NetBSD/sys/kern/subr_workqueue.c
ozaki-r 21f6c0a11a Don't wait on workqueue_wait if called from worker itself
Otherwise workqueue_wait never return in such a case.  This treatment
is the same as callout_halt.
2018-06-13 05:26:12 +00:00

392 lines
9.4 KiB
C

/* $NetBSD: subr_workqueue.c,v 1.37 2018/06/13 05:26:12 ozaki-r Exp $ */
/*-
* Copyright (c)2002, 2005, 2006, 2007 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_workqueue.c,v 1.37 2018/06/13 05:26:12 ozaki-r Exp $");
#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/systm.h>
#include <sys/kthread.h>
#include <sys/kmem.h>
#include <sys/proc.h>
#include <sys/workqueue.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/queue.h>
typedef struct work_impl {
SIMPLEQ_ENTRY(work_impl) wk_entry;
} work_impl_t;
SIMPLEQ_HEAD(workqhead, work_impl);
struct workqueue_queue {
kmutex_t q_mutex;
kcondvar_t q_cv;
struct workqhead q_queue_pending;
struct workqhead q_queue_running;
lwp_t *q_worker;
work_impl_t *q_waiter;
};
struct workqueue {
void (*wq_func)(struct work *, void *);
void *wq_arg;
int wq_flags;
char wq_name[MAXCOMLEN];
pri_t wq_prio;
void *wq_ptr;
};
#define WQ_SIZE (roundup2(sizeof(struct workqueue), coherency_unit))
#define WQ_QUEUE_SIZE (roundup2(sizeof(struct workqueue_queue), coherency_unit))
#define POISON 0xaabbccdd
static size_t
workqueue_size(int flags)
{
return WQ_SIZE
+ ((flags & WQ_PERCPU) != 0 ? ncpu : 1) * WQ_QUEUE_SIZE
+ coherency_unit;
}
static struct workqueue_queue *
workqueue_queue_lookup(struct workqueue *wq, struct cpu_info *ci)
{
u_int idx = 0;
if (wq->wq_flags & WQ_PERCPU) {
idx = ci ? cpu_index(ci) : cpu_index(curcpu());
}
return (void *)((uintptr_t)(wq) + WQ_SIZE + (idx * WQ_QUEUE_SIZE));
}
static void
workqueue_runlist(struct workqueue *wq, struct workqhead *list)
{
work_impl_t *wk;
work_impl_t *next;
/*
* note that "list" is not a complete SIMPLEQ.
*/
for (wk = SIMPLEQ_FIRST(list); wk != NULL; wk = next) {
next = SIMPLEQ_NEXT(wk, wk_entry);
(*wq->wq_func)((void *)wk, wq->wq_arg);
}
}
static void
workqueue_worker(void *cookie)
{
struct workqueue *wq = cookie;
struct workqueue_queue *q;
/* find the workqueue of this kthread */
q = workqueue_queue_lookup(wq, curlwp->l_cpu);
for (;;) {
/*
* we violate abstraction of SIMPLEQ.
*/
mutex_enter(&q->q_mutex);
while (SIMPLEQ_EMPTY(&q->q_queue_pending))
cv_wait(&q->q_cv, &q->q_mutex);
KASSERT(SIMPLEQ_EMPTY(&q->q_queue_running));
q->q_queue_running.sqh_first =
q->q_queue_pending.sqh_first; /* XXX */
SIMPLEQ_INIT(&q->q_queue_pending);
mutex_exit(&q->q_mutex);
workqueue_runlist(wq, &q->q_queue_running);
mutex_enter(&q->q_mutex);
KASSERT(!SIMPLEQ_EMPTY(&q->q_queue_running));
SIMPLEQ_INIT(&q->q_queue_running);
if (__predict_false(q->q_waiter != NULL)) {
/* Wake up workqueue_wait */
cv_signal(&q->q_cv);
}
mutex_exit(&q->q_mutex);
}
}
static void
workqueue_init(struct workqueue *wq, const char *name,
void (*callback_func)(struct work *, void *), void *callback_arg,
pri_t prio, int ipl)
{
KASSERT(sizeof(wq->wq_name) > strlen(name));
strncpy(wq->wq_name, name, sizeof(wq->wq_name));
wq->wq_prio = prio;
wq->wq_func = callback_func;
wq->wq_arg = callback_arg;
}
static int
workqueue_initqueue(struct workqueue *wq, struct workqueue_queue *q,
int ipl, struct cpu_info *ci)
{
int error, ktf;
KASSERT(q->q_worker == NULL);
mutex_init(&q->q_mutex, MUTEX_DEFAULT, ipl);
cv_init(&q->q_cv, wq->wq_name);
SIMPLEQ_INIT(&q->q_queue_pending);
SIMPLEQ_INIT(&q->q_queue_running);
ktf = ((wq->wq_flags & WQ_MPSAFE) != 0 ? KTHREAD_MPSAFE : 0);
if (wq->wq_prio < PRI_KERNEL)
ktf |= KTHREAD_TS;
if (ci) {
error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
wq, &q->q_worker, "%s/%u", wq->wq_name, ci->ci_index);
} else {
error = kthread_create(wq->wq_prio, ktf, ci, workqueue_worker,
wq, &q->q_worker, "%s", wq->wq_name);
}
if (error != 0) {
mutex_destroy(&q->q_mutex);
cv_destroy(&q->q_cv);
KASSERT(q->q_worker == NULL);
}
return error;
}
struct workqueue_exitargs {
work_impl_t wqe_wk;
struct workqueue_queue *wqe_q;
};
static void
workqueue_exit(struct work *wk, void *arg)
{
struct workqueue_exitargs *wqe = (void *)wk;
struct workqueue_queue *q = wqe->wqe_q;
/*
* only competition at this point is workqueue_finiqueue.
*/
KASSERT(q->q_worker == curlwp);
KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
mutex_enter(&q->q_mutex);
q->q_worker = NULL;
cv_signal(&q->q_cv);
mutex_exit(&q->q_mutex);
kthread_exit(0);
}
static void
workqueue_finiqueue(struct workqueue *wq, struct workqueue_queue *q)
{
struct workqueue_exitargs wqe;
KASSERT(wq->wq_func == workqueue_exit);
wqe.wqe_q = q;
KASSERT(SIMPLEQ_EMPTY(&q->q_queue_pending));
KASSERT(q->q_worker != NULL);
mutex_enter(&q->q_mutex);
SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, &wqe.wqe_wk, wk_entry);
cv_signal(&q->q_cv);
while (q->q_worker != NULL) {
cv_wait(&q->q_cv, &q->q_mutex);
}
mutex_exit(&q->q_mutex);
mutex_destroy(&q->q_mutex);
cv_destroy(&q->q_cv);
}
/* --- */
int
workqueue_create(struct workqueue **wqp, const char *name,
void (*callback_func)(struct work *, void *), void *callback_arg,
pri_t prio, int ipl, int flags)
{
struct workqueue *wq;
struct workqueue_queue *q;
void *ptr;
int error = 0;
CTASSERT(sizeof(work_impl_t) <= sizeof(struct work));
ptr = kmem_zalloc(workqueue_size(flags), KM_SLEEP);
wq = (void *)roundup2((uintptr_t)ptr, coherency_unit);
wq->wq_ptr = ptr;
wq->wq_flags = flags;
workqueue_init(wq, name, callback_func, callback_arg, prio, ipl);
if (flags & WQ_PERCPU) {
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
/* create the work-queue for each CPU */
for (CPU_INFO_FOREACH(cii, ci)) {
q = workqueue_queue_lookup(wq, ci);
error = workqueue_initqueue(wq, q, ipl, ci);
if (error) {
break;
}
}
} else {
/* initialize a work-queue */
q = workqueue_queue_lookup(wq, NULL);
error = workqueue_initqueue(wq, q, ipl, NULL);
}
if (error != 0) {
workqueue_destroy(wq);
} else {
*wqp = wq;
}
return error;
}
static bool
workqueue_q_wait(struct workqueue_queue *q, work_impl_t *wk_target)
{
work_impl_t *wk;
bool found = false;
mutex_enter(&q->q_mutex);
if (q->q_worker == curlwp)
goto out;
again:
SIMPLEQ_FOREACH(wk, &q->q_queue_pending, wk_entry) {
if (wk == wk_target)
goto found;
}
SIMPLEQ_FOREACH(wk, &q->q_queue_running, wk_entry) {
if (wk == wk_target)
goto found;
}
found:
if (wk != NULL) {
found = true;
KASSERT(q->q_waiter == NULL);
q->q_waiter = wk;
cv_wait(&q->q_cv, &q->q_mutex);
goto again;
}
if (q->q_waiter != NULL)
q->q_waiter = NULL;
out:
mutex_exit(&q->q_mutex);
return found;
}
/*
* Wait for a specified work to finish. The caller must ensure that no new
* work will be enqueued before calling workqueue_wait. Note that if the
* workqueue is WQ_PERCPU, the caller can enqueue a new work to another queue
* other than the waiting queue.
*/
void
workqueue_wait(struct workqueue *wq, struct work *wk)
{
struct workqueue_queue *q;
bool found;
if (ISSET(wq->wq_flags, WQ_PERCPU)) {
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
for (CPU_INFO_FOREACH(cii, ci)) {
q = workqueue_queue_lookup(wq, ci);
found = workqueue_q_wait(q, (work_impl_t *)wk);
if (found)
break;
}
} else {
q = workqueue_queue_lookup(wq, NULL);
(void) workqueue_q_wait(q, (work_impl_t *)wk);
}
}
void
workqueue_destroy(struct workqueue *wq)
{
struct workqueue_queue *q;
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
wq->wq_func = workqueue_exit;
for (CPU_INFO_FOREACH(cii, ci)) {
q = workqueue_queue_lookup(wq, ci);
if (q->q_worker != NULL) {
workqueue_finiqueue(wq, q);
}
}
kmem_free(wq->wq_ptr, workqueue_size(wq->wq_flags));
}
#ifdef DEBUG
static void
workqueue_check_duplication(struct workqueue_queue *q, work_impl_t *wk)
{
work_impl_t *_wk;
SIMPLEQ_FOREACH(_wk, &q->q_queue_pending, wk_entry) {
if (_wk == wk)
panic("%s: tried to enqueue a queued work", __func__);
}
}
#endif
void
workqueue_enqueue(struct workqueue *wq, struct work *wk0, struct cpu_info *ci)
{
struct workqueue_queue *q;
work_impl_t *wk = (void *)wk0;
KASSERT(wq->wq_flags & WQ_PERCPU || ci == NULL);
q = workqueue_queue_lookup(wq, ci);
mutex_enter(&q->q_mutex);
KASSERT(q->q_waiter == NULL);
#ifdef DEBUG
workqueue_check_duplication(q, wk);
#endif
SIMPLEQ_INSERT_TAIL(&q->q_queue_pending, wk, wk_entry);
cv_signal(&q->q_cv);
mutex_exit(&q->q_mutex);
}