the Ifile since checkpoints assume
* that all valid Ifile blocks are written.
*/
if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
lfs_gather(fs, sp, vp, lfs_match_data);
} else
lfs_gather(fs, sp, vp, lfs_match_data);
/*
* It may not be necessary to write the meta-data blocks at this point,
* as the roll-forward recovery code should be able to reconstruct the
* list.
*
* We have to write them anyway, though, under two conditions: (1) the
* vnode is being flushed (for reuse by vinvalbuf); or (2) we are
* checkpointing.
*/
if(lfs_writeindir
|| IS_FLUSHING(fs,vp)
|| (sp->seg_flags & SEGM_CKP))
{
lfs_gather(fs, sp, vp, lfs_match_indir);
lfs_gather(fs, sp, vp, lfs_match_dindir);
lfs_gather(fs, sp, vp, lfs_match_tindir);
}
fip = sp->fip;
if (fip->fi_nblocks != 0) {
sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
sp->start_lbp = &sp->fip->fi_blocks[0];
} else {
sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
--((SEGSUM *)(sp->segsum))->ss_nfinfo;
}
}
int
lfs_writeinode(fs, sp, ip)
struct lfs *fs;
struct segment *sp;
struct inode *ip;
{
struct buf *bp, *ibp;
IFILE *ifp;
SEGUSE *sup;
ufs_daddr_t daddr;
ino_t ino;
int error, i, ndx;
int redo_ifile = 0;
struct timespec ts;
int gotblk=0;
if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE | IN_CLEANING)))
return(0);
/* Allocate a new inode block if necessary. */
if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
/* Allocate a new segment if necessary. */
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(ufs_daddr_t))
(void) lfs_writeseg(fs, sp);
/* Get next inode block. */
daddr = fs->lfs_offset;
fs->lfs_offset += fsbtodb(fs, 1);
sp->ibp = *sp->cbpp++ =
getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
gotblk++;
/* Zero out inode numbers */
for (i = 0; i < INOPB(fs); ++i)
((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
++sp->start_bpp;
fs->lfs_avail -= fsbtodb(fs, 1);
/* Set remaining space counters. */
sp->seg_bytes_left -= fs->lfs_bsize;
sp->sum_bytes_left -= sizeof(ufs_daddr_t);
ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
sp->ninodes / INOPB(fs) - 1;
((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
}
/* Update the inode times and copy the inode onto the inode page. */
if (ip->i_flag & (IN_CLEANING|IN_MODIFIED))
--fs->lfs_uinodes;
TIMEVAL_TO_TIMESPEC(&time, &ts);
LFS_ITIMES(ip, &ts, &ts, &ts);
if(ip->i_flag & IN_CLEANING)
ip->i_flag &= ~IN_CLEANING;
else
ip->i_flag &= ~(IN_ACCESS|IN_CHANGE|IN_MODIFIED|IN_UPDATE);
/*
* If this is the Ifile, and we've already written the Ifile in this
* partial segment, just overwrite it (it's not on disk yet) and
* continue.
*
* XXX we know that the bp that we get the second time around has
* already been gathered.
*/
if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
*(sp->idp) = ip->i_din.ffs_din;
return 0;
}
bp = sp->ibp;
((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] =
ip->i_din.ffs_din;
if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
sp->idp = ((struct dinode *)bp->b_data)+(sp->ninodes % INOPB(fs));
if(gotblk) {
bp->b_flags |= B_LOCKED;
brelse(bp);
}
/* Increment inode count in segment summary block. */
++((SEGSUM *)(sp->segsum))->ss_ninos;
/* If this page is full, set flag to allocate a new page. */
if (++sp->ninodes % INOPB(fs) == 0)
sp->ibp = NULL;
/*
* If updating the ifile, update the super-block. Update the disk
* address and access times for this inode in the ifile.
*/
ino = ip->i_number;
if (ino == LFS_IFILE_INUM) {
daddr = fs->lfs_idaddr;
fs->lfs_idaddr = bp->b_blkno;
} else {
LFS_IENTRY(ifp, fs, ino, ibp);
daddr = ifp->if_daddr;
ifp->if_daddr = bp->b_blkno;
#ifdef LFS_DEBUG_NEXTFREE
if(ino > 3 && ifp->if_nextfree) {
vprint("lfs_writeinode",ITOV(ip));
printf("lfs_writeinode: updating free ino %d\n",
ip->i_number);
}
#endif
error = VOP_BWRITE(ibp);
}
/*
* No need to update segment usage if there was no former inode address
* or if the last inode address is in the current partial segment.
*/
if (daddr != LFS_UNUSED_DADDR &&
!(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes < DINODE_SIZE) {
/* XXX -- Change to a panic. */
printf("lfs_writeinode: negative bytes (segment %d short by %d)\n",
datosn(fs, daddr), (int)DINODE_SIZE - sup->su_nbytes);
panic("lfs_writeinode: negative bytes");
sup->su_nbytes = DINODE_SIZE;
}
#endif
sup->su_nbytes -= DINODE_SIZE;
redo_ifile =
(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
error = VOP_BWRITE(bp);
}
return (redo_ifile);
}
int
lfs_gatherblock(sp, bp, sptr)
struct segment *sp;
struct buf *bp;
int *sptr;
{
struct lfs *fs;
int version;
/*
* If full, finish this segment. We may be doing I/O, so
* release and reacquire the splbio().
*/
#ifdef DIAGNOSTIC
if (sp->vp == NULL)
panic ("lfs_gatherblock: Null vp in segment");
#endif
fs = sp->fs;
if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
sp->seg_bytes_left < bp->b_bcount) {
if (sptr)
splx(*sptr);
lfs_updatemeta(sp);
version = sp->fip->fi_version;
(void) lfs_writeseg(fs, sp);
sp->fip->fi_version = version;
sp->fip->fi_ino = VTOI(sp->vp)->i_number;
/* Add the current file to the segment summary. */
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
sp->sum_bytes_left -=
sizeof(struct finfo) - sizeof(ufs_daddr_t);
if (sptr)
*sptr = splbio();
return(1);
}
#ifdef DEBUG
if(bp->b_flags & B_GATHERED) {
printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
sp->fip->fi_ino, bp->b_lblkno);
return(0);
}
#endif
/* Insert into the buffer list, update the FINFO block. */
bp->b_flags |= B_GATHERED;
*sp->cbpp++ = bp;
sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
sp->sum_bytes_left -= sizeof(ufs_daddr_t);
sp->seg_bytes_left -= bp->b_bcount;
return(0);
}
int
lfs_gather(fs, sp, vp, match)
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
int (*match) __P((struct lfs *, struct buf *));
{
struct buf *bp;
int s, count=0;
sp->vp = vp;
s = splbio();
#ifndef LFS_NO_BACKBUF_HACK
loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
#else /* LFS_NO_BACKBUF_HACK */
/* This is a hack to see if ordering the blocks in LFS makes a difference. */
# define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
# define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
# define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
/* Find last buffer. */
loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
bp = bp->b_vnbufs.le_next);
for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
#endif /* LFS_NO_BACKBUF_HACK */
if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
continue;
if(vp->v_type == VBLK) {
/* For block devices, just write the blocks. */
/* XXX Do we really need to even do this? */
#ifdef DEBUG_LFS
if(count==0)
printf("BLK(");
printf(".");
#endif
/* Get the block before bwrite, so we don't corrupt the free list */
bp->b_flags |= B_BUSY;
bremfree(bp);
bwrite(bp);
} else {
#ifdef DIAGNOSTIC
if (!(bp->b_flags & B_DELWRI))
panic("lfs_gather: bp not B_DELWRI");
if (!(bp->b_flags & B_LOCKED)) {
printf("lfs_gather: lbn %d blk %d not B_LOCKED\n", bp->b_lblkno, bp->b_blkno);
VOP_PRINT(bp->b_vp);
panic("lfs_gather: bp not B_LOCKED");
}
#endif
if (lfs_gatherblock(sp, bp, &s)) {
goto loop;
}
}
count++;
}
splx(s);
#ifdef DEBUG_LFS
if(vp->v_type == VBLK && count)
printf(")\n");
#endif
lfs_updatemeta(sp);
sp->vp = NULL;
return count;
}
/*
* Update the metadata that points to the blocks listed in the FINFO
* array.
*/
void
lfs_updatemeta(sp)
struct segment *sp;
{
SEGUSE *sup;
struct buf *bp;
struct lfs *fs;
struct vnode *vp;
struct indir a[NIADDR + 2], *ap;
struct inode *ip;
ufs_daddr_t daddr, lbn, off;
int error, i, nblocks, num;
vp = sp->vp;
nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
if (nblocks < 0)
panic("This is a bad thing\n");
if (vp == NULL || nblocks == 0)
return;
/* Sort the blocks. */
/*
* XXX KS - We have to sort even if the blocks come from the
* cleaner, because there might be other pending blocks on the
* same inode...and if we don't sort, and there are fragments
* present, blocks may be written in the wrong place.
*/
/* if (!(sp->seg_flags & SEGM_CLEAN)) */
lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
/*
* Record the length of the last block in case it's a fragment.
* If there are indirect blocks present, they sort last. An
* indirect block will be lfs_bsize and its presence indicates
* that you cannot have fragments.
*/
sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
/*
* Assign disk addresses, and update references to the logical
* block and the segment usage information.
*/
fs = sp->fs;
for (i = nblocks; i--; ++sp->start_bpp) {
lbn = *sp->start_lbp++;
(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
printf("lfs_updatemeta: ino %d blk %d has same lbn and daddr\n", VTOI(vp)->i_number, off);
}
fs->lfs_offset +=
fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
if (error)
panic("lfs_updatemeta: ufs_bmaparray %d", error);
ip = VTOI(vp);
switch (num) {
case 0:
ip->i_ffs_db[lbn] = off;
break;
case 1:
ip->i_ffs_ib[a[0].in_off] = off;
break;
default:
ap = &a[num - 1];
if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
panic("lfs_updatemeta: bread bno %d",
ap->in_lbn);
/*
* Bread may create a new (indirect) block which needs
* to get counted for the inode.
*/
if (/* bp->b_blkno == -1 && */
!(bp->b_flags & (B_DELWRI|B_DONE))) {
ip->i_ffs_blocks += fsbtodb(fs, 1);
fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
}
((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
VOP_BWRITE(bp);
}
/* Update segment usage information. */
if (daddr != UNASSIGNED && !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
/* XXX -- Change to a panic. */
printf("lfs_updatemeta: negative bytes (segment %d short by %ld)\n",
datosn(fs, daddr), (*sp->start_bpp)->b_bcount - sup->su_nbytes);
printf("lfs_updatemeta: ino %d, lbn %d, addr = %x\n",
VTOI(sp->vp)->i_number, (*sp->start_bpp)->b_lblkno, daddr);
panic("lfs_updatemeta: negative bytes");
sup->su_nbytes = (*sp->start_bpp)->b_bcount;
}
#endif
sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
error = VOP_BWRITE(bp);
}
}
}
/*
* Start a new segment.
*/
int
lfs_initseg(fs)
struct lfs *fs;
{
struct segment *sp;
SEGUSE *sup;
SEGSUM *ssp;
struct buf *bp;
int repeat;
sp = fs->lfs_sp;
repeat = 0;
/* Advance to the next segment. */
if (!LFS_PARTIAL_FITS(fs)) {
/* Wake up any cleaning procs waiting on this file system. */
wakeup(&lfs_allclean_wakeup);
wakeup(&fs->lfs_nextseg);
lfs_newseg(fs);
repeat = 1;
fs->lfs_offset = fs->lfs_curseg;
sp->seg_number = datosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
/*
* If the segment contains a superblock, update the offset
* and summary address to skip over it.
*/
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
if (sup->su_flags & SEGUSE_SUPERBLOCK) {
fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
sp->seg_bytes_left -= LFS_SBPAD;
}
brelse(bp);
} else {
sp->seg_number = datosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = (fs->lfs_dbpseg -
(fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
}
fs->lfs_lastpseg = fs->lfs_offset;
sp->fs = fs;
sp->ibp = NULL;
sp->idp = NULL;
sp->ninodes = 0;
/* Get a new buffer for SEGSUM and enter it into the buffer list. */
sp->cbpp = sp->bpp;
*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
fs->lfs_offset, LFS_SUMMARY_SIZE);
sp->segsum = (*sp->cbpp)->b_data;
bzero(sp->segsum, LFS_SUMMARY_SIZE);
sp->start_bpp = ++sp->cbpp;
fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
/* Set point to SEGSUM, initialize it. */
ssp = sp->segsum;
ssp->ss_next = fs->lfs_nextseg;
ssp->ss_nfinfo = ssp->ss_ninos = 0;
ssp->ss_magic = SS_MAGIC;
/* Set pointer to first FINFO, initialize it. */
sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
sp->fip->fi_nblocks = 0;
sp->start_lbp = &sp->fip->fi_blocks[0];
sp->fip->fi_lastlength = 0;
sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
return(repeat);
}
/*
* Return the next segment to write.
*/
void
lfs_newseg(fs)
struct lfs *fs;
{
CLEANERINFO *cip;
SEGUSE *sup;
struct buf *bp;
int curseg, isdirty, sn;
LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
sup->su_nbytes = 0;
sup->su_nsums = 0;
sup->su_ninos = 0;
(void) VOP_BWRITE(bp);
LFS_CLEANERINFO(cip, fs, bp);
--cip->clean;
++cip->dirty;
fs->lfs_nclean = cip->clean;
(void) VOP_BWRITE(bp);
fs->lfs_lastseg = fs->lfs_curseg;
fs->lfs_curseg = fs->lfs_nextseg;
for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
sn = (sn + 1) % fs->lfs_nseg;
if (sn == curseg)
panic("lfs_nextseg: no clean segments");
LFS_SEGENTRY(sup, fs, sn, bp);
isdirty = sup->su_flags & SEGUSE_DIRTY;
brelse(bp);
if (!isdirty)
break;
}
++fs->lfs_nactive;
fs->lfs_nextseg = sntoda(fs, sn);
if(lfs_dostats) {
++lfs_stats.segsused;
}
}
int
lfs_writeseg(fs, sp)
struct lfs *fs;
struct segment *sp;
{
extern int locked_queue_count;
extern long locked_queue_bytes;
struct buf **bpp, *bp, *cbp;
SEGUSE *sup;
SEGSUM *ssp;
dev_t i_dev;
u_long *datap, *dp;
int do_again, i, nblocks, s;
#ifdef LFS_TRACK_IOS
int j;
#endif
int (*strategy)__P((void *));
struct vop_strategy_args vop_strategy_a;
u_short ninos;
struct vnode *devvp;
char *p;
struct vnode *vn;
struct inode *ip;
#if defined(DEBUG) && defined(LFS_PROPELLER)
static int propeller;
char propstring[4] = "-\\|/";
printf("%c\b",propstring[propeller++]);
if(propeller==4)
propeller = 0;
#endif
/*
* If there are no buffers other than the segment summary to write
* and it is not a checkpoint, don't do anything. On a checkpoint,
* even if there aren't any buffers, you need to write the superblock.
*/
if ((nblocks = sp->cbpp - sp->bpp) == 1)
return (0);
#ifdef DEBUG_LFS
lfs_check_bpp(fs,sp,__FILE__,__LINE__);
#endif
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
devvp = VTOI(fs->lfs_ivnode)->i_devvp;
/* Update the segment usage information. */
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
/* Loop through all blocks, except the segment summary. */
for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
if((*bpp)->b_vp != devvp)
sup->su_nbytes += (*bpp)->b_bcount;
}
ssp = (SEGSUM *)sp->segsum;
ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
/* sup->su_nbytes += LFS_SUMMARY_SIZE; */
sup->su_lastmod = time.tv_sec;
sup->su_ninos += ninos;
++sup->su_nsums;
do_again = !(bp->b_flags & B_GATHERED);
(void)VOP_BWRITE(bp);
/*
* Compute checksum across data and then across summary; the first
* block (the summary block) is skipped. Set the create time here
* so that it's guaranteed to be later than the inode mod times.
*
* XXX
* Fix this to do it inline, instead of malloc/copy.
*/
datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
panic("lfs_writeseg: copyin failed [1]: ino %d blk %d", VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno);
} else {
if( !((*bpp)->b_flags & B_CALL) ) {
/*
* Before we record data for a checksm,
* make sure the data won't change in between
* the checksum calculation and the write,
* by marking the buffer B_BUSY. It will
* be freed later by brelse().
*/
again:
s = splbio();
if((*bpp)->b_flags & B_BUSY) {
#ifdef DEBUG
printf("lfs_writeseg: avoiding potential data summary corruption for ino %d, lbn %d\n",
VTOI((*bpp)->b_vp)->i_number,
bp->b_lblkno);
#endif
(*bpp)->b_flags |= B_WANTED;
tsleep((*bpp), (PRIBIO + 1),
"lfs_writeseg", 0);
splx(s);
goto again;
}
(*bpp)->b_flags |= B_BUSY;
splx(s);
}
*dp++ = ((u_long *)(*bpp)->b_data)[0];
}
}
ssp->ss_create = time.tv_sec;
ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
ssp->ss_sumsum =
cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
free(datap, M_SEGMENT);
#ifdef DIAGNOSTIC
if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
panic("lfs_writeseg: No diskspace for summary");
#endif
fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
strategy = devvp->v_op[VOFFSET(vop_strategy)];
/*
* When we simply write the blocks we lose a rotation for every block
* written. To avoid this problem, we allocate memory in chunks, copy
* the buffers into the chunk and write the chunk. CHUNKSIZE is the
* largest size I/O devices can handle.
* When the data is copied to the chunk, turn off the the B_LOCKED bit
* and brelse the buffer (which will move them to the LRU list). Add
* the B_CALL flag to the buffer header so we can count I/O's for the
* checkpoints and so we can release the allocated memory.
*
* XXX
* This should be removed if the new virtual memory system allows us to
* easily make the buffers contiguous in kernel memory and if that's
* fast enough.
*/
#define CHUNKSIZE MAXPHYS
if(devvp==NULL)
panic("devvp is NULL");
for (bpp = sp->bpp,i = nblocks; i;) {
cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
cbp->b_dev = i_dev;
cbp->b_flags |= B_ASYNC | B_BUSY;
cbp->b_bcount = 0;
#ifdef DIAGNOSTIC
if(datosn(fs,(*bpp)->b_blkno + ((*bpp)->b_bcount - 1)/DEV_BSIZE) != datosn(fs,cbp->b_blkno)) {
panic("lfs_writeseg: Segment overwrite");
}
#endif
s = splbio();
if(fs->lfs_iocount >= LFS_THROTTLE) {
tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
}
++fs->lfs_iocount;
#ifdef LFS_TRACK_IOS
for(j=0;j<LFS_THROTTLE;j++) {
if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
fs->lfs_pending[j] = cbp->b_blkno;
break;
}
}
#endif /* LFS_TRACK_IOS */
for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
bp = *bpp;
if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
break;
/*
* Fake buffers from the cleaner are marked as B_INVAL.
* We need to copy the data from user space rather than
* from the buffer indicated.
* XXX == what do I do on an error?
*/
if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
if (copyin(bp->b_saveaddr, p, bp->b_bcount))
panic("lfs_writeseg: copyin failed [2]");
} else
bcopy(bp->b_data, p, bp->b_bcount);
p += bp->b_bcount;
cbp->b_bcount += bp->b_bcount;
if (bp->b_flags & B_LOCKED) {
--locked_queue_count;
locked_queue_bytes -= bp->b_bufsize;
}
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
B_LOCKED | B_GATHERED);
vn = bp->b_vp;
if (bp->b_flags & B_CALL) {
/* if B_CALL, it was created with newbuf */
lfs_freebuf(bp);
} else {
bremfree(bp);
bp->b_flags |= B_DONE;
if(vn)
reassignbuf(bp, vn);
brelse(bp);
}
if(bp->b_flags & B_NEEDCOMMIT) { /* XXX */
bp->b_flags &= ~B_NEEDCOMMIT;
wakeup(bp);
}
bpp++;
/*
* If this is the last block for this vnode, but
* there are other blocks on its dirty list,
* set IN_MODIFIED/IN_CLEANING depending on what
* sort of block. Only do this for our mount point,
* not for, e.g., inode blocks that are attached to
* the devvp.
*/
if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
&& (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
vn->v_mount == fs->lfs_ivnode->v_mount)
{
ip = VTOI(vn);
#ifdef DEBUG_LFS
printf("lfs_writeseg: marking ino %d\n",ip->i_number);
#endif
if(!(ip->i_flag & (IN_CLEANING|IN_MODIFIED))) {
fs->lfs_uinodes++;
if(bp->b_flags & B_CALL)
ip->i_flag |= IN_CLEANING;
else
ip->i_flag |= IN_MODIFIED;
}
}
/* if(vn->v_dirtyblkhd.lh_first == NULL) */
wakeup(vn);
}
++cbp->b_vp->v_numoutput;
splx(s);
/*
* XXXX This is a gross and disgusting hack. Since these
* buffers are physically addressed, they hang off the
* device vnode (devvp). As a result, they have no way
* of getting to the LFS superblock or lfs structure to
* keep track of the number of I/O's pending. So, I am
* going to stuff the fs into the saveaddr field of
* the buffer (yuk).
*/
cbp->b_saveaddr = (caddr_t)fs;
vop_strategy_a.a_desc = VDESC(vop_strategy);
vop_strategy_a.a_bp = cbp;
(strategy)(&vop_strategy_a);
}
/*
* XXX
* Vinvalbuf can move locked buffers off the locked queue
* and we have no way of knowing about this. So, after
* doing a big write, we recalculate how many buffers are
* really still left on the locked queue.
*/
lfs_countlocked(&locked_queue_count,&locked_queue_bytes);
wakeup(&locked_queue_count);
if(lfs_dostats) {
++lfs_stats.psegwrites;
lfs_stats.blocktot += nblocks - 1;
if (fs->lfs_sp->seg_flags & SEGM_SYNC)
++lfs_stats.psyncwrites;
if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
++lfs_stats.pcleanwrites;
lfs_stats.cleanblocks += nblocks - 1;
}
}
return (lfs_initseg(fs) || do_again);
}
void
lfs_writesuper(fs, daddr)
struct lfs *fs;
daddr_t daddr;
{
struct buf *bp;
dev_t i_dev;
int (*strategy) __P((void *));
int s;
struct vop_strategy_args vop_strategy_a;
#ifdef LFS_CANNOT_ROLLFW
/*
* If we can write one superblock while another is in
* progress, we risk not having a complete checkpoint if we crash.
* So, block here if a superblock write is in progress.
*/
s = splbio();
while(fs->lfs_sbactive) {
tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
}
fs->lfs_sbactive = daddr;
splx(s);
#endif
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
/* Set timestamp of this version of the superblock */
fs->lfs_tstamp = time.tv_sec;
/* Checksum the superblock and copy it into a buffer. */
fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
bp->b_dev = i_dev;
bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
bp->b_iodone = lfs_supercallback;
/* XXX KS - same nasty hack as above */
bp->b_saveaddr = (caddr_t)fs;
vop_strategy_a.a_desc = VDESC(vop_strategy);
vop_strategy_a.a_bp = bp;
s = splbio();
++bp->b_vp->v_numoutput;
splx(s);
(strategy)(&vop_strategy_a);
}
/*
* Logical block number match routines used when traversing the dirty block
* chain.
*/
int
lfs_match_fake(fs, bp)
struct lfs *fs;
struct buf *bp;
{
return (bp->b_flags & B_CALL);
}
int
lfs_match_data(fs, bp)
struct lfs *fs;
struct buf *bp;
{
return (bp->b_lblkno >= 0);
}
int
lfs_match_indir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
}
int
lfs_match_dindir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
}
int
lfs_match_tindir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
}
/*
* XXX - The only buffers that are going to hit these functions are the
* segment write blocks, or the segment summaries, or the superblocks.
*
* All of the above are created by lfs_newbuf, and so do not need to be
* released via brelse.
*/
void
lfs_callback(bp)
struct buf *bp;
{
struct lfs *fs;
#ifdef LFS_TRACK_IOS
int j;
#endif
fs = (struct lfs *)bp->b_saveaddr;
#ifdef DIAGNOSTIC
if (fs->lfs_iocount == 0)
panic("lfs_callback: zero iocount\n");
#endif
if (--fs->lfs_iocount < LFS_THROTTLE)
wakeup(&fs->lfs_iocount);
#ifdef LFS_TRACK_IOS
for(j=0;j<LFS_THROTTLE;j++) {
if(fs->lfs_pending[j]==bp->b_blkno) {
fs->lfs_pending[j] = LFS_UNUSED_DADDR;
wakeup(&(fs->lfs_pending[j]));
break;
}
}
#endif /* LFS_TRACK_IOS */
lfs_freebuf(bp);
}
void
lfs_supercallback(bp)
struct buf *bp;
{
#ifdef LFS_CANNOT_ROLLFW
struct lfs *fs;
fs = (struct lfs *)bp->b_saveaddr;
fs->lfs_sbactive=NULL;
wakeup(&fs->lfs_sbactive);
#endif
lfs_freebuf(bp);
}
/*
* Shellsort (diminishing increment sort) from Data Structures and
* Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
* see also Knuth Vol. 3, page 84. The increments are selected from
* formula (8), page 95. Roughly O(N^3/2).
*/
/*
* This is our own private copy of shellsort because we want to sort
* two parallel arrays (the array of buffer pointers and the array of
* logical block numbers) simultaneously. Note that we cast the array
* of logical block numbers to a unsigned in this routine so that the
* negative block numbers (meta data blocks) sort AFTER the data blocks.
*/
void
lfs_shellsort(bp_array, lb_array, nmemb)
struct buf **bp_array;
ufs_daddr_t *lb_array;
register int nmemb;
{
static int __rsshell_increments[] = { 4, 1, 0 };
register int incr, *incrp, t1, t2;
struct buf *bp_temp;
u_long lb_temp;
for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
for (t1 = incr; t1 < nmemb; ++t1)
for (t2 = t1 - incr; t2 >= 0;)
if (lb_array[t2] > lb_array[t2 + incr]) {
lb_temp = lb_array[t2];
lb_array[t2] = lb_array[t2 + incr];
lb_array[t2 + incr] = lb_temp;
bp_temp = bp_array[t2];
bp_array[t2] = bp_array[t2 + incr];
bp_array[t2 + incr] = bp_temp;
t2 -= incr;
} else
break;
}
/*
* Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
*/
int
lfs_vref(vp)
register struct vnode *vp;
{
/*
* If we return 1 here during a flush, we risk vinvalbuf() not
* being able to flush all of the pages from this vnode, which
* will cause it to panic. So, return 0 if a flush is in progress.
*/
if (vp->v_flag & VXLOCK) {
if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
return 0;
}
return(1);
}
return (vget(vp, 0));
}
/*
* This is vrele except that we do not want to VOP_INACTIVE this vnode. We
* inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
*/
void
lfs_vunref(vp)
register struct vnode *vp;
{
/*
* Analogous to lfs_vref, if the node is flushing, fake it.
*/
if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
return;
}
simple_lock(&vp->v_interlock);
#ifdef DIAGNOSTIC
if(vp->v_usecount<=0) {
printf("lfs_vunref: flags are 0x%lx\n", vp->v_flag);
printf("lfs_vunref: usecount = %ld\n", vp->v_usecount);
panic("lfs_vunref: v_usecount<0");
}
#endif
vp->v_usecount--;
if (vp->v_usecount > 0) {
simple_unlock(&vp->v_interlock);
return;
}
#ifdef DIAGNOSTIC
if(VOP_ISLOCKED(vp))
panic("lfs_vunref: vnode locked");
#endif
/*
* insert at tail of LRU list
*/
simple_lock(&vnode_free_list_slock);
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
simple_unlock(&vp->v_interlock);
}
/*
* We use this when we have vnodes that were loaded in solely for cleaning.
* There is no reason to believe that these vnodes will be referenced again
* soon, since the cleaning process is unrelated to normal filesystem
* activity. Putting cleaned vnodes at the tail of the list has the effect
* of flushing the vnode LRU. So, put vnodes that were loaded only for
* cleaning at the head of the list, instead.
*/
void
lfs_vunref_head(vp)
register struct vnode *vp;
{
simple_lock(&vp->v_interlock);
#ifdef DIAGNOSTIC
if(vp->v_usecount==0) {
panic("lfs_vunref: v_usecount<0");
}
#endif
vp->v_usecount--;
if (vp->v_usecount > 0) {
simple_unlock(&vp->v_interlock);
return;
}
#ifdef DIAGNOSTIC
if(VOP_ISLOCKED(vp))
panic("lfs_vunref_head: vnode locked");
#endif
/*
* insert at head of LRU list
*/
simple_lock(&vnode_free_list_slock);
TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
simple_unlock(&vp->v_interlock);
}