85854cb4ad
THE REST OF THE KERNEL ARE IN THE TREE YET. Also, some of this is _incredibly_ hack-ish, etc., but it works.
1632 lines
41 KiB
C
1632 lines
41 KiB
C
/* $NetBSD: esp.c,v 1.1 1995/02/13 23:08:55 cgd Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1994 Peter Galbavy
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Peter Galbavy
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Based on aic6360 by Jarle Greipsland
|
|
*
|
|
* Acknowledgements: Many of the algorithms used in this driver are
|
|
* inspired by the work of Julian Elischer (julian@tfs.com) and
|
|
* Charles Hannum (mycroft@duality.gnu.ai.mit.edu). Thanks a million!
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/device.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/user.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <scsi/scsi_all.h>
|
|
#include <scsi/scsiconf.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/autoconf.h>
|
|
|
|
#include <alpha/tc/dmavar.h>
|
|
#include <alpha/tc/espreg.h>
|
|
#include <alpha/tc/espvar.h>
|
|
#include <alpha/tc/tc.h>
|
|
#include <alpha/tc/tcds.h>
|
|
|
|
int esp_debug = ESP_SHOWPHASE|ESP_SHOWMISC|ESP_SHOWTRAC|ESP_SHOWCMDS; /**/
|
|
|
|
void espattach __P((struct device *, struct device *, void *));
|
|
int espmatch __P((struct device *, void *, void *));
|
|
void esp_minphys __P((struct buf *));
|
|
int espprint __P((void *, char *));
|
|
void espreadregs __P((struct esp_softc *));
|
|
u_char espgetbyte __P((struct esp_softc *));
|
|
void espselect __P((struct esp_softc *, u_char, u_char,
|
|
caddr_t, u_char));
|
|
void esp_scsi_reset __P((struct esp_softc *));
|
|
void esp_reset __P((struct esp_softc *));
|
|
void esp_init __P((struct esp_softc *));
|
|
int esp_scsi_cmd __P((struct scsi_xfer *));
|
|
int esp_poll __P((struct esp_softc *, struct ecb *));
|
|
int espphase __P((struct esp_softc *));
|
|
void esp_sched __P((struct esp_softc *));
|
|
void esp_done __P((struct ecb *));
|
|
void esp_msgin __P((struct esp_softc *));
|
|
void esp_msgout __P((struct esp_softc *));
|
|
int espintr __P((void *));
|
|
void esp_timeout __P((void *arg));
|
|
|
|
/* Linkup to the rest of the kernel */
|
|
struct cfdriver espcd = {
|
|
NULL, "esp", espmatch, espattach,
|
|
DV_DULL, sizeof(struct esp_softc)
|
|
};
|
|
|
|
struct scsi_adapter esp_switch = {
|
|
esp_scsi_cmd,
|
|
esp_minphys,
|
|
NULL,
|
|
NULL,
|
|
};
|
|
|
|
struct scsi_device esp_dev = {
|
|
NULL, /* Use default error handler */
|
|
NULL, /* have a queue, served by this */
|
|
NULL, /* have no async handler */
|
|
NULL, /* Use default 'done' routine */
|
|
};
|
|
|
|
/*
|
|
* Does anyone actually use this, and what for ?
|
|
*/
|
|
int
|
|
espprint(aux, name)
|
|
void *aux;
|
|
char *name;
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
#define CXXX(esp) (RR((esp)->esp_stat) & ESPSTAT_INT)
|
|
|
|
/*
|
|
* Read the ESP registers, and save their contents for later use.
|
|
* ESP_STAT, ESP_STEP & ESP_INTR are mostly zeroed out when reading
|
|
* ESP_INTR - so make sure it is the last read.
|
|
*
|
|
* I think that (from reading the docs) most bits in these registers
|
|
* only make sense when he DMA CSR has an interrupt showing. So I have
|
|
* coded this to not do anything if there is no interrupt or error
|
|
* pending.
|
|
*/
|
|
void
|
|
espreadregs(sc)
|
|
struct esp_softc *sc;
|
|
{
|
|
int s;
|
|
volatile espreg_t *esp = sc->sc_reg;
|
|
|
|
/* They mean nothing if there is no pending interrupt??? */
|
|
if (!(DMA_ISINTR(sc)))
|
|
return;
|
|
|
|
s = splhigh();
|
|
|
|
/* Only the stepo bits are of interest. */
|
|
sc->sc_espstep = RR(esp->esp_step) & ESPSTEP_MASK; MB();
|
|
sc->sc_espstat = RR(esp->esp_stat); MB();
|
|
sc->sc_espintr = RR(esp->esp_intr); MB();
|
|
|
|
/* Clear the TCDS interrupt bit. */
|
|
(void)tcds_scsi_isintr(sc->sc_dev.dv_unit, 1);
|
|
|
|
splx(s);
|
|
|
|
ESP_MISC(("regs[intr=%02x,stat=%02x,step=%02x] ", sc->sc_espintr,
|
|
sc->sc_espstat, sc->sc_espstep));
|
|
}
|
|
|
|
/*
|
|
* no error checking ouch
|
|
*/
|
|
u_char
|
|
espgetbyte(sc)
|
|
struct esp_softc *sc;
|
|
{
|
|
volatile espreg_t *esp = sc->sc_reg;
|
|
u_int esp_fflag, esp_fifo;
|
|
|
|
ESP_TRACE(("esp_getbyte "));
|
|
esp_fflag = RR(esp->esp_fflag); MB();
|
|
if (!(esp_fflag & ESPFIFO_FF)) {
|
|
xxx:
|
|
ESPCMD(sc, ESPCMD_TRANS);
|
|
while (!DMA_ISINTR_CLR(sc))
|
|
DELAY(1);
|
|
/*
|
|
* If we read something, then clear the outstanding
|
|
* interrupts
|
|
*/
|
|
espreadregs(sc);
|
|
}
|
|
esp_fflag = RR(esp->esp_fflag); MB();
|
|
if (!(esp_fflag & ESPFIFO_FF)) {
|
|
printf("error...\n");
|
|
goto xxx;
|
|
}
|
|
esp_fifo = RR(esp->esp_fifo); MB();
|
|
return esp_fifo;
|
|
}
|
|
|
|
/*
|
|
* Send a command to a target, set the driver state to ESP_SELECTING
|
|
* and let the caller take care of the rest.
|
|
*
|
|
* Keeping this as a function allows me to say that this may be done
|
|
* by DMA instead of programmed I/O soon.
|
|
*/
|
|
void
|
|
espselect(sc, target, lun, cmd, clen)
|
|
struct esp_softc *sc;
|
|
u_char target, lun;
|
|
caddr_t cmd;
|
|
u_char clen;
|
|
{
|
|
volatile espreg_t *esp = sc->sc_reg;
|
|
int i;
|
|
|
|
ESP_TRACE(("esp_select "));
|
|
|
|
/*
|
|
* The docs say the target register is never reset, and I
|
|
* can't think of a better place to set it
|
|
*/
|
|
esp->esp_id = target; MB();
|
|
esp->esp_syncoff = sc->sc_tinfo[target].offset; MB();
|
|
esp->esp_synctp = 250 / sc->sc_tinfo[target].period; MB();
|
|
|
|
/*
|
|
* Who am I. This is where we tell the target that we are
|
|
* happy for it to disconnect etc.
|
|
*/
|
|
esp->esp_fifo = ESP_MSG_IDENTIFY(lun); MB();
|
|
|
|
/* Now the command into the FIFO */
|
|
for (i = 0; i < clen; i++) {
|
|
esp->esp_fifo = (u_int)*cmd++;
|
|
MB();
|
|
}
|
|
|
|
/* And get the targets attention */
|
|
ESPCMD(sc, ESPCMD_SELATN);
|
|
|
|
/* new state ESP_SELECTING */
|
|
sc->sc_state = ESP_SELECTING;
|
|
}
|
|
|
|
int
|
|
espmatch(parent, vcf, aux)
|
|
struct device *parent;
|
|
void *vcf, *aux;
|
|
{
|
|
struct cfdata *cf = vcf;
|
|
struct confargs *ca = aux;
|
|
void *addr;
|
|
|
|
if (!BUS_MATCHNAME(ca, "esp"))
|
|
return (0);
|
|
|
|
#define ESP0_OFFSET 0x100000 /* SPARSE!! offset. */
|
|
#define ESP1_OFFSET 0x100200 /* SPARSE!! offset. */
|
|
addr = BUS_CVTADDR(ca);
|
|
#ifdef SPARSE
|
|
addr = TC_DENSE_TO_SPARSE(addr);
|
|
#else
|
|
AXP requires sparse addressing for the 53CF94.
|
|
#endif
|
|
addr = (u_int8_t *)addr +
|
|
(ca->ca_slot == 0 ? ESP0_OFFSET : ESP1_OFFSET);
|
|
return (!badaddr(addr, 4));
|
|
}
|
|
|
|
/*
|
|
* Attach this instance, and then all the sub-devices
|
|
*/
|
|
void
|
|
espattach(parent, self, aux)
|
|
struct device *parent, *self;
|
|
void *aux;
|
|
{
|
|
register struct confargs *ca = aux;
|
|
struct esp_softc *sc = (void *)self;
|
|
struct bootpath *bp;
|
|
void *addr;
|
|
u_int esp_cfg2, esp_cfg3;
|
|
|
|
#ifdef SPARC_DRIVER
|
|
/*
|
|
* Make sure things are sane. I don't know if this is ever
|
|
* necessary, but it seem to be in all of Torek's code.
|
|
*/
|
|
if (ca->ca_ra.ra_nintr != 1) {
|
|
printf(": expected 1 interrupt, got %d\n", ca->ca_ra.ra_nintr);
|
|
return;
|
|
}
|
|
|
|
sc->sc_pri = ca->ca_ra.ra_intr[0].int_pri;
|
|
printf(" pri %d", sc->sc_pri);
|
|
|
|
/*
|
|
* Map my registers in, if they aren't already in virtual
|
|
* address space.
|
|
*/
|
|
if (ca->ca_ra.ra_vaddr)
|
|
sc->sc_reg = (volatile caddr_t) ca->ca_ra.ra_vaddr;
|
|
else {
|
|
sc->sc_reg = (volatile caddr_t)
|
|
mapiodev(ca->ca_ra.ra_paddr, ca->ca_ra.ra_len, ca->ca_bustype);
|
|
}
|
|
#else
|
|
addr = BUS_CVTADDR(ca);
|
|
#ifdef SPARSE
|
|
addr = TC_DENSE_TO_SPARSE(addr);
|
|
#else
|
|
AXP requires sparse addressing for the 53CF94.
|
|
#endif
|
|
sc->sc_reg = (espreg_t *)((u_int8_t *)addr +
|
|
(ca->ca_slot == 0 ? ESP0_OFFSET : ESP1_OFFSET));
|
|
printf(": address %x", sc->sc_reg);
|
|
BUS_INTR_ESTABLISH(ca, espintr, (void *)sc);
|
|
#endif
|
|
|
|
#ifdef SPARC_DRIVER
|
|
/* Other settings */
|
|
sc->sc_node = ca->ca_ra.ra_node;
|
|
if (ca->ca_bustype == BUS_SBUS) {
|
|
sc->sc_id = getpropint(sc->sc_node, "initiator-id", 7);
|
|
sc->sc_freq = getpropint(sc->sc_node, "clock-frequency", -1);
|
|
} else {
|
|
sc->sc_id = 7;
|
|
sc->sc_freq = 24000000;
|
|
}
|
|
if (sc->sc_freq < 0)
|
|
sc->sc_freq = ((struct sbus_softc *)
|
|
sc->sc_dev.dv_parent)->sc_clockfreq;
|
|
#else
|
|
/*
|
|
* XXX
|
|
* Bus ID on AXP should be 6?
|
|
*/
|
|
sc->sc_id = 7;
|
|
sc->sc_freq = 25000000;
|
|
#endif
|
|
|
|
/* gimme Mhz */
|
|
sc->sc_freq /= 1000000;
|
|
|
|
/*
|
|
* This is the value used to start sync negotiations
|
|
* For a 25Mhz clock, this gives us 40, or 160nS, or
|
|
* 6.25Mb/s. It is constant for each adapter.
|
|
*
|
|
* In turn, notice that the ESP register "SYNCTP" is
|
|
* = (250 / the negotiated period). It works, try it
|
|
* on paper.
|
|
*/
|
|
sc->sc_minsync = 1000 / sc->sc_freq;
|
|
|
|
/* 0 is actually 8, even though the register only has 3 bits */
|
|
sc->sc_ccf = FREQTOCCF(sc->sc_freq) & 0x07;
|
|
|
|
/* The value *must not* be == 1. Make it 2 */
|
|
if (sc->sc_ccf == 1)
|
|
sc->sc_ccf = 2;
|
|
|
|
/*
|
|
* The recommended timeout is 250ms. This register is loaded
|
|
* with a value calculated as follows, from the docs:
|
|
*
|
|
* (timout period) x (CLK frequency)
|
|
* reg = -------------------------------------
|
|
* 8192 x (Clock Conversion Factor)
|
|
*
|
|
* We have the CCF from above, so the sum is simple, and generally
|
|
* gives us a constant of 153. Try working out a few and see.
|
|
*/
|
|
sc->sc_timeout = ESP_DEF_TIMEOUT;
|
|
|
|
#ifdef SPARC_DRIVER
|
|
/*
|
|
* find the DMA by poking around the dma device structures
|
|
*
|
|
* What happens here is that if the dma driver has not been
|
|
* configured, then this returns a NULL pointer. Then when the
|
|
* dma actually gets configured, it does the opposing test, and
|
|
* if the sc->sc_esp field in it's softc is NULL, then tries to
|
|
* find the matching esp driver.
|
|
*
|
|
*/
|
|
sc->sc_dma = ((struct dma_softc *)getdevunit("dma",
|
|
sc->sc_dev.dv_unit));
|
|
#else
|
|
sc->sc_dma = &sc->__dma;
|
|
sc->sc_dma->sc_dev = sc->sc_dev; /* XXX */
|
|
dma_init(sc->sc_dma);
|
|
#endif
|
|
|
|
/*
|
|
* and a back pointer to us, for DMA
|
|
*/
|
|
if (sc->sc_dma)
|
|
sc->sc_dma->sc_esp = sc;
|
|
|
|
/*
|
|
* It is necessary to try to load the 2nd config register here,
|
|
* to find out what rev the esp chip is, else the esp_reset
|
|
* will not set up the defaults correctly.
|
|
*/
|
|
sc->sc_cfg1 = sc->sc_id | ESPCFG1_PARENB;
|
|
#ifdef SPARC_DRIVER
|
|
sc->sc_cfg2 = ESPCFG2_SCSI2 | ESPCFG2_RSVD;
|
|
sc->sc_cfg3 = ESPCFG3_CDB;
|
|
sc->sc_reg->esp_cfg2 = sc->sc_cfg2; MB();
|
|
|
|
esp_cfg2 = RR(sc->sc_reg->esp_cfg2); MB();
|
|
if ((esp_cfg2 & ~ESPCFG2_RSVD) !=
|
|
(ESPCFG2_SCSI2 | ESPCFG2_RPE)) {
|
|
printf(": ESP100");
|
|
sc->sc_rev = ESP100;
|
|
} else {
|
|
sc->sc_cfg2 = 0;
|
|
sc->sc_reg->esp_cfg2 = sc->sc_cfg2; MB();
|
|
sc->sc_cfg3 = 0;
|
|
sc->sc_reg->esp_cfg3 = sc->sc_cfg3; MB();
|
|
sc->sc_cfg3 = 5;
|
|
sc->sc_reg->esp_cfg3 = sc->sc_cfg3; MB();
|
|
esp_cfg3 = RR(sc->sc_reg->esp_cfg3); MB();
|
|
if (esp_cfg3 != 5) {
|
|
printf(": ESP100A");
|
|
sc->sc_rev = ESP100A;
|
|
} else {
|
|
sc->sc_cfg3 = 0;
|
|
sc->sc_reg->esp_cfg3 = sc->sc_cfg3; MB();
|
|
printf(": ESP200");
|
|
sc->sc_rev = ESP200;
|
|
}
|
|
}
|
|
#else
|
|
sc->sc_cfg2 = ESPCFG2_SCSI2;
|
|
sc->sc_cfg3 = 0x4; /* Save residual byte. */
|
|
printf(": NCR53C94");
|
|
sc->sc_rev = NCR53C94;
|
|
#endif
|
|
|
|
sc->sc_state = 0;
|
|
esp_init(sc);
|
|
|
|
printf(" %dMhz, target %d\n", sc->sc_freq, sc->sc_id);
|
|
|
|
#ifdef SPARC_DRIVER
|
|
/* add me to the sbus structures */
|
|
sc->sc_sd.sd_reset = (void *) esp_reset;
|
|
if (ca->ca_bustype == BUS_SBUS)
|
|
sbus_establish(&sc->sc_sd, &sc->sc_dev);
|
|
|
|
/* and the interuppts */
|
|
sc->sc_ih.ih_fun = (void *) espintr;
|
|
sc->sc_ih.ih_arg = sc;
|
|
intr_establish(sc->sc_pri, &sc->sc_ih);
|
|
#endif
|
|
evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt);
|
|
|
|
/*
|
|
* fill in the prototype scsi_link.
|
|
*/
|
|
sc->sc_link.adapter_softc = sc;
|
|
sc->sc_link.adapter_target = sc->sc_id;
|
|
sc->sc_link.adapter = &esp_switch;
|
|
sc->sc_link.device = &esp_dev;
|
|
sc->sc_link.openings = 2;
|
|
|
|
/*
|
|
* If the boot path is "esp" at the moment and it's me, then
|
|
* walk our pointer to the sub-device, ready for the config
|
|
* below.
|
|
*/
|
|
#ifdef SPARC_DRIVER
|
|
bp = ca->ca_ra.ra_bp;
|
|
switch (ca->ca_bustype) {
|
|
case BUS_SBUS:
|
|
if (bp != NULL && strcmp(bp->name, "esp") == 0 &&
|
|
SAME_ESP(sc, bp, ca))
|
|
sc->sc_bp = bp + 1;
|
|
break;
|
|
default:
|
|
if (bp != NULL && strcmp(bp->name, "esp") == 0)
|
|
sc->sc_bp = bp + 1;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Now try to attach all the sub-devices
|
|
*/
|
|
config_found(self, &sc->sc_link, espprint);
|
|
}
|
|
|
|
/*
|
|
* This is the generic esp reset function. It does not reset the SCSI bus,
|
|
* only this controllers, but kills any on-going commands, and also stops
|
|
* and resets the DMA.
|
|
*
|
|
* After reset, registers are loaded with the defaults from the attach
|
|
* routine above.
|
|
*/
|
|
void
|
|
esp_reset(sc)
|
|
struct esp_softc *sc;
|
|
{
|
|
volatile espreg_t *esp = sc->sc_reg;
|
|
|
|
/* reset DMA first */
|
|
DMA_RESET(sc->sc_dma);
|
|
|
|
ESPCMD(sc, ESPCMD_RSTCHIP); /* reset chip */
|
|
ESPCMD(sc, ESPCMD_NOP); /* requires following NOP. */
|
|
DELAY(500);
|
|
|
|
/* ESP: do these backwards, and fall through */
|
|
switch (sc->sc_rev) {
|
|
case NCR53C94:
|
|
esp->esp_cfg1 = sc->sc_cfg1; MB();
|
|
esp->esp_cfg2 = sc->sc_cfg2; MB();
|
|
esp->esp_cfg3 = sc->sc_cfg3; MB();
|
|
esp->esp_ccf = sc->sc_ccf; MB();
|
|
esp->esp_syncoff = 0; MB();
|
|
esp->esp_timeout = sc->sc_timeout; MB();
|
|
break;
|
|
case ESP200:
|
|
esp->esp_cfg3 = sc->sc_cfg3; MB();
|
|
case ESP100A:
|
|
esp->esp_cfg2 = sc->sc_cfg2; MB();
|
|
case ESP100:
|
|
esp->esp_cfg1 = sc->sc_cfg1; MB();
|
|
esp->esp_ccf = sc->sc_ccf; MB();
|
|
esp->esp_syncoff = 0; MB();
|
|
esp->esp_timeout = sc->sc_timeout; MB();
|
|
break;
|
|
default:
|
|
printf("%s: unknown revision code, assuming ESP100\n",
|
|
sc->sc_dev.dv_xname);
|
|
esp->esp_cfg1 = sc->sc_cfg1; MB();
|
|
esp->esp_ccf = sc->sc_ccf; MB();
|
|
esp->esp_syncoff = 0; MB();
|
|
esp->esp_timeout = sc->sc_timeout; MB();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset the SCSI bus, but not the chip
|
|
*/
|
|
void
|
|
esp_scsi_reset(sc)
|
|
struct esp_softc *sc;
|
|
{
|
|
printf("esp: resetting SCSI bus\n");
|
|
ESPCMD(sc, ESPCMD_RSTSCSI);
|
|
DELAY(50);
|
|
}
|
|
|
|
/*
|
|
* Initialize esp state machine
|
|
*/
|
|
void
|
|
esp_init(sc)
|
|
struct esp_softc *sc;
|
|
{
|
|
struct ecb *ecb;
|
|
int r;
|
|
|
|
/*
|
|
* reset the chip to a known state
|
|
*/
|
|
esp_reset(sc);
|
|
|
|
if (sc->sc_state == 0) { /* First time through */
|
|
TAILQ_INIT(&sc->ready_list);
|
|
TAILQ_INIT(&sc->nexus_list);
|
|
TAILQ_INIT(&sc->free_list);
|
|
sc->sc_nexus = 0;
|
|
ecb = sc->sc_ecb;
|
|
bzero(ecb, sizeof(sc->sc_ecb));
|
|
for (r = 0; r < sizeof(sc->sc_ecb) / sizeof(*ecb); r++) {
|
|
TAILQ_INSERT_TAIL(&sc->free_list, ecb, chain);
|
|
ecb++;
|
|
}
|
|
/* XXX: NetBSD error. */
|
|
bzero(sc->sc_tinfo, sizeof(sc->sc_tinfo));
|
|
} else {
|
|
sc->sc_state = ESP_IDLE;
|
|
if (sc->sc_nexus != NULL) {
|
|
sc->sc_nexus->xs->error = XS_DRIVER_STUFFUP;
|
|
untimeout(esp_timeout, sc->sc_nexus);
|
|
esp_done(sc->sc_nexus);
|
|
}
|
|
sc->sc_nexus = NULL;
|
|
while (ecb = sc->nexus_list.tqh_first) {
|
|
ecb->xs->error = XS_DRIVER_STUFFUP;
|
|
untimeout(esp_timeout, ecb);
|
|
esp_done(ecb);
|
|
}
|
|
}
|
|
|
|
sc->sc_phase = sc->sc_prevphase = INVALID_PHASE;
|
|
for (r = 0; r < 8; r++) {
|
|
struct esp_tinfo *tp = &sc->sc_tinfo[r];
|
|
tp->flags = DO_NEGOTIATE | NEED_TO_RESET;
|
|
tp->period = sc->sc_minsync;
|
|
tp->offset = ESP_SYNC_REQ_ACK_OFS;
|
|
}
|
|
sc->sc_state = ESP_IDLE;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* DRIVER FUNCTIONS CALLABLE FROM HIGHER LEVEL DRIVERS
|
|
*/
|
|
|
|
/*
|
|
* Start a SCSI-command
|
|
* This function is called by the higher level SCSI-driver to queue/run
|
|
* SCSI-commands.
|
|
*/
|
|
int
|
|
esp_scsi_cmd(xs)
|
|
struct scsi_xfer *xs;
|
|
{
|
|
struct scsi_link *sc_link = xs->sc_link;
|
|
struct esp_softc *sc = sc_link->adapter_softc;
|
|
struct ecb *ecb;
|
|
int s, flags;
|
|
|
|
ESP_TRACE(("\nesp_scsi_cmd "));
|
|
ESP_CMDS(("[0x%x, %d]->%d ", (int)xs->cmd->opcode, xs->cmdlen,
|
|
sc_link->target));
|
|
|
|
flags = xs->flags;
|
|
|
|
/* Get a esp command block */
|
|
s = splbio();
|
|
ecb = sc->free_list.tqh_first;
|
|
if (ecb) {
|
|
TAILQ_REMOVE(&sc->free_list, ecb, chain);
|
|
}
|
|
splx(s);
|
|
|
|
if (ecb == NULL) {
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
ESP_MISC(("TRY_AGAIN_LATER"));
|
|
return TRY_AGAIN_LATER;
|
|
}
|
|
|
|
/* Initialize ecb */
|
|
ecb->flags = ECB_ACTIVE;
|
|
ecb->xs = xs;
|
|
bcopy(xs->cmd, &ecb->cmd, xs->cmdlen);
|
|
ecb->clen = xs->cmdlen;
|
|
ecb->daddr = xs->data;
|
|
ecb->dleft = xs->datalen;
|
|
ecb->stat = 0;
|
|
|
|
s = splbio();
|
|
TAILQ_INSERT_TAIL(&sc->ready_list, ecb, chain);
|
|
timeout(esp_timeout, ecb, (xs->timeout*hz)/1000);
|
|
|
|
if (sc->sc_state == ESP_IDLE)
|
|
esp_sched(sc);
|
|
|
|
splx(s);
|
|
|
|
if (flags & SCSI_POLL) {
|
|
/* Not allowed to use interrupts, use polling instead */
|
|
return esp_poll(sc, ecb);
|
|
}
|
|
|
|
ESP_MISC(("SUCCESSFULLY_QUEUED"));
|
|
return SUCCESSFULLY_QUEUED;
|
|
|
|
}
|
|
|
|
/*
|
|
* Adjust transfer size in buffer structure
|
|
*
|
|
* We have no max transfer size, since the DMA driver will break it
|
|
* down into watever is needed.
|
|
*/
|
|
void
|
|
esp_minphys(bp)
|
|
struct buf *bp;
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Used when interrupt driven I/O isn't allowed, e.g. during boot.
|
|
*/
|
|
int
|
|
esp_poll(sc, ecb)
|
|
struct esp_softc *sc;
|
|
struct ecb *ecb;
|
|
{
|
|
struct scsi_xfer *xs = ecb->xs;
|
|
int count = xs->timeout * 10;
|
|
|
|
ESP_TRACE(("esp_poll "));
|
|
|
|
while (count) {
|
|
if (DMA_ISINTR(sc)) {
|
|
espintr(sc);
|
|
}
|
|
if (xs->flags & ITSDONE)
|
|
break;
|
|
DELAY(5);
|
|
count--;
|
|
}
|
|
|
|
if (count == 0) {
|
|
ESP_MISC(("esp_poll: timeout"));
|
|
esp_timeout((caddr_t)ecb);
|
|
}
|
|
|
|
return COMPLETE;
|
|
}
|
|
|
|
/*
|
|
* LOW LEVEL SCSI UTILITIES
|
|
*/
|
|
|
|
/*
|
|
* Determine the SCSI bus phase, return either a real SCSI bus phase
|
|
* or some pseudo phase we use to detect certain exceptions.
|
|
*
|
|
* Notice that we do not read the live register on an ESP100. On the
|
|
* ESP100A and above the FE (Feature Enable) bit in config 2 latches
|
|
* the phase in the register so it is safe to read.
|
|
*/
|
|
int
|
|
espphase(sc)
|
|
struct esp_softc *sc;
|
|
{
|
|
u_int esp_stat;
|
|
|
|
ESP_TRACE(("espphase "));
|
|
if (sc->sc_espintr & ESPINTR_DIS) /* Disconnected */
|
|
return BUSFREE_PHASE;
|
|
|
|
if (sc->sc_rev != ESP100) {
|
|
esp_stat = RR(sc->sc_reg->esp_stat); MB();
|
|
return (esp_stat & ESPSTAT_PHASE);
|
|
}
|
|
|
|
return (sc->sc_espstat & ESPSTAT_PHASE);
|
|
}
|
|
|
|
|
|
/*
|
|
* Schedule a scsi operation. This has now been pulled out of the interrupt
|
|
* handler so that we may call it from esp_scsi_cmd and esp_done. This may
|
|
* save us an unecessary interrupt just to get things going. Should only be
|
|
* called when state == ESP_IDLE and at bio pl.
|
|
*/
|
|
void
|
|
esp_sched(sc)
|
|
struct esp_softc *sc;
|
|
{
|
|
struct scsi_link *sc_link;
|
|
struct ecb *ecb;
|
|
int t;
|
|
|
|
ESP_TRACE(("esp_sched "));
|
|
|
|
/*
|
|
* Find first ecb in ready queue that is for a target/lunit
|
|
* combinations that is not busy.
|
|
*/
|
|
for (ecb = sc->ready_list.tqh_first; ecb; ecb = ecb->chain.tqe_next) {
|
|
caddr_t cmd = (caddr_t) &ecb->cmd;
|
|
sc_link = ecb->xs->sc_link;
|
|
t = sc_link->target;
|
|
if (!(sc->sc_tinfo[t].lubusy & (1 << sc_link->lun))) {
|
|
struct esp_tinfo *ti = &sc->sc_tinfo[ecb->xs->sc_link->target];
|
|
|
|
TAILQ_REMOVE(&sc->ready_list, ecb, chain);
|
|
sc->sc_nexus = ecb;
|
|
sc->sc_flags = 0;
|
|
sc->sc_prevphase = INVALID_PHASE;
|
|
sc_link = ecb->xs->sc_link;
|
|
espselect(sc, t, sc_link->lun, cmd, ecb->clen);
|
|
ti = &sc->sc_tinfo[sc_link->target];
|
|
sc->sc_dp = ecb->daddr;
|
|
sc->sc_dleft = ecb->dleft;
|
|
ti->lubusy |= (1<<sc_link->lun);
|
|
break;
|
|
} else
|
|
ESP_MISC(("%d:%d busy\n", t, sc_link->lun));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* POST PROCESSING OF SCSI_CMD (usually current)
|
|
*/
|
|
void
|
|
esp_done(ecb)
|
|
struct ecb *ecb;
|
|
{
|
|
struct scsi_xfer *xs = ecb->xs;
|
|
struct scsi_link *sc_link = xs->sc_link;
|
|
struct esp_softc *sc = sc_link->adapter_softc;
|
|
|
|
ESP_TRACE(("esp_done "));
|
|
|
|
/*
|
|
* Now, if we've come here with no error code, i.e. we've kept the
|
|
* initial XS_NOERROR, and the status code signals that we should
|
|
* check sense, we'll need to set up a request sense cmd block and
|
|
* push the command back into the ready queue *before* any other
|
|
* commands for this target/lunit, else we lose the sense info.
|
|
* We don't support chk sense conditions for the request sense cmd.
|
|
*/
|
|
if (xs->error == XS_NOERROR && !(ecb->flags & ECB_CHKSENSE)) {
|
|
if ((ecb->stat & ST_MASK)==SCSI_CHECK) {
|
|
struct scsi_sense *ss = (void *)&ecb->cmd;
|
|
ESP_MISC(("requesting sense "));
|
|
/* First, save the return values */
|
|
xs->resid = ecb->dleft;
|
|
xs->status = ecb->stat;
|
|
/* Next, setup a request sense command block */
|
|
bzero(ss, sizeof(*ss));
|
|
ss->opcode = REQUEST_SENSE;
|
|
ss->byte2 = sc_link->lun << 5;
|
|
ss->length = sizeof(struct scsi_sense_data);
|
|
ecb->clen = sizeof(*ss);
|
|
ecb->daddr = (char *)&xs->sense;
|
|
ecb->dleft = sizeof(struct scsi_sense_data);
|
|
ecb->flags = ECB_ACTIVE|ECB_CHKSENSE;
|
|
TAILQ_INSERT_HEAD(&sc->ready_list, ecb, chain);
|
|
sc->sc_tinfo[sc_link->target].lubusy &=
|
|
~(1<<sc_link->lun);
|
|
sc->sc_tinfo[sc_link->target].senses++;
|
|
/* found it */
|
|
if (sc->sc_nexus == ecb) {
|
|
sc->sc_nexus = NULL;
|
|
sc->sc_state = ESP_IDLE;
|
|
esp_sched(sc);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (xs->error == XS_NOERROR && (ecb->flags & ECB_CHKSENSE)) {
|
|
xs->error = XS_SENSE;
|
|
} else {
|
|
xs->resid = ecb->dleft;
|
|
}
|
|
xs->flags |= ITSDONE;
|
|
|
|
#if ESP_DEBUG > 1
|
|
if (esp_debug & ESP_SHOWMISC) {
|
|
printf("err=0x%02x ",xs->error);
|
|
if (xs->error == XS_SENSE)
|
|
printf("sense=%2x\n", xs->sense.error_code);
|
|
}
|
|
if ((xs->resid || xs->error > XS_SENSE) && esp_debug & ESP_SHOWMISC) {
|
|
if (xs->resid)
|
|
printf("esp_done: resid=%d\n", xs->resid);
|
|
if (xs->error)
|
|
printf("esp_done: error=%d\n", xs->error);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Remove the ECB from whatever queue it's on. We have to do a bit of
|
|
* a hack to figure out which queue it's on. Note that it is *not*
|
|
* necessary to cdr down the ready queue, but we must cdr down the
|
|
* nexus queue and see if it's there, so we can mark the unit as no
|
|
* longer busy. This code is sickening, but it works.
|
|
*/
|
|
if (ecb == sc->sc_nexus) {
|
|
sc->sc_state = ESP_IDLE;
|
|
sc->sc_tinfo[sc_link->target].lubusy &= ~(1<<sc_link->lun);
|
|
esp_sched(sc);
|
|
} else if (sc->ready_list.tqh_last == &ecb->chain.tqe_next) {
|
|
TAILQ_REMOVE(&sc->ready_list, ecb, chain);
|
|
} else {
|
|
register struct ecb *ecb2;
|
|
for (ecb2 = sc->nexus_list.tqh_first; ecb2;
|
|
ecb2 = ecb2->chain.tqe_next)
|
|
if (ecb2 == ecb) {
|
|
TAILQ_REMOVE(&sc->nexus_list, ecb, chain);
|
|
sc->sc_tinfo[sc_link->target].lubusy
|
|
&= ~(1<<sc_link->lun);
|
|
break;
|
|
}
|
|
if (ecb2)
|
|
;
|
|
else if (ecb->chain.tqe_next) {
|
|
TAILQ_REMOVE(&sc->ready_list, ecb, chain);
|
|
} else {
|
|
printf("%s: can't find matching ecb\n",
|
|
sc->sc_dev.dv_xname);
|
|
Debugger();
|
|
}
|
|
}
|
|
/* Put it on the free list. */
|
|
ecb->flags = ECB_FREE;
|
|
TAILQ_INSERT_HEAD(&sc->free_list, ecb, chain);
|
|
|
|
sc->sc_tinfo[sc_link->target].cmds++;
|
|
scsi_done(xs);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* INTERRUPT/PROTOCOL ENGINE
|
|
*/
|
|
|
|
/*
|
|
* Schedule an outgoing message by prioritizing it, and asserting
|
|
* attention on the bus. We can only do this when we are the initiator
|
|
* else there will be an illegal command interrupt.
|
|
*/
|
|
#define esp_sched_msgout(m) \
|
|
do { \
|
|
ESP_MISC(("esp_sched_msgout %d ", m)); \
|
|
ESPCMD(sc, ESPCMD_SETATN); \
|
|
sc->sc_msgpriq |= (m); \
|
|
} while (0)
|
|
|
|
#define IS1BYTEMSG(m) (((m) != 1 && (m) < 0x20) || (m) & 0x80)
|
|
#define IS2BYTEMSG(m) (((m) & 0xf0) == 0x20)
|
|
#define ISEXTMSG(m) ((m) == 1)
|
|
|
|
/*
|
|
* Get an incoming message as initiator.
|
|
*
|
|
* The SCSI bus must already be in MESSAGE_IN_PHASE and there is a
|
|
* byte in the FIFO
|
|
*/
|
|
void
|
|
esp_msgin(sc)
|
|
register struct esp_softc *sc;
|
|
{
|
|
volatile espreg_t *esp = sc->sc_reg;
|
|
int extlen;
|
|
|
|
ESP_TRACE(("esp_msgin "));
|
|
|
|
/* is something wrong ? */
|
|
if (sc->sc_phase != MESSAGE_IN_PHASE) {
|
|
printf("%s: not MESSAGE_IN_PHASE\n", sc->sc_dev.dv_xname);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Prepare for a new message. A message should (according
|
|
* to the SCSI standard) be transmitted in one single
|
|
* MESSAGE_IN_PHASE. If we have been in some other phase,
|
|
* then this is a new message.
|
|
*/
|
|
if (sc->sc_prevphase != MESSAGE_IN_PHASE) {
|
|
sc->sc_flags &= ~ESP_DROP_MSGI;
|
|
sc->sc_imlen = 0;
|
|
}
|
|
|
|
if (sc->sc_state == ESP_RESELECTED && sc->sc_imlen == 0) {
|
|
/*
|
|
* Which target is reselecting us? (The ID bit really)
|
|
*/
|
|
sc->sc_selid = espgetbyte(sc) & ~(1<<sc->sc_id);
|
|
ESP_MISC(("selid=0x%2x ", sc->sc_selid));
|
|
}
|
|
|
|
for (;;) {
|
|
/*
|
|
* If parity errors just dump everything on the floor
|
|
*/
|
|
if (sc->sc_espstat & ESPSTAT_PE) {
|
|
esp_sched_msgout(SEND_PARITY_ERROR);
|
|
sc->sc_flags |= ESP_DROP_MSGI;
|
|
}
|
|
|
|
/*
|
|
* If we're going to reject the message, don't bother storing
|
|
* the incoming bytes. But still, we need to ACK them.
|
|
*/
|
|
if (!(sc->sc_flags & ESP_DROP_MSGI)) {
|
|
sc->sc_imess[sc->sc_imlen] = espgetbyte(sc);
|
|
ESP_MISC(("0x%02x ", sc->sc_imess[sc->sc_imlen]));
|
|
/*
|
|
* This testing is suboptimal, but most messages will
|
|
* be of the one byte variety, so it should not effect
|
|
* performance significantly.
|
|
*/
|
|
if (IS1BYTEMSG(sc->sc_imess[0]))
|
|
break;
|
|
if (IS2BYTEMSG(sc->sc_imess[0]) && sc->sc_imlen == 1)
|
|
break;
|
|
if (ISEXTMSG(sc->sc_imess[0]) && sc->sc_imlen > 0) {
|
|
if (sc->sc_imlen == ESP_MAX_MSG_LEN) {
|
|
sc->sc_flags |= ESP_DROP_MSGI;
|
|
ESPCMD(sc, ESPCMD_SETATN);
|
|
ESPCMD(sc, ESPCMD_MSGOK);
|
|
}
|
|
extlen = sc->sc_imess[1] ? sc->sc_imess[1] : 256;
|
|
if (sc->sc_imlen == extlen + 2) {
|
|
break; /* Got it all */
|
|
} else {
|
|
sc->sc_imlen++;
|
|
/* ESPCMD(sc, ESPCMD_TRANS); */
|
|
/* return; */
|
|
}
|
|
} else
|
|
sc->sc_imlen++;
|
|
}
|
|
}
|
|
|
|
ESP_MISC(("gotmsg "));
|
|
/*
|
|
* Now we should have a complete message (1 byte, 2 byte
|
|
* and moderately long extended messages). We only handle
|
|
* extended messages which total length is shorter than
|
|
* ESP_MAX_MSG_LEN. Longer messages will be amputated.
|
|
*/
|
|
if (sc->sc_state == ESP_HASNEXUS) {
|
|
struct ecb *ecb = sc->sc_nexus;
|
|
struct esp_tinfo *ti = &sc->sc_tinfo[ecb->xs->sc_link->target];
|
|
|
|
switch (sc->sc_imess[0]) {
|
|
case MSG_CMDCOMPLETE:
|
|
ESP_MISC(("cmdcomplete "));
|
|
if (!ecb) {
|
|
esp_sched_msgout(SEND_ABORT);
|
|
printf("%s: CMDCOMPLETE but no command?\n",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
}
|
|
if (sc->sc_dleft < 0) {
|
|
struct scsi_link *sc_link = ecb->xs->sc_link;
|
|
printf("esp: %d extra bytes from %d:%d\n",
|
|
-sc->sc_dleft, sc_link->target, sc_link->lun);
|
|
ecb->dleft = 0;
|
|
}
|
|
ESPCMD(sc, ESPCMD_MSGOK);
|
|
ecb->xs->resid = ecb->dleft = sc->sc_dleft;
|
|
sc->sc_flags |= ESP_BUSFREE_OK;
|
|
return;
|
|
|
|
case MSG_MESSAGE_REJECT:
|
|
if (esp_debug & ESP_SHOWMISC)
|
|
printf("%s: our msg rejected by target\n",
|
|
sc->sc_dev.dv_xname);
|
|
if (sc->sc_flags & ESP_SYNCHNEGO) {
|
|
ti->period = ti->offset = 0;
|
|
sc->sc_flags &= ~ESP_SYNCHNEGO;
|
|
ti->flags &= ~DO_NEGOTIATE;
|
|
}
|
|
/* Not all targets understand INITIATOR_DETECTED_ERR */
|
|
if (sc->sc_msgout == SEND_INIT_DET_ERR)
|
|
esp_sched_msgout(SEND_ABORT);
|
|
ESPCMD(sc, ESPCMD_MSGOK);
|
|
break;
|
|
case MSG_NOOP:
|
|
ESPCMD(sc, ESPCMD_MSGOK);
|
|
break;
|
|
case MSG_DISCONNECT:
|
|
if (!ecb) {
|
|
esp_sched_msgout(SEND_ABORT);
|
|
printf("%s: nothing to DISCONNECT\n",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
}
|
|
ESPCMD(sc, ESPCMD_MSGOK);
|
|
ti->dconns++;
|
|
TAILQ_INSERT_HEAD(&sc->nexus_list, ecb, chain);
|
|
ecb = sc->sc_nexus = NULL;
|
|
sc->sc_state = ESP_IDLE;
|
|
sc->sc_flags |= ESP_BUSFREE_OK;
|
|
break;
|
|
case MSG_SAVEDATAPOINTER:
|
|
if (!ecb) {
|
|
esp_sched_msgout(SEND_ABORT);
|
|
printf("%s: no DATAPOINTERs to save\n",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
}
|
|
ESPCMD(sc, ESPCMD_MSGOK);
|
|
ecb->dleft = sc->sc_dleft;
|
|
ecb->daddr = sc->sc_dp;
|
|
break;
|
|
case MSG_RESTOREPOINTERS:
|
|
if (!ecb) {
|
|
esp_sched_msgout(SEND_ABORT);
|
|
printf("%s: no DATAPOINTERs to restore\n",
|
|
sc->sc_dev.dv_xname);
|
|
break;
|
|
}
|
|
ESPCMD(sc, ESPCMD_MSGOK);
|
|
sc->sc_dp = ecb->daddr;
|
|
sc->sc_dleft = ecb->dleft;
|
|
break;
|
|
case MSG_EXTENDED:
|
|
switch (sc->sc_imess[2]) {
|
|
case MSG_EXT_SDTR:
|
|
ti->period = sc->sc_imess[3];
|
|
ti->offset = sc->sc_imess[4];
|
|
if (ti->offset == 0) {
|
|
printf("%s: async\n", TARGETNAME(ecb));
|
|
ti->offset = 0;
|
|
} else if (ti->period > 124) {
|
|
printf("%s: async\n", TARGETNAME(ecb));
|
|
ti->offset = 0;
|
|
esp_sched_msgout(SEND_SDTR);
|
|
} else { /* we are sync */
|
|
printf("%s: sync rate %2fMb/s\n",
|
|
TARGETNAME(ecb),
|
|
sc->sc_freq/ti->period);
|
|
}
|
|
break;
|
|
default: /* Extended messages we don't handle */
|
|
ESPCMD(sc, ESPCMD_SETATN);
|
|
break;
|
|
}
|
|
ESPCMD(sc, ESPCMD_MSGOK);
|
|
break;
|
|
default:
|
|
/* thanks for that ident... */
|
|
if (!ESP_MSG_ISIDENT(sc->sc_imess[0])) {
|
|
ESP_MISC(("unknown "));
|
|
ESPCMD(sc, ESPCMD_SETATN);
|
|
}
|
|
ESPCMD(sc, ESPCMD_MSGOK);
|
|
break;
|
|
}
|
|
} else if (sc->sc_state == ESP_RESELECTED) {
|
|
struct scsi_link *sc_link;
|
|
struct ecb *ecb;
|
|
u_char lunit;
|
|
if (ESP_MSG_ISIDENT(sc->sc_imess[0])) { /* Identify? */
|
|
ESP_MISC(("searching "));
|
|
/*
|
|
* Search wait queue for disconnected cmd
|
|
* The list should be short, so I haven't bothered with
|
|
* any more sophisticated structures than a simple
|
|
* singly linked list.
|
|
*/
|
|
lunit = sc->sc_imess[0] & 0x07;
|
|
for (ecb = sc->nexus_list.tqh_first; ecb;
|
|
ecb = ecb->chain.tqe_next) {
|
|
sc_link = ecb->xs->sc_link;
|
|
if (sc_link->lun == lunit &&
|
|
sc->sc_selid == (1<<sc_link->target)) {
|
|
TAILQ_REMOVE(&sc->nexus_list, ecb,
|
|
chain);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!ecb) { /* Invalid reselection! */
|
|
esp_sched_msgout(SEND_ABORT);
|
|
printf("esp: invalid reselect (idbit=0x%2x)\n",
|
|
sc->sc_selid);
|
|
} else { /* Reestablish nexus */
|
|
/*
|
|
* Setup driver data structures and
|
|
* do an implicit RESTORE POINTERS
|
|
*/
|
|
sc->sc_nexus = ecb;
|
|
sc->sc_dp = ecb->daddr;
|
|
sc->sc_dleft = ecb->dleft;
|
|
sc->sc_tinfo[sc_link->target].lubusy
|
|
|= (1<<sc_link->lun);
|
|
esp->esp_syncoff =
|
|
sc->sc_tinfo[sc_link->target].offset;
|
|
MB();
|
|
esp->esp_synctp =
|
|
250 / sc->sc_tinfo[sc_link->target].period;
|
|
MB();
|
|
ESP_MISC(("... found ecb"));
|
|
sc->sc_state = ESP_HASNEXUS;
|
|
}
|
|
} else {
|
|
printf("%s: bogus reselect (no IDENTIFY) %0x2x\n",
|
|
sc->sc_dev.dv_xname, sc->sc_selid);
|
|
esp_sched_msgout(SEND_DEV_RESET);
|
|
}
|
|
} else { /* Neither ESP_HASNEXUS nor ESP_RESELECTED! */
|
|
printf("%s: unexpected message in; will send DEV_RESET\n",
|
|
sc->sc_dev.dv_xname);
|
|
esp_sched_msgout(SEND_DEV_RESET);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Send the highest priority, scheduled message
|
|
*/
|
|
void
|
|
esp_msgout(sc)
|
|
register struct esp_softc *sc;
|
|
{
|
|
volatile espreg_t *esp = sc->sc_reg;
|
|
struct esp_tinfo *ti;
|
|
struct ecb *ecb;
|
|
|
|
ESP_TRACE(("esp_msgout "));
|
|
if (sc->sc_prevphase != MESSAGE_OUT_PHASE) {
|
|
/* Pick up highest priority message */
|
|
sc->sc_msgout = sc->sc_msgpriq & -sc->sc_msgpriq;
|
|
sc->sc_omlen = 1; /* "Default" message len */
|
|
switch (sc->sc_msgout) {
|
|
case SEND_SDTR: /* Also implies an IDENTIFY message */
|
|
ecb = sc->sc_nexus;
|
|
sc->sc_flags |= ESP_SYNCHNEGO;
|
|
ti = &sc->sc_tinfo[ecb->xs->sc_link->target];
|
|
sc->sc_omess[1] = MSG_EXTENDED;
|
|
sc->sc_omess[2] = 3;
|
|
sc->sc_omess[3] = MSG_EXT_SDTR;
|
|
sc->sc_omess[4] = ti->period;
|
|
sc->sc_omess[5] = ti->offset;
|
|
sc->sc_omlen = 6;
|
|
/* Fallthrough! */
|
|
case SEND_IDENTIFY:
|
|
if (sc->sc_state != ESP_HASNEXUS) {
|
|
printf("esp at line %d: no nexus", __LINE__);
|
|
Debugger();
|
|
}
|
|
ecb = sc->sc_nexus;
|
|
sc->sc_omess[0] = ESP_MSG_IDENTIFY(ecb->xs->sc_link->lun);
|
|
break;
|
|
case SEND_DEV_RESET:
|
|
sc->sc_omess[0] = MSG_BUS_DEV_RESET;
|
|
sc->sc_flags |= ESP_BUSFREE_OK;
|
|
break;
|
|
case SEND_PARITY_ERROR:
|
|
sc->sc_omess[0] = MSG_PARITY_ERR;
|
|
break;
|
|
case SEND_ABORT:
|
|
sc->sc_omess[0] = MSG_ABORT;
|
|
sc->sc_flags |= ESP_BUSFREE_OK;
|
|
break;
|
|
case SEND_INIT_DET_ERR:
|
|
sc->sc_omess[0] = MSG_INITIATOR_DET_ERR;
|
|
break;
|
|
case SEND_REJECT:
|
|
sc->sc_omess[0] = MSG_MESSAGE_REJECT;
|
|
break;
|
|
default:
|
|
sc->sc_omess[0] = MSG_NOOP;
|
|
break;
|
|
}
|
|
sc->sc_omp = sc->sc_omess;
|
|
}
|
|
|
|
/* (re)send the message */
|
|
DMA_START(sc->sc_dma, &sc->sc_omp, &sc->sc_omlen, 0);
|
|
}
|
|
|
|
/*
|
|
* This is the most critical part of the driver, and has to know
|
|
* how to deal with *all* error conditions and phases from the SCSI
|
|
* bus. If there are no errors and the DMA was active, then call the
|
|
* DMA pseudo-interrupt handler. If this returns 1, then that was it
|
|
* and we can return from here without further processing.
|
|
*
|
|
* Most of this needs verifying.
|
|
*/
|
|
int
|
|
espintr(__sc)
|
|
void *__sc;
|
|
{
|
|
register struct esp_softc *sc = __sc;
|
|
register struct ecb *ecb = sc->sc_nexus;
|
|
register struct scsi_link *sc_link;
|
|
volatile espreg_t *esp = sc->sc_reg;
|
|
struct esp_tinfo *ti;
|
|
caddr_t cmd;
|
|
u_int esp_fflag;
|
|
int loop;
|
|
|
|
ESP_TRACE(("espintr "));
|
|
|
|
/*
|
|
* I have made some (maybe seriously flawed) assumptions here,
|
|
* but basic testing (uncomment the printf() below), show that
|
|
* certainly something happens when this loop is here.
|
|
*
|
|
* The idea is that many of the SCSI operations take very little
|
|
* time, and going away and getting interrupted is too high an
|
|
* overhead to pay. For example, selecting, sending a message
|
|
* and command and then doing some work can be done in one "pass".
|
|
*
|
|
* The DELAY is not variable because I do not understand that the
|
|
* DELAY loop should be fixed-time regardless of CPU speed, but
|
|
* I am *assuming* that the faster SCSI processors get things done
|
|
* quicker (sending a command byte etc), and so there is no
|
|
* need to be too slow.
|
|
*
|
|
* This is a heuristic. It is 2 when at 20Mhz, 2 at 25Mhz and 1
|
|
* at 40Mhz. This needs testing.
|
|
*/
|
|
#define FOREVER
|
|
for (loop = 0; FOREVER;loop++) {
|
|
/* a feeling of deja-vu */
|
|
if (!DMA_ISINTR(sc) && loop)
|
|
return 1;
|
|
#if 0
|
|
if (loop)
|
|
printf("*");
|
|
#endif
|
|
|
|
/* and what do the registers say... */
|
|
espreadregs(sc);
|
|
#ifndef SPARC_DRIVER
|
|
if (!(sc->sc_espstat & ESPSTAT_INT))
|
|
return (0);
|
|
#endif
|
|
if (sc->sc_state == ESP_IDLE ||
|
|
!(sc->sc_espstat & ESPSTAT_INT)) {
|
|
printf("%s: stray interrupt\n", sc->sc_dev.dv_xname);
|
|
return 0;
|
|
}
|
|
|
|
sc->sc_intrcnt.ev_count++;
|
|
|
|
/*
|
|
* What phase are we in when we *entered* the
|
|
* interrupt handler ?
|
|
*
|
|
* On laster ESP chips (ESP236 and up) the FE (features
|
|
* enable) bit in config 2 latches the phase bits
|
|
* at each "command completion".
|
|
*/
|
|
sc->sc_phase = espphase(sc);
|
|
/*
|
|
* At the moment, only a SCSI Bus Reset or Illegal
|
|
* Command are classed as errors. A diconnect is a
|
|
* valid condition, and we let the code check is the
|
|
* "ESP_BUSFREE_OK" flag was set before declaring it
|
|
* and error.
|
|
*
|
|
* Also, the status register tells us about "Gross
|
|
* Errors" and "Parity errors". Only the Gross Error
|
|
* is really bad, and the parity errors are dealt
|
|
* with later
|
|
*
|
|
* TODO
|
|
* If there are too many parity error, go to slow
|
|
* cable mode ?
|
|
*/
|
|
#define ESPINTR_ERR (ESPINTR_SBR|ESPINTR_ILL)
|
|
|
|
if (sc->sc_espintr & ESPINTR_ERR
|
|
|| sc->sc_espstat & ESPSTAT_GE) {
|
|
/* SCSI Reset */
|
|
if (sc->sc_espintr & ESPINTR_SBR) {
|
|
esp_fflag = RR(esp->esp_fflag); MB();
|
|
if (esp_fflag & ESPFIFO_FF) {
|
|
ESPCMD(sc, ESPCMD_FLUSH);
|
|
DELAY(1);
|
|
}
|
|
printf("%s: SCSI bus reset\n",
|
|
sc->sc_dev.dv_xname);
|
|
esp_init(sc); /* Restart everything */
|
|
return 1;
|
|
}
|
|
|
|
if (sc->sc_espstat & ESPSTAT_GE) {
|
|
/* no target ? */
|
|
esp_fflag = RR(esp->esp_fflag); MB();
|
|
if (esp_fflag & ESPFIFO_FF) {
|
|
ESPCMD(sc, ESPCMD_FLUSH);
|
|
DELAY(1);
|
|
}
|
|
DELAY(1);
|
|
if (sc->sc_state == ESP_HASNEXUS) {
|
|
ecb->xs->error = XS_DRIVER_STUFFUP;
|
|
untimeout(esp_timeout, ecb);
|
|
espreadregs(sc);
|
|
esp_done(ecb);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
if (sc->sc_espintr & ESPINTR_ILL) {
|
|
/* illegal command, out of sync ? */
|
|
printf("%s: illegal command\n",
|
|
sc->sc_dev.dv_xname);
|
|
esp_fflag = RR(esp->esp_fflag); MB();
|
|
if (esp_fflag & ESPFIFO_FF) {
|
|
ESPCMD(sc, ESPCMD_FLUSH);
|
|
DELAY(1);
|
|
}
|
|
if (sc->sc_state == ESP_HASNEXUS) {
|
|
ecb->xs->error = XS_DRIVER_STUFFUP;
|
|
untimeout(esp_timeout, ecb);
|
|
esp_done(ecb);
|
|
}
|
|
esp_reset(sc); /* so start again */
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Call if DMA is active.
|
|
*
|
|
* If DMA_INTR returns true, then maybe go 'round the loop
|
|
* again in case there is no more DMA queued, but a phase
|
|
* change is expected.
|
|
*/
|
|
if (sc->sc_dma->sc_active && DMA_INTR(sc->sc_dma)) {
|
|
/* If DMA active here, then go back to work... */
|
|
if (sc->sc_dma->sc_active)
|
|
return 1;
|
|
DELAY(50/sc->sc_freq);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* check for less serious errors
|
|
*/
|
|
if (sc->sc_espstat & ESPSTAT_PE) {
|
|
printf("esp: SCSI bus parity error\n");
|
|
if (sc->sc_prevphase == MESSAGE_IN_PHASE)
|
|
esp_sched_msgout(SEND_PARITY_ERROR);
|
|
else
|
|
esp_sched_msgout(SEND_INIT_DET_ERR);
|
|
}
|
|
|
|
if (sc->sc_espintr & ESPINTR_DIS) {
|
|
ESP_MISC(("disc "));
|
|
esp_fflag = RR(esp->esp_fflag); MB();
|
|
if (esp_fflag & ESPFIFO_FF) {
|
|
ESPCMD(sc, ESPCMD_FLUSH);
|
|
DELAY(1);
|
|
}
|
|
/*
|
|
* This command must (apparently) be issued within
|
|
* 250mS of a disconnect. So here you are...
|
|
*/
|
|
ESPCMD(sc, ESPCMD_ENSEL);
|
|
if (sc->sc_state != ESP_IDLE) {
|
|
/* it may be OK to disconnect */
|
|
if (!(sc->sc_flags & ESP_BUSFREE_OK))
|
|
ecb->xs->error = XS_TIMEOUT;
|
|
untimeout(esp_timeout, ecb);
|
|
esp_done(ecb);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* did a message go out OK ? This must be broken */
|
|
if (sc->sc_prevphase == MESSAGE_OUT_PHASE &&
|
|
sc->sc_phase != MESSAGE_OUT_PHASE) {
|
|
/* we have sent it */
|
|
sc->sc_msgpriq &= ~sc->sc_msgout;
|
|
sc->sc_msgout = 0;
|
|
}
|
|
|
|
switch (sc->sc_state) {
|
|
|
|
case ESP_RESELECTED:
|
|
/*
|
|
* we must be continuing a message ?
|
|
*/
|
|
if (sc->sc_phase != MESSAGE_IN_PHASE) {
|
|
printf("%s: target didn't identify\n",
|
|
sc->sc_dev.dv_xname);
|
|
esp_init(sc);
|
|
return 1;
|
|
}
|
|
esp_msgin(sc);
|
|
if (sc->sc_state != ESP_HASNEXUS) {
|
|
/* IDENTIFY fail?! */
|
|
printf("%s: identify failed\n",
|
|
sc->sc_dev.dv_xname);
|
|
esp_init(sc);
|
|
return 1;
|
|
}
|
|
break;
|
|
|
|
case ESP_IDLE:
|
|
case ESP_SELECTING:
|
|
|
|
if (sc->sc_espintr & ESPINTR_RESEL) {
|
|
/*
|
|
* If we're trying to select a
|
|
* target ourselves, push our command
|
|
* back into the ready list.
|
|
*/
|
|
if (sc->sc_state == ESP_SELECTING) {
|
|
ESP_MISC(("backoff selector "));
|
|
TAILQ_INSERT_HEAD(&sc->ready_list,
|
|
sc->sc_nexus, chain);
|
|
sc->sc_nexus = NULL;
|
|
}
|
|
sc->sc_state = ESP_RESELECTED;
|
|
if (sc->sc_phase != MESSAGE_IN_PHASE) {
|
|
/*
|
|
* Things are seriously fucked up.
|
|
* Pull the brakes, i.e. reset
|
|
*/
|
|
printf("%s: target didn't identify\n",
|
|
sc->sc_dev.dv_xname);
|
|
esp_init(sc);
|
|
return 1;
|
|
}
|
|
esp_msgin(sc); /* Handle identify message */
|
|
if (sc->sc_state != ESP_HASNEXUS) {
|
|
/* IDENTIFY fail?! */
|
|
printf("%s: identify failed\n",
|
|
sc->sc_dev.dv_xname);
|
|
esp_init(sc);
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#define ESPINTR_DONE (ESPINTR_FC|ESPINTR_BS)
|
|
if ((sc->sc_espintr & ESPINTR_DONE) == ESPINTR_DONE) {
|
|
ecb = sc->sc_nexus;
|
|
if (!ecb)
|
|
panic("esp: not nexus at sc->sc_nexus");
|
|
sc_link = ecb->xs->sc_link;
|
|
ti = &sc->sc_tinfo[sc_link->target];
|
|
if (ecb->xs->flags & SCSI_RESET)
|
|
sc->sc_msgpriq = SEND_DEV_RESET;
|
|
else if (ti->flags & DO_NEGOTIATE)
|
|
sc->sc_msgpriq =
|
|
SEND_IDENTIFY | SEND_SDTR;
|
|
else
|
|
sc->sc_msgpriq = SEND_IDENTIFY;
|
|
sc->sc_state = ESP_HASNEXUS;
|
|
sc->sc_flags = 0;
|
|
sc->sc_prevphase = INVALID_PHASE;
|
|
sc->sc_dp = ecb->daddr;
|
|
sc->sc_dleft = ecb->dleft;
|
|
ti->lubusy |= (1<<sc_link->lun);
|
|
break;
|
|
} else if (sc->sc_espintr & ESPINTR_FC) {
|
|
if (sc->sc_espstep != ESPSTEP_DONE) {
|
|
esp_fflag = RR(esp->esp_fflag); MB();
|
|
if (esp_fflag & ESPFIFO_FF) {
|
|
ESPCMD(sc, ESPCMD_FLUSH);
|
|
DELAY(1);
|
|
}
|
|
}
|
|
}
|
|
/* We aren't done yet, but expect to be soon */
|
|
DELAY(50/sc->sc_freq);
|
|
continue;
|
|
|
|
case ESP_HASNEXUS:
|
|
break;
|
|
default:
|
|
panic("esp unknown state");
|
|
}
|
|
|
|
/*
|
|
* Driver is now in state ESP_HASNEXUS, i.e. we
|
|
* have a current command working the SCSI bus.
|
|
*/
|
|
cmd = (caddr_t) &ecb->cmd;
|
|
if (sc->sc_state != ESP_HASNEXUS || ecb == NULL) {
|
|
panic("esp no nexus");
|
|
}
|
|
|
|
switch (sc->sc_phase) {
|
|
case MESSAGE_OUT_PHASE:
|
|
ESP_PHASE(("MESSAGE_OUT_PHASE "));
|
|
esp_msgout(sc);
|
|
sc->sc_prevphase = MESSAGE_OUT_PHASE;
|
|
break;
|
|
case MESSAGE_IN_PHASE:
|
|
ESP_PHASE(("MESSAGE_IN_PHASE "));
|
|
esp_msgin(sc);
|
|
sc->sc_prevphase = MESSAGE_IN_PHASE;
|
|
break;
|
|
case COMMAND_PHASE:
|
|
/* well, this means send the command again */
|
|
ESP_PHASE(("COMMAND_PHASE 0x%02x (%d) ",
|
|
ecb->cmd.opcode, ecb->clen));
|
|
esp_fflag = RR(esp->esp_fflag); MB();
|
|
if (esp_fflag & ESPFIFO_FF) {
|
|
ESPCMD(sc, ESPCMD_FLUSH);
|
|
DELAY(1);
|
|
}
|
|
espselect(sc, ecb->xs->sc_link->target,
|
|
ecb->xs->sc_link->lun, (caddr_t)&ecb->cmd,
|
|
ecb->clen);
|
|
sc->sc_prevphase = COMMAND_PHASE;
|
|
break;
|
|
case DATA_OUT_PHASE:
|
|
ESP_PHASE(("DATA_OUT_PHASE [%d] ", sc->sc_dleft));
|
|
DMA_START(sc->sc_dma, &sc->sc_dp, &sc->sc_dleft, 0);
|
|
sc->sc_prevphase = DATA_OUT_PHASE;
|
|
break;
|
|
case DATA_IN_PHASE:
|
|
ESP_PHASE(("DATA_IN_PHASE "));
|
|
DMA_DRAIN(sc->sc_dma);
|
|
DMA_START(sc->sc_dma, &sc->sc_dp, &sc->sc_dleft, 1);
|
|
sc->sc_prevphase = DATA_IN_PHASE;
|
|
break;
|
|
case STATUS_PHASE:
|
|
ESP_PHASE(("STATUS_PHASE "));
|
|
ESPCMD(sc, ESPCMD_ICCS);
|
|
ecb->stat = espgetbyte(sc);
|
|
ESP_PHASE(("0x%02x ", ecb->stat));
|
|
sc->sc_prevphase = STATUS_PHASE;
|
|
break;
|
|
case INVALID_PHASE:
|
|
break;
|
|
case BUSFREE_PHASE:
|
|
if (sc->sc_flags & ESP_BUSFREE_OK) {
|
|
/*It's fun the 1st time.. */
|
|
sc->sc_flags &= ~ESP_BUSFREE_OK;
|
|
}
|
|
break;
|
|
default:
|
|
panic("esp: bogus bus phase\n");
|
|
}
|
|
DELAY(50/sc->sc_freq);
|
|
}
|
|
}
|
|
|
|
void
|
|
esp_timeout(arg)
|
|
void *arg;
|
|
{
|
|
int s = splbio();
|
|
struct ecb *ecb = (struct ecb *)arg;
|
|
struct esp_softc *sc;
|
|
|
|
ESP_TRACE(("esp_timeout "));
|
|
|
|
sc = ecb->xs->sc_link->adapter_softc;
|
|
sc_print_addr(ecb->xs->sc_link);
|
|
ecb->xs->error = XS_TIMEOUT;
|
|
printf("timed out\n");
|
|
|
|
esp_done(ecb);
|
|
esp_reset(sc);
|
|
splx(s);
|
|
}
|