NetBSD/distrib/sparc/upgrade.sh
1995-11-16 22:29:46 +00:00

1073 lines
24 KiB
Bash
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/bin/sh
# $NetBSD: upgrade.sh,v 1.5 1995/11/16 22:29:48 pk Exp $
#
# Copyright (c) 1995 Jason R. Thorpe.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. All advertising materials mentioning features or use of this software
# must display the following acknowledgement:
# This product includes software developed for the NetBSD Project
# by Jason R. Thorpe.
# 4. The name of the author may not be used to endorse or promote products
# derived from this software without specific prior written permission
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# NetBSD installation script.
# In a perfect world, this would be a nice C program, with a reasonable
# user interface.
VERSION=1.1
ROOTDISK="" # filled in below
FILESYSTEMS="/tmp/filesystems" # used thoughout
FQDN="" # domain name
trap "umount /tmp /mnt/usr /mnt > /dev/null 2>&1" 0
getresp() {
read resp
if [ "X$resp" = "X" ]; then
resp=$1
fi
}
isin() {
# test the first argument against the remaining ones, return succes on a match
_a=$1; shift
while [ $# != 0 ]; do
if [ "$_a" = "$1" ]; then return 0; fi
shift
done
return 1
}
rmel() {
# remove first argument from list formed by the remaining arguments
_a=$1; shift
while [ $# != 0 ]; do
if [ "$_a" != "$1" ]; then echo "$1"; fi
shift
done
}
twiddle()
{
while : ; do
sleep 1; echo -n "/";
sleep 1; echo -n "-";
sleep 1; echo -n "\\";
sleep 1; echo -n "|";
done > /dev/tty & echo $!
}
set_terminal() {
echo -n "Specify terminal type [sun]: "
getresp "sun"
TERM="$resp"
export TERM
}
#
# machine dependent section
#
md_get_diskdevs() {
# return available disk devices
dmesg | egrep "(^sd[0-9]|^x[dy][0-9])" | cut -d" " -f1 | sort -u
}
md_get_cddevs() {
# return available CDROM devices
dmesg | grep "^cd[0-9]" | cut -d" " -f1 | sort -u
}
md_get_ifdevs() {
# return available network devices
dmesg | egrep "(^le[0-9]|^ie[0-9])" | cut -d" " -f1 | sort -u
}
md_installboot() {
echo "Installing boot block..."
/usr/mdec/binstall -v ffs /mnt
}
do_mfs_mount() {
umount $1 > /dev/null 2>&1
if ! mount_mfs -s 2048 swap $1 ; then
cat << \__mfs_failed_1
FATAL ERROR: Can't mount the memory filesystem.
__mfs_failed_1
exit
fi
# Bleh. Give mount_mfs a chance to DTRT.
sleep 2
}
getrootdisk() {
cat << \__getrootdisk_1
The installation program needs to know which disk to consider
the root disk. Note the unit number may be different than
the unit number you used in the standalone installation
program.
Available disks are:
__getrootdisk_1
_DKDEVS=`md_get_diskdevs`
echo "$_DKDEVS"
echo ""
echo -n "Which disk is the root disk? "
getresp ""
if isin $resp $_DKDEVS ; then
ROOTDISK="$resp"
else
echo ""
echo "The disk $resp does not exist."
ROOTDISK=""
fi
}
checkfordisklabel() {
disklabel $1 > /dev/null 2> /tmp/checkfordisklabel
if grep "no disk label" /tmp/checkfordisklabel; then
rval="1"
elif grep "disk label corrupted" /tmp/checkfordisklabel; then
rval="2"
else
rval="0"
fi
rm -f /tmp/checkfordisklabel
}
labelmoredisks() {
cat << \__labelmoredisks_1
You may label the following disks:
__labelmoredisks_1
_DKDEV=`rmel "${ROOTDISK}"`
echo $_DKDEVS
echo ""
echo -n "Label which disk? [done] "
getresp "done"
case "$resp" in
"done")
;;
*)
if echo "$_DKDEVS" | grep "^$resp" > /dev/null ; then
disklabel -e $resp
else
echo ""
echo "The disk $resp does not exist."
fi
;;
esac
}
addhostent() {
# $1 - IP address
# $2 - symbolic name
# Create an entry in the hosts table. If no host table
# exists, create one. If the IP address already exists,
# replace it's entry.
if [ ! -f /tmp/hosts ]; then
echo "127.0.0.1 localhost" > /tmp/hosts
fi
if grep "^$1 " /tmp/hosts > /dev/null; then
grep -v "^$1 " /tmp/hosts > /tmp/hosts.new
mv /tmp/hosts.new /tmp/hosts
fi
echo "$1 $2 $2.$FQDN" >> /tmp/hosts
}
addifconfig() {
# $1 - interface name
# $2 - interface symbolic name
# $3 - interface IP address
# $4 - interface netmask
# Create a hostname.* file for the interface.
echo "inet $2 $4" > /tmp/hostname.$1
addhostent $3 $2
}
configurenetwork() {
cat << \__configurenetwork_1
You may configure the following network interfaces:
__configurenetwork_1
_IFS=`md_get_ifdevs`
echo $_IFS
echo ""
echo -n "Configure which interface? [done] "
getresp "done"
case "$resp" in
"done")
;;
*)
if isin $resp $_IFS ; then
_interface_name=$resp
# remove from list
_IFS=`rmel $resp "$_IFS"`
# Get IP address
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "IP address? "
getresp ""
_interface_ip=$resp
done
# Get symbolic name
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "Symbolic name? "
getresp ""
_interface_symname=$resp
done
# Get netmask
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "Netmask? "
getresp ""
_interface_mask=$resp
done
# Configure the interface. If it
# succeeds, add it to the permanent
# network configuration info.
ifconfig ${_interface_name} down
if ifconfig ${_interface_name} inet \
${_interface_ip} \
netmask ${_interface_mask} up ; then
addifconfig \
${_interface_name} \
${_interface_symname} \
${_interface_ip} \
${_interface_mask}
fi
else
echo ""
echo "The interface $resp does not exist."
fi
;;
esac
}
install_ftp() {
# Get several parameters from the user, and create
# a shell script that directs the appropriate
# commands into ftp.
cat << \__install_ftp_1
This is an automated ftp-based installation process. You will be asked
several questions. The correct set of commands will be placed in a script
that will be fed to ftp(1).
__install_ftp_1
# Get server IP address
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "Server IP? [${_ftp_server_ip}] "
getresp "${_ftp_server_ip}"
_ftp_server_ip=$resp
done
# Get server directory
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "Server directory? [${_ftp_server_dir}] "
getresp "${_ftp_server_dir}"
_ftp_server_dir=$resp
done
# Get login name
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "Login? [${_ftp_server_login}] "
getresp "${_ftp_server_login}"
_ftp_server_login=$resp
done
# Get password
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "Password? [${_ftp_server_password}] "
getresp "${_ftp_server_password}"
_ftp_server_password=$resp
done
# Get list of files for mget.
cat << \__install_ftp_2
You will now be asked for files to extract. Enter one file at a time.
When you are done entering files, enter 'done'.
__install_ftp_2
echo "#!/bin/sh" > /tmp/ftp-script.sh
echo "cd /mnt" >> /tmp/ftp-script.sh
echo "ftp -i -n $_ftp_server_ip << \__end_commands" >> \
/tmp/ftp-script.sh
echo "user $_ftp_server_login $_ftp_server_password" >> \
/tmp/ftp-script.sh
echo "bin" >> /tmp/ftp-script.sh
echo "cd $_ftp_server_dir" >> /tmp/ftp-script.sh
resp="" # force one interation
while [ "X${resp}" != X"done" ]; do
echo -n "File? [done] "
getresp "done"
if [ "X${resp}" = X"done" ]; then
break
fi
_ftp_file=`echo ${resp} | awk '{print $1}'`
echo "get ${_ftp_file} |\"tar -zxvpf -\"" >> \
/tmp/ftp-script.sh
done
echo "quit" >> /tmp/ftp-script.sh
echo "__end_commands" >> /tmp/ftp-script.sh
sh /tmp/ftp-script.sh
rm -f /tmp/ftp-script.sh
echo "Extraction complete."
}
install_common_nfs_cdrom() {
# $1 - directory containing file
local _filename
local _setsdone
local _prev
local _f
_sets=`(cd /mnt2/$1; ls *.tar.gz)`
if [ -z "$_sets" ]; then
echo "There are no NetBSD install sets available in \"$1\""
return
fi
_setsdone=""
while : ; do
echo "The following sets are available for extraction:"
echo "(marked sets have already been extracted)"
echo ""
_prev=""
for _f in $_sets ; do
if isin $_f $_setsdone; then
echo -n "[X] "
else
echo -n " "
if [ -z "$_prev" ]; then _prev=$_f; fi
fi
echo $_f
done
echo ""
# Get the name of the file.
if [ "X$_prev" = "X" ]; then resp=n; else resp=y; fi
echo -n "Continue extraction [$resp]?"
getresp "$resp"
if [ "$resp" = "n" ]; then
break
fi
echo -n "File name [$_prev]? "
getresp "$_prev"
_f=$resp
_filename="/mnt2/$1/$_f"
# Ensure file exists
if [ ! -f $_filename ]; then
echo "File $_filename does not exist. Check to make"
echo "sure you entered the information properly."
continue
fi
# Extract file
cat $_filename | (cd /mnt; tar -zxvpf -)
echo "Extraction complete."
_setsdone="$_f $_setsdone"
done
}
install_cdrom() {
# Get the cdrom device info
cat << \__install_cdrom_1
The following SCSI disk or disk-like devices are installed on your system;
please select the CD-ROM device containing the installation media:
__install_cdrom_1
_CDDEVS=`md_get_cddevs`
echo "$_CDDEVS"
echo ""
echo -n "Which is the CD-ROM with the installation media? [abort] "
getresp "abort"
case "$resp" in
abort)
echo "Aborting."
return
;;
*)
if isin $resp $_CDDEVS ; then
_cdrom_drive=$resp
else
echo ""
echo "The CD-ROM $resp does not exist."
echo "Aborting."
return
fi
;;
esac
# Get partition
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "Partition? [c] "
getresp "c"
case "$resp" in
[a-h])
_cdrom_partition=$resp
;;
*)
echo "Invalid response: $resp"
resp="" # force loop to repeat
;;
esac
done
# Ask for filesystem type
cat << \__install_cdrom_2
There are two CD-ROM filesystem types currently supported by this program:
1) ISO-9660 (cd9660)
2) Berkeley Fast Filesystem (ffs)
__install_cdrom_2
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "Which filesystem type? [cd9660] "
getresp "cd9660"
case "$resp" in
cd9660|ffs)
_cdrom_filesystem=$resp
;;
*)
echo "Invalid response: $resp"
resp="" # force loop to repeat
;;
esac
done
# Mount the CD-ROM
mkdir /mnt2 > /dev/null 2>&1
if ! mount -t ${_cdrom_filesystem} -o ro \
/dev/${_cdrom_drive}${_cdrom_partition} /mnt2 ; then
echo "Cannot mount CD-ROM drive. Aborting."
return
fi
# Get the directory where the file lives
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo "Enter the directory relative to the mount point that"
echo -n "contains the file. [${_cdrom_directory}] "
getresp "${_cdrom_directory}"
done
_cdrom_directory=$resp
install_common_nfs_cdrom ${_cdrom_directory}
umount -f /mnt2 > /dev/null 2>&1
}
install_nfs() {
# Get the IP address of the server
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "Server IP address? [${_nfs_server_ip}] "
getresp "${_nfs_server_ip}"
done
_nfs_server_ip=$resp
# Get server path to mount
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "Filesystem on server to mount? [${_nfs_server_path}] "
getresp "${_nfs_server_path}"
done
_nfs_server_path=$resp
# Determine use of TCP
echo -n "Use TCP transport (only works with capable NFS server)? [n] "
getresp "n"
case "$resp" in
y*|Y*)
_nfs_tcp="-T"
;;
*)
_nfs_tcp=""
;;
esac
# Mount the server
if ! mount_nfs $_nfs_tcp ${_nfs_server_ip}:${_nfs_server_path} \
/mnt2 ; then
echo "Cannot mount NFS server. Aborting."
return
fi
# Get the directory where the file lives
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo "Enter the directory relative to the mount point that"
echo -n "contains the file. [${_nfs_directory}] "
getresp "${_nfs_directory}"
done
_nfs_directory=$resp
install_common_nfs_cdrom ${_nfs_directory}
umount -f /mnt2 > /dev/null 2>&1
}
install_tape() {
# Get the name of the tape from the user.
cat << \__install_tape_1
The installation program needs to know which tape device to use. Make
sure you use a "no rewind on close" device.
__install_tape_1
_tape=`basename $TAPE`
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "Name of tape device? [${_tape}]"
getresp "${_tape}"
done
_tape=`basename $resp`
TAPE="/dev/${_tape}"
if [ ! -c $TAPE ]; then
echo "$TAPE does not exist or is not a character special file."
echo "Aborting."
return
fi
export TAPE
# Rewind the tape device
echo -n "Rewinding tape..."
if ! mt rewind ; then
echo "$TAPE may not be attached to the system or may not be"
echo "a tape device. Aborting."
return
fi
echo "done."
# Get the file number
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
echo -n "File number? "
getresp ""
case "$resp" in
[1-9]*)
_nskip=`expr $resp - 1`
;;
*)
echo "Invalid file number ${resp}."
resp="" # fore loop to repeat
;;
esac
done
# Skip to correct file.
echo -n "Skipping to source file..."
if [ "X${_nskip}" != X"0" ]; then
if ! mt fsf $_nskip ; then
echo "Could not skip $_nskip files. Aborting."
return
fi
fi
echo "done."
cat << \__install_tape_2
There are 2 different ways the file can be stored on tape:
1) an image of a gzipped tar file
2) a standard tar image
__install_tape_2
resp="" # force one iteration
while [ "X${resp}" = X"" ]; do
getresp "1"
case "$resp" in
1)
(
cd /mnt
dd if=$TAPE | tar -zxvpf -
)
;;
2)
(
cd /mnt
dd if=$TAPE | tar -xvpf -
)
;;
*)
echo "Invalid response: $resp."
resp="" # force loop to repeat
;;
esac
done
echo "Extraction complete."
}
get_timezone() {
local _a
cat << \__get_timezone_1
Select a time zone for your location. Timezones are represented on the
system by a directory structure rooted in "/usr/share/timezone". Most
timezones can be selected by entering a token like "MET" or "GMT-6".
Other zones are grouped by continent, with detailed zone information
separated by a slash ("/"), e.g. "US/Pacific".
To get a listing of what's available in /usr/share/zoneinfo, enter "?"
at the prompts below.
__get_timezone_1
if [ X$TZ = X ]; then
TZ=`ls -l /etc/timezone 2>/dev/null | awk '{print $NF}' |
sed -e 's?/usr/share/zoneinfo/??'`
fi
while :; do
echo -n "What timezone are you in [\`?' for list] [$TZ]? "
getresp "$TZ"
case "$resp" in
"")
echo "Timezone defaults to GMT"
TZ="GMT"
break;
;;
"?")
ls /usr/share/zoneinfo
;;
*)
_a=$resp
while [ -d /usr/share/zoneinfo/$_a ]; do
echo -n "There are several timezones available"
echo " within zone '$_a'"
echo -n "Select a sub-timezone [\`?' for list]: "
getresp ""
case "$resp" in
"?") ls /usr/share/zoneinfo/$_a ;;
*) _a=${_a}/${resp}
if [ -f /usr/share/zoneinfo/$_a ]; then
break;
fi
;;
esac
done
if [ -f /usr/share/zoneinfo/$_a ]; then
TZ="$_a"
echo "You have selected timezone \"$_a\"".
break 2
fi
echo "'/usr/share/zoneinfo/$_a' is not a valid timezone on this system."
;;
esac
done
}
echo ""
echo "Welcome to the NetBSD/sparc ${VERSION} upgrade program."
cat << \__welcome_banner_1
This program is designed to help you put NetBSD on your disk,
in a simple and rational way. You'll be asked several questions,
and it would probably be useful to have your disk's hardware
manual, the installation notes, and a calculator handy.
As with anything which modifies your disk's contents, this
program can cause SIGNIFICANT data loss, and you are advised
to make sure your data is backed up before beginning the
installation process.
Default answers are displyed in brackets after the questions.
You can hit Control-C at any time to quit, but if you do so at a
prompt, you may have to hit return. Also, quitting in the middle of
installation may leave your system in an inconsistent state.
__welcome_banner_1
echo -n "Proceed with installation? [n] "
getresp "n"
case "$resp" in
y*|Y*)
echo "Cool! Let's get to it..."
;;
*)
cat << \__welcome_banner_2
OK, then. Enter 'halt' at the prompt to halt the machine. Once the
machine has halted, power-cycle the system to load new boot code.
__welcome_banner_2
exit
;;
esac
set_terminal
# We don't like it, but it sure makes a few things a lot easier.
##do_mfs_mount "/tmp"
# Install the shadowed disktab file; lets us write to it for temporary
# purposes without mounting the miniroot read-write.
##cp /etc/disktab.shadow /tmp/disktab.shadow
while [ "X${ROOTDISK}" = "X" ]; do
getrootdisk
done
# Make sure there's a disklabel there. If there isn't, puke after
# disklabel prints the error message.
checkfordisklabel ${ROOTDISK}
case $rval in
1)
cat << \__disklabel_not_present_1
FATAL ERROR: There is no disklabel present on the root disk! You must
label the disk before continuing.
__disklabel_not_present_1
exit
;;
2)
cat << \__disklabel_corrupted_1
FATAL ERROR: The disklabel on the root disk is corrupted! You must
re-label the disk before continuing.
__disklabel_corrupted_1
exit
;;
*)
;;
esac
cat << \__mount_root
Ready to mount your existing root filesystem. This is normally
the `a' partition on your boot disk.
__mount_root
while : ; do
echo -n "Root filesystem? [${ROOTDISK}a] "
getresp "${ROOTDISK}a"
case "$resp" in
*)
mount /dev/$resp /mnt
if [ $? = 0 ]; then
break 2;
fi
echo "$resp could not be mounted"
;;
esac
done
# Look in /mnt/etc/fstab for /usr filesystem.
awk '{
if ($2 == "/" || $2 == "/usr") {
print
}
}' < /mnt/etc/fstab > /tmp/fstab
echo "These filesystems are configured to be used for this upgrade:"
echo ""
cat /tmp/fstab
cat << \__fstab_config_1
You may wish to edit the fstab. For example, you may need to resolve
dependencies in the order which the filesystems are mounted. You may
also wish to take this opportunity to place NFS mounts in the fstab.
This would be especially useful if you plan to keep '/usr' on an NFS
server.
You also need to edit the fstab file if your disk has been assigned a
different unit number by the currently running kernel. For instance,
a SCSI disk that was known as `sd0' in your existing configuration
might appear as `sd3' here. If this is the case, change all old
unit numbers to the new unit number.
__fstab_config_1
echo -n "Edit the fstab? [n] "
getresp "n"
case "$resp" in
y*|Y*)
vi /tmp/fstab
;;
*)
;;
esac
# Now that the 'real' fstab is configured, we munge it into a 'shadow'
# fstab which we'll use for mounting and unmounting all of the target
# filesystems relative to /mnt. Mount all filesystems.
awk '{
if ($2 == "/")
printf("%s /mnt %s %s %s %s\n", $1, $3, $4, $5, $6)
else
printf("%s /mnt%s %s %s %s %s\n", $1, $2, $3, $4, $5, $6)
}' < /tmp/fstab > /tmp/fstab.shadow
echo ""
# Must mount filesystems manually, one at a time, so we can make sure the
# mount points exist.
(
while read line; do
_dev=`echo $line | awk '{print $1}'`
_mp=`echo $line | awk '{print $2}'`
_fstype=`echo $line | awk '{print $3}'`
_opt=`echo $line | awk '{print $4}'`
# If not the root filesystem, make sure the mount
# point is present.
if [ "X${_mp}" != X"/mnt" ]; then
mkdir -p $_mp
# note: root already mounted on /mnt
else
continue;
fi
# Mount the filesystem. If the mount fails, exit
# with an error condition to tell the outer
# layer to bail.
if ! mount -v -t $_fstype -o $_opt $_dev $_mp ; then
# error message displayed by mount
exit 1
fi
done
) < /tmp/fstab.shadow
if [ "X${?}" != X"0" ]; then
cat << \__mount_filesystems_1
FATAL ERROR: Cannot mount filesystems. Double-check your configuration
and restart the installation process.
__mount_filesystems_1
exit
fi
# Ask the user which media to load the distribution from.
cat << \__install_sets_1
It is now time to extract the installation sets onto the disk.
Make sure The sets are either on a local device (i.e. tape, CD-ROM) or on a
network server.
__install_sets_1
ALLSETS="base comp etc games man misc text"
UPGRSETS="base comp games man misc text"
RELDIR=
if [ -f $RELDIR/base.tar.gz ]; then
echo -n "Install from sets in the current root filesystem? [y] "
getresp "y"
case "$resp" in
y*|Y*)
for _f in $UPGRSETS; do
if [ ! -f $RELDIR/${_f}.tar.gz ]; then
continue;
fi
echo -n "Install set \"$_f\" ? [y]"
getresp "y"
case "$resp" in
y*|Y*)
cat $RELDIR/${_f}.tar.gz |
(cd /mnt; tar -zxvpf -)
_yup=X
;;
*)
continue;
;;
esac
echo "Extraction complete."
done
resp="$_yup"
;;
*)
resp=""
;;
esac
else
# Go on prodding for alternate locations
resp="" # force at least one iteration
fi
while [ "X${resp}" = X"" ]; do
echo -n "Install from (f)tp, (t)ape, (C)D-ROM, or (N)FS? [f] "
getresp "f"
case "$resp" in
f*|F*)
install_ftp
;;
t*|T*)
install_tape
;;
c*|C*)
install_cdrom
;;
n*|N*)
install_nfs
;;
*)
echo "Invalid response: $resp"
resp=""
;;
esac
# Give the user the opportunity to extract more sets. They don't
# necessarily have to come from the same media.
echo ""
echo -n "Extract more sets? [n] "
getresp "n"
case "$resp" in
y*|Y*)
# Force loop to repeat
resp=""
;;
*)
;;
esac
done
#get_timezone
echo -n "Do you want to install the NetBSD bootblocks on your boot disk? [y]"
getresp "y"
case "$resp" in
y*|Y*)
_INSTBOOT="Y"
;;
*)
_INSTBOOT="N"
;;
esac
# Copy in configuration information and make devices in target root.
(
echo -n "Making devices..."
cd /mnt/dev
pid=`twiddle`
sh MAKEDEV all
kill $pid
echo "done."
if [ -f /mnt/netbsd ]; then
echo "Saving existing kernel in netbsd.1.0."
mv /mnt/netbsd /mnt/netbsd.1.0
fi
echo "Copying netbsd 1.1 kernel ..."
cp -p /netbsd /mnt/netbsd
if [ "$_INSTBOOT" = "Y" ]; then
echo "Installing NetBSD bootblock..."
md_installboot ${ROOTDISK}
fi
)
# Unmount all filesystems and check their integrity.
(
_devs=""
_mps=""
# maintain reverse order
while read line; do
_devs="`echo $line | awk '{print $1}'` ${_devs}"
_mps="`echo $line | awk '{print $2}'` ${_mps}"
done
echo -n "Umounting filesystems... "
for _mp in ${_mps}; do
echo -n "${_mp} "
umount ${_mp}
done
echo "Done."
echo "Checking filesystem integrity..."
for _dev in ${_devs}; do
echo "${_dev}"
fsck -f ${_dev}
done
echo "Done."
) < /tmp/fstab.shadow
##umount -a
##echo "Checking filesystem integrity..."
##fsck -pf
#md_installboot_xxx
cat << \__congratulations_1
CONGRATULATIONS! You have successfully installed NetBSD!
To boot the installed system, enter halt at the command prompt. Once the
system has halted, reset the machine and boot from the disk.
__congratulations_1
# ALL DONE!
exit