NetBSD/sys/kern/kern_runq.c
chs fd34ea77eb remove checks for failure after memory allocation calls that cannot fail:
kmem_alloc() with KM_SLEEP
  kmem_zalloc() with KM_SLEEP
  percpu_alloc()
  pserialize_create()
  psref_class_create()

all of these paths include an assertion that the allocation has not failed,
so callers should not assert that again.
2017-06-01 02:45:05 +00:00

943 lines
22 KiB
C

/* $NetBSD: kern_runq.c,v 1.47 2017/06/01 02:45:13 chs Exp $ */
/*
* Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_runq.c,v 1.47 2017/06/01 02:45:13 chs Exp $");
#include "opt_dtrace.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/bitops.h>
#include <sys/cpu.h>
#include <sys/idle.h>
#include <sys/intr.h>
#include <sys/kmem.h>
#include <sys/lwp.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/syscallargs.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/evcnt.h>
/*
* Priority related definitions.
*/
#define PRI_TS_COUNT (NPRI_USER)
#define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
#define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
#define PRI_HIGHEST_TS (MAXPRI_USER)
/*
* Bits per map.
*/
#define BITMAP_BITS (32)
#define BITMAP_SHIFT (5)
#define BITMAP_MSB (0x80000000U)
#define BITMAP_MASK (BITMAP_BITS - 1)
/*
* Structures, runqueue.
*/
const int schedppq = 1;
typedef struct {
TAILQ_HEAD(, lwp) q_head;
} queue_t;
typedef struct {
/* Bitmap */
uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
/* Counters */
u_int r_count; /* Count of the threads */
u_int r_avgcount; /* Average count of threads (* 256) */
u_int r_mcount; /* Count of migratable threads */
/* Runqueues */
queue_t r_rt_queue[PRI_RT_COUNT];
queue_t r_ts_queue[PRI_TS_COUNT];
/* Event counters */
struct evcnt r_ev_pull;
struct evcnt r_ev_push;
struct evcnt r_ev_stay;
struct evcnt r_ev_localize;
} runqueue_t;
static void * sched_getrq(runqueue_t *, const pri_t);
#ifdef MULTIPROCESSOR
static lwp_t * sched_catchlwp(struct cpu_info *);
static void sched_balance(void *);
#endif
/*
* Preemption control.
*/
int sched_upreempt_pri = 0;
#ifdef __HAVE_PREEMPTION
# ifdef DEBUG
int sched_kpreempt_pri = 0;
# else
int sched_kpreempt_pri = PRI_USER_RT;
# endif
#else
int sched_kpreempt_pri = 1000;
#endif
/*
* Migration and balancing.
*/
static u_int cacheht_time; /* Cache hotness time */
static u_int min_catch; /* Minimal LWP count for catching */
static u_int balance_period; /* Balance period */
static u_int average_weight; /* Weight old thread count average */
static struct cpu_info *worker_ci; /* Victim CPU */
#ifdef MULTIPROCESSOR
static struct callout balance_ch; /* Callout of balancer */
#endif
#ifdef KDTRACE_HOOKS
struct lwp *curthread;
#endif
void
runq_init(void)
{
/* Balancing */
worker_ci = curcpu();
cacheht_time = mstohz(3); /* ~3 ms */
balance_period = mstohz(300); /* ~300 ms */
/* Minimal count of LWPs for catching */
min_catch = 1;
/* Weight of historical average */
average_weight = 50; /* 0.5 */
/* Initialize balancing callout and run it */
#ifdef MULTIPROCESSOR
callout_init(&balance_ch, CALLOUT_MPSAFE);
callout_setfunc(&balance_ch, sched_balance, NULL);
callout_schedule(&balance_ch, balance_period);
#endif
}
void
sched_cpuattach(struct cpu_info *ci)
{
runqueue_t *ci_rq;
void *rq_ptr;
u_int i, size;
if (ci->ci_schedstate.spc_lwplock == NULL) {
ci->ci_schedstate.spc_lwplock =
mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
}
if (ci == lwp0.l_cpu) {
/* Initialize the scheduler structure of the primary LWP */
lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
}
if (ci->ci_schedstate.spc_mutex != NULL) {
/* Already initialized. */
return;
}
/* Allocate the run queue */
size = roundup2(sizeof(runqueue_t), coherency_unit) + coherency_unit;
rq_ptr = kmem_zalloc(size, KM_SLEEP);
ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), coherency_unit));
/* Initialize run queues */
ci->ci_schedstate.spc_mutex =
mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
for (i = 0; i < PRI_RT_COUNT; i++)
TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
for (i = 0; i < PRI_TS_COUNT; i++)
TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
ci->ci_schedstate.spc_sched_info = ci_rq;
evcnt_attach_dynamic(&ci_rq->r_ev_pull, EVCNT_TYPE_MISC, NULL,
cpu_name(ci), "runqueue pull");
evcnt_attach_dynamic(&ci_rq->r_ev_push, EVCNT_TYPE_MISC, NULL,
cpu_name(ci), "runqueue push");
evcnt_attach_dynamic(&ci_rq->r_ev_stay, EVCNT_TYPE_MISC, NULL,
cpu_name(ci), "runqueue stay");
evcnt_attach_dynamic(&ci_rq->r_ev_localize, EVCNT_TYPE_MISC, NULL,
cpu_name(ci), "runqueue localize");
}
/*
* Control of the runqueue.
*/
static inline void *
sched_getrq(runqueue_t *ci_rq, const pri_t prio)
{
KASSERT(prio < PRI_COUNT);
return (prio <= PRI_HIGHEST_TS) ?
&ci_rq->r_ts_queue[prio].q_head :
&ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
}
void
sched_enqueue(struct lwp *l, bool swtch)
{
runqueue_t *ci_rq;
struct schedstate_percpu *spc;
TAILQ_HEAD(, lwp) *q_head;
const pri_t eprio = lwp_eprio(l);
struct cpu_info *ci;
int type;
ci = l->l_cpu;
spc = &ci->ci_schedstate;
ci_rq = spc->spc_sched_info;
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
/* Update the last run time on switch */
if (__predict_true(swtch == true))
l->l_rticksum += (hardclock_ticks - l->l_rticks);
else if (l->l_rticks == 0)
l->l_rticks = hardclock_ticks;
/* Enqueue the thread */
q_head = sched_getrq(ci_rq, eprio);
if (TAILQ_EMPTY(q_head)) {
u_int i;
uint32_t q;
/* Mark bit */
i = eprio >> BITMAP_SHIFT;
q = BITMAP_MSB >> (eprio & BITMAP_MASK);
KASSERT((ci_rq->r_bitmap[i] & q) == 0);
ci_rq->r_bitmap[i] |= q;
}
TAILQ_INSERT_TAIL(q_head, l, l_runq);
ci_rq->r_count++;
if ((l->l_pflag & LP_BOUND) == 0)
ci_rq->r_mcount++;
/*
* Update the value of highest priority in the runqueue,
* if priority of this thread is higher.
*/
if (eprio > spc->spc_maxpriority)
spc->spc_maxpriority = eprio;
sched_newts(l);
/*
* Wake the chosen CPU or cause a preemption if the newly
* enqueued thread has higher priority. Don't cause a
* preemption if the thread is yielding (swtch).
*/
if (!swtch && eprio > spc->spc_curpriority) {
if (eprio >= sched_kpreempt_pri)
type = RESCHED_KPREEMPT;
else if (eprio >= sched_upreempt_pri)
type = RESCHED_IMMED;
else
type = RESCHED_LAZY;
cpu_need_resched(ci, type);
}
}
void
sched_dequeue(struct lwp *l)
{
runqueue_t *ci_rq;
TAILQ_HEAD(, lwp) *q_head;
struct schedstate_percpu *spc;
const pri_t eprio = lwp_eprio(l);
spc = & l->l_cpu->ci_schedstate;
ci_rq = spc->spc_sched_info;
KASSERT(lwp_locked(l, spc->spc_mutex));
KASSERT(eprio <= spc->spc_maxpriority);
KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
KASSERT(ci_rq->r_count > 0);
if (spc->spc_migrating == l)
spc->spc_migrating = NULL;
ci_rq->r_count--;
if ((l->l_pflag & LP_BOUND) == 0)
ci_rq->r_mcount--;
q_head = sched_getrq(ci_rq, eprio);
TAILQ_REMOVE(q_head, l, l_runq);
if (TAILQ_EMPTY(q_head)) {
u_int i;
uint32_t q;
/* Unmark bit */
i = eprio >> BITMAP_SHIFT;
q = BITMAP_MSB >> (eprio & BITMAP_MASK);
KASSERT((ci_rq->r_bitmap[i] & q) != 0);
ci_rq->r_bitmap[i] &= ~q;
/*
* Update the value of highest priority in the runqueue, in a
* case it was a last thread in the queue of highest priority.
*/
if (eprio != spc->spc_maxpriority)
return;
do {
if (ci_rq->r_bitmap[i] != 0) {
q = ffs(ci_rq->r_bitmap[i]);
spc->spc_maxpriority =
(i << BITMAP_SHIFT) + (BITMAP_BITS - q);
return;
}
} while (i--);
/* If not found - set the lowest value */
spc->spc_maxpriority = 0;
}
}
/*
* Migration and balancing.
*/
#ifdef MULTIPROCESSOR
/* Estimate if LWP is cache-hot */
static inline bool
lwp_cache_hot(const struct lwp *l)
{
if (__predict_false(l->l_slptime || l->l_rticks == 0))
return false;
return (hardclock_ticks - l->l_rticks <= cacheht_time);
}
/* Check if LWP can migrate to the chosen CPU */
static inline bool
sched_migratable(const struct lwp *l, struct cpu_info *ci)
{
const struct schedstate_percpu *spc = &ci->ci_schedstate;
KASSERT(lwp_locked(__UNCONST(l), NULL));
/* Is CPU offline? */
if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
return false;
/* Is affinity set? */
if (__predict_false(l->l_affinity))
return kcpuset_isset(l->l_affinity, cpu_index(ci));
/* Is there a processor-set? */
return (spc->spc_psid == l->l_psid);
}
/*
* Estimate the migration of LWP to the other CPU.
* Take and return the CPU, if migration is needed.
*/
struct cpu_info *
sched_takecpu(struct lwp *l)
{
struct cpu_info *ci, *tci, *pivot, *next;
struct schedstate_percpu *spc;
runqueue_t *ci_rq, *ici_rq;
pri_t eprio, lpri, pri;
KASSERT(lwp_locked(l, NULL));
/* If thread is strictly bound, do not estimate other CPUs */
ci = l->l_cpu;
if (l->l_pflag & LP_BOUND)
return ci;
spc = &ci->ci_schedstate;
ci_rq = spc->spc_sched_info;
/* Make sure that thread is in appropriate processor-set */
if (__predict_true(spc->spc_psid == l->l_psid)) {
/* If CPU of this thread is idling - run there */
if (ci_rq->r_count == 0) {
ci_rq->r_ev_stay.ev_count++;
return ci;
}
/* Stay if thread is cache-hot */
eprio = lwp_eprio(l);
if (__predict_true(l->l_stat != LSIDL) &&
lwp_cache_hot(l) && eprio >= spc->spc_curpriority) {
ci_rq->r_ev_stay.ev_count++;
return ci;
}
} else {
eprio = lwp_eprio(l);
}
/* Run on current CPU if priority of thread is higher */
ci = curcpu();
spc = &ci->ci_schedstate;
if (eprio > spc->spc_curpriority && sched_migratable(l, ci)) {
ci_rq = spc->spc_sched_info;
ci_rq->r_ev_localize.ev_count++;
return ci;
}
/*
* Look for the CPU with the lowest priority thread. In case of
* equal priority, choose the CPU with the fewest of threads.
*/
pivot = l->l_cpu;
ci = pivot;
tci = pivot;
lpri = PRI_COUNT;
do {
if ((next = cpu_lookup(cpu_index(ci) + 1)) == NULL) {
/* Reached the end, start from the beginning. */
next = cpu_lookup(0);
}
spc = &ci->ci_schedstate;
ici_rq = spc->spc_sched_info;
pri = MAX(spc->spc_curpriority, spc->spc_maxpriority);
if (pri > lpri)
continue;
if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
continue;
if (!sched_migratable(l, ci))
continue;
lpri = pri;
tci = ci;
ci_rq = ici_rq;
} while (ci = next, ci != pivot);
ci_rq = tci->ci_schedstate.spc_sched_info;
ci_rq->r_ev_push.ev_count++;
return tci;
}
/*
* Tries to catch an LWP from the runqueue of other CPU.
*/
static struct lwp *
sched_catchlwp(struct cpu_info *ci)
{
struct cpu_info *curci = curcpu();
struct schedstate_percpu *spc, *curspc;
TAILQ_HEAD(, lwp) *q_head;
runqueue_t *ci_rq;
struct lwp *l;
curspc = &curci->ci_schedstate;
spc = &ci->ci_schedstate;
KASSERT(curspc->spc_psid == spc->spc_psid);
ci_rq = spc->spc_sched_info;
if (ci_rq->r_mcount < min_catch) {
spc_unlock(ci);
return NULL;
}
/* Take the highest priority thread */
q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
l = TAILQ_FIRST(q_head);
for (;;) {
/* Check the first and next result from the queue */
if (l == NULL) {
break;
}
KASSERTMSG(l->l_stat == LSRUN, "%s l %p (%s) l_stat %d",
ci->ci_data.cpu_name,
l, (l->l_name ? l->l_name : l->l_proc->p_comm), l->l_stat);
/* Look for threads, whose are allowed to migrate */
if ((l->l_pflag & LP_BOUND) || lwp_cache_hot(l) ||
!sched_migratable(l, curci)) {
l = TAILQ_NEXT(l, l_runq);
continue;
}
/* Grab the thread, and move to the local run queue */
sched_dequeue(l);
/*
* If LWP is still context switching, we may need to
* spin-wait before changing its CPU.
*/
if (__predict_false(l->l_ctxswtch != 0)) {
u_int count;
count = SPINLOCK_BACKOFF_MIN;
while (l->l_ctxswtch)
SPINLOCK_BACKOFF(count);
}
l->l_cpu = curci;
ci_rq->r_ev_pull.ev_count++;
lwp_unlock_to(l, curspc->spc_mutex);
sched_enqueue(l, false);
return l;
}
spc_unlock(ci);
return l;
}
/*
* Periodical calculations for balancing.
*/
static void
sched_balance(void *nocallout)
{
struct cpu_info *ci, *hci;
runqueue_t *ci_rq;
CPU_INFO_ITERATOR cii;
u_int highest;
u_int weight;
/* sanitize sysctl value */
weight = MIN(average_weight, 100);
hci = curcpu();
highest = 0;
/* Make lockless countings */
for (CPU_INFO_FOREACH(cii, ci)) {
ci_rq = ci->ci_schedstate.spc_sched_info;
/*
* Average count of the threads
*
* The average is computed as a fixpoint number with
* 8 fractional bits.
*/
ci_rq->r_avgcount = (
weight * ci_rq->r_avgcount + (100 - weight) * 256 * ci_rq->r_mcount
) / 100;
/* Look for CPU with the highest average */
if (ci_rq->r_avgcount > highest) {
hci = ci;
highest = ci_rq->r_avgcount;
}
}
/* Update the worker */
worker_ci = hci;
if (nocallout == NULL)
callout_schedule(&balance_ch, balance_period);
}
/*
* Called from each CPU's idle loop.
*/
void
sched_idle(void)
{
struct cpu_info *ci = curcpu(), *tci = NULL;
struct schedstate_percpu *spc, *tspc;
runqueue_t *ci_rq;
bool dlock = false;
/* Check if there is a migrating LWP */
spc = &ci->ci_schedstate;
if (spc->spc_migrating == NULL)
goto no_migration;
spc_lock(ci);
for (;;) {
struct lwp *l;
l = spc->spc_migrating;
if (l == NULL)
break;
/*
* If second attempt, and target CPU has changed,
* drop the old lock.
*/
if (dlock == true && tci != l->l_target_cpu) {
KASSERT(tci != NULL);
spc_unlock(tci);
dlock = false;
}
/*
* Nothing to do if destination has changed to the
* local CPU, or migration was done by other CPU.
*/
tci = l->l_target_cpu;
if (tci == NULL || tci == ci) {
spc->spc_migrating = NULL;
l->l_target_cpu = NULL;
break;
}
tspc = &tci->ci_schedstate;
/*
* Double-lock the runqueues.
* We do that only once.
*/
if (dlock == false) {
dlock = true;
if (ci < tci) {
spc_lock(tci);
} else if (!mutex_tryenter(tspc->spc_mutex)) {
spc_unlock(ci);
spc_lock(tci);
spc_lock(ci);
/* Check the situation again.. */
continue;
}
}
/* Migrate the thread */
KASSERT(l->l_stat == LSRUN);
spc->spc_migrating = NULL;
l->l_target_cpu = NULL;
sched_dequeue(l);
l->l_cpu = tci;
lwp_setlock(l, tspc->spc_mutex);
sched_enqueue(l, false);
break;
}
if (dlock == true) {
KASSERT(tci != NULL);
spc_unlock(tci);
}
spc_unlock(ci);
no_migration:
ci_rq = spc->spc_sched_info;
if ((spc->spc_flags & SPCF_OFFLINE) != 0 || ci_rq->r_count != 0) {
return;
}
/* Reset the counter, and call the balancer */
ci_rq->r_avgcount = 0;
sched_balance(ci);
tci = worker_ci;
tspc = &tci->ci_schedstate;
if (ci == tci || spc->spc_psid != tspc->spc_psid)
return;
spc_dlock(ci, tci);
(void)sched_catchlwp(tci);
spc_unlock(ci);
}
#else
/*
* stubs for !MULTIPROCESSOR
*/
struct cpu_info *
sched_takecpu(struct lwp *l)
{
return l->l_cpu;
}
void
sched_idle(void)
{
}
#endif /* MULTIPROCESSOR */
/*
* Scheduling statistics and balancing.
*/
void
sched_lwp_stats(struct lwp *l)
{
int batch;
KASSERT(lwp_locked(l, NULL));
/* Update sleep time */
if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
l->l_stat == LSSUSPENDED)
l->l_slptime++;
/*
* Set that thread is more CPU-bound, if sum of run time exceeds the
* sum of sleep time. Check if thread is CPU-bound a first time.
*/
batch = (l->l_rticksum > l->l_slpticksum);
if (batch != 0) {
if ((l->l_flag & LW_BATCH) == 0)
batch = 0;
l->l_flag |= LW_BATCH;
} else
l->l_flag &= ~LW_BATCH;
/*
* If thread is CPU-bound and never sleeps, it would occupy the CPU.
* In such case reset the value of last sleep, and check it later, if
* it is still zero - perform the migration, unmark the batch flag.
*/
if (batch && (l->l_slptime + l->l_slpticksum) == 0) {
if (l->l_slpticks == 0) {
if (l->l_target_cpu == NULL &&
(l->l_stat == LSRUN || l->l_stat == LSONPROC)) {
struct cpu_info *ci = sched_takecpu(l);
l->l_target_cpu = (ci != l->l_cpu) ? ci : NULL;
}
l->l_flag &= ~LW_BATCH;
} else {
l->l_slpticks = 0;
}
}
/* Reset the time sums */
l->l_slpticksum = 0;
l->l_rticksum = 0;
/* Scheduler-specific hook */
sched_pstats_hook(l, batch);
#ifdef KDTRACE_HOOKS
curthread = l;
#endif
}
/*
* Scheduler mill.
*/
struct lwp *
sched_nextlwp(void)
{
struct cpu_info *ci = curcpu();
struct schedstate_percpu *spc;
TAILQ_HEAD(, lwp) *q_head;
runqueue_t *ci_rq;
struct lwp *l;
/* Return to idle LWP if there is a migrating thread */
spc = &ci->ci_schedstate;
if (__predict_false(spc->spc_migrating != NULL))
return NULL;
ci_rq = spc->spc_sched_info;
#ifdef MULTIPROCESSOR
/* If runqueue is empty, try to catch some thread from other CPU */
if (__predict_false(ci_rq->r_count == 0)) {
struct schedstate_percpu *cspc;
struct cpu_info *cci;
/* Offline CPUs should not perform this, however */
if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
return NULL;
/* Reset the counter, and call the balancer */
ci_rq->r_avgcount = 0;
sched_balance(ci);
cci = worker_ci;
cspc = &cci->ci_schedstate;
if (ci == cci || spc->spc_psid != cspc->spc_psid ||
!mutex_tryenter(cci->ci_schedstate.spc_mutex))
return NULL;
return sched_catchlwp(cci);
}
#else
if (__predict_false(ci_rq->r_count == 0))
return NULL;
#endif
/* Take the highest priority thread */
KASSERT(ci_rq->r_bitmap[spc->spc_maxpriority >> BITMAP_SHIFT]);
q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
l = TAILQ_FIRST(q_head);
KASSERT(l != NULL);
sched_oncpu(l);
l->l_rticks = hardclock_ticks;
return l;
}
/*
* sched_curcpu_runnable_p: return if curcpu() should exit the idle loop.
*/
bool
sched_curcpu_runnable_p(void)
{
const struct cpu_info *ci;
const struct schedstate_percpu *spc;
const runqueue_t *ci_rq;
bool rv;
kpreempt_disable();
ci = curcpu();
spc = &ci->ci_schedstate;
ci_rq = spc->spc_sched_info;
#ifndef __HAVE_FAST_SOFTINTS
if (ci->ci_data.cpu_softints) {
kpreempt_enable();
return true;
}
#endif
rv = (ci_rq->r_count != 0) ? true : false;
kpreempt_enable();
return rv;
}
/*
* Sysctl nodes and initialization.
*/
SYSCTL_SETUP(sysctl_sched_setup, "sysctl sched setup")
{
const struct sysctlnode *node = NULL;
sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "sched",
SYSCTL_DESCR("Scheduler options"),
NULL, 0, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
if (node == NULL)
return;
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "cacheht_time",
SYSCTL_DESCR("Cache hotness time (in ticks)"),
NULL, 0, &cacheht_time, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "balance_period",
SYSCTL_DESCR("Balance period (in ticks)"),
NULL, 0, &balance_period, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "average_weight",
SYSCTL_DESCR("Thread count averaging weight (in percent)"),
NULL, 0, &average_weight, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "min_catch",
SYSCTL_DESCR("Minimal count of threads for catching"),
NULL, 0, &min_catch, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "timesoftints",
SYSCTL_DESCR("Track CPU time for soft interrupts"),
NULL, 0, &softint_timing, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "kpreempt_pri",
SYSCTL_DESCR("Minimum priority to trigger kernel preemption"),
NULL, 0, &sched_kpreempt_pri, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "upreempt_pri",
SYSCTL_DESCR("Minimum priority to trigger user preemption"),
NULL, 0, &sched_upreempt_pri, 0,
CTL_CREATE, CTL_EOL);
}
/*
* Debugging.
*/
#ifdef DDB
void
sched_print_runqueue(void (*pr)(const char *, ...))
{
runqueue_t *ci_rq;
struct cpu_info *ci, *tci;
struct schedstate_percpu *spc;
struct lwp *l;
struct proc *p;
CPU_INFO_ITERATOR cii;
for (CPU_INFO_FOREACH(cii, ci)) {
int i;
spc = &ci->ci_schedstate;
ci_rq = spc->spc_sched_info;
(*pr)("Run-queue (CPU = %u):\n", ci->ci_index);
(*pr)(" pid.lid = %d.%d, r_count = %u, r_avgcount = %u, "
"maxpri = %d, mlwp = %p\n",
#ifdef MULTIPROCESSOR
ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
#else
curlwp->l_proc->p_pid, curlwp->l_lid,
#endif
ci_rq->r_count, ci_rq->r_avgcount, spc->spc_maxpriority,
spc->spc_migrating);
i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
do {
uint32_t q;
q = ci_rq->r_bitmap[i];
(*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
} while (i--);
}
(*pr)(" %5s %4s %4s %10s %3s %18s %4s %4s %s\n",
"LID", "PRI", "EPRI", "FL", "ST", "LWP", "CPU", "TCI", "LRTICKS");
PROCLIST_FOREACH(p, &allproc) {
(*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
ci = l->l_cpu;
tci = l->l_target_cpu;
(*pr)(" | %5d %4u %4u 0x%8.8x %3s %18p %4u %4d %u\n",
(int)l->l_lid, l->l_priority, lwp_eprio(l),
l->l_flag, l->l_stat == LSRUN ? "RQ" :
(l->l_stat == LSSLEEP ? "SQ" : "-"),
l, ci->ci_index, (tci ? tci->ci_index : -1),
(u_int)(hardclock_ticks - l->l_rticks));
}
}
}
#endif