NetBSD/sys/dev/pci/hifn7751.c

1467 lines
37 KiB
C

/* $NetBSD: hifn7751.c,v 1.7 2002/01/12 16:17:06 tsutsui Exp $ */
/* $OpenBSD: hifn7751.c,v 1.47 2000/10/11 13:15:41 itojun Exp $ */
/*
* Invertex AEON / Hi/fn 7751 driver
* Copyright (c) 1999 Invertex Inc. All rights reserved.
* Copyright (c) 1999 Theo de Raadt
* Copyright (c) 2000 Network Security Technologies, Inc.
* http://www.netsec.net
*
* This driver is based on a previous driver by Invertex, for which they
* requested: Please send any comments, feedback, bug-fixes, or feature
* requests to software@invertex.com.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Driver for the Hi/Fn 7751 encryption processor.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: hifn7751.c,v 1.7 2002/01/12 16:17:06 tsutsui Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#ifdef __OpenBSD__
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#else
#include <uvm/uvm.h>
#include <uvm/uvm_extern.h>
#include <uvm/uvm_pmap.h>
#endif
#include <machine/pmap.h>
#include <sys/device.h>
#ifdef __OpenBSD__
#include <crypto/crypto.h>
#include <dev/rndvar.h>
#endif
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/hifn7751var.h>
#include <dev/pci/hifn7751reg.h>
#undef HIFN_DEBUG
/*
* Prototypes and count for the pci_device structure
*/
#ifdef __OpenBSD__
int hifn_probe __P((struct device *, void *, void *));
#else
int hifn_probe __P((struct device *, struct cfdata *, void *));
#endif
void hifn_attach __P((struct device *, struct device *, void *));
struct cfattach hifn_ca = {
sizeof(struct hifn_softc), hifn_probe, hifn_attach,
};
#ifdef __OpenBSD__
struct cfdriver hifn_cd = {
0, "hifn", DV_DULL
};
#endif
void hifn_reset_board __P((struct hifn_softc *));
int hifn_enable_crypto __P((struct hifn_softc *, pcireg_t));
void hifn_init_dma __P((struct hifn_softc *));
void hifn_init_pci_registers __P((struct hifn_softc *));
int hifn_sramsize __P((struct hifn_softc *));
int hifn_dramsize __P((struct hifn_softc *));
void hifn_ramtype __P((struct hifn_softc *));
void hifn_sessions __P((struct hifn_softc *));
int hifn_intr __P((void *));
u_int hifn_write_command __P((struct hifn_command *, u_int8_t *));
u_int32_t hifn_next_signature __P((u_int32_t a, u_int cnt));
#ifdef __OpenBSD__
int hifn_newsession __P((u_int32_t *, struct cryptoini *));
int hifn_freesession __P((u_int64_t));
int hifn_process __P((struct cryptop *));
void hifn_callback __P((struct hifn_softc *, struct hifn_command *, u_int8_t *));
#endif
int hifn_crypto __P((struct hifn_softc *, hifn_command_t *));
int hifn_readramaddr __P((struct hifn_softc *, int, u_int8_t *, int));
int hifn_writeramaddr __P((struct hifn_softc *, int, u_int8_t *, int));
struct hifn_stats {
u_int64_t hst_ibytes;
u_int64_t hst_obytes;
u_int32_t hst_ipackets;
u_int32_t hst_opackets;
u_int32_t hst_invalid;
u_int32_t hst_nomem;
} hifnstats;
int
hifn_probe(parent, match, aux)
struct device *parent;
#ifdef __OpenBSD__
void *match;
#else
struct cfdata *match;
#endif
void *aux;
{
struct pci_attach_args *pa = (struct pci_attach_args *) aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INVERTEX &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INVERTEX_AEON)
return (1);
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_HIFN &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_HIFN_7751)
return (1);
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETSEC &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETSEC_7751)
return (1);
return (0);
}
void
hifn_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct hifn_softc *sc = (struct hifn_softc *)self;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
char rbase;
bus_size_t iosize0, iosize1;
u_int32_t cmd;
u_int16_t ena;
bus_dma_segment_t seg;
bus_dmamap_t dmamap;
int rseg;
caddr_t kva;
cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
cmd |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
if (!(cmd & PCI_COMMAND_MEM_ENABLE)) {
printf(": failed to enable memory mapping\n");
return;
}
if (pci_mapreg_map(pa, HIFN_BAR0, PCI_MAPREG_TYPE_MEM, 0,
&sc->sc_st0, &sc->sc_sh0, NULL, &iosize0)) {
printf(": can't find mem space %d\n", 0);
return;
}
if (pci_mapreg_map(pa, HIFN_BAR1, PCI_MAPREG_TYPE_MEM, 0,
&sc->sc_st1, &sc->sc_sh1, NULL, &iosize1)) {
printf(": can't find mem space %d\n", 1);
goto fail_io0;
}
sc->sc_dmat = pa->pa_dmat;
if (bus_dmamem_alloc(sc->sc_dmat, sizeof(*sc->sc_dma), PAGE_SIZE, 0,
&seg, 1, &rseg, BUS_DMA_NOWAIT)) {
printf(": can't alloc dma buffer\n");
goto fail_io1;
}
if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(*sc->sc_dma), &kva,
BUS_DMA_NOWAIT)) {
printf(": can't map dma buffers (%lu bytes)\n",
(u_long)sizeof(*sc->sc_dma));
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
goto fail_io1;
}
if (bus_dmamap_create(sc->sc_dmat, sizeof(*sc->sc_dma), 1,
sizeof(*sc->sc_dma), 0, BUS_DMA_NOWAIT, &dmamap)) {
printf(": can't create dma map\n");
bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(*sc->sc_dma));
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
goto fail_io1;
}
if (bus_dmamap_load(sc->sc_dmat, dmamap, kva, sizeof(*sc->sc_dma),
NULL, BUS_DMA_NOWAIT)) {
printf(": can't load dma map\n");
bus_dmamap_destroy(sc->sc_dmat, dmamap);
bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(*sc->sc_dma));
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
goto fail_io1;
}
sc->sc_dma = (struct hifn_dma *)kva;
memset(sc->sc_dma, 0, sizeof(*sc->sc_dma));
hifn_reset_board(sc);
if (hifn_enable_crypto(sc, pa->pa_id) != 0) {
printf("%s: crypto enabling failed\n", sc->sc_dv.dv_xname);
goto fail_mem;
}
hifn_init_dma(sc);
hifn_init_pci_registers(sc);
hifn_ramtype(sc);
if (sc->sc_drammodel == 0)
hifn_sramsize(sc);
else
hifn_dramsize(sc);
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETSEC &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETSEC_7751 &&
PCI_REVISION(pa->pa_class) == 0x61)
sc->sc_ramsize >>= 1;
/*
* Reinitialize again, since the DRAM/SRAM detection shifted our ring
* pointers and may have changed the value we send to the RAM Config
* Register.
*/
hifn_reset_board(sc);
hifn_init_dma(sc);
hifn_init_pci_registers(sc);
if (pci_intr_map(pa, &ih)) {
printf(": couldn't map interrupt\n");
goto fail_mem;
}
intrstr = pci_intr_string(pc, ih);
#ifdef __OpenBSD__
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, hifn_intr, sc,
self->dv_xname);
#else
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, hifn_intr, sc);
#endif
if (sc->sc_ih == NULL) {
printf(": couldn't establish interrupt\n");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
goto fail_mem;
}
hifn_sessions(sc);
rseg = sc->sc_ramsize / 1024;
rbase = 'K';
if (sc->sc_ramsize >= (1024 * 1024)) {
rbase = 'M';
rseg /= 1024;
}
printf(", %d%cB %cram, %s\n", rseg, rbase,
sc->sc_drammodel ? 'd' : 's', intrstr);
#ifdef __OpenBSD__
sc->sc_cid = crypto_get_driverid();
if (sc->sc_cid < 0)
goto fail_intr;
#endif
WRITE_REG_0(sc, HIFN_0_PUCNFG,
READ_REG_0(sc, HIFN_0_PUCNFG) | HIFN_PUCNFG_CHIPID);
ena = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
#ifdef __OpenBSD__
switch (ena) {
case HIFN_PUSTAT_ENA_2:
crypto_register(sc->sc_cid, CRYPTO_3DES_CBC,
hifn_newsession, hifn_freesession, hifn_process);
/*FALLTHROUGH*/
case HIFN_PUSTAT_ENA_1:
crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC96,
hifn_newsession, hifn_freesession, hifn_process);
crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC96,
NULL, NULL, NULL);
crypto_register(sc->sc_cid, CRYPTO_DES_CBC,
NULL, NULL, NULL);
}
#endif
return;
#ifdef __OpenBSD__
fail_intr:
#endif
pci_intr_disestablish(pc, sc->sc_ih);
fail_mem:
bus_dmamap_unload(sc->sc_dmat, dmamap);
bus_dmamap_destroy(sc->sc_dmat, dmamap);
bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(*sc->sc_dma));
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_io1:
bus_space_unmap(sc->sc_st1, sc->sc_sh1, iosize1);
fail_io0:
bus_space_unmap(sc->sc_st0, sc->sc_sh0, iosize0);
}
/*
* Resets the board. Values in the regesters are left as is
* from the reset (i.e. initial values are assigned elsewhere).
*/
void
hifn_reset_board(sc)
struct hifn_softc *sc;
{
/*
* Set polling in the DMA configuration register to zero. 0x7 avoids
* resetting the board and zeros out the other fields.
*/
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
/*
* Now that polling has been disabled, we have to wait 1 ms
* before resetting the board.
*/
DELAY(1000);
/* Reset the board. We do this by writing zeros to the DMA reset
* field, the BRD reset field, and the manditory 1 at position 2.
* Every other field is set to zero.
*/
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
/*
* Wait another millisecond for the board to reset.
*/
DELAY(1000);
/*
* Turn off the reset! (No joke.)
*/
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
}
u_int32_t
hifn_next_signature(a, cnt)
u_int32_t a;
u_int cnt;
{
int i;
u_int32_t v;
for (i = 0; i < cnt; i++) {
/* get the parity */
v = a & 0x80080125;
v ^= v >> 16;
v ^= v >> 8;
v ^= v >> 4;
v ^= v >> 2;
v ^= v >> 1;
a = (v & 1) ^ (a << 1);
}
return a;
}
struct pci2id {
u_short pci_vendor;
u_short pci_prod;
char card_id[13];
} pci2id[] = {
{
PCI_VENDOR_NETSEC,
PCI_PRODUCT_NETSEC_7751,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
PCI_VENDOR_INVERTEX,
PCI_PRODUCT_INVERTEX_AEON,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
/*
* Other vendors share this PCI ID as well, such as
* http://www.powercrypt.com, and obviously they also
* use the same key.
*/
PCI_VENDOR_HIFN,
PCI_PRODUCT_HIFN_7751,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
},
};
/*
* Checks to see if crypto is already enabled. If crypto isn't enable,
* "hifn_enable_crypto" is called to enable it. The check is important,
* as enabling crypto twice will lock the board.
*/
int
hifn_enable_crypto(sc, pciid)
struct hifn_softc *sc;
pcireg_t pciid;
{
u_int32_t dmacfg, ramcfg, encl, addr, i;
char *offtbl = NULL;
for (i = 0; i < sizeof(pci2id)/sizeof(pci2id[0]); i++) {
if (pci2id[i].pci_vendor == PCI_VENDOR(pciid) &&
pci2id[i].pci_prod == PCI_PRODUCT(pciid)) {
offtbl = pci2id[i].card_id;
break;
}
}
if (offtbl == NULL) {
#ifdef HIFN_DEBUG
printf("%s: Unknown card!\n", sc->sc_dv.dv_xname);
#endif
return (1);
}
ramcfg = READ_REG_0(sc, HIFN_0_PUCNFG);
dmacfg = READ_REG_1(sc, HIFN_1_DMA_CNFG);
/*
* The RAM config register's encrypt level bit needs to be set before
* every read performed on the encryption level register.
*/
WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg | HIFN_PUCNFG_CHIPID);
encl = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
/*
* Make sure we don't re-unlock. Two unlocks kills chip until the
* next reboot.
*/
if (encl == HIFN_PUSTAT_ENA_1 || encl == HIFN_PUSTAT_ENA_2) {
#ifdef HIFN_DEBUG
printf("%s: Strong Crypto already enabled!\n",
sc->sc_dv.dv_xname);
#endif
WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg);
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, dmacfg);
return 0; /* success */
}
if (encl != 0 && encl != HIFN_PUSTAT_ENA_0) {
#ifdef HIFN_DEBUG
printf("%s: Unknown encryption level\n", sc->sc_dv.dv_xname);
#endif
return 1;
}
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_UNLOCK |
HIFN_DMACNFG_MSTRESET | HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
DELAY(1000);
addr = READ_REG_1(sc, HIFN_UNLOCK_SECRET1);
DELAY(1000);
WRITE_REG_1(sc, HIFN_UNLOCK_SECRET2, 0);
DELAY(1000);
for (i = 0; i <= 12; i++) {
addr = hifn_next_signature(addr, offtbl[i] + 0x101);
WRITE_REG_1(sc, HIFN_UNLOCK_SECRET2, addr);
DELAY(1000);
}
WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg | HIFN_PUCNFG_CHIPID);
encl = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
#ifdef HIFN_DEBUG
if (encl != HIFN_PUSTAT_ENA_1 && encl != HIFN_PUSTAT_ENA_2)
printf("Encryption engine is permanently locked until next system reset.");
else
printf("Encryption engine enabled successfully!");
#endif
WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg);
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, dmacfg);
switch (encl) {
case HIFN_PUSTAT_ENA_0:
printf(": no encr/auth");
break;
case HIFN_PUSTAT_ENA_1:
printf(": DES enabled");
break;
case HIFN_PUSTAT_ENA_2:
printf(": fully enabled");
break;
default:
printf(": disabled");
break;
}
return 0;
}
/*
* Give initial values to the registers listed in the "Register Space"
* section of the HIFN Software Development reference manual.
*/
void
hifn_init_pci_registers(sc)
struct hifn_softc *sc;
{
/* write fixed values needed by the Initialization registers */
WRITE_REG_0(sc, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
WRITE_REG_0(sc, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
WRITE_REG_0(sc, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
/* write all 4 ring address registers */
WRITE_REG_1(sc, HIFN_1_DMA_CRAR, vtophys((vaddr_t)sc->sc_dma->cmdr));
WRITE_REG_1(sc, HIFN_1_DMA_SRAR, vtophys((vaddr_t)sc->sc_dma->srcr));
WRITE_REG_1(sc, HIFN_1_DMA_DRAR, vtophys((vaddr_t)sc->sc_dma->dstr));
WRITE_REG_1(sc, HIFN_1_DMA_RRAR, vtophys((vaddr_t)sc->sc_dma->resr));
/* write status register */
WRITE_REG_1(sc, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA |
HIFN_DMACSR_R_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
HIFN_DMACSR_C_CTRL_ENA);
WRITE_REG_1(sc, HIFN_1_DMA_IER, HIFN_DMAIER_R_DONE);
#if 0
#if BYTE_ORDER == BIG_ENDIAN
(0x1 << 7) |
#endif
#endif
WRITE_REG_0(sc, HIFN_0_PUCNFG, HIFN_PUCNFG_COMPSING |
HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
(sc->sc_drammodel ? HIFN_PUCNFG_DRAM : HIFN_PUCNFG_SRAM));
WRITE_REG_0(sc, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
}
/*
* The maximum number of sessions supported by the card
* is dependent on the amount of context ram, which
* encryption algorithms are enabled, and how compression
* is configured. This should be configured before this
* routine is called.
*/
void
hifn_sessions(sc)
struct hifn_softc *sc;
{
u_int32_t pucnfg;
int ctxsize;
pucnfg = READ_REG_0(sc, HIFN_0_PUCNFG);
if (pucnfg & HIFN_PUCNFG_COMPSING) {
if (pucnfg & HIFN_PUCNFG_ENCCNFG)
ctxsize = 128;
else
ctxsize = 512;
sc->sc_maxses = 1 +
((sc->sc_ramsize - 32768) / ctxsize);
}
else
sc->sc_maxses = sc->sc_ramsize / 16384;
if (sc->sc_maxses > 2048)
sc->sc_maxses = 2048;
}
void
hifn_ramtype(sc)
struct hifn_softc *sc;
{
u_int8_t data[8], dataexpect[8];
int i;
hifn_reset_board(sc);
hifn_init_dma(sc);
hifn_init_pci_registers(sc);
for (i = 0; i < sizeof(data); i++)
data[i] = dataexpect[i] = 0x55;
if (hifn_writeramaddr(sc, 0, data, 0) < 0)
return;
if (hifn_readramaddr(sc, 0, data, 1) < 0)
return;
if (memcmp(data, dataexpect, sizeof(data)) != 0) {
sc->sc_drammodel = 1;
return;
}
hifn_reset_board(sc);
hifn_init_dma(sc);
hifn_init_pci_registers(sc);
for (i = 0; i < sizeof(data); i++)
data[i] = dataexpect[i] = 0xaa;
if (hifn_writeramaddr(sc, 0, data, 0) < 0)
return;
if (hifn_readramaddr(sc, 0, data, 1) < 0)
return;
if (memcmp(data, dataexpect, sizeof(data)) != 0)
sc->sc_drammodel = 1;
}
/*
* For sram boards, just write/read memory until it fails, also check for
* banking.
*/
int
hifn_sramsize(sc)
struct hifn_softc *sc;
{
u_int32_t a = 0, end;
u_int8_t data[8], dataexpect[8];
for (a = 0; a < sizeof(data); a++)
data[a] = dataexpect[a] = 0x5a;
hifn_reset_board(sc);
hifn_init_dma(sc);
hifn_init_pci_registers(sc);
end = 1 << 20; /* 1MB */
for (a = 0; a < end; a += 16384) {
if (hifn_writeramaddr(sc, a, data, 0) < 0)
return (0);
if (hifn_readramaddr(sc, a, data, 1) < 0)
return (0);
if (memcmp(data, dataexpect, sizeof(data)) != 0)
return (0);
hifn_reset_board(sc);
hifn_init_dma(sc);
hifn_init_pci_registers(sc);
sc->sc_ramsize = a + 16384;
}
for (a = 0; a < sizeof(data); a++)
data[a] = dataexpect[a] = 0xa5;
if (hifn_writeramaddr(sc, 0, data, 0) < 0)
return (0);
end = sc->sc_ramsize;
for (a = 0; a < end; a += 16384) {
hifn_reset_board(sc);
hifn_init_dma(sc);
hifn_init_pci_registers(sc);
if (hifn_readramaddr(sc, a, data, 0) < 0)
return (0);
if (a != 0 && memcmp(data, dataexpect, sizeof(data)) == 0)
return (0);
sc->sc_ramsize = a + 16384;
}
hifn_reset_board(sc);
hifn_init_dma(sc);
hifn_init_pci_registers(sc);
return (0);
}
/*
* XXX For dram boards, one should really try all of the
* HIFN_PUCNFG_DSZ_*'s. This just assumes that PUCNFG
* is already set up correctly.
*/
int
hifn_dramsize(sc)
struct hifn_softc *sc;
{
u_int32_t cnfg;
cnfg = READ_REG_0(sc, HIFN_0_PUCNFG) &
HIFN_PUCNFG_DRAMMASK;
sc->sc_ramsize = 1 << ((cnfg >> 13) + 18);
return (0);
}
int
hifn_writeramaddr(sc, addr, data, slot)
struct hifn_softc *sc;
int addr, slot;
u_int8_t *data;
{
struct hifn_dma *dma = sc->sc_dma;
hifn_base_command_t wc;
const u_int32_t masks = HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ;
u_int64_t src, dst;
wc.masks = 3 << 13;
wc.session_num = addr >> 14;
wc.total_source_count = 8;
wc.total_dest_count = addr & 0x3fff;;
/* build write command */
*(hifn_base_command_t *) sc->sc_dma->command_bufs[slot] = wc;
memcpy(&src, data, sizeof(src));
dma->srcr[slot].p = vtophys((vaddr_t)&src);
dma->dstr[slot].p = vtophys((vaddr_t)&dst);
dma->cmdr[slot].l = 16 | masks;
dma->srcr[slot].l = 8 | masks;
dma->dstr[slot].l = 8 | masks;
dma->resr[slot].l = HIFN_MAX_RESULT | masks;
DELAY(1000); /* let write command execute */
if (dma->resr[slot].l & HIFN_D_VALID) {
printf("%s: SRAM/DRAM detection error -- "
"result[%d] valid still set\n", sc->sc_dv.dv_xname, slot);
return (-1);
}
return (0);
}
int
hifn_readramaddr(sc, addr, data, slot)
struct hifn_softc *sc;
int addr, slot;
u_int8_t *data;
{
struct hifn_dma *dma = sc->sc_dma;
hifn_base_command_t rc;
const u_int32_t masks = HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ;
u_int64_t src, dst;
rc.masks = 2 << 13;
rc.session_num = addr >> 14;
rc.total_source_count = addr & 0x3fff;
rc.total_dest_count = 8;
*(hifn_base_command_t *) sc->sc_dma->command_bufs[slot] = rc;
dma->srcr[slot].p = vtophys((vaddr_t)&src);
dma->dstr[slot].p = vtophys((vaddr_t)&dst);
dma->cmdr[slot].l = 16 | masks;
dma->srcr[slot].l = 8 | masks;
dma->dstr[slot].l = 8 | masks;
dma->resr[slot].l = HIFN_MAX_RESULT | masks;
DELAY(1000); /* let read command execute */
if (dma->resr[slot].l & HIFN_D_VALID) {
printf("%s: SRAM/DRAM detection error -- "
"result[%d] valid still set\n", sc->sc_dv.dv_xname, slot);
return (-1);
}
memcpy(data, &dst, sizeof(dst));
return (0);
}
/*
* Initialize the descriptor rings.
*/
void
hifn_init_dma(sc)
struct hifn_softc *sc;
{
struct hifn_dma *dma = sc->sc_dma;
int i;
/* initialize static pointer values */
for (i = 0; i < HIFN_D_CMD_RSIZE; i++)
dma->cmdr[i].p = vtophys((vaddr_t)dma->command_bufs[i]);
for (i = 0; i < HIFN_D_RES_RSIZE; i++)
dma->resr[i].p = vtophys((vaddr_t)dma->result_bufs[i]);
dma->cmdr[HIFN_D_CMD_RSIZE].p = vtophys((vaddr_t)dma->cmdr);
dma->srcr[HIFN_D_SRC_RSIZE].p = vtophys((vaddr_t)dma->srcr);
dma->dstr[HIFN_D_DST_RSIZE].p = vtophys((vaddr_t)dma->dstr);
dma->resr[HIFN_D_RES_RSIZE].p = vtophys((vaddr_t)dma->resr);
dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
}
/*
* Writes out the raw command buffer space. Returns the
* command buffer size.
*/
u_int
hifn_write_command(cmd, buf)
struct hifn_command *cmd;
u_int8_t *buf;
{
u_int8_t *buf_pos;
hifn_base_command_t *base_cmd;
hifn_mac_command_t *mac_cmd;
hifn_crypt_command_t *cry_cmd;
int using_mac, using_crypt, len;
buf_pos = buf;
using_mac = cmd->base_masks & HIFN_BASE_CMD_MAC;
using_crypt = cmd->base_masks & HIFN_BASE_CMD_CRYPT;
base_cmd = (hifn_base_command_t *)buf_pos;
base_cmd->masks = cmd->base_masks;
base_cmd->total_source_count = cmd->src_l;
base_cmd->total_dest_count = cmd->dst_l;
base_cmd->session_num = cmd->session_num;
buf_pos += sizeof(hifn_base_command_t);
if (using_mac) {
mac_cmd = (hifn_mac_command_t *)buf_pos;
mac_cmd->masks = cmd->mac_masks;
mac_cmd->header_skip = cmd->mac_header_skip;
mac_cmd->source_count = cmd->mac_process_len;
buf_pos += sizeof(hifn_mac_command_t);
}
if (using_crypt) {
cry_cmd = (hifn_crypt_command_t *)buf_pos;
cry_cmd->masks = cmd->cry_masks;
cry_cmd->header_skip = cmd->crypt_header_skip;
cry_cmd->source_count = cmd->crypt_process_len;
buf_pos += sizeof(hifn_crypt_command_t);
}
if (using_mac && mac_cmd->masks & HIFN_MAC_CMD_NEW_KEY) {
memcpy(buf_pos, cmd->mac, HIFN_MAC_KEY_LENGTH);
buf_pos += HIFN_MAC_KEY_LENGTH;
}
if (using_crypt && cry_cmd->masks & HIFN_CRYPT_CMD_NEW_KEY) {
len = (cry_cmd->masks & HIFN_CRYPT_CMD_ALG_3DES) ?
HIFN_3DES_KEY_LENGTH : HIFN_DES_KEY_LENGTH;
memcpy(buf_pos, cmd->ck, len);
buf_pos += len;
}
if (using_crypt && cry_cmd->masks & HIFN_CRYPT_CMD_NEW_IV) {
memcpy(buf_pos, cmd->iv, HIFN_IV_LENGTH);
buf_pos += HIFN_IV_LENGTH;
}
if ((base_cmd->masks & (HIFN_BASE_CMD_MAC | HIFN_BASE_CMD_CRYPT)) == 0) {
memset(buf_pos, 0, 8);
buf_pos += 8;
}
return (buf_pos - buf);
}
int
hifn_crypto(sc, cmd)
struct hifn_softc *sc;
struct hifn_command *cmd;
{
#ifndef __OpenBSD__
return -1;
#else
u_int32_t cmdlen;
struct hifn_dma *dma = sc->sc_dma;
int cmdi, srci, dsti, resi, nicealign = 0;
int s, i;
if (cmd->src_npa == 0 && cmd->src_m)
cmd->src_l = mbuf2pages(cmd->src_m, &cmd->src_npa,
cmd->src_packp, cmd->src_packl, MAX_SCATTER, &nicealign);
if (cmd->src_l == 0)
return (-1);
if (nicealign == 0) {
int totlen, len;
struct mbuf *m, *top, **mp;
totlen = cmd->dst_l = cmd->src_l;
if (cmd->src_m->m_flags & M_PKTHDR) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
M_COPY_PKTHDR(m, cmd->src_m);
len = MHLEN;
} else {
MGET(m, M_DONTWAIT, MT_DATA);
len = MLEN;
}
if (m == NULL)
return (-1);
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
len = MCLBYTES;
}
m->m_len = len;
top = NULL;
mp = &top;
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
m_freem(top);
return (-1);
}
len = MLEN;
}
if (top && totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
len = MCLBYTES;
}
m->m_len = len;
totlen -= len;
*mp = m;
mp = &m->m_next;
}
cmd->dst_m = top;
}
else
cmd->dst_m = cmd->src_m;
cmd->dst_l = mbuf2pages(cmd->dst_m, &cmd->dst_npa,
cmd->dst_packp, cmd->dst_packl, MAX_SCATTER, NULL);
if (cmd->dst_l == 0)
return (-1);
#ifdef HIFN_DEBUG
printf("%s: Entering cmd: stat %8x ien %8x u %d/%d/%d/%d n %d/%d\n",
sc->sc_dv.dv_xname,
READ_REG_1(sc, HIFN_1_DMA_CSR), READ_REG_1(sc, HIFN_1_DMA_IER),
dma->cmdu, dma->srcu, dma->dstu, dma->resu, cmd->src_npa,
cmd->dst_npa);
#endif
s = splnet();
/*
* need 1 cmd, and 1 res
* need N src, and N dst
*/
if (dma->cmdu+1 > HIFN_D_CMD_RSIZE ||
dma->srcu+cmd->src_npa > HIFN_D_SRC_RSIZE ||
dma->dstu+cmd->dst_npa > HIFN_D_DST_RSIZE ||
dma->resu+1 > HIFN_D_RES_RSIZE) {
splx(s);
return (HIFN_CRYPTO_RINGS_FULL);
}
if (dma->cmdi == HIFN_D_CMD_RSIZE) {
dma->cmdi = 0;
dma->cmdr[HIFN_D_CMD_RSIZE].l = HIFN_D_VALID | HIFN_D_LAST |
HIFN_D_MASKDONEIRQ | HIFN_D_JUMP;
}
cmdi = dma->cmdi++;
if (dma->resi == HIFN_D_RES_RSIZE) {
dma->resi = 0;
dma->resr[HIFN_D_RES_RSIZE].l = HIFN_D_VALID | HIFN_D_LAST |
HIFN_D_MASKDONEIRQ | HIFN_D_JUMP;
}
resi = dma->resi++;
cmdlen = hifn_write_command(cmd, dma->command_bufs[cmdi]);
#ifdef HIFN_DEBUG
printf("write_command %d (nice %d)\n", cmdlen, nicealign);
#endif
/* .p for command/result already set */
dma->cmdr[cmdi].l = cmdlen | HIFN_D_VALID | HIFN_D_LAST |
HIFN_D_MASKDONEIRQ;
dma->cmdu++;
/*
* We don't worry about missing an interrupt (which a "command wait"
* interrupt salvages us from), unless there is more than one command
* in the queue.
*/
if (dma->cmdu > 1)
WRITE_REG_1(sc, HIFN_1_DMA_IER,
HIFN_DMAIER_C_WAIT | HIFN_DMAIER_R_DONE);
hifnstats.hst_ipackets++;
for (i = 0; i < cmd->src_npa; i++) {
int last = 0;
if (i == cmd->src_npa-1)
last = HIFN_D_LAST;
if (dma->srci == HIFN_D_SRC_RSIZE) {
srci = 0, dma->srci = 1;
dma->srcr[HIFN_D_SRC_RSIZE].l = HIFN_D_VALID |
HIFN_D_MASKDONEIRQ | HIFN_D_JUMP | HIFN_D_LAST;
} else
srci = dma->srci++;
dma->srcr[srci].p = cmd->src_packp[i];
dma->srcr[srci].l = cmd->src_packl[i] | HIFN_D_VALID |
HIFN_D_MASKDONEIRQ | last;
hifnstats.hst_ibytes += cmd->src_packl[i];
}
dma->srcu += cmd->src_npa;
for (i = 0; i < cmd->dst_npa; i++) {
int last = 0;
if (i == cmd->dst_npa-1)
last = HIFN_D_LAST;
if (dma->dsti == HIFN_D_DST_RSIZE) {
dsti = 0, dma->dsti = 1;
dma->dstr[HIFN_D_DST_RSIZE].l = HIFN_D_VALID |
HIFN_D_MASKDONEIRQ | HIFN_D_JUMP | HIFN_D_LAST;
} else
dsti = dma->dsti++;
dma->dstr[dsti].p = cmd->dst_packp[i];
dma->dstr[dsti].l = cmd->dst_packl[i] | HIFN_D_VALID |
HIFN_D_MASKDONEIRQ | last;
}
dma->dstu += cmd->dst_npa;
/*
* Unlike other descriptors, we don't mask done interrupt from
* result descriptor.
*/
#ifdef HIFN_DEBUG
printf("load res\n");
#endif
dma->hifn_commands[resi] = cmd;
dma->resr[resi].l = HIFN_MAX_RESULT | HIFN_D_VALID | HIFN_D_LAST;
dma->resu++;
#ifdef HIFN_DEBUG
printf("%s: command: stat %8x ier %8x\n",
sc->sc_dv.dv_xname,
READ_REG_1(sc, HIFN_1_DMA_CSR), READ_REG_1(sc, HIFN_1_DMA_IER));
#endif
splx(s);
return 0; /* success */
#endif
}
int
hifn_intr(arg)
void *arg;
{
struct hifn_softc *sc = arg;
struct hifn_dma *dma = sc->sc_dma;
u_int32_t dmacsr;
int i, u;
dmacsr = READ_REG_1(sc, HIFN_1_DMA_CSR);
#ifdef HIFN_DEBUG
printf("%s: irq: stat %08x ien %08x u %d/%d/%d/%d\n",
sc->sc_dv.dv_xname,
dmacsr, READ_REG_1(sc, HIFN_1_DMA_IER),
dma->cmdu, dma->srcu, dma->dstu, dma->resu);
#endif
if ((dmacsr & (HIFN_DMACSR_R_DONE | HIFN_DMACSR_C_WAIT)) == 0)
return (0);
if (dma->resu > HIFN_D_RES_RSIZE)
printf("%s: Internal Error -- ring overflow\n",
sc->sc_dv.dv_xname);
if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
/*
* If no slots to process and we receive a "waiting on
* command" interrupt, we disable the "waiting on command"
* (by clearing it).
*/
WRITE_REG_1(sc, HIFN_1_DMA_IER, HIFN_DMAIER_R_DONE);
}
while (dma->resu > 0) {
struct hifn_command *cmd;
u_int8_t *macbuf = NULL;
cmd = dma->hifn_commands[dma->resk];
/* if still valid, stop processing */
if (dma->resr[dma->resk].l & HIFN_D_VALID)
break;
if (cmd->base_masks & HIFN_BASE_CMD_MAC) {
macbuf = dma->result_bufs[dma->resk];
macbuf += 12;
}
#ifdef __OpenBSD__
hifn_callback(sc, cmd, macbuf);
#endif
if (++dma->resk == HIFN_D_RES_RSIZE)
dma->resk = 0;
dma->resu--;
hifnstats.hst_opackets++;
}
/* clear the rings */
i = dma->srck; u = dma->srcu;
while (u != 0 && (dma->srcr[i].l & HIFN_D_VALID) == 0) {
if (++i == HIFN_D_SRC_RSIZE)
i = 0;
u--;
}
dma->srck = i; dma->srcu = u;
i = dma->cmdk; u = dma->cmdu;
while (u != 0 && (dma->cmdr[i].l & HIFN_D_VALID) == 0) {
if (++i == HIFN_D_CMD_RSIZE)
i = 0;
u--;
}
dma->cmdk = i; dma->cmdu = u;
/*
* Clear "result done" and "command wait" flags in status register.
* If we still have slots to process and we received a "command wait"
* interrupt, this will interupt us again.
*/
WRITE_REG_1(sc, HIFN_1_DMA_CSR, HIFN_DMACSR_R_DONE|HIFN_DMACSR_C_WAIT);
return (1);
}
#ifdef __OpenBSD__
/*
* Allocate a new 'session' and return an encoded session id. 'sidp'
* contains our registration id, and should contain an encoded session
* id on successful allocation.
*/
int
hifn_newsession(sidp, cri)
u_int32_t *sidp;
struct cryptoini *cri;
{
struct cryptoini *c;
struct hifn_softc *sc = NULL;
int i, mac = 0, cry = 0;
if (sidp == NULL || cri == NULL)
return (EINVAL);
for (i = 0; i < hifn_cd.cd_ndevs; i++) {
sc = hifn_cd.cd_devs[i];
if (sc == NULL)
break;
if (sc->sc_cid == (*sidp))
break;
}
if (sc == NULL)
return (EINVAL);
for (i = 0; i < sc->sc_maxses; i++)
if (sc->sc_sessions[i].hs_flags == 0)
break;
if (i == sc->sc_maxses)
return (ENOMEM);
for (c = cri; c != NULL; c = c->cri_next) {
if (c->cri_alg == CRYPTO_MD5_HMAC96 ||
c->cri_alg == CRYPTO_SHA1_HMAC96) {
if (mac)
return (EINVAL);
mac = 1;
} else if (c->cri_alg == CRYPTO_DES_CBC ||
c->cri_alg == CRYPTO_3DES_CBC) {
if (cry)
return (EINVAL);
cry = 1;
}
else
return (EINVAL);
}
if (mac == 0 && cry == 0)
return (EINVAL);
*sidp = HIFN_SID(sc->sc_dv.dv_unit, i);
sc->sc_sessions[i].hs_flags = 1;
get_random_bytes(sc->sc_sessions[i].hs_iv, HIFN_IV_LENGTH);
return (0);
}
/*
* Deallocate a session.
* XXX this routine should run a zero'd mac/encrypt key into context ram.
* XXX to blow away any keys already stored there.
*/
int
hifn_freesession(tid)
u_int64_t tid;
{
struct hifn_softc *sc;
int card, session;
u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
card = HIFN_CARD(sid);
if (card >= hifn_cd.cd_ndevs || hifn_cd.cd_devs[card] == NULL)
return (EINVAL);
sc = hifn_cd.cd_devs[card];
session = HIFN_SESSION(sid);
if (session >= sc->sc_maxses)
return (EINVAL);
memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
return (0);
}
int
hifn_process(crp)
struct cryptop *crp;
{
struct hifn_command *cmd = NULL;
int card, session, err;
struct hifn_softc *sc;
struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
if (crp == NULL || crp->crp_callback == NULL) {
hifnstats.hst_invalid++;
return (EINVAL);
}
card = HIFN_CARD(crp->crp_sid);
if (card >= hifn_cd.cd_ndevs || hifn_cd.cd_devs[card] == NULL) {
err = EINVAL;
goto errout;
}
sc = hifn_cd.cd_devs[card];
session = HIFN_SESSION(crp->crp_sid);
if (session >= sc->sc_maxses) {
err = EINVAL;
goto errout;
}
cmd = (struct hifn_command *)malloc(sizeof(struct hifn_command),
M_DEVBUF, M_NOWAIT|M_ZERO);
if (cmd == NULL) {
err = ENOMEM;
goto errout;
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
cmd->src_m = (struct mbuf *)crp->crp_buf;
cmd->dst_m = (struct mbuf *)crp->crp_buf;
} else {
err = EINVAL;
goto errout; /* XXX only handle mbufs right now */
}
crd1 = crp->crp_desc;
if (crd1 == NULL) {
err = EINVAL;
goto errout;
}
crd2 = crd1->crd_next;
if (crd2 == NULL) {
if (crd1->crd_alg == CRYPTO_MD5_HMAC96 ||
crd1->crd_alg == CRYPTO_SHA1_HMAC96) {
maccrd = crd1;
enccrd = NULL;
} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC) {
if ((crd1->crd_flags & CRD_F_ENCRYPT) == 0)
cmd->base_masks |= HIFN_BASE_CMD_DECODE;
maccrd = NULL;
enccrd = crd1;
} else {
err = EINVAL;
goto errout;
}
} else {
if ((crd1->crd_alg == CRYPTO_MD5_HMAC96 ||
crd1->crd_alg == CRYPTO_SHA1_HMAC96) &&
(crd2->crd_alg == CRYPTO_DES_CBC ||
crd2->crd_alg == CRYPTO_3DES_CBC) &&
((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
cmd->base_masks = HIFN_BASE_CMD_DECODE;
maccrd = crd1;
enccrd = crd2;
} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC) &&
(crd2->crd_alg == CRYPTO_MD5_HMAC96 ||
crd2->crd_alg == CRYPTO_SHA1_HMAC96) &&
(crd1->crd_flags & CRD_F_ENCRYPT)) {
enccrd = crd1;
maccrd = crd2;
} else {
/*
* We cannot order the 7751 as requested
*/
err = EINVAL;
goto errout;
}
}
if (enccrd) {
cmd->base_masks |= HIFN_BASE_CMD_CRYPT;
cmd->cry_masks |= HIFN_CRYPT_CMD_MODE_CBC |
HIFN_CRYPT_CMD_NEW_IV;
if (enccrd->crd_flags & CRD_F_ENCRYPT) {
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(cmd->iv, enccrd->crd_iv, HIFN_IV_LENGTH);
else
memcpy(cmd->iv, sc->sc_sessions[session].hs_iv,
HIFN_IV_LENGTH);
if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0)
m_copyback(cmd->src_m, enccrd->crd_inject,
HIFN_IV_LENGTH, cmd->iv);
} else {
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(cmd->iv, enccrd->crd_iv, HIFN_IV_LENGTH);
else
m_copydata(cmd->src_m, enccrd->crd_inject,
HIFN_IV_LENGTH, cmd->iv);
}
if (enccrd->crd_alg == CRYPTO_DES_CBC)
cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_DES;
else
cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_3DES;
cmd->crypt_header_skip = enccrd->crd_skip;
cmd->crypt_process_len = enccrd->crd_len;
cmd->ck = enccrd->crd_key;
if (sc->sc_sessions[session].hs_flags == 1)
cmd->cry_masks |= HIFN_CRYPT_CMD_NEW_KEY;
}
if (maccrd) {
cmd->base_masks |= HIFN_BASE_CMD_MAC;
cmd->mac_masks |= HIFN_MAC_CMD_RESULT |
HIFN_MAC_CMD_MODE_HMAC | HIFN_MAC_CMD_RESULT |
HIFN_MAC_CMD_POS_IPSEC | HIFN_MAC_CMD_TRUNC;
if (maccrd->crd_alg == CRYPTO_MD5_HMAC96)
cmd->mac_masks |= HIFN_MAC_CMD_ALG_MD5;
else
cmd->mac_masks |= HIFN_MAC_CMD_ALG_SHA1;
if (sc->sc_sessions[session].hs_flags == 1) {
cmd->mac_masks |= HIFN_MAC_CMD_NEW_KEY;
memcpy(cmd->mac, maccrd->crd_key,
maccrd->crd_klen >> 3);
memset(cmd->mac + (maccrd->crd_klen >> 3), 0,
HIFN_MAC_KEY_LENGTH - (maccrd->crd_klen >> 3));
}
cmd->mac_header_skip = maccrd->crd_skip;
cmd->mac_process_len = maccrd->crd_len;
}
if (sc->sc_sessions[session].hs_flags == 1)
sc->sc_sessions[session].hs_flags = 2;
cmd->private_data = (u_long)crp;
cmd->session_num = session;
cmd->softc = sc;
if (hifn_crypto(sc, cmd) == 0)
return (0);
err = ENOMEM;
errout:
if (cmd != NULL)
free(cmd, M_DEVBUF);
if (err == EINVAL)
hifnstats.hst_invalid++;
else
hifnstats.hst_nomem++;
crp->crp_etype = err;
crp->crp_callback(crp);
return (0);
}
void
hifn_callback(sc, cmd, macbuf)
struct hifn_softc *sc;
struct hifn_command *cmd;
u_int8_t *macbuf;
{
struct hifn_dma *dma = sc->sc_dma;
struct cryptop *crp = (struct cryptop *)cmd->private_data;
struct cryptodesc *crd;
struct mbuf *m;
int totlen;
if ((crp->crp_flags & CRYPTO_F_IMBUF) && (cmd->src_m != cmd->dst_m)) {
m_freem(cmd->src_m);
crp->crp_buf = (caddr_t)cmd->dst_m;
}
if ((m = cmd->dst_m) != NULL) {
totlen = cmd->src_l;
hifnstats.hst_obytes += totlen;
while (m) {
if (totlen < m->m_len) {
m->m_len = totlen;
totlen = 0;
} else
totlen -= m->m_len;
m = m->m_next;
if (++dma->dstk == HIFN_D_DST_RSIZE)
dma->dstk = 0;
dma->dstu--;
}
} else {
hifnstats.hst_obytes += dma->dstr[dma->dstk].l & HIFN_D_LENGTH;
if (++dma->dstk == HIFN_D_DST_RSIZE)
dma->dstk = 0;
dma->dstu--;
}
if ((cmd->base_masks & (HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE)) ==
HIFN_BASE_CMD_CRYPT) {
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
if (crd->crd_alg != CRYPTO_DES_CBC &&
crd->crd_alg != CRYPTO_3DES_CBC)
continue;
m_copydata((struct mbuf *)crp->crp_buf,
crd->crd_skip + crd->crd_len - HIFN_IV_LENGTH,
HIFN_IV_LENGTH,
cmd->softc->sc_sessions[cmd->session_num].hs_iv);
break;
}
}
if (macbuf != NULL) {
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
if (crd->crd_alg != CRYPTO_MD5_HMAC96 &&
crd->crd_alg != CRYPTO_SHA1_HMAC96)
continue;
m_copyback((struct mbuf *)crp->crp_buf,
crd->crd_inject, 12, macbuf);
break;
}
}
free(cmd, M_DEVBUF);
crypto_done(crp);
}
#endif