itojun 118d2b1d4f IPv6 kernel code, based on KAME/NetBSD 1.4, SNAP kit 19990628.
(Sorry for a big commit, I can't separate this into several pieces...)
Pls check sys/netinet6/TODO and sys/netinet6/IMPLEMENTATION for details.

- sys/kern: do not assume single mbuf, accept chained mbuf on passing
  data from userland to kernel (or other way round).
- "midway" ATM card: ATM PVC pseudo device support, like those done in ALTQ
  package (ftp://ftp.csl.sony.co.jp/pub/kjc/).
- sys/netinet/tcp*: IPv4/v6 dual stack tcp support.
- sys/netinet/{ip6,icmp6}.h, sys/net/pfkeyv2.h: IETF document assumes those
  file to be there so we patch it up.
- sys/netinet: IPsec additions are here and there.
- sys/netinet6/*: most of IPv6 code sits here.
- sys/netkey: IPsec key management code
- dev/pci/pcidevs: regen

In my understanding no code here is subject to export control so it
should be safe.
1999-07-01 08:12:45 +00:00

977 lines
26 KiB
C

/* $NetBSD: in.c,v 1.48 1999/07/01 08:12:49 itojun Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Public Access Networks Corporation ("Panix"). It was developed under
* contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in.c 8.4 (Berkeley) 1/9/95
*/
#include "opt_inet.h"
#include "opt_inet_conf.h"
#include "opt_mrouting.h"
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include "gif.h"
#if NGIF > 0
#include <net/if_gif.h>
#endif
#include <net/if_ether.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/if_inarp.h>
#include <netinet/ip_mroute.h>
#include <netinet/igmp_var.h>
#ifdef INET
static int in_mask2len __P((struct in_addr *));
static void in_len2mask __P((struct in_addr *, int));
static int in_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
struct ifnet *, struct proc *));
#ifndef SUBNETSARELOCAL
#define SUBNETSARELOCAL 1
#endif
#ifndef HOSTZEROBROADCAST
#define HOSTZEROBROADCAST 1
#endif
int subnetsarelocal = SUBNETSARELOCAL;
int hostzeroisbroadcast = HOSTZEROBROADCAST;
/*
* Return 1 if an internet address is for a ``local'' host
* (one to which we have a connection). If subnetsarelocal
* is true, this includes other subnets of the local net.
* Otherwise, it includes only the directly-connected (sub)nets.
*/
int
in_localaddr(in)
struct in_addr in;
{
register struct in_ifaddr *ia;
if (subnetsarelocal) {
for (ia = in_ifaddr.tqh_first; ia != 0; ia = ia->ia_list.tqe_next)
if ((in.s_addr & ia->ia_netmask) == ia->ia_net)
return (1);
} else {
for (ia = in_ifaddr.tqh_first; ia != 0; ia = ia->ia_list.tqe_next)
if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet)
return (1);
}
return (0);
}
/*
* Determine whether an IP address is in a reserved set of addresses
* that may not be forwarded, or whether datagrams to that destination
* may be forwarded.
*/
int
in_canforward(in)
struct in_addr in;
{
register u_int32_t net;
if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr))
return (0);
if (IN_CLASSA(in.s_addr)) {
net = in.s_addr & IN_CLASSA_NET;
if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT))
return (0);
}
return (1);
}
/*
* Trim a mask in a sockaddr
*/
void
in_socktrim(ap)
struct sockaddr_in *ap;
{
register char *cplim = (char *) &ap->sin_addr;
register char *cp = (char *) (&ap->sin_addr + 1);
ap->sin_len = 0;
while (--cp >= cplim)
if (*cp) {
(ap)->sin_len = cp - (char *) (ap) + 1;
break;
}
}
/*
* Routine to take an Internet address and convert into a
* "dotted quad" representation for printing.
*/
const char *
in_fmtaddr(addr)
struct in_addr addr;
{
static char buf[sizeof("123.456.789.123")];
addr.s_addr = ntohl(addr.s_addr);
sprintf(buf, "%d.%d.%d.%d",
(addr.s_addr >> 24) & 0xFF,
(addr.s_addr >> 16) & 0xFF,
(addr.s_addr >> 8) & 0xFF,
(addr.s_addr >> 0) & 0xFF);
return buf;
}
/*
* Maintain the "in_maxmtu" variable, which is the largest
* mtu for non-local interfaces with AF_INET addresses assigned
* to them that are up.
*/
unsigned long in_maxmtu;
void
in_setmaxmtu()
{
register struct in_ifaddr *ia;
register struct ifnet *ifp;
unsigned long maxmtu = 0;
for (ia = in_ifaddr.tqh_first; ia != 0; ia = ia->ia_list.tqe_next) {
if ((ifp = ia->ia_ifp) == 0)
continue;
if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP)
continue;
if (ifp->if_mtu > maxmtu)
maxmtu = ifp->if_mtu;
}
if (maxmtu)
in_maxmtu = maxmtu;
}
static int
in_mask2len(mask)
struct in_addr *mask;
{
int x, y;
u_char *p;
p = (u_char *)mask;
for (x = 0; x < sizeof(*mask); x++) {
if (p[x] != 0xff)
break;
}
y = 0;
if (x < sizeof(*mask)) {
for (y = 0; y < 8; y++) {
if ((p[x] & (0x80 >> y)) == 0)
break;
}
}
return x * 8 + y;
}
static void
in_len2mask(mask, len)
struct in_addr *mask;
int len;
{
int i;
u_char *p;
p = (u_char *)mask;
bzero(mask, sizeof(*mask));
for (i = 0; i < len / 8; i++)
p[i] = 0xff;
if (len % 8)
p[i] = (0xff00 >> (len % 8)) & 0xff;
}
int in_interfaces; /* number of external internet interfaces */
/*
* Generic internet control operations (ioctl's).
* Ifp is 0 if not an interface-specific ioctl.
*/
/* ARGSUSED */
int
in_control(so, cmd, data, ifp, p)
struct socket *so;
u_long cmd;
caddr_t data;
register struct ifnet *ifp;
struct proc *p;
{
register struct ifreq *ifr = (struct ifreq *)data;
register struct in_ifaddr *ia = 0;
struct in_aliasreq *ifra = (struct in_aliasreq *)data;
struct sockaddr_in oldaddr;
int error, hostIsNew, maskIsNew;
#if NGIF > 0
if (ifp && ifp->if_type == IFT_GIF) {
switch (cmd) {
case SIOCSIFPHYADDR:
if (p == 0 || (error = suser(p->p_ucred, &p->p_acflag)))
return(EPERM);
case SIOCGIFPSRCADDR:
case SIOCGIFPDSTADDR:
return gif_ioctl(ifp, cmd, data);
}
}
#endif
switch (cmd) {
case SIOCALIFADDR:
case SIOCDLIFADDR:
if (p == 0 || (error = suser(p->p_ucred, &p->p_acflag)))
return(EPERM);
/*fall through*/
case SIOCGLIFADDR:
if (!ifp)
return EINVAL;
return in_lifaddr_ioctl(so, cmd, data, ifp, p);
}
/*
* Find address for this interface, if it exists.
*/
if (ifp)
IFP_TO_IA(ifp, ia);
switch (cmd) {
case SIOCAIFADDR:
case SIOCDIFADDR:
case SIOCGIFALIAS:
if (ifra->ifra_addr.sin_family == AF_INET)
for (ia = IN_IFADDR_HASH(ifra->ifra_addr.sin_addr.s_addr).lh_first;
ia != 0; ia = ia->ia_hash.le_next) {
if (ia->ia_ifp == ifp &&
in_hosteq(ia->ia_addr.sin_addr,
ifra->ifra_addr.sin_addr))
break;
}
if (cmd == SIOCDIFADDR && ia == 0)
return (EADDRNOTAVAIL);
/* FALLTHROUGH */
case SIOCSIFADDR:
case SIOCSIFNETMASK:
case SIOCSIFDSTADDR:
if (ifp == 0)
panic("in_control");
if (cmd == SIOCGIFALIAS)
break;
if (p == 0 || (error = suser(p->p_ucred, &p->p_acflag)))
return (EPERM);
if (ia == 0) {
MALLOC(ia, struct in_ifaddr *, sizeof(*ia),
M_IFADDR, M_WAITOK);
if (ia == 0)
return (ENOBUFS);
bzero((caddr_t)ia, sizeof *ia);
TAILQ_INSERT_TAIL(&in_ifaddr, ia, ia_list);
TAILQ_INSERT_TAIL(&ifp->if_addrlist, (struct ifaddr *)ia,
ifa_list);
ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask);
ia->ia_sockmask.sin_len = 8;
if (ifp->if_flags & IFF_BROADCAST) {
ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr);
ia->ia_broadaddr.sin_family = AF_INET;
}
ia->ia_ifp = ifp;
LIST_INIT(&ia->ia_multiaddrs);
if ((ifp->if_flags & IFF_LOOPBACK) == 0)
in_interfaces++;
}
break;
case SIOCSIFBRDADDR:
if (p == 0 || (error = suser(p->p_ucred, &p->p_acflag)))
return (EPERM);
/* FALLTHROUGH */
case SIOCGIFADDR:
case SIOCGIFNETMASK:
case SIOCGIFDSTADDR:
case SIOCGIFBRDADDR:
if (ia == 0)
return (EADDRNOTAVAIL);
break;
}
switch (cmd) {
case SIOCGIFADDR:
*satosin(&ifr->ifr_addr) = ia->ia_addr;
break;
case SIOCGIFBRDADDR:
if ((ifp->if_flags & IFF_BROADCAST) == 0)
return (EINVAL);
*satosin(&ifr->ifr_dstaddr) = ia->ia_broadaddr;
break;
case SIOCGIFDSTADDR:
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
return (EINVAL);
*satosin(&ifr->ifr_dstaddr) = ia->ia_dstaddr;
break;
case SIOCGIFNETMASK:
*satosin(&ifr->ifr_addr) = ia->ia_sockmask;
break;
case SIOCSIFDSTADDR:
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
return (EINVAL);
oldaddr = ia->ia_dstaddr;
ia->ia_dstaddr = *satosin(&ifr->ifr_dstaddr);
if (ifp->if_ioctl && (error = (*ifp->if_ioctl)
(ifp, SIOCSIFDSTADDR, (caddr_t)ia))) {
ia->ia_dstaddr = oldaddr;
return (error);
}
if (ia->ia_flags & IFA_ROUTE) {
ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr);
rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr);
rtinit(&(ia->ia_ifa), (int)RTM_ADD, RTF_HOST|RTF_UP);
}
break;
case SIOCSIFBRDADDR:
if ((ifp->if_flags & IFF_BROADCAST) == 0)
return (EINVAL);
ia->ia_broadaddr = *satosin(&ifr->ifr_broadaddr);
break;
case SIOCSIFADDR:
return (in_ifinit(ifp, ia, satosin(&ifr->ifr_addr), 1));
case SIOCSIFNETMASK:
ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr =
ifra->ifra_addr.sin_addr.s_addr;
break;
case SIOCAIFADDR:
maskIsNew = 0;
hostIsNew = 1;
error = 0;
if (ia->ia_addr.sin_family == AF_INET) {
if (ifra->ifra_addr.sin_len == 0) {
ifra->ifra_addr = ia->ia_addr;
hostIsNew = 0;
} else if (in_hosteq(ia->ia_addr.sin_addr, ifra->ifra_addr.sin_addr))
hostIsNew = 0;
}
if (ifra->ifra_mask.sin_len) {
in_ifscrub(ifp, ia);
ia->ia_sockmask = ifra->ifra_mask;
ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr;
maskIsNew = 1;
}
if ((ifp->if_flags & IFF_POINTOPOINT) &&
(ifra->ifra_dstaddr.sin_family == AF_INET)) {
in_ifscrub(ifp, ia);
ia->ia_dstaddr = ifra->ifra_dstaddr;
maskIsNew = 1; /* We lie; but the effect's the same */
}
if (ifra->ifra_addr.sin_family == AF_INET &&
(hostIsNew || maskIsNew))
error = in_ifinit(ifp, ia, &ifra->ifra_addr, 0);
if ((ifp->if_flags & IFF_BROADCAST) &&
(ifra->ifra_broadaddr.sin_family == AF_INET))
ia->ia_broadaddr = ifra->ifra_broadaddr;
return (error);
case SIOCGIFALIAS:
ifra->ifra_mask = ia->ia_sockmask;
if ((ifp->if_flags & IFF_POINTOPOINT) &&
(ia->ia_dstaddr.sin_family == AF_INET))
ifra->ifra_dstaddr = ia->ia_dstaddr;
else if ((ifp->if_flags & IFF_BROADCAST) &&
(ia->ia_broadaddr.sin_family == AF_INET))
ifra->ifra_broadaddr = ia->ia_broadaddr;
else
bzero(&ifra->ifra_broadaddr,
sizeof(ifra->ifra_broadaddr));
return 0;
case SIOCDIFADDR:
in_ifscrub(ifp, ia);
LIST_REMOVE(ia, ia_hash);
TAILQ_REMOVE(&ifp->if_addrlist, (struct ifaddr *)ia, ifa_list);
TAILQ_REMOVE(&in_ifaddr, ia, ia_list);
IFAFREE((&ia->ia_ifa));
in_setmaxmtu();
break;
#ifdef MROUTING
case SIOCGETVIFCNT:
case SIOCGETSGCNT:
return (mrt_ioctl(so, cmd, data));
#endif /* MROUTING */
default:
if (ifp == 0 || ifp->if_ioctl == 0)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
in_setmaxmtu();
return(error);
}
return (0);
}
/*
* SIOC[GAD]LIFADDR.
* SIOCGLIFADDR: get first address. (???)
* SIOCGLIFADDR with IFLR_PREFIX:
* get first address that matches the specified prefix.
* SIOCALIFADDR: add the specified address.
* SIOCALIFADDR with IFLR_PREFIX:
* EINVAL since we can't deduce hostid part of the address.
* SIOCDLIFADDR: delete the specified address.
* SIOCDLIFADDR with IFLR_PREFIX:
* delete the first address that matches the specified prefix.
* return values:
* EINVAL on invalid parameters
* EADDRNOTAVAIL on prefix match failed/specified address not found
* other values may be returned from in_ioctl()
*/
static int
in_lifaddr_ioctl(so, cmd, data, ifp, p)
struct socket *so;
u_long cmd;
caddr_t data;
struct ifnet *ifp;
struct proc *p;
{
struct if_laddrreq *iflr = (struct if_laddrreq *)data;
struct ifaddr *ifa;
/* sanity checks */
if (!data || !ifp) {
panic("invalid argument to in_lifaddr_ioctl");
/*NOTRECHED*/
}
switch (cmd) {
case SIOCGLIFADDR:
/* address must be specified on GET with IFLR_PREFIX */
if ((iflr->flags & IFLR_PREFIX) == 0)
break;
/*FALLTHROUGH*/
case SIOCALIFADDR:
case SIOCDLIFADDR:
/* address must be specified on ADD and DELETE */
if (iflr->addr.__ss_family != AF_INET)
return EINVAL;
if (iflr->addr.__ss_len != sizeof(struct sockaddr_in))
return EINVAL;
/* XXX need improvement */
if (iflr->dstaddr.__ss_family
&& iflr->dstaddr.__ss_family != AF_INET)
return EINVAL;
if (iflr->dstaddr.__ss_family
&& iflr->dstaddr.__ss_len != sizeof(struct sockaddr_in))
return EINVAL;
break;
default: /*shouldn't happen*/
#if 0
panic("invalid cmd to in_lifaddr_ioctl");
/*NOTREACHED*/
#else
return EOPNOTSUPP;
#endif
}
if (sizeof(struct in_addr) * 8 < iflr->prefixlen)
return EINVAL;
switch (cmd) {
case SIOCALIFADDR:
{
struct in_aliasreq ifra;
if (iflr->flags & IFLR_PREFIX)
return EINVAL;
/* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
bzero(&ifra, sizeof(ifra));
bcopy(iflr->iflr_name, ifra.ifra_name,
sizeof(ifra.ifra_name));
bcopy(&iflr->addr, &ifra.ifra_addr, iflr->addr.__ss_len);
if (iflr->dstaddr.__ss_family) { /*XXX*/
bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
iflr->dstaddr.__ss_len);
}
ifra.ifra_mask.sin_family = AF_INET;
ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in);
in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen);
return in_control(so, SIOCAIFADDR, (caddr_t)&ifra, ifp, p);
}
case SIOCGLIFADDR:
case SIOCDLIFADDR:
{
struct in_ifaddr *ia;
struct in_addr mask, candidate, match;
struct sockaddr_in *sin;
int cmp;
bzero(&mask, sizeof(mask));
if (iflr->flags & IFLR_PREFIX) {
/* lookup a prefix rather than address. */
in_len2mask(&mask, iflr->prefixlen);
sin = (struct sockaddr_in *)&iflr->addr;
match.s_addr = sin->sin_addr.s_addr;
match.s_addr &= mask.s_addr;
/* if you set extra bits, that's wrong */
if (match.s_addr != sin->sin_addr.s_addr)
return EINVAL;
cmp = 1;
} else {
if (cmd == SIOCGLIFADDR) {
/* on getting an address, take the 1st match */
cmp = 0; /*XXX*/
} else {
/* on deleting an address, do exact match */
in_len2mask(&mask, 32);
sin = (struct sockaddr_in *)&iflr->addr;
match.s_addr = sin->sin_addr.s_addr;
cmp = 1;
}
}
for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next) {
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
if (!cmp)
break;
candidate.s_addr = ((struct sockaddr_in *)&ifa->ifa_addr)->sin_addr.s_addr;
candidate.s_addr &= mask.s_addr;
if (candidate.s_addr == match.s_addr)
break;
}
if (!ifa)
return EADDRNOTAVAIL;
ia = (struct in_ifaddr *)ifa;
if (cmd == SIOCGLIFADDR) {
/* fill in the if_laddrreq structure */
bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin_len);
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
ia->ia_dstaddr.sin_len);
} else
bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
iflr->prefixlen =
in_mask2len(&ia->ia_sockmask.sin_addr);
iflr->flags = 0; /*XXX*/
return 0;
} else {
struct in_aliasreq ifra;
/* fill in_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
bzero(&ifra, sizeof(ifra));
bcopy(iflr->iflr_name, ifra.ifra_name,
sizeof(ifra.ifra_name));
bcopy(&ia->ia_addr, &ifra.ifra_addr,
ia->ia_addr.sin_len);
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
ia->ia_dstaddr.sin_len);
}
bcopy(&ia->ia_sockmask, &ifra.ifra_dstaddr,
ia->ia_sockmask.sin_len);
return in_control(so, SIOCDIFADDR, (caddr_t)&ifra,
ifp, p);
}
}
}
return EOPNOTSUPP; /*just for safety*/
}
/*
* Delete any existing route for an interface.
*/
void
in_ifscrub(ifp, ia)
register struct ifnet *ifp;
register struct in_ifaddr *ia;
{
if ((ia->ia_flags & IFA_ROUTE) == 0)
return;
if (ifp->if_flags & (IFF_LOOPBACK|IFF_POINTOPOINT))
rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
else
rtinit(&(ia->ia_ifa), (int)RTM_DELETE, 0);
ia->ia_flags &= ~IFA_ROUTE;
}
/*
* Initialize an interface's internet address
* and routing table entry.
*/
int
in_ifinit(ifp, ia, sin, scrub)
register struct ifnet *ifp;
register struct in_ifaddr *ia;
struct sockaddr_in *sin;
int scrub;
{
register u_int32_t i = sin->sin_addr.s_addr;
struct sockaddr_in oldaddr;
int s = splimp(), flags = RTF_UP, error;
/*
* Set up new addresses.
*/
oldaddr = ia->ia_addr;
if (ia->ia_addr.sin_family == AF_INET)
LIST_REMOVE(ia, ia_hash);
ia->ia_addr = *sin;
LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash);
/*
* Give the interface a chance to initialize
* if this is its first address,
* and to validate the address if necessary.
*/
if (ifp->if_ioctl &&
(error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia)))
goto bad;
splx(s);
if (scrub) {
ia->ia_ifa.ifa_addr = sintosa(&oldaddr);
in_ifscrub(ifp, ia);
ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr);
}
if (IN_CLASSA(i))
ia->ia_netmask = IN_CLASSA_NET;
else if (IN_CLASSB(i))
ia->ia_netmask = IN_CLASSB_NET;
else
ia->ia_netmask = IN_CLASSC_NET;
/*
* The subnet mask usually includes at least the standard network part,
* but may may be smaller in the case of supernetting.
* If it is set, we believe it.
*/
if (ia->ia_subnetmask == 0) {
ia->ia_subnetmask = ia->ia_netmask;
ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask;
} else
ia->ia_netmask &= ia->ia_subnetmask;
ia->ia_net = i & ia->ia_netmask;
ia->ia_subnet = i & ia->ia_subnetmask;
in_socktrim(&ia->ia_sockmask);
/* re-calculate the "in_maxmtu" value */
in_setmaxmtu();
/*
* Add route for the network.
*/
ia->ia_ifa.ifa_metric = ifp->if_metric;
if (ifp->if_flags & IFF_BROADCAST) {
ia->ia_broadaddr.sin_addr.s_addr =
ia->ia_subnet | ~ia->ia_subnetmask;
ia->ia_netbroadcast.s_addr =
ia->ia_net | ~ia->ia_netmask;
} else if (ifp->if_flags & IFF_LOOPBACK) {
ia->ia_ifa.ifa_dstaddr = ia->ia_ifa.ifa_addr;
flags |= RTF_HOST;
} else if (ifp->if_flags & IFF_POINTOPOINT) {
if (ia->ia_dstaddr.sin_family != AF_INET)
return (0);
flags |= RTF_HOST;
}
error = rtinit(&ia->ia_ifa, (int)RTM_ADD, flags);
if (!error)
ia->ia_flags |= IFA_ROUTE;
/*
* If the interface supports multicast, join the "all hosts"
* multicast group on that interface.
*/
if (ifp->if_flags & IFF_MULTICAST) {
struct in_addr addr;
addr.s_addr = INADDR_ALLHOSTS_GROUP;
in_addmulti(&addr, ifp);
}
return (error);
bad:
splx(s);
LIST_REMOVE(ia, ia_hash);
ia->ia_addr = oldaddr;
if (ia->ia_addr.sin_family == AF_INET)
LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr),
ia, ia_hash);
return (error);
}
/*
* Return 1 if the address might be a local broadcast address.
*/
int
in_broadcast(in, ifp)
struct in_addr in;
struct ifnet *ifp;
{
register struct ifaddr *ifa;
if (in.s_addr == INADDR_BROADCAST ||
in_nullhost(in))
return 1;
if ((ifp->if_flags & IFF_BROADCAST) == 0)
return 0;
/*
* Look through the list of addresses for a match
* with a broadcast address.
*/
#define ia (ifatoia(ifa))
for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
if (ifa->ifa_addr->sa_family == AF_INET &&
(in_hosteq(in, ia->ia_broadaddr.sin_addr) ||
in_hosteq(in, ia->ia_netbroadcast) ||
(hostzeroisbroadcast &&
/*
* Check for old-style (host 0) broadcast.
*/
(in.s_addr == ia->ia_subnet ||
in.s_addr == ia->ia_net))))
return 1;
return (0);
#undef ia
}
/*
* Add an address to the list of IP multicast addresses for a given interface.
*/
struct in_multi *
in_addmulti(ap, ifp)
register struct in_addr *ap;
register struct ifnet *ifp;
{
register struct in_multi *inm;
struct ifreq ifr;
struct in_ifaddr *ia;
int s = splsoftnet();
/*
* See if address already in list.
*/
IN_LOOKUP_MULTI(*ap, ifp, inm);
if (inm != NULL) {
/*
* Found it; just increment the reference count.
*/
++inm->inm_refcount;
} else {
/*
* New address; allocate a new multicast record
* and link it into the interface's multicast list.
*/
inm = (struct in_multi *)malloc(sizeof(*inm),
M_IPMADDR, M_NOWAIT);
if (inm == NULL) {
splx(s);
return (NULL);
}
inm->inm_addr = *ap;
inm->inm_ifp = ifp;
inm->inm_refcount = 1;
IFP_TO_IA(ifp, ia);
if (ia == NULL) {
free(inm, M_IPMADDR);
splx(s);
return (NULL);
}
inm->inm_ia = ia;
LIST_INSERT_HEAD(&ia->ia_multiaddrs, inm, inm_list);
/*
* Ask the network driver to update its multicast reception
* filter appropriately for the new address.
*/
satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
satosin(&ifr.ifr_addr)->sin_addr = *ap;
if ((ifp->if_ioctl == NULL) ||
(*ifp->if_ioctl)(ifp, SIOCADDMULTI,(caddr_t)&ifr) != 0) {
LIST_REMOVE(inm, inm_list);
free(inm, M_IPMADDR);
splx(s);
return (NULL);
}
/*
* Let IGMP know that we have joined a new IP multicast group.
*/
igmp_joingroup(inm);
}
splx(s);
return (inm);
}
/*
* Delete a multicast address record.
*/
void
in_delmulti(inm)
register struct in_multi *inm;
{
struct ifreq ifr;
int s = splsoftnet();
if (--inm->inm_refcount == 0) {
/*
* No remaining claims to this record; let IGMP know that
* we are leaving the multicast group.
*/
igmp_leavegroup(inm);
/*
* Unlink from list.
*/
LIST_REMOVE(inm, inm_list);
/*
* Notify the network driver to update its multicast reception
* filter.
*/
satosin(&ifr.ifr_addr)->sin_family = AF_INET;
satosin(&ifr.ifr_addr)->sin_addr = inm->inm_addr;
(*inm->inm_ifp->if_ioctl)(inm->inm_ifp, SIOCDELMULTI,
(caddr_t)&ifr);
free(inm, M_IPMADDR);
}
splx(s);
}
#endif