f2caacc717
UVM was written by chuck cranor <chuck@maria.wustl.edu>, with some minor portions derived from the old Mach code. i provided some help getting swap and paging working, and other bug fixes/ideas. chuck silvers <chuq@chuq.com> also provided some other fixes. this is the UVM kernel code portion. this will be KNF'd shortly. :-)
1298 lines
34 KiB
C
1298 lines
34 KiB
C
/* $Id: uvm_amap.c,v 1.1.1.1 1998/02/05 06:25:10 mrg Exp $ */
|
|
|
|
/*
|
|
* XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
|
|
* >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
|
|
*/
|
|
/*
|
|
*
|
|
* Copyright (c) 1997 Charles D. Cranor and Washington University.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Charles D. Cranor and
|
|
* Washington University.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* uvm_amap.c: uvm amap ops
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_kern.h>
|
|
|
|
#include <sys/syscallargs.h>
|
|
|
|
#define UVM_AMAP /* pull in uvm_amap.h functions */
|
|
#include <uvm/uvm.h>
|
|
#include <uvm/uvm_swap.h>
|
|
|
|
/*
|
|
* local functions
|
|
*/
|
|
|
|
static struct vm_amap *amap_alloc1 __P((int, int, int));
|
|
|
|
#ifdef VM_AMAP_PPREF
|
|
/*
|
|
* what is ppref? ppref is an _optional_ amap feature which is used
|
|
* to keep track of reference counts on a per-page basis. it is enabled
|
|
* when VM_AMAP_PPREF is defined.
|
|
*
|
|
* when enabled, an array of ints is allocated for the pprefs. this
|
|
* array is allocated only when a partial reference is added to the
|
|
* map (either by unmapping part of the amap, or gaining a reference
|
|
* to only a part of an amap). if the malloc of the array fails
|
|
* (M_NOWAIT), then we set the array pointer to PPREF_NONE to indicate
|
|
* that we tried to do ppref's but couldn't alloc the array so just
|
|
* give up (after all, this is an optional feature!).
|
|
*
|
|
* the array is divided into page sized "chunks." for chunks of length 1,
|
|
* the chunk reference count plus one is stored in that chunk's slot.
|
|
* for chunks of length > 1 the first slot contains (the reference count
|
|
* plus one) * -1. [the negative value indicates that the length is
|
|
* greater than one.] the second slot of the chunk contains the length
|
|
* of the chunk. here is an example:
|
|
*
|
|
* actual REFS: 2 2 2 2 3 1 1 0 0 0 4 4 0 1 1 1
|
|
* ppref: -3 4 x x 4 -2 2 -1 3 x -5 2 1 -2 3 x
|
|
* <----------><-><----><-------><----><-><------->
|
|
* (x = don't care)
|
|
*
|
|
* this allows us to allow one int to contain the ref count for the whole
|
|
* chunk. note that the "plus one" part is needed because a reference
|
|
* count of zero is neither positive or negative (need a way to tell
|
|
* if we've got one zero or a bunch of them).
|
|
*
|
|
* here are some in-line functions to help us.
|
|
*/
|
|
|
|
static __inline void pp_getreflen __P((int *, int, int *, int *));
|
|
static __inline void pp_setreflen __P((int *, int, int, int));
|
|
|
|
/*
|
|
* pp_getreflen: get the reference and length for a specific offset
|
|
*/
|
|
|
|
static __inline void pp_getreflen(ppref, offset, refp, lenp)
|
|
|
|
int *ppref, offset, *refp, *lenp;
|
|
|
|
{
|
|
if (ppref[offset] > 0) { /* chunk size must be 1 */
|
|
*refp = ppref[offset] - 1; /* don't forget to adjust */
|
|
*lenp = 1;
|
|
} else {
|
|
*refp = (ppref[offset] * -1) - 1;
|
|
*lenp = ppref[offset+1];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pp_setreflen: set the reference and length for a specific offset
|
|
*/
|
|
|
|
static __inline void pp_setreflen(ppref, offset, ref, len)
|
|
|
|
int *ppref, offset, ref, len;
|
|
|
|
{
|
|
if (len == 1) {
|
|
ppref[offset] = ref + 1;
|
|
} else {
|
|
ppref[offset] = (ref + 1) * -1;
|
|
ppref[offset+1] = len;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* amap_alloc1: internal function that allocates an amap, but does not
|
|
* init the overlay.
|
|
*
|
|
* => lock on returned amap is init'd
|
|
*/
|
|
|
|
static inline struct vm_amap *amap_alloc1(slots, padslots, waitf)
|
|
|
|
int slots, padslots, waitf;
|
|
|
|
{
|
|
struct vm_amap *amap;
|
|
int totalslots = slots + padslots;
|
|
|
|
MALLOC(amap, struct vm_amap *, sizeof(*amap), M_TEMP, waitf);
|
|
if (amap == NULL)
|
|
return(NULL);
|
|
|
|
simple_lock_init(&amap->am_l);
|
|
amap->am_ref = 1;
|
|
amap->am_flags = 0;
|
|
#ifdef VM_AMAP_PPREF
|
|
amap->am_ppref = NULL;
|
|
#endif
|
|
amap->am_maxslot = totalslots;
|
|
amap->am_nslot = slots;
|
|
amap->am_nused = 0;
|
|
MALLOC(amap->am_slots, int *, totalslots * sizeof(int), M_TEMP, waitf);
|
|
if (amap->am_slots) {
|
|
MALLOC(amap->am_bckptr, int *, totalslots * sizeof(int), M_TEMP, waitf);
|
|
if (amap->am_bckptr) {
|
|
MALLOC(amap->am_anon, struct vm_anon **,
|
|
totalslots * sizeof(struct vm_anon *), M_TEMP, waitf);
|
|
}
|
|
}
|
|
|
|
if (amap->am_anon)
|
|
return(amap);
|
|
|
|
if (amap->am_slots) {
|
|
FREE(amap->am_slots, M_TEMP);
|
|
if (amap->am_bckptr)
|
|
FREE(amap->am_bckptr, M_TEMP);
|
|
}
|
|
FREE(amap, M_TEMP);
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* amap_alloc: allocate an amap to manage "sz" bytes of anonymous VM
|
|
*
|
|
* => caller should ensure sz is a multiple of PAGE_SIZE
|
|
* => reference count to new amap is set to one
|
|
* => new amap is returned unlocked
|
|
*/
|
|
|
|
struct vm_amap *amap_alloc(sz, padsz, waitf)
|
|
|
|
vm_offset_t sz, padsz;
|
|
int waitf;
|
|
|
|
{
|
|
struct vm_amap *amap;
|
|
int slots, padslots;
|
|
UVMHIST_FUNC("amap_alloc"); UVMHIST_CALLED(maphist);
|
|
|
|
AMAP_B2SLOT(slots, sz); /* load slots */
|
|
AMAP_B2SLOT(padslots, padsz);
|
|
|
|
amap = amap_alloc1(slots, padslots, waitf);
|
|
if (amap)
|
|
bzero(amap->am_anon, (slots + padslots) * sizeof(struct vm_anon *));
|
|
|
|
UVMHIST_LOG(maphist,"<- done, amap = 0x%x, sz=%d", amap, sz, 0, 0);
|
|
return(amap);
|
|
}
|
|
|
|
|
|
/*
|
|
* amap_free: free an amap
|
|
*
|
|
* => there should not be any valid references to the amap, so locking
|
|
* of the amap being freed is not an issue (doesn't matter).
|
|
* => the amap is "gone" after we are done with it.
|
|
*/
|
|
|
|
void amap_free(amap)
|
|
|
|
struct vm_amap *amap;
|
|
|
|
{
|
|
UVMHIST_FUNC("amap_free"); UVMHIST_CALLED(maphist);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (amap->am_ref || amap->am_nused)
|
|
panic("amap_free");
|
|
#endif
|
|
|
|
FREE(amap->am_slots, M_TEMP);
|
|
FREE(amap->am_bckptr, M_TEMP);
|
|
FREE(amap->am_anon, M_TEMP);
|
|
#ifdef VM_AMAP_PPREF
|
|
if (amap->am_ppref && amap->am_ppref != PPREF_NONE)
|
|
FREE(amap->am_ppref, M_TEMP);
|
|
#endif
|
|
FREE(amap, M_TEMP);
|
|
|
|
UVMHIST_LOG(maphist,"<- done, freed amap = 0x%x", amap, 0, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* amap_extend: extend the size of an amap (if needed)
|
|
*
|
|
* => amap being extended should be passed in unlocked (we will lock
|
|
* it as needed).
|
|
* => amap has a reference count of one (our map entry)
|
|
* => XXXCDC: should it have a waitflag???
|
|
*/
|
|
|
|
void amap_extend(entry, addsize)
|
|
|
|
vm_map_entry_t entry;
|
|
vm_size_t addsize;
|
|
|
|
{
|
|
struct vm_amap *amap = entry->aref.ar_amap;
|
|
int slotoff = entry->aref.ar_slotoff;
|
|
int slotmapped, slotadd, slotneed;
|
|
#ifdef VM_AMAP_PPREF
|
|
int *newppref, *oldppref;
|
|
#endif
|
|
u_int *newsl, *newbck, *oldsl, *oldbck;
|
|
struct vm_anon **newover, **oldover;
|
|
int slotadded;
|
|
UVMHIST_FUNC("amap_extend"); UVMHIST_CALLED(maphist);
|
|
|
|
UVMHIST_LOG(maphist, " (entry=0x%x, addsize=0x%x)", entry,addsize,0,0);
|
|
|
|
/*
|
|
* first, determine how many slots we need in the amap. don't forget
|
|
* that ar_slotoff could be non-zero: this means that there are some
|
|
* unused slots before us in the amap.
|
|
*/
|
|
|
|
simple_lock(&amap->am_l); /* lock! */
|
|
|
|
AMAP_B2SLOT(slotmapped, entry->end - entry->start); /* slots mapped */
|
|
AMAP_B2SLOT(slotadd, addsize); /* slots to add */
|
|
slotneed = slotoff + slotmapped + slotadd;
|
|
|
|
/*
|
|
* case 1: we already have enough slots in the map and thus only need
|
|
* to bump the reference counts on the slots we are adding.
|
|
*/
|
|
|
|
if (amap->am_nslot >= slotneed) {
|
|
#ifdef VM_AMAP_PPREF
|
|
if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
|
|
amap_pp_adjref(amap, slotoff + slotmapped, addsize, 1);
|
|
}
|
|
#endif
|
|
simple_unlock(&amap->am_l);
|
|
UVMHIST_LOG(maphist,"<- done (case 1), amap = 0x%x, slotneed=%d",
|
|
amap, slotneed, 0, 0);
|
|
return; /* done! */
|
|
}
|
|
|
|
/*
|
|
* case 2: we pre-allocated slots for use and we just need to bump
|
|
* nslot up to take account for these slots.
|
|
*/
|
|
if (amap->am_maxslot >= slotneed) {
|
|
#ifdef VM_AMAP_PPREF
|
|
if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
|
|
if ((slotoff + slotmapped) < amap->am_nslot)
|
|
amap_pp_adjref(amap, slotoff + slotmapped,
|
|
(amap->am_nslot - (slotoff + slotmapped)) * PAGE_SIZE, 1);
|
|
pp_setreflen(amap->am_ppref, amap->am_nslot, 1,
|
|
slotneed - amap->am_nslot);
|
|
}
|
|
#endif
|
|
amap->am_nslot = slotneed;
|
|
simple_unlock(&amap->am_l);
|
|
/*
|
|
* no need to zero am_anon since that was done at alloc time and we
|
|
* never shrink an allocation.
|
|
*/
|
|
UVMHIST_LOG(maphist,"<- done (case 2), amap = 0x%x, slotneed=%d",
|
|
amap, slotneed, 0, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* case 3: we need to malloc a new amap and copy all the amap data over
|
|
*
|
|
* XXX: should we pad out this allocation in hopes of avoid future case3
|
|
* extends?
|
|
* XXX: how about using kernel realloc?
|
|
*
|
|
* NOTE: we have the only map that has a reference to this amap locked.
|
|
* thus, no one else is going to try and change the amap while it is
|
|
* unlocked (but we unlock just to be safe).
|
|
*/
|
|
|
|
simple_unlock(&amap->am_l); /* unlock in case we sleep in malloc */
|
|
#ifdef VM_AMAP_PPREF
|
|
newppref = NULL;
|
|
if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
|
|
MALLOC(newppref, int *, slotneed * sizeof(int), M_TEMP, M_NOWAIT);
|
|
if (newppref == NULL) {
|
|
FREE(amap->am_ppref, M_TEMP); /* give up if malloc fails */
|
|
amap->am_ppref = PPREF_NONE;
|
|
}
|
|
}
|
|
#endif
|
|
MALLOC(newsl, int *, slotneed * sizeof(int), M_TEMP, M_WAITOK);
|
|
MALLOC(newbck, int *, slotneed * sizeof(int), M_TEMP, M_WAITOK);
|
|
MALLOC(newover, struct vm_anon **, slotneed * sizeof(struct vm_anon *),
|
|
M_TEMP, M_WAITOK);
|
|
simple_lock(&amap->am_l); /* re-lock! */
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (amap->am_maxslot >= slotneed)
|
|
panic("amap_extend: amap changed during malloc");
|
|
#endif
|
|
|
|
/*
|
|
* now copy everything over to new malloc'd areas...
|
|
*/
|
|
|
|
slotadded = slotneed - amap->am_nslot;
|
|
|
|
/* do am_slots */
|
|
oldsl = amap->am_slots;
|
|
bcopy(oldsl, newsl, sizeof(int) * amap->am_nused);
|
|
amap->am_slots = newsl;
|
|
|
|
/* do am_anon */
|
|
oldover = amap->am_anon;
|
|
bcopy(oldover, newover, sizeof(struct vm_anon *) * amap->am_nslot);
|
|
bzero(newover + amap->am_nslot, sizeof(struct vm_anon *) * slotadded);
|
|
amap->am_anon = newover;
|
|
|
|
/* do am_bckptr */
|
|
oldbck = amap->am_bckptr;
|
|
bcopy(oldbck, newbck, sizeof(int) * amap->am_nslot);
|
|
bzero(newbck + amap->am_nslot, sizeof(int) * slotadded); /* XXX: needed? */
|
|
amap->am_bckptr = newbck;
|
|
|
|
#ifdef VM_AMAP_PPREF
|
|
/* do ppref */
|
|
oldppref = amap->am_ppref;
|
|
if (newppref) {
|
|
bcopy(oldppref, newppref, sizeof(int) * amap->am_nslot);
|
|
bzero(newppref + amap->am_nslot, sizeof(int) * slotadded);
|
|
amap->am_ppref = newppref;
|
|
if ((slotoff + slotmapped) < amap->am_nslot)
|
|
amap_pp_adjref(amap, slotoff + slotmapped,
|
|
(amap->am_nslot - (slotoff + slotmapped)) * PAGE_SIZE, 1);
|
|
pp_setreflen(newppref, amap->am_nslot, 1, slotadded);
|
|
}
|
|
#endif
|
|
|
|
/* update master values */
|
|
amap->am_nslot = slotneed;
|
|
amap->am_maxslot = slotneed;
|
|
|
|
/* unlock */
|
|
simple_unlock(&amap->am_l);
|
|
|
|
/* and free */
|
|
FREE(oldsl, M_TEMP);
|
|
FREE(oldbck, M_TEMP);
|
|
FREE(oldover, M_TEMP);
|
|
#ifdef VM_AMAP_PPREF
|
|
if (oldppref && oldppref != PPREF_NONE)
|
|
FREE(oldppref, M_TEMP);
|
|
#endif
|
|
UVMHIST_LOG(maphist,"<- done (case 3), amap = 0x%x, slotneed=%d",
|
|
amap, slotneed, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* amap_share_protect: change protection of an amap in a sharemap
|
|
*
|
|
* for sharemaps it is not possible to find all of the maps which
|
|
* reference the sharemap (e.g. to remove or change a mapping).
|
|
* in order to get around this (and support sharemaps) we use
|
|
* pmap_page_protect to change the protection on all mappings of the
|
|
* page. we traverse am_anon or am_slots depending on the current
|
|
* state of the amap.
|
|
*
|
|
* => the map that entry belongs to must be locked by the caller.
|
|
* => the amap pointed to by entry->aref.ar_amap must be locked by caller.
|
|
* => the map should be locked before the amap (by the caller).
|
|
*/
|
|
|
|
void amap_share_protect(entry, prot)
|
|
|
|
vm_map_entry_t entry;
|
|
vm_prot_t prot;
|
|
|
|
{
|
|
struct vm_amap *amap = entry->aref.ar_amap;
|
|
int slots, lcv, slot, stop;
|
|
|
|
AMAP_B2SLOT(slots, (entry->end - entry->start));
|
|
stop = entry->aref.ar_slotoff + slots;
|
|
|
|
if (slots < amap->am_nused) {
|
|
/* cheaper to traverse am_anon */
|
|
for (lcv = entry->aref.ar_slotoff ; lcv < stop ; lcv++) {
|
|
if (amap->am_anon[lcv] == NULL)
|
|
continue;
|
|
if (amap->am_anon[lcv]->u.an_page != NULL)
|
|
pmap_page_protect(PMAP_PGARG(amap->am_anon[lcv]->u.an_page),
|
|
prot);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* cheaper to traverse am_slots */
|
|
for (lcv = 0 ; lcv < amap->am_nused ; lcv++) {
|
|
slot = amap->am_slots[lcv];
|
|
if (slot < entry->aref.ar_slotoff || slot >= stop)
|
|
continue;
|
|
if (amap->am_anon[slot]->u.an_page != NULL)
|
|
pmap_page_protect(PMAP_PGARG(amap->am_anon[slot]->u.an_page),
|
|
prot);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* amap_wipeout: wipeout all anon's in an amap; then free the amap!
|
|
*
|
|
* => if amap is part of an active map entry, then the map that contains
|
|
* the map entry must be locked.
|
|
* => amap's reference count should be one (the final reference).
|
|
* => the amap must be locked by the caller.
|
|
*/
|
|
|
|
void amap_wipeout(amap)
|
|
|
|
struct vm_amap *amap;
|
|
|
|
{
|
|
int lcv, slot;
|
|
struct vm_anon *anon;
|
|
UVMHIST_FUNC("amap_wipeout"); UVMHIST_CALLED(maphist);
|
|
UVMHIST_LOG(maphist,"(amap=0x%x)", amap, 0,0,0);
|
|
|
|
for (lcv = 0 ; lcv < amap->am_nused ; lcv++) {
|
|
|
|
slot = amap->am_slots[lcv];
|
|
anon = amap->am_anon[slot];
|
|
|
|
if (anon == NULL || anon->an_ref == 0)
|
|
panic("amap_wipeout: corrupt amap");
|
|
|
|
simple_lock(&anon->an_lock); /* lock anon */
|
|
|
|
UVMHIST_LOG(maphist," processing anon 0x%x, ref=%d", anon,
|
|
anon->an_ref, 0, 0);
|
|
|
|
if (--anon->an_ref != 0) {
|
|
simple_unlock(&anon->an_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* we have last reference to a vm_anon. free the vm_anon.
|
|
*/
|
|
uvm_anfree(anon);
|
|
}
|
|
|
|
/*
|
|
* now we free the map
|
|
*/
|
|
|
|
amap->am_nused = 0;
|
|
amap->am_ref--; /* drop final reference */
|
|
amap_free(amap);
|
|
UVMHIST_LOG(maphist,"<- done!", 0,0,0,0);
|
|
}
|
|
|
|
/*
|
|
* amap_copy: ensure that a map entry's "needs_copy" flag is false
|
|
* by copying the amap if necessary.
|
|
*
|
|
* => an entry with a null amap pointer will get a new (blank) one.
|
|
* => the map that the map entry belongs to must be locked by caller.
|
|
* => the amap currently attached to "entry" (if any) must be unlocked.
|
|
* => if canchunk is true, then we may clip the entry into a chunk
|
|
*/
|
|
|
|
void amap_copy(map, entry, waitf, canchunk, startva, endva)
|
|
|
|
vm_map_t map;
|
|
vm_map_entry_t entry;
|
|
int waitf;
|
|
boolean_t canchunk;
|
|
vm_offset_t startva, endva;
|
|
|
|
{
|
|
struct vm_amap *amap, *srcamap;
|
|
int slots, lcv;
|
|
vm_offset_t chunksize;
|
|
UVMHIST_FUNC("amap_copy"); UVMHIST_CALLED(maphist);
|
|
UVMHIST_LOG(maphist, " (map=%p, entry=%p, waitf=%d)", map, entry, waitf, 0);
|
|
|
|
/*
|
|
* is there a map to copy? if not, create one from scratch.
|
|
*/
|
|
|
|
if (entry->aref.ar_amap == NULL) {
|
|
|
|
/*
|
|
* check to see if we have a large amap that we can chunk. we align
|
|
* startva/endva to chunk-sized boundaries and then clip to them.
|
|
*/
|
|
|
|
if (canchunk && atop(entry->end - entry->start) >= UVM_AMAP_LARGE) {
|
|
chunksize = UVM_AMAP_CHUNK * PAGE_SIZE; /* convert slots to bytes */
|
|
startva = (startva / chunksize) * chunksize;
|
|
endva = roundup(endva, chunksize);
|
|
UVMHIST_LOG(maphist, " chunk amap ==> clip 0x%x->0x%x to 0x%x->0x%x",
|
|
entry->start, entry->end, startva, endva);
|
|
UVM_MAP_CLIP_START(map, entry, startva);
|
|
UVM_MAP_CLIP_END(map, entry, endva);
|
|
}
|
|
|
|
UVMHIST_LOG(maphist, "<- done [creating new amap 0x%x->0x%x]",
|
|
entry->start, entry->end, 0, 0);
|
|
entry->aref.ar_slotoff = 0;
|
|
entry->aref.ar_amap = amap_alloc(entry->end - entry->start, 0, waitf);
|
|
if (entry->aref.ar_amap != NULL)
|
|
entry->etype &= ~UVM_ET_NEEDSCOPY;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* first check and see if we are the only map entry referencing the amap
|
|
* we currently have. if so, then we can just take it over rather
|
|
* than copying it.
|
|
*/
|
|
|
|
if (entry->aref.ar_amap->am_ref == 1) {
|
|
entry->etype &= ~UVM_ET_NEEDSCOPY;
|
|
UVMHIST_LOG(maphist, "<- done [ref cnt = 1, took it over]",0, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* looks like we need to copy the map.
|
|
*/
|
|
|
|
UVMHIST_LOG(maphist," amap=%p, ref=%d, must copy it",
|
|
entry->aref.ar_amap, entry->aref.ar_amap->am_ref, 0, 0);
|
|
AMAP_B2SLOT(slots, entry->end - entry->start);
|
|
amap = amap_alloc1(slots, 0, waitf);
|
|
if (amap == NULL) {
|
|
UVMHIST_LOG(maphist, " amap_alloc1 failed", 0,0,0,0);
|
|
return;
|
|
}
|
|
srcamap = entry->aref.ar_amap;
|
|
simple_lock(&srcamap->am_l);
|
|
|
|
/*
|
|
* need to double check reference count now that we've got the src amap
|
|
* locked down. (in which case we lost a reference while we were
|
|
* mallocing the new map).
|
|
*/
|
|
|
|
if (srcamap->am_ref == 1) {
|
|
/* take over the old amap, get rid of the new one we just allocated */
|
|
entry->etype &= ~UVM_ET_NEEDSCOPY;
|
|
amap->am_ref--; /* drop final reference to map */
|
|
amap_free(amap);
|
|
simple_unlock(&srcamap->am_l);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* copy it now.
|
|
*/
|
|
|
|
UVMHIST_LOG(maphist, " copying amap now",0, 0, 0, 0);
|
|
for (lcv = 0 ; lcv < slots; lcv++) {
|
|
amap->am_anon[lcv] = srcamap->am_anon[entry->aref.ar_slotoff + lcv];
|
|
if (amap->am_anon[lcv] == NULL)
|
|
continue;
|
|
simple_lock(&amap->am_anon[lcv]->an_lock);
|
|
amap->am_anon[lcv]->an_ref++;
|
|
simple_unlock(&amap->am_anon[lcv]->an_lock);
|
|
amap->am_bckptr[lcv] = amap->am_nused;
|
|
amap->am_slots[amap->am_nused] = lcv;
|
|
amap->am_nused++;
|
|
}
|
|
|
|
/*
|
|
* drop our reference to the old amap (srcamap) and unlock. we will
|
|
* not have the very last reference to srcamap so there is no need
|
|
* to worry about freeing it.
|
|
*/
|
|
|
|
srcamap->am_ref--;
|
|
if (srcamap->am_ref == 1 && (srcamap->am_flags & AMAP_SHARED) != 0)
|
|
srcamap->am_flags &= ~AMAP_SHARED; /* clear shared flag */
|
|
#ifdef VM_AMAP_PPREF
|
|
if (srcamap->am_ppref && srcamap->am_ppref != PPREF_NONE) {
|
|
amap_pp_adjref(srcamap, entry->aref.ar_slotoff,
|
|
entry->end - entry->start, -1);
|
|
}
|
|
#endif
|
|
|
|
simple_unlock(&srcamap->am_l);
|
|
|
|
/*
|
|
* install new amap.
|
|
*/
|
|
|
|
entry->aref.ar_slotoff = 0;
|
|
entry->aref.ar_amap = amap;
|
|
entry->etype &= ~UVM_ET_NEEDSCOPY;
|
|
|
|
/*
|
|
* done!
|
|
*/
|
|
UVMHIST_LOG(maphist, "<- done",0, 0, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* amap_cow_now: resolve all copy-on-write faults in an amap now for fork(2)
|
|
*
|
|
* called during fork(2) when the parent process has a wired map
|
|
* entry. in that case we want to avoid write-protecting pages
|
|
* in the parent's map (e.g. like what you'd do for a COW page)
|
|
* so we resolve the COW here.
|
|
*
|
|
* => assume parent's entry was wired, thus all pages are resident.
|
|
* => assume pages that are loaned out (loan_count) are already mapped
|
|
* read-only in all maps, and thus no need for us to worry about them
|
|
* => assume both parent and child vm_map's are locked
|
|
* => caller passes child's map/entry in to us
|
|
* => if we run out of memory we will unlock the amap and sleep _with_ the
|
|
* parent and child vm_map's locked(!). we have to do this since
|
|
* we are in the middle of a fork(2) and we can't let the parent
|
|
* map change until we are done copying all the map entrys.
|
|
* => XXXCDC: out of memory should cause fork to fail, but there is
|
|
* currently no easy way to do this (needs fix)
|
|
* => page queues must be unlocked (we may lock them)
|
|
*/
|
|
|
|
void amap_cow_now(map, entry)
|
|
|
|
struct vm_map *map;
|
|
struct vm_map_entry *entry;
|
|
|
|
{
|
|
struct vm_amap *amap = entry->aref.ar_amap;
|
|
int lcv, slot;
|
|
struct vm_anon *anon, *nanon;
|
|
struct vm_page *pg, *npg;
|
|
|
|
|
|
/*
|
|
* note that if we unlock the amap then we must ReStart the "lcv" for
|
|
* loop because some other process could reorder the anon's in the
|
|
* am_anon[] array on us while the lock is dropped.
|
|
*/
|
|
ReStart:
|
|
simple_lock(&amap->am_l);
|
|
|
|
for (lcv = 0 ; lcv < amap->am_nused ; lcv++) {
|
|
|
|
/*
|
|
* get the page
|
|
*/
|
|
|
|
slot = amap->am_slots[lcv];
|
|
anon = amap->am_anon[slot];
|
|
simple_lock(&anon->an_lock);
|
|
pg = anon->u.an_page;
|
|
|
|
/*
|
|
* page must be resident since parent is wired
|
|
*/
|
|
|
|
if (pg == NULL)
|
|
panic("amap_cow_now: non-resident wired page in anon %p", anon);
|
|
|
|
/*
|
|
* if the anon ref count is one and the page is not loaned, then
|
|
* we are safe (the child has exclusive access to the page).
|
|
* if the page is loaned, then it must already be mapped read-only.
|
|
*
|
|
* we only need to get involved when these are not true.
|
|
* [note that if loan_count == 0, then the anon must own the page]
|
|
*/
|
|
|
|
if (anon->an_ref > 1 && pg->loan_count == 0) {
|
|
|
|
/*
|
|
* if the page is busy then we have to unlock, wait for it,
|
|
* and then restart.
|
|
*/
|
|
if (pg->flags & PG_BUSY) {
|
|
pg->flags |= PG_WANTED;
|
|
simple_unlock(&amap->am_lock);
|
|
UVM_UNLOCK_AND_WAIT(pg, &anon->an_lock, FALSE, "cownow", 0);
|
|
goto ReStart;
|
|
}
|
|
|
|
/*
|
|
* ok, time to do a copy-on-write to a new anon
|
|
*/
|
|
nanon = uvm_analloc();
|
|
if (nanon)
|
|
npg = uvm_pagealloc(NULL, 0, nanon);
|
|
else
|
|
npg = NULL; /* XXX: quiet gcc warning */
|
|
|
|
if (nanon == NULL || npg == NULL) {
|
|
/* out of memory */
|
|
/* XXXCDC: we should cause fork to fail, but we can't ... */
|
|
if (nanon)
|
|
uvm_anfree(nanon);
|
|
simple_unlock(&anon->an_lock);
|
|
simple_unlock(&amap->am_lock);
|
|
uvm_wait("cownowpage");
|
|
goto ReStart;
|
|
}
|
|
|
|
/*
|
|
* got it... now we can copy the data and replace anon with our
|
|
* new one...
|
|
*/
|
|
uvm_pagecopy(pg, npg); /* old -> new */
|
|
anon->an_ref--; /* can't drop to zero here */
|
|
amap->am_anon[slot] = nanon; /* replace */
|
|
|
|
/*
|
|
* drop PG_BUSY on new page ... since we have had it's owner locked
|
|
* the whole time it can't be PG_RELEASED | PG_WANTED.
|
|
*/
|
|
npg->flags &= ~(PG_BUSY|PG_FAKE);
|
|
UVM_PAGE_OWN(npg, NULL);
|
|
uvm_lock_pageq();
|
|
uvm_pageactivate(npg);
|
|
uvm_unlock_pageq();
|
|
}
|
|
|
|
simple_unlock(&anon->an_lock);
|
|
/*
|
|
* done with this anon, next ...!
|
|
*/
|
|
} /* end of 'for' loop */
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* amap_splitref: split a single reference into two seperate references
|
|
*
|
|
* => caller must lock map which is referencing the amap
|
|
* => caller must not lock amap referenced (we will do it)
|
|
*/
|
|
|
|
void amap_splitref(origref, splitref, offset)
|
|
|
|
struct vm_aref *origref, *splitref;
|
|
vm_offset_t offset;
|
|
|
|
{
|
|
int leftslots;
|
|
UVMHIST_FUNC("amap_splitref"); UVMHIST_CALLED(maphist);
|
|
|
|
AMAP_B2SLOT(leftslots, offset);
|
|
if (leftslots == 0)
|
|
panic("amap_splitref: split at zero offset");
|
|
|
|
/*
|
|
* lock the amap
|
|
*/
|
|
simple_lock(&origref->ar_amap->am_l);
|
|
|
|
/*
|
|
* now: amap is locked and we have a valid am_mapped array.
|
|
*/
|
|
|
|
if (origref->ar_amap->am_nslot - origref->ar_slotoff - leftslots <= 0)
|
|
panic("amap_splitref: map size check failed");
|
|
|
|
splitref->ar_amap = origref->ar_amap;
|
|
splitref->ar_amap->am_ref++; /* not a share reference */
|
|
splitref->ar_slotoff = origref->ar_slotoff + leftslots;
|
|
|
|
simple_unlock(&origref->ar_amap->am_l);
|
|
}
|
|
|
|
#ifdef VM_AMAP_PPREF
|
|
|
|
/*
|
|
* amap_pp_establish: add a ppref array to an amap, if possible
|
|
*
|
|
* => amap locked by caller
|
|
*/
|
|
|
|
void amap_pp_establish(amap)
|
|
|
|
struct vm_amap *amap;
|
|
|
|
{
|
|
|
|
MALLOC(amap->am_ppref, int *, sizeof(int) * amap->am_maxslot, M_TEMP,
|
|
M_NOWAIT);
|
|
|
|
/*
|
|
* if we fail then we just won't use ppref for this amap
|
|
*/
|
|
if (amap->am_ppref == NULL) {
|
|
amap->am_ppref = PPREF_NONE; /* not using it */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* init ppref
|
|
*/
|
|
bzero(amap->am_ppref, sizeof(int) * amap->am_maxslot);
|
|
pp_setreflen(amap->am_ppref, 0, amap->am_ref, amap->am_nslot);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* amap_pp_adjref: adjust reference count to a part of an amap using the
|
|
* per-page reference count array.
|
|
*
|
|
* => map and amap locked by caller
|
|
* => caller must check that ppref != PPREF_NONE before calling
|
|
*/
|
|
|
|
void amap_pp_adjref(amap, curslot, bytelen, adjval)
|
|
|
|
struct vm_amap *amap;
|
|
int curslot;
|
|
vm_size_t bytelen;
|
|
int adjval;
|
|
|
|
{
|
|
int slots, stopslot, *ppref, lcv;
|
|
int ref, len;
|
|
|
|
/*
|
|
* get init values
|
|
*/
|
|
|
|
AMAP_B2SLOT(slots, bytelen);
|
|
stopslot = curslot + slots;
|
|
ppref = amap->am_ppref;
|
|
|
|
/*
|
|
* first advance to the correct place in the ppref array, fragment
|
|
* if needed.
|
|
*/
|
|
|
|
for (lcv = 0 ; lcv < curslot ; lcv += len) {
|
|
pp_getreflen(ppref, lcv, &ref, &len);
|
|
if (lcv + len > curslot) { /* goes past start? */
|
|
pp_setreflen(ppref, lcv, ref, curslot - lcv);
|
|
pp_setreflen(ppref, curslot, ref, len - (curslot - lcv));
|
|
len = curslot - lcv; /* new length of entry @ lcv */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* now adjust reference counts in range (make sure we dont overshoot)
|
|
*/
|
|
|
|
if (lcv != curslot) panic("ADJREF");
|
|
for (/* lcv already set */; lcv < stopslot ; lcv += len) {
|
|
pp_getreflen(ppref, lcv, &ref, &len);
|
|
if (lcv + len > stopslot) { /* goes past end? */
|
|
pp_setreflen(ppref, lcv, ref, stopslot - lcv);
|
|
pp_setreflen(ppref, stopslot, ref, len - (stopslot - lcv));
|
|
len = stopslot - lcv;
|
|
}
|
|
ref = ref + adjval; /* ADJUST! */
|
|
if (ref < 0)
|
|
panic("amap_pp_adjref: negative reference count");
|
|
pp_setreflen(ppref, lcv, ref, len);
|
|
if (ref == 0)
|
|
amap_wiperange(amap, lcv, len);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* amap_wiperange: wipe out a range of an amap
|
|
* [different from amap_wipeout because the amap is kept intact]
|
|
*
|
|
* => both map and amap must be locked by caller.
|
|
*/
|
|
|
|
void amap_wiperange(amap, slotoff, slots)
|
|
|
|
struct vm_amap *amap;
|
|
int slotoff, slots;
|
|
|
|
{
|
|
int byanon, lcv, stop, curslot, ptr;
|
|
struct vm_anon *anon;
|
|
UVMHIST_FUNC("amap_wiperange"); UVMHIST_CALLED(maphist);
|
|
|
|
/*
|
|
* we can either traverse the amap by am_anon or by am_slots depending
|
|
* on which is cheaper. decide now.
|
|
*/
|
|
|
|
if (slots < amap->am_nused) {
|
|
byanon = TRUE;
|
|
lcv = slotoff;
|
|
stop = slotoff + slots;
|
|
} else {
|
|
byanon = FALSE;
|
|
lcv = 0;
|
|
stop = amap->am_nused;
|
|
}
|
|
|
|
/*
|
|
* ok, now do it!
|
|
*/
|
|
|
|
for (; lcv < stop; lcv++) {
|
|
|
|
/*
|
|
* verify the anon is ok.
|
|
*/
|
|
if (byanon) {
|
|
if (amap->am_anon[lcv] == NULL)
|
|
continue;
|
|
curslot = lcv;
|
|
} else {
|
|
curslot = amap->am_slots[lcv];
|
|
if (curslot < slotoff || curslot >= stop)
|
|
continue;
|
|
}
|
|
anon = amap->am_anon[curslot];
|
|
|
|
/*
|
|
* remove it from the amap
|
|
*/
|
|
amap->am_anon[curslot] = NULL;
|
|
ptr = amap->am_bckptr[curslot];
|
|
if (ptr != (amap->am_nused - 1)) {
|
|
amap->am_slots[ptr] = amap->am_slots[amap->am_nused - 1];
|
|
amap->am_bckptr[amap->am_slots[ptr]] = ptr; /* back ptr. */
|
|
}
|
|
amap->am_nused--;
|
|
|
|
/*
|
|
* drop anon reference count
|
|
*/
|
|
simple_lock(&anon->an_lock);
|
|
if (--anon->an_ref != 0) {
|
|
simple_unlock(&anon->an_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* we just eliminated the last reference to an anon. free it.
|
|
*/
|
|
uvm_anfree(anon);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* allocate anons
|
|
*/
|
|
|
|
void uvm_anon_init()
|
|
|
|
{
|
|
struct vm_anon *anon;
|
|
int nanon = uvmexp.free - (uvmexp.free / 16); /* XXXCDC ??? */
|
|
int lcv;
|
|
|
|
MALLOC(anon, struct vm_anon *, sizeof(*anon) * nanon, M_TEMP, M_NOWAIT);
|
|
if (anon == NULL) {
|
|
printf("uvm_anon_init: can not allocate %d anons\n", nanon);
|
|
panic("uvm_anon_init");
|
|
}
|
|
|
|
bzero(anon, sizeof(*anon) * nanon);
|
|
uvm.afree = NULL;
|
|
uvmexp.nanon = uvmexp.nfreeanon = nanon;
|
|
for (lcv = 0 ; lcv < nanon ; lcv++) {
|
|
anon[lcv].u.an_nxt = uvm.afree;
|
|
uvm.afree = &anon[lcv];
|
|
}
|
|
simple_lock_init(&uvm.afreelock);
|
|
}
|
|
|
|
/*
|
|
* add some more anons to the free pool. called when we add
|
|
* more swap space.
|
|
*/
|
|
void uvm_anon_add(pages)
|
|
|
|
int pages;
|
|
|
|
{
|
|
struct vm_anon *anon;
|
|
int lcv;
|
|
|
|
MALLOC(anon, struct vm_anon *, sizeof(*anon) * pages, M_TEMP,
|
|
M_WAITOK);
|
|
|
|
simple_lock(&uvm.afreelock);
|
|
bzero(anon, sizeof(*anon) * pages);
|
|
uvmexp.nanon += pages;
|
|
uvmexp.nfreeanon += pages;
|
|
for (lcv = 0; lcv < pages; lcv++) {
|
|
anon[lcv].u.an_nxt = uvm.afree;
|
|
uvm.afree = &anon[lcv];
|
|
}
|
|
simple_unlock(&uvm.afreelock);
|
|
}
|
|
|
|
/*
|
|
* allocate an anon
|
|
*/
|
|
|
|
struct vm_anon *uvm_analloc()
|
|
|
|
{
|
|
struct vm_anon *a;
|
|
|
|
simple_lock(&uvm.afreelock);
|
|
a = uvm.afree;
|
|
if (a) {
|
|
uvm.afree = a->u.an_nxt;
|
|
uvmexp.nfreeanon--;
|
|
a->an_ref = 1;
|
|
a->an_swslot = 0;
|
|
a->u.an_page = NULL; /* so we can free quickly */
|
|
}
|
|
simple_lock_init(&a->an_lock);
|
|
simple_unlock(&uvm.afreelock);
|
|
return(a);
|
|
}
|
|
|
|
/*
|
|
* uvm_anfree: free a single anon structure
|
|
*
|
|
* => caller must remove anon from its amap before calling (if it was in
|
|
* an amap).
|
|
* => if anon was in use, then it must be locked by the caller and the
|
|
* caller must have dropped the reference count to zero.
|
|
* => we may lock the pageq's.
|
|
*/
|
|
|
|
void uvm_anfree(anon)
|
|
|
|
struct vm_anon *anon;
|
|
|
|
{
|
|
struct vm_page *pg;
|
|
UVMHIST_FUNC("uvm_anfree"); UVMHIST_CALLED(maphist);
|
|
UVMHIST_LOG(maphist,"(anon=0x%x)", anon, 0,0,0);
|
|
|
|
/*
|
|
* get page
|
|
*/
|
|
|
|
pg = anon->u.an_page;
|
|
|
|
/*
|
|
* if there is a resident page and it is loaned, then anon may not
|
|
* own it. call out to uvm_anon_lockpage() to ensure the real owner
|
|
* of the page has been identified and locked.
|
|
*/
|
|
|
|
if (pg && pg->loan_count)
|
|
pg = uvm_anon_lockloanpg(anon);
|
|
|
|
/*
|
|
* if we have a resident page, we must dispose of it before freeing
|
|
* the anon.
|
|
*/
|
|
|
|
if (pg) {
|
|
|
|
/*
|
|
* if the page is owned by a uobject (now locked), then we must
|
|
* kill the loan on the page rather than free it.
|
|
*/
|
|
|
|
if (pg->uobject) {
|
|
|
|
/* kill loan */
|
|
uvm_lock_pageq();
|
|
#ifdef DIAGNOSTIC
|
|
if (pg->loan_count < 1)
|
|
panic("uvm_anfree: obj owned page with no loan count");
|
|
#endif
|
|
pg->loan_count--;
|
|
pg->uanon = NULL;
|
|
uvm_unlock_pageq();
|
|
simple_unlock(&pg->uobject->vmobjlock);
|
|
|
|
} else {
|
|
|
|
/*
|
|
* page has no uobject, so we must be the owner of it.
|
|
*
|
|
* if page is busy then we just mark it as released (who ever has it
|
|
* busy must check for this when they wake up). if the page is not
|
|
* busy then we can free it now.
|
|
*/
|
|
|
|
if ((pg->flags & PG_BUSY) != 0) {
|
|
pg->flags |= PG_RELEASED; /* tell them to dump it when done */
|
|
simple_unlock(&anon->an_lock);
|
|
UVMHIST_LOG(maphist," anon 0x%x, page 0x%x: BUSY (released!)",
|
|
anon, pg, 0, 0);
|
|
return;
|
|
}
|
|
|
|
pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
|
|
uvm_lock_pageq(); /* lock out pagedaemon */
|
|
uvm_pagefree(pg); /* bye bye */
|
|
uvm_unlock_pageq(); /* free the daemon */
|
|
UVMHIST_LOG(maphist," anon 0x%x, page 0x%x: freed now!",
|
|
anon, pg, 0, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* are we using any backing store resources? if so, free them.
|
|
*/
|
|
if (anon->an_swslot) {
|
|
/* on backing store: no I/O in progress. sole amap reference is ours
|
|
and we've got it locked down. thus we can free, and be done. */
|
|
UVMHIST_LOG(maphist," freeing anon 0x%x, paged to swslot 0x%x",
|
|
anon, anon->an_swslot, 0, 0);
|
|
uvm_swap_free(anon->an_swslot, 1);
|
|
anon->an_swslot = 0;
|
|
}
|
|
|
|
/*
|
|
* now that we've stripped the data areas from the anon, free the anon
|
|
* itself!
|
|
*/
|
|
|
|
simple_lock(&uvm.afreelock);
|
|
anon->u.an_nxt = uvm.afree;
|
|
uvm.afree = anon;
|
|
uvmexp.nfreeanon++
|
|
simple_unlock(&uvm.afreelock);
|
|
}
|
|
|
|
/*
|
|
* uvm_anon_lockloanpg: given a locked anon, lock its resident page
|
|
*
|
|
* => anon is locked by caller
|
|
* => on return: anon is locked
|
|
* if there is a resident page:
|
|
* if it has a uobject, it is locked by us
|
|
* if it is ownerless, we take over as owner
|
|
* we return the resident page (it can change during
|
|
* this function)
|
|
* => note that the only time an anon has an ownerless resident page
|
|
* is if the page was loaned from a uvm_object and the uvm_object
|
|
* disowned it
|
|
* => this only needs to be called when you want to do an operation
|
|
* on an anon's resident page and that page has a non-zero loan
|
|
* count.
|
|
*/
|
|
|
|
struct vm_page *uvm_anon_lockloanpg(anon)
|
|
|
|
struct vm_anon *anon;
|
|
|
|
{
|
|
struct vm_page *pg;
|
|
boolean_t locked = FALSE;
|
|
|
|
/*
|
|
* loop while we have a resident page that has a non-zero loan count.
|
|
* if we successfully get our lock, we will "break" the loop.
|
|
* note that the test for pg->loan_count is not protected -- this
|
|
* may produce false positive results. note that a false positive
|
|
* result may cause us to do more work than we need to, but it will
|
|
* not produce an incorrect result.
|
|
*/
|
|
|
|
while (((pg = anon->u.an_page) != NULL) && pg->loan_count != 0) {
|
|
|
|
/*
|
|
* quickly check to see if the page has an object before bothering
|
|
* to lock the page queues. this may also produce a false positive
|
|
* result, but that's ok because we do a real check after that.
|
|
* XXX: quick check -- worth it? need volatile?
|
|
*/
|
|
|
|
if (pg->uobject) {
|
|
|
|
uvm_lock_pageq();
|
|
if (pg->uobject) { /* the "real" check */
|
|
locked = simple_lock_try(&pg->uobject->vmobjlock);
|
|
} else {
|
|
locked = TRUE; /* object disowned before we got PQ lock */
|
|
}
|
|
uvm_unlock_pageq();
|
|
|
|
/*
|
|
* if we didn't get a lock (try lock failed), then we toggle
|
|
* our anon lock and try again
|
|
*/
|
|
|
|
if (!locked) {
|
|
simple_unlock(&anon->an_lock);
|
|
/*
|
|
* someone locking the object has a chance to lock us right now
|
|
*/
|
|
simple_lock(&anon->an_lock);
|
|
continue; /* start over */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if page is un-owned [i.e. the object dropped its ownership],
|
|
* then we can take over as owner!
|
|
*/
|
|
|
|
if (pg->uobject == NULL && (pg->pqflags & PQ_ANON) == 0) {
|
|
uvm_lock_pageq();
|
|
pg->pqflags |= PQ_ANON; /* take ownership... */
|
|
pg->loan_count--; /* ... and drop our loan */
|
|
uvm_unlock_pageq();
|
|
}
|
|
|
|
/*
|
|
* we did it! break the loop
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* done!
|
|
*/
|
|
|
|
return(pg);
|
|
}
|