NetBSD/sys/ufs/ffs/ffs_alloc.c
hannken 75bdfc0dac Avoid doing bawrite to initialize inode block while holding cylinder
group block buffer busy.  If filesystem has any active snapshots, bawrite
can come back trying to allocate new snapshot data block from the same
cylinder group and cause deadlock.

From FreeBSD Rev. 1.117
2007-11-01 06:31:59 +00:00

2081 lines
58 KiB
C

/* $NetBSD: ffs_alloc.c,v 1.104 2007/11/01 06:31:59 hannken Exp $ */
/*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.104 2007/11/01 06:31:59 hannken Exp $");
#if defined(_KERNEL_OPT)
#include "opt_ffs.h"
#include "opt_quota.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/kauth.h>
#include <miscfs/specfs/specdev.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ufs/ufs_bswap.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
#ifdef XXXUBC
static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
#endif
static ino_t ffs_dirpref(struct inode *);
static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
static void ffs_fserr(struct fs *, u_int, const char *);
static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
daddr_t (*)(struct inode *, int, daddr_t, int));
static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
static int32_t ffs_mapsearch(struct fs *, struct cg *,
daddr_t, int);
#if defined(DIAGNOSTIC) || defined(DEBUG)
#ifdef XXXUBC
static int ffs_checkblk(struct inode *, daddr_t, long size);
#endif
#endif
/* if 1, changes in optimalization strategy are logged */
int ffs_log_changeopt = 0;
/* in ffs_tables.c */
extern const int inside[], around[];
extern const u_char * const fragtbl[];
/*
* Allocate a block in the file system.
*
* The size of the requested block is given, which must be some
* multiple of fs_fsize and <= fs_bsize.
* A preference may be optionally specified. If a preference is given
* the following hierarchy is used to allocate a block:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate a block in the same cylinder group.
* 4) quadradically rehash into other cylinder groups, until an
* available block is located.
* If no block preference is given the following hierarchy is used
* to allocate a block:
* 1) allocate a block in the cylinder group that contains the
* inode for the file.
* 2) quadradically rehash into other cylinder groups, until an
* available block is located.
*/
int
ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
kauth_cred_t cred, daddr_t *bnp)
{
struct ufsmount *ump;
struct fs *fs;
daddr_t bno;
int cg;
#ifdef QUOTA
int error;
#endif
fs = ip->i_fs;
ump = ip->i_ump;
KASSERT(mutex_owned(&ump->um_lock));
#ifdef UVM_PAGE_TRKOWN
if (ITOV(ip)->v_type == VREG &&
lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
struct vm_page *pg;
struct uvm_object *uobj = &ITOV(ip)->v_uobj;
voff_t off = trunc_page(lblktosize(fs, lbn));
voff_t endoff = round_page(lblktosize(fs, lbn) + size);
simple_lock(&uobj->vmobjlock);
while (off < endoff) {
pg = uvm_pagelookup(uobj, off);
KASSERT(pg != NULL);
KASSERT(pg->owner == curproc->p_pid);
off += PAGE_SIZE;
}
simple_unlock(&uobj->vmobjlock);
}
#endif
*bnp = 0;
#ifdef DIAGNOSTIC
if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
panic("ffs_alloc: bad size");
}
if (cred == NOCRED)
panic("ffs_alloc: missing credential");
#endif /* DIAGNOSTIC */
if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
goto nospace;
if (freespace(fs, fs->fs_minfree) <= 0 &&
kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
goto nospace;
#ifdef QUOTA
mutex_exit(&ump->um_lock);
if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
return (error);
mutex_enter(&ump->um_lock);
#endif
if (bpref >= fs->fs_size)
bpref = 0;
if (bpref == 0)
cg = ino_to_cg(fs, ip->i_number);
else
cg = dtog(fs, bpref);
bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
if (bno > 0) {
DIP_ADD(ip, blocks, btodb(size));
ip->i_flag |= IN_CHANGE | IN_UPDATE;
*bnp = bno;
return (0);
}
#ifdef QUOTA
/*
* Restore user's disk quota because allocation failed.
*/
(void) chkdq(ip, -btodb(size), cred, FORCE);
#endif
nospace:
mutex_exit(&ump->um_lock);
ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
return (ENOSPC);
}
/*
* Reallocate a fragment to a bigger size
*
* The number and size of the old block is given, and a preference
* and new size is also specified. The allocator attempts to extend
* the original block. Failing that, the regular block allocator is
* invoked to get an appropriate block.
*/
int
ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
{
struct ufsmount *ump;
struct fs *fs;
struct buf *bp;
int cg, request, error;
daddr_t bprev, bno;
fs = ip->i_fs;
ump = ip->i_ump;
KASSERT(mutex_owned(&ump->um_lock));
#ifdef UVM_PAGE_TRKOWN
if (ITOV(ip)->v_type == VREG) {
struct vm_page *pg;
struct uvm_object *uobj = &ITOV(ip)->v_uobj;
voff_t off = trunc_page(lblktosize(fs, lbprev));
voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
simple_lock(&uobj->vmobjlock);
while (off < endoff) {
pg = uvm_pagelookup(uobj, off);
KASSERT(pg != NULL);
KASSERT(pg->owner == curproc->p_pid);
KASSERT((pg->flags & PG_CLEAN) == 0);
off += PAGE_SIZE;
}
simple_unlock(&uobj->vmobjlock);
}
#endif
#ifdef DIAGNOSTIC
if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
(u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
printf(
"dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
panic("ffs_realloccg: bad size");
}
if (cred == NOCRED)
panic("ffs_realloccg: missing credential");
#endif /* DIAGNOSTIC */
if (freespace(fs, fs->fs_minfree) <= 0 &&
kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
mutex_exit(&ump->um_lock);
goto nospace;
}
if (fs->fs_magic == FS_UFS2_MAGIC)
bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
else
bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
if (bprev == 0) {
printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
panic("ffs_realloccg: bad bprev");
}
mutex_exit(&ump->um_lock);
/*
* Allocate the extra space in the buffer.
*/
if (bpp != NULL &&
(error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
brelse(bp, 0);
return (error);
}
#ifdef QUOTA
if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
if (bpp != NULL) {
brelse(bp, 0);
}
return (error);
}
#endif
/*
* Check for extension in the existing location.
*/
cg = dtog(fs, bprev);
mutex_enter(&ump->um_lock);
if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
DIP_ADD(ip, blocks, btodb(nsize - osize));
ip->i_flag |= IN_CHANGE | IN_UPDATE;
if (bpp != NULL) {
if (bp->b_blkno != fsbtodb(fs, bno))
panic("bad blockno");
allocbuf(bp, nsize, 1);
bp->b_flags |= B_DONE;
memset((char *)bp->b_data + osize, 0, nsize - osize);
*bpp = bp;
}
if (blknop != NULL) {
*blknop = bno;
}
return (0);
}
/*
* Allocate a new disk location.
*/
if (bpref >= fs->fs_size)
bpref = 0;
switch ((int)fs->fs_optim) {
case FS_OPTSPACE:
/*
* Allocate an exact sized fragment. Although this makes
* best use of space, we will waste time relocating it if
* the file continues to grow. If the fragmentation is
* less than half of the minimum free reserve, we choose
* to begin optimizing for time.
*/
request = nsize;
if (fs->fs_minfree < 5 ||
fs->fs_cstotal.cs_nffree >
fs->fs_dsize * fs->fs_minfree / (2 * 100))
break;
if (ffs_log_changeopt) {
log(LOG_NOTICE,
"%s: optimization changed from SPACE to TIME\n",
fs->fs_fsmnt);
}
fs->fs_optim = FS_OPTTIME;
break;
case FS_OPTTIME:
/*
* At this point we have discovered a file that is trying to
* grow a small fragment to a larger fragment. To save time,
* we allocate a full sized block, then free the unused portion.
* If the file continues to grow, the `ffs_fragextend' call
* above will be able to grow it in place without further
* copying. If aberrant programs cause disk fragmentation to
* grow within 2% of the free reserve, we choose to begin
* optimizing for space.
*/
request = fs->fs_bsize;
if (fs->fs_cstotal.cs_nffree <
fs->fs_dsize * (fs->fs_minfree - 2) / 100)
break;
if (ffs_log_changeopt) {
log(LOG_NOTICE,
"%s: optimization changed from TIME to SPACE\n",
fs->fs_fsmnt);
}
fs->fs_optim = FS_OPTSPACE;
break;
default:
printf("dev = 0x%x, optim = %d, fs = %s\n",
ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
panic("ffs_realloccg: bad optim");
/* NOTREACHED */
}
bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
if (bno > 0) {
if (!DOINGSOFTDEP(ITOV(ip)))
ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
ip->i_number);
if (nsize < request)
ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
(long)(request - nsize), ip->i_number);
DIP_ADD(ip, blocks, btodb(nsize - osize));
ip->i_flag |= IN_CHANGE | IN_UPDATE;
if (bpp != NULL) {
bp->b_blkno = fsbtodb(fs, bno);
allocbuf(bp, nsize, 1);
bp->b_flags |= B_DONE;
memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
*bpp = bp;
}
if (blknop != NULL) {
*blknop = bno;
}
return (0);
}
mutex_exit(&ump->um_lock);
#ifdef QUOTA
/*
* Restore user's disk quota because allocation failed.
*/
(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
#endif
if (bpp != NULL) {
brelse(bp, 0);
}
nospace:
/*
* no space available
*/
ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
return (ENOSPC);
}
#if 0
/*
* Reallocate a sequence of blocks into a contiguous sequence of blocks.
*
* The vnode and an array of buffer pointers for a range of sequential
* logical blocks to be made contiguous is given. The allocator attempts
* to find a range of sequential blocks starting as close as possible
* from the end of the allocation for the logical block immediately
* preceding the current range. If successful, the physical block numbers
* in the buffer pointers and in the inode are changed to reflect the new
* allocation. If unsuccessful, the allocation is left unchanged. The
* success in doing the reallocation is returned. Note that the error
* return is not reflected back to the user. Rather the previous block
* allocation will be used.
*/
#ifdef XXXUBC
#ifdef DEBUG
#include <sys/sysctl.h>
int prtrealloc = 0;
struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
#endif
#endif
/*
* NOTE: when re-enabling this, it must be updated for UFS2.
*/
int doasyncfree = 1;
int
ffs_reallocblks(void *v)
{
#ifdef XXXUBC
struct vop_reallocblks_args /* {
struct vnode *a_vp;
struct cluster_save *a_buflist;
} */ *ap = v;
struct fs *fs;
struct inode *ip;
struct vnode *vp;
struct buf *sbp, *ebp;
int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
struct cluster_save *buflist;
daddr_t start_lbn, end_lbn, soff, newblk, blkno;
struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
int i, len, start_lvl, end_lvl, pref, ssize;
struct ufsmount *ump;
#endif /* XXXUBC */
/* XXXUBC don't reallocblks for now */
return ENOSPC;
#ifdef XXXUBC
vp = ap->a_vp;
ip = VTOI(vp);
fs = ip->i_fs;
ump = ip->i_ump;
if (fs->fs_contigsumsize <= 0)
return (ENOSPC);
buflist = ap->a_buflist;
len = buflist->bs_nchildren;
start_lbn = buflist->bs_children[0]->b_lblkno;
end_lbn = start_lbn + len - 1;
#ifdef DIAGNOSTIC
for (i = 0; i < len; i++)
if (!ffs_checkblk(ip,
dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
panic("ffs_reallocblks: unallocated block 1");
for (i = 1; i < len; i++)
if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
panic("ffs_reallocblks: non-logical cluster");
blkno = buflist->bs_children[0]->b_blkno;
ssize = fsbtodb(fs, fs->fs_frag);
for (i = 1; i < len - 1; i++)
if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
panic("ffs_reallocblks: non-physical cluster %d", i);
#endif
/*
* If the latest allocation is in a new cylinder group, assume that
* the filesystem has decided to move and do not force it back to
* the previous cylinder group.
*/
if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
return (ENOSPC);
if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
return (ENOSPC);
/*
* Get the starting offset and block map for the first block.
*/
if (start_lvl == 0) {
sbap = &ip->i_ffs1_db[0];
soff = start_lbn;
} else {
idp = &start_ap[start_lvl - 1];
if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
brelse(sbp, 0);
return (ENOSPC);
}
sbap = (int32_t *)sbp->b_data;
soff = idp->in_off;
}
/*
* Find the preferred location for the cluster.
*/
mutex_enter(&ump->um_lock);
pref = ffs_blkpref(ip, start_lbn, soff, sbap);
/*
* If the block range spans two block maps, get the second map.
*/
if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
ssize = len;
} else {
#ifdef DIAGNOSTIC
if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
panic("ffs_reallocblk: start == end");
#endif
ssize = len - (idp->in_off + 1);
if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
goto fail;
ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
}
/*
* Search the block map looking for an allocation of the desired size.
*/
if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
len, ffs_clusteralloc)) == 0) {
mutex_exit(&ump->um_lock);
goto fail;
}
/*
* We have found a new contiguous block.
*
* First we have to replace the old block pointers with the new
* block pointers in the inode and indirect blocks associated
* with the file.
*/
#ifdef DEBUG
if (prtrealloc)
printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
start_lbn, end_lbn);
#endif
blkno = newblk;
for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
daddr_t ba;
if (i == ssize) {
bap = ebap;
soff = -i;
}
/* XXX ondisk32 */
ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
#ifdef DIAGNOSTIC
if (!ffs_checkblk(ip,
dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
panic("ffs_reallocblks: unallocated block 2");
if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
panic("ffs_reallocblks: alloc mismatch");
#endif
#ifdef DEBUG
if (prtrealloc)
printf(" %d,", ba);
#endif
if (DOINGSOFTDEP(vp)) {
if (sbap == &ip->i_ffs1_db[0] && i < ssize)
softdep_setup_allocdirect(ip, start_lbn + i,
blkno, ba, fs->fs_bsize, fs->fs_bsize,
buflist->bs_children[i]);
else
softdep_setup_allocindir_page(ip, start_lbn + i,
i < ssize ? sbp : ebp, soff + i, blkno,
ba, buflist->bs_children[i]);
}
/* XXX ondisk32 */
*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
}
/*
* Next we must write out the modified inode and indirect blocks.
* For strict correctness, the writes should be synchronous since
* the old block values may have been written to disk. In practise
* they are almost never written, but if we are concerned about
* strict correctness, the `doasyncfree' flag should be set to zero.
*
* The test on `doasyncfree' should be changed to test a flag
* that shows whether the associated buffers and inodes have
* been written. The flag should be set when the cluster is
* started and cleared whenever the buffer or inode is flushed.
* We can then check below to see if it is set, and do the
* synchronous write only when it has been cleared.
*/
if (sbap != &ip->i_ffs1_db[0]) {
if (doasyncfree)
bdwrite(sbp);
else
bwrite(sbp);
} else {
ip->i_flag |= IN_CHANGE | IN_UPDATE;
if (!doasyncfree)
ffs_update(vp, NULL, NULL, 1);
}
if (ssize < len) {
if (doasyncfree)
bdwrite(ebp);
else
bwrite(ebp);
}
/*
* Last, free the old blocks and assign the new blocks to the buffers.
*/
#ifdef DEBUG
if (prtrealloc)
printf("\n\tnew:");
#endif
for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
if (!DOINGSOFTDEP(vp))
ffs_blkfree(fs, ip->i_devvp,
dbtofsb(fs, buflist->bs_children[i]->b_blkno),
fs->fs_bsize, ip->i_number);
buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
#ifdef DEBUG
if (!ffs_checkblk(ip,
dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
panic("ffs_reallocblks: unallocated block 3");
if (prtrealloc)
printf(" %d,", blkno);
#endif
}
#ifdef DEBUG
if (prtrealloc) {
prtrealloc--;
printf("\n");
}
#endif
return (0);
fail:
if (ssize < len)
brelse(ebp, 0);
if (sbap != &ip->i_ffs1_db[0])
brelse(sbp, 0);
return (ENOSPC);
#endif /* XXXUBC */
}
#endif /* 0 */
/*
* Allocate an inode in the file system.
*
* If allocating a directory, use ffs_dirpref to select the inode.
* If allocating in a directory, the following hierarchy is followed:
* 1) allocate the preferred inode.
* 2) allocate an inode in the same cylinder group.
* 3) quadradically rehash into other cylinder groups, until an
* available inode is located.
* If no inode preference is given the following hierarchy is used
* to allocate an inode:
* 1) allocate an inode in cylinder group 0.
* 2) quadradically rehash into other cylinder groups, until an
* available inode is located.
*/
int
ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
struct vnode **vpp)
{
struct ufsmount *ump;
struct inode *pip;
struct fs *fs;
struct inode *ip;
struct timespec ts;
ino_t ino, ipref;
int cg, error;
*vpp = NULL;
pip = VTOI(pvp);
fs = pip->i_fs;
ump = pip->i_ump;
mutex_enter(&ump->um_lock);
if (fs->fs_cstotal.cs_nifree == 0)
goto noinodes;
if ((mode & IFMT) == IFDIR)
ipref = ffs_dirpref(pip);
else
ipref = pip->i_number;
if (ipref >= fs->fs_ncg * fs->fs_ipg)
ipref = 0;
cg = ino_to_cg(fs, ipref);
/*
* Track number of dirs created one after another
* in a same cg without intervening by files.
*/
if ((mode & IFMT) == IFDIR) {
if (fs->fs_contigdirs[cg] < 255)
fs->fs_contigdirs[cg]++;
} else {
if (fs->fs_contigdirs[cg] > 0)
fs->fs_contigdirs[cg]--;
}
ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
if (ino == 0)
goto noinodes;
error = VFS_VGET(pvp->v_mount, ino, vpp);
if (error) {
ffs_vfree(pvp, ino, mode);
return (error);
}
KASSERT((*vpp)->v_type == VNON);
ip = VTOI(*vpp);
if (ip->i_mode) {
#if 0
printf("mode = 0%o, inum = %d, fs = %s\n",
ip->i_mode, ip->i_number, fs->fs_fsmnt);
#else
printf("dmode %x mode %x dgen %x gen %x\n",
DIP(ip, mode), ip->i_mode,
DIP(ip, gen), ip->i_gen);
printf("size %llx blocks %llx\n",
(long long)DIP(ip, size), (long long)DIP(ip, blocks));
printf("ino %llu ipref %llu\n", (unsigned long long)ino,
(unsigned long long)ipref);
#if 0
error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
(int)fs->fs_bsize, NOCRED, &bp);
#endif
#endif
panic("ffs_valloc: dup alloc");
}
if (DIP(ip, blocks)) { /* XXX */
printf("free inode %s/%llu had %" PRId64 " blocks\n",
fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
DIP_ASSIGN(ip, blocks, 0);
}
ip->i_flag &= ~IN_SPACECOUNTED;
ip->i_flags = 0;
DIP_ASSIGN(ip, flags, 0);
/*
* Set up a new generation number for this inode.
*/
ip->i_gen++;
DIP_ASSIGN(ip, gen, ip->i_gen);
if (fs->fs_magic == FS_UFS2_MAGIC) {
vfs_timestamp(&ts);
ip->i_ffs2_birthtime = ts.tv_sec;
ip->i_ffs2_birthnsec = ts.tv_nsec;
}
return (0);
noinodes:
mutex_exit(&ump->um_lock);
ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
return (ENOSPC);
}
/*
* Find a cylinder group in which to place a directory.
*
* The policy implemented by this algorithm is to allocate a
* directory inode in the same cylinder group as its parent
* directory, but also to reserve space for its files inodes
* and data. Restrict the number of directories which may be
* allocated one after another in the same cylinder group
* without intervening allocation of files.
*
* If we allocate a first level directory then force allocation
* in another cylinder group.
*/
static ino_t
ffs_dirpref(struct inode *pip)
{
register struct fs *fs;
int cg, prefcg;
int64_t dirsize, cgsize, curdsz;
int avgifree, avgbfree, avgndir;
int minifree, minbfree, maxndir;
int mincg, minndir;
int maxcontigdirs;
KASSERT(mutex_owned(&pip->i_ump->um_lock));
fs = pip->i_fs;
avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
/*
* Force allocation in another cg if creating a first level dir.
*/
if (ITOV(pip)->v_vflag & VV_ROOT) {
prefcg = random() % fs->fs_ncg;
mincg = prefcg;
minndir = fs->fs_ipg;
for (cg = prefcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
mincg = cg;
minndir = fs->fs_cs(fs, cg).cs_ndir;
}
for (cg = 0; cg < prefcg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
mincg = cg;
minndir = fs->fs_cs(fs, cg).cs_ndir;
}
return ((ino_t)(fs->fs_ipg * mincg));
}
/*
* Count various limits which used for
* optimal allocation of a directory inode.
*/
maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
minifree = avgifree - fs->fs_ipg / 4;
if (minifree < 0)
minifree = 0;
minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
if (minbfree < 0)
minbfree = 0;
cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
if (avgndir != 0) {
curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
if (dirsize < curdsz)
dirsize = curdsz;
}
if (cgsize < dirsize * 255)
maxcontigdirs = cgsize / dirsize;
else
maxcontigdirs = 255;
if (fs->fs_avgfpdir > 0)
maxcontigdirs = min(maxcontigdirs,
fs->fs_ipg / fs->fs_avgfpdir);
if (maxcontigdirs == 0)
maxcontigdirs = 1;
/*
* Limit number of dirs in one cg and reserve space for
* regular files, but only if we have no deficit in
* inodes or space.
*/
prefcg = ino_to_cg(fs, pip->i_number);
for (cg = prefcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
fs->fs_cs(fs, cg).cs_nifree >= minifree &&
fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
if (fs->fs_contigdirs[cg] < maxcontigdirs)
return ((ino_t)(fs->fs_ipg * cg));
}
for (cg = 0; cg < prefcg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
fs->fs_cs(fs, cg).cs_nifree >= minifree &&
fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
if (fs->fs_contigdirs[cg] < maxcontigdirs)
return ((ino_t)(fs->fs_ipg * cg));
}
/*
* This is a backstop when we are deficient in space.
*/
for (cg = prefcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
return ((ino_t)(fs->fs_ipg * cg));
for (cg = 0; cg < prefcg; cg++)
if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
break;
return ((ino_t)(fs->fs_ipg * cg));
}
/*
* Select the desired position for the next block in a file. The file is
* logically divided into sections. The first section is composed of the
* direct blocks. Each additional section contains fs_maxbpg blocks.
*
* If no blocks have been allocated in the first section, the policy is to
* request a block in the same cylinder group as the inode that describes
* the file. If no blocks have been allocated in any other section, the
* policy is to place the section in a cylinder group with a greater than
* average number of free blocks. An appropriate cylinder group is found
* by using a rotor that sweeps the cylinder groups. When a new group of
* blocks is needed, the sweep begins in the cylinder group following the
* cylinder group from which the previous allocation was made. The sweep
* continues until a cylinder group with greater than the average number
* of free blocks is found. If the allocation is for the first block in an
* indirect block, the information on the previous allocation is unavailable;
* here a best guess is made based upon the logical block number being
* allocated.
*
* If a section is already partially allocated, the policy is to
* contiguously allocate fs_maxcontig blocks. The end of one of these
* contiguous blocks and the beginning of the next is laid out
* contigously if possible.
*/
daddr_t
ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
int32_t *bap /* XXX ondisk32 */)
{
struct fs *fs;
int cg;
int avgbfree, startcg;
KASSERT(mutex_owned(&ip->i_ump->um_lock));
fs = ip->i_fs;
if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
if (lbn < NDADDR + NINDIR(fs)) {
cg = ino_to_cg(fs, ip->i_number);
return (fs->fs_fpg * cg + fs->fs_frag);
}
/*
* Find a cylinder with greater than average number of
* unused data blocks.
*/
if (indx == 0 || bap[indx - 1] == 0)
startcg =
ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
else
startcg = dtog(fs,
ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
startcg %= fs->fs_ncg;
avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
for (cg = startcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
return (fs->fs_fpg * cg + fs->fs_frag);
}
for (cg = 0; cg < startcg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
return (fs->fs_fpg * cg + fs->fs_frag);
}
return (0);
}
/*
* We just always try to lay things out contiguously.
*/
return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
}
daddr_t
ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
{
struct fs *fs;
int cg;
int avgbfree, startcg;
KASSERT(mutex_owned(&ip->i_ump->um_lock));
fs = ip->i_fs;
if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
if (lbn < NDADDR + NINDIR(fs)) {
cg = ino_to_cg(fs, ip->i_number);
return (fs->fs_fpg * cg + fs->fs_frag);
}
/*
* Find a cylinder with greater than average number of
* unused data blocks.
*/
if (indx == 0 || bap[indx - 1] == 0)
startcg =
ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
else
startcg = dtog(fs,
ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
startcg %= fs->fs_ncg;
avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
for (cg = startcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
return (fs->fs_fpg * cg + fs->fs_frag);
}
for (cg = 0; cg < startcg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
return (fs->fs_fpg * cg + fs->fs_frag);
}
return (0);
}
/*
* We just always try to lay things out contiguously.
*/
return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
}
/*
* Implement the cylinder overflow algorithm.
*
* The policy implemented by this algorithm is:
* 1) allocate the block in its requested cylinder group.
* 2) quadradically rehash on the cylinder group number.
* 3) brute force search for a free block.
*/
/*VARARGS5*/
static daddr_t
ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
int size /* size for data blocks, mode for inodes */,
daddr_t (*allocator)(struct inode *, int, daddr_t, int))
{
struct fs *fs;
daddr_t result;
int i, icg = cg;
fs = ip->i_fs;
/*
* 1: preferred cylinder group
*/
result = (*allocator)(ip, cg, pref, size);
if (result)
return (result);
/*
* 2: quadratic rehash
*/
for (i = 1; i < fs->fs_ncg; i *= 2) {
cg += i;
if (cg >= fs->fs_ncg)
cg -= fs->fs_ncg;
result = (*allocator)(ip, cg, 0, size);
if (result)
return (result);
}
/*
* 3: brute force search
* Note that we start at i == 2, since 0 was checked initially,
* and 1 is always checked in the quadratic rehash.
*/
cg = (icg + 2) % fs->fs_ncg;
for (i = 2; i < fs->fs_ncg; i++) {
result = (*allocator)(ip, cg, 0, size);
if (result)
return (result);
cg++;
if (cg == fs->fs_ncg)
cg = 0;
}
return (0);
}
/*
* Determine whether a fragment can be extended.
*
* Check to see if the necessary fragments are available, and
* if they are, allocate them.
*/
static daddr_t
ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
{
struct ufsmount *ump;
struct fs *fs;
struct cg *cgp;
struct buf *bp;
daddr_t bno;
int frags, bbase;
int i, error;
u_int8_t *blksfree;
fs = ip->i_fs;
ump = ip->i_ump;
KASSERT(mutex_owned(&ump->um_lock));
if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
return (0);
frags = numfrags(fs, nsize);
bbase = fragnum(fs, bprev);
if (bbase > fragnum(fs, (bprev + frags - 1))) {
/* cannot extend across a block boundary */
return (0);
}
mutex_exit(&ump->um_lock);
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, NOCRED, &bp);
if (error)
goto fail;
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
goto fail;
cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
bno = dtogd(fs, bprev);
blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
for (i = numfrags(fs, osize); i < frags; i++)
if (isclr(blksfree, bno + i))
goto fail;
/*
* the current fragment can be extended
* deduct the count on fragment being extended into
* increase the count on the remaining fragment (if any)
* allocate the extended piece
*/
for (i = frags; i < fs->fs_frag - bbase; i++)
if (isclr(blksfree, bno + i))
break;
ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
if (i != frags)
ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
mutex_enter(&ump->um_lock);
for (i = numfrags(fs, osize); i < frags; i++) {
clrbit(blksfree, bno + i);
ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
fs->fs_cstotal.cs_nffree--;
fs->fs_cs(fs, cg).cs_nffree--;
}
fs->fs_fmod = 1;
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
if (DOINGSOFTDEP(ITOV(ip)))
softdep_setup_blkmapdep(bp, fs, bprev);
bdwrite(bp);
return (bprev);
fail:
brelse(bp, 0);
mutex_enter(&ump->um_lock);
return (0);
}
/*
* Determine whether a block can be allocated.
*
* Check to see if a block of the appropriate size is available,
* and if it is, allocate it.
*/
static daddr_t
ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
{
struct ufsmount *ump;
struct fs *fs = ip->i_fs;
struct cg *cgp;
struct buf *bp;
int32_t bno;
daddr_t blkno;
int error, frags, allocsiz, i;
u_int8_t *blksfree;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
ump = ip->i_ump;
KASSERT(mutex_owned(&ump->um_lock));
if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
return (0);
mutex_exit(&ump->um_lock);
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, NOCRED, &bp);
if (error)
goto fail;
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, needswap) ||
(cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
goto fail;
cgp->cg_old_time = ufs_rw32(time_second, needswap);
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
cgp->cg_time = ufs_rw64(time_second, needswap);
if (size == fs->fs_bsize) {
mutex_enter(&ump->um_lock);
blkno = ffs_alloccgblk(ip, bp, bpref);
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
bdwrite(bp);
return (blkno);
}
/*
* check to see if any fragments are already available
* allocsiz is the size which will be allocated, hacking
* it down to a smaller size if necessary
*/
blksfree = cg_blksfree(cgp, needswap);
frags = numfrags(fs, size);
for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
if (cgp->cg_frsum[allocsiz] != 0)
break;
if (allocsiz == fs->fs_frag) {
/*
* no fragments were available, so a block will be
* allocated, and hacked up
*/
if (cgp->cg_cs.cs_nbfree == 0)
goto fail;
mutex_enter(&ump->um_lock);
blkno = ffs_alloccgblk(ip, bp, bpref);
bno = dtogd(fs, blkno);
for (i = frags; i < fs->fs_frag; i++)
setbit(blksfree, bno + i);
i = fs->fs_frag - frags;
ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
fs->fs_cstotal.cs_nffree += i;
fs->fs_cs(fs, cg).cs_nffree += i;
fs->fs_fmod = 1;
ufs_add32(cgp->cg_frsum[i], 1, needswap);
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
bdwrite(bp);
return (blkno);
}
bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
#if 0
/*
* XXX fvdl mapsearch will panic, and never return -1
* also: returning NULL as daddr_t ?
*/
if (bno < 0)
goto fail;
#endif
for (i = 0; i < frags; i++)
clrbit(blksfree, bno + i);
mutex_enter(&ump->um_lock);
ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
fs->fs_cstotal.cs_nffree -= frags;
fs->fs_cs(fs, cg).cs_nffree -= frags;
fs->fs_fmod = 1;
ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
if (frags != allocsiz)
ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
blkno = cg * fs->fs_fpg + bno;
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
if (DOINGSOFTDEP(ITOV(ip)))
softdep_setup_blkmapdep(bp, fs, blkno);
bdwrite(bp);
return blkno;
fail:
brelse(bp, 0);
mutex_enter(&ump->um_lock);
return (0);
}
/*
* Allocate a block in a cylinder group.
*
* This algorithm implements the following policy:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate the next available block on the block rotor for the
* specified cylinder group.
* Note that this routine only allocates fs_bsize blocks; these
* blocks may be fragmented by the routine that allocates them.
*/
static daddr_t
ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
{
struct ufsmount *ump;
struct fs *fs = ip->i_fs;
struct cg *cgp;
daddr_t blkno;
int32_t bno;
u_int8_t *blksfree;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
ump = ip->i_ump;
KASSERT(mutex_owned(&ump->um_lock));
cgp = (struct cg *)bp->b_data;
blksfree = cg_blksfree(cgp, needswap);
if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
bpref = ufs_rw32(cgp->cg_rotor, needswap);
} else {
bpref = blknum(fs, bpref);
bno = dtogd(fs, bpref);
/*
* if the requested block is available, use it
*/
if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
goto gotit;
}
/*
* Take the next available block in this cylinder group.
*/
bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
if (bno < 0)
return (0);
cgp->cg_rotor = ufs_rw32(bno, needswap);
gotit:
blkno = fragstoblks(fs, bno);
ffs_clrblock(fs, blksfree, blkno);
ffs_clusteracct(fs, cgp, blkno, -1);
ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
fs->fs_cstotal.cs_nbfree--;
fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
if ((fs->fs_magic == FS_UFS1_MAGIC) &&
((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
int cylno;
cylno = old_cbtocylno(fs, bno);
KASSERT(cylno >= 0);
KASSERT(cylno < fs->fs_old_ncyl);
KASSERT(old_cbtorpos(fs, bno) >= 0);
KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
needswap);
ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
}
fs->fs_fmod = 1;
blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
if (DOINGSOFTDEP(ITOV(ip))) {
mutex_exit(&ump->um_lock);
softdep_setup_blkmapdep(bp, fs, blkno);
mutex_enter(&ump->um_lock);
}
return (blkno);
}
#ifdef XXXUBC
/*
* Determine whether a cluster can be allocated.
*
* We do not currently check for optimal rotational layout if there
* are multiple choices in the same cylinder group. Instead we just
* take the first one that we find following bpref.
*/
/*
* This function must be fixed for UFS2 if re-enabled.
*/
static daddr_t
ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
{
struct ufsmount *ump;
struct fs *fs;
struct cg *cgp;
struct buf *bp;
int i, got, run, bno, bit, map;
u_char *mapp;
int32_t *lp;
fs = ip->i_fs;
ump = ip->i_ump;
KASSERT(mutex_owned(&ump->um_lock));
if (fs->fs_maxcluster[cg] < len)
return (0);
mutex_exit(&ump->um_lock);
if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
NOCRED, &bp))
goto fail;
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
goto fail;
/*
* Check to see if a cluster of the needed size (or bigger) is
* available in this cylinder group.
*/
lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
for (i = len; i <= fs->fs_contigsumsize; i++)
if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
break;
if (i > fs->fs_contigsumsize) {
/*
* This is the first time looking for a cluster in this
* cylinder group. Update the cluster summary information
* to reflect the true maximum sized cluster so that
* future cluster allocation requests can avoid reading
* the cylinder group map only to find no clusters.
*/
lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
for (i = len - 1; i > 0; i--)
if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
break;
mutex_enter(&ump->um_lock);
fs->fs_maxcluster[cg] = i;
mutex_exit(&ump->um_lock);
goto fail;
}
/*
* Search the cluster map to find a big enough cluster.
* We take the first one that we find, even if it is larger
* than we need as we prefer to get one close to the previous
* block allocation. We do not search before the current
* preference point as we do not want to allocate a block
* that is allocated before the previous one (as we will
* then have to wait for another pass of the elevator
* algorithm before it will be read). We prefer to fail and
* be recalled to try an allocation in the next cylinder group.
*/
if (dtog(fs, bpref) != cg)
bpref = 0;
else
bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
map = *mapp++;
bit = 1 << (bpref % NBBY);
for (run = 0, got = bpref;
got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
if ((map & bit) == 0) {
run = 0;
} else {
run++;
if (run == len)
break;
}
if ((got & (NBBY - 1)) != (NBBY - 1)) {
bit <<= 1;
} else {
map = *mapp++;
bit = 1;
}
}
if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
goto fail;
/*
* Allocate the cluster that we have found.
*/
#ifdef DIAGNOSTIC
for (i = 1; i <= len; i++)
if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
got - run + i))
panic("ffs_clusteralloc: map mismatch");
#endif
bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
if (dtog(fs, bno) != cg)
panic("ffs_clusteralloc: allocated out of group");
len = blkstofrags(fs, len);
mutex_enter(&ump->um_lock);
for (i = 0; i < len; i += fs->fs_frag)
if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
panic("ffs_clusteralloc: lost block");
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
bdwrite(bp);
return (bno);
fail:
brelse(bp, 0);
mutex_enter(&ump->um_lock);
return (0);
}
#endif /* XXXUBC */
/*
* Determine whether an inode can be allocated.
*
* Check to see if an inode is available, and if it is,
* allocate it using the following policy:
* 1) allocate the requested inode.
* 2) allocate the next available inode after the requested
* inode in the specified cylinder group.
*/
static daddr_t
ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
{
struct ufsmount *ump = ip->i_ump;
struct fs *fs = ip->i_fs;
struct cg *cgp;
struct buf *bp, *ibp;
u_int8_t *inosused;
int error, start, len, loc, map, i;
int32_t initediblk;
struct ufs2_dinode *dp2;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
KASSERT(mutex_owned(&ump->um_lock));
if (fs->fs_cs(fs, cg).cs_nifree == 0)
return (0);
mutex_exit(&ump->um_lock);
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
(int)fs->fs_cgsize, NOCRED, &bp);
if (error)
goto fail;
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
goto fail;
cgp->cg_old_time = ufs_rw32(time_second, needswap);
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
cgp->cg_time = ufs_rw64(time_second, needswap);
inosused = cg_inosused(cgp, needswap);
if (ipref) {
ipref %= fs->fs_ipg;
if (isclr(inosused, ipref))
goto gotit;
}
start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
NBBY);
loc = skpc(0xff, len, &inosused[start]);
if (loc == 0) {
len = start + 1;
start = 0;
loc = skpc(0xff, len, &inosused[0]);
if (loc == 0) {
printf("cg = %d, irotor = %d, fs = %s\n",
cg, ufs_rw32(cgp->cg_irotor, needswap),
fs->fs_fsmnt);
panic("ffs_nodealloccg: map corrupted");
/* NOTREACHED */
}
}
i = start + len - loc;
map = inosused[i];
ipref = i * NBBY;
for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
if ((map & i) == 0) {
cgp->cg_irotor = ufs_rw32(ipref, needswap);
goto gotit;
}
}
printf("fs = %s\n", fs->fs_fsmnt);
panic("ffs_nodealloccg: block not in map");
/* NOTREACHED */
gotit:
/*
* Check to see if we need to initialize more inodes.
*/
initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
ibp = NULL;
if (fs->fs_magic == FS_UFS2_MAGIC &&
ipref + INOPB(fs) > initediblk &&
initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
ibp = getblk(ip->i_devvp, fsbtodb(fs,
ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
(int)fs->fs_bsize, 0, 0);
memset(ibp->b_data, 0, fs->fs_bsize);
dp2 = (struct ufs2_dinode *)(ibp->b_data);
for (i = 0; i < INOPB(fs); i++) {
/*
* Don't bother to swap, it's supposed to be
* random, after all.
*/
dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
dp2++;
}
initediblk += INOPB(fs);
cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
}
mutex_enter(&ump->um_lock);
ACTIVECG_CLR(fs, cg);
setbit(inosused, ipref);
ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
fs->fs_cstotal.cs_nifree--;
fs->fs_cs(fs, cg).cs_nifree--;
fs->fs_fmod = 1;
if ((mode & IFMT) == IFDIR) {
ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
fs->fs_cstotal.cs_ndir++;
fs->fs_cs(fs, cg).cs_ndir++;
}
mutex_exit(&ump->um_lock);
if (DOINGSOFTDEP(ITOV(ip)))
softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
bdwrite(bp);
if (ibp != NULL)
bawrite(ibp);
return (cg * fs->fs_ipg + ipref);
fail:
brelse(bp, 0);
mutex_enter(&ump->um_lock);
return (0);
}
/*
* Free a block or fragment.
*
* The specified block or fragment is placed back in the
* free map. If a fragment is deallocated, a possible
* block reassembly is checked.
*/
void
ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
ino_t inum)
{
struct cg *cgp;
struct buf *bp;
struct ufsmount *ump;
int32_t fragno, cgbno;
daddr_t cgblkno;
int i, error, cg, blk, frags, bbase;
u_int8_t *blksfree;
dev_t dev;
const int needswap = UFS_FSNEEDSWAP(fs);
cg = dtog(fs, bno);
if (devvp->v_type != VBLK) {
/* devvp is a snapshot */
dev = VTOI(devvp)->i_devvp->v_rdev;
ump = VFSTOUFS(devvp->v_mount);
cgblkno = fragstoblks(fs, cgtod(fs, cg));
} else {
dev = devvp->v_rdev;
ump = VFSTOUFS(devvp->v_specmountpoint);
cgblkno = fsbtodb(fs, cgtod(fs, cg));
if (ffs_snapblkfree(fs, devvp, bno, size, inum))
return;
}
if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
"size = %ld, fs = %s\n",
dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
panic("blkfree: bad size");
}
if (bno >= fs->fs_size) {
printf("bad block %" PRId64 ", ino %llu\n", bno,
(unsigned long long)inum);
ffs_fserr(fs, inum, "bad block");
return;
}
error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
if (error) {
brelse(bp, 0);
return;
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, needswap)) {
brelse(bp, 0);
return;
}
cgp->cg_old_time = ufs_rw32(time_second, needswap);
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
cgp->cg_time = ufs_rw64(time_second, needswap);
cgbno = dtogd(fs, bno);
blksfree = cg_blksfree(cgp, needswap);
mutex_enter(&ump->um_lock);
if (size == fs->fs_bsize) {
fragno = fragstoblks(fs, cgbno);
if (!ffs_isfreeblock(fs, blksfree, fragno)) {
if (devvp->v_type != VBLK) {
/* devvp is a snapshot */
mutex_exit(&ump->um_lock);
brelse(bp, 0);
return;
}
printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
dev, bno, fs->fs_fsmnt);
panic("blkfree: freeing free block");
}
ffs_setblock(fs, blksfree, fragno);
ffs_clusteracct(fs, cgp, fragno, 1);
ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
fs->fs_cstotal.cs_nbfree++;
fs->fs_cs(fs, cg).cs_nbfree++;
if ((fs->fs_magic == FS_UFS1_MAGIC) &&
((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
i = old_cbtocylno(fs, cgbno);
KASSERT(i >= 0);
KASSERT(i < fs->fs_old_ncyl);
KASSERT(old_cbtorpos(fs, cgbno) >= 0);
KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
needswap);
ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
}
} else {
bbase = cgbno - fragnum(fs, cgbno);
/*
* decrement the counts associated with the old frags
*/
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
/*
* deallocate the fragment
*/
frags = numfrags(fs, size);
for (i = 0; i < frags; i++) {
if (isset(blksfree, cgbno + i)) {
printf("dev = 0x%x, block = %" PRId64
", fs = %s\n",
dev, bno + i, fs->fs_fsmnt);
panic("blkfree: freeing free frag");
}
setbit(blksfree, cgbno + i);
}
ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
fs->fs_cstotal.cs_nffree += i;
fs->fs_cs(fs, cg).cs_nffree += i;
/*
* add back in counts associated with the new frags
*/
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
/*
* if a complete block has been reassembled, account for it
*/
fragno = fragstoblks(fs, bbase);
if (ffs_isblock(fs, blksfree, fragno)) {
ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
fs->fs_cstotal.cs_nffree -= fs->fs_frag;
fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
ffs_clusteracct(fs, cgp, fragno, 1);
ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
fs->fs_cstotal.cs_nbfree++;
fs->fs_cs(fs, cg).cs_nbfree++;
if ((fs->fs_magic == FS_UFS1_MAGIC) &&
((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
i = old_cbtocylno(fs, bbase);
KASSERT(i >= 0);
KASSERT(i < fs->fs_old_ncyl);
KASSERT(old_cbtorpos(fs, bbase) >= 0);
KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
bbase)], 1, needswap);
ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
}
}
}
fs->fs_fmod = 1;
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
bdwrite(bp);
}
#if defined(DIAGNOSTIC) || defined(DEBUG)
#ifdef XXXUBC
/*
* Verify allocation of a block or fragment. Returns true if block or
* fragment is allocated, false if it is free.
*/
static int
ffs_checkblk(struct inode *ip, daddr_t bno, long size)
{
struct fs *fs;
struct cg *cgp;
struct buf *bp;
int i, error, frags, free;
fs = ip->i_fs;
if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
printf("bsize = %d, size = %ld, fs = %s\n",
fs->fs_bsize, size, fs->fs_fsmnt);
panic("checkblk: bad size");
}
if (bno >= fs->fs_size)
panic("checkblk: bad block %d", bno);
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
(int)fs->fs_cgsize, NOCRED, &bp);
if (error) {
brelse(bp, 0);
return 0;
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
brelse(bp, 0);
return 0;
}
bno = dtogd(fs, bno);
if (size == fs->fs_bsize) {
free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
fragstoblks(fs, bno));
} else {
frags = numfrags(fs, size);
for (free = 0, i = 0; i < frags; i++)
if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
free++;
if (free != 0 && free != frags)
panic("checkblk: partially free fragment");
}
brelse(bp, 0);
return (!free);
}
#endif /* XXXUBC */
#endif /* DIAGNOSTIC */
/*
* Free an inode.
*/
int
ffs_vfree(struct vnode *vp, ino_t ino, int mode)
{
if (DOINGSOFTDEP(vp)) {
softdep_freefile(vp, ino, mode);
return (0);
}
return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
}
/*
* Do the actual free operation.
* The specified inode is placed back in the free map.
*/
int
ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
{
struct ufsmount *ump;
struct cg *cgp;
struct buf *bp;
int error, cg;
daddr_t cgbno;
u_int8_t *inosused;
dev_t dev;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
cg = ino_to_cg(fs, ino);
if (devvp->v_type != VBLK) {
/* devvp is a snapshot */
dev = VTOI(devvp)->i_devvp->v_rdev;
ump = VFSTOUFS(devvp->v_mount);
cgbno = fragstoblks(fs, cgtod(fs, cg));
} else {
dev = devvp->v_rdev;
ump = VFSTOUFS(devvp->v_specmountpoint);
cgbno = fsbtodb(fs, cgtod(fs, cg));
}
if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
dev, (unsigned long long)ino, fs->fs_fsmnt);
error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
if (error) {
brelse(bp, 0);
return (error);
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, needswap)) {
brelse(bp, 0);
return (0);
}
cgp->cg_old_time = ufs_rw32(time_second, needswap);
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
cgp->cg_time = ufs_rw64(time_second, needswap);
inosused = cg_inosused(cgp, needswap);
ino %= fs->fs_ipg;
if (isclr(inosused, ino)) {
printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
dev, (unsigned long long)ino + cg * fs->fs_ipg,
fs->fs_fsmnt);
if (fs->fs_ronly == 0)
panic("ifree: freeing free inode");
}
clrbit(inosused, ino);
if (ino < ufs_rw32(cgp->cg_irotor, needswap))
cgp->cg_irotor = ufs_rw32(ino, needswap);
ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
mutex_enter(&ump->um_lock);
fs->fs_cstotal.cs_nifree++;
fs->fs_cs(fs, cg).cs_nifree++;
if ((mode & IFMT) == IFDIR) {
ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
fs->fs_cstotal.cs_ndir--;
fs->fs_cs(fs, cg).cs_ndir--;
}
fs->fs_fmod = 1;
ACTIVECG_CLR(fs, cg);
mutex_exit(&ump->um_lock);
bdwrite(bp);
return (0);
}
/*
* Check to see if a file is free.
*/
int
ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
{
struct cg *cgp;
struct buf *bp;
daddr_t cgbno;
int ret, cg;
u_int8_t *inosused;
cg = ino_to_cg(fs, ino);
if (devvp->v_type != VBLK) {
/* devvp is a snapshot */
cgbno = fragstoblks(fs, cgtod(fs, cg));
} else
cgbno = fsbtodb(fs, cgtod(fs, cg));
if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
return 1;
if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
brelse(bp, 0);
return 1;
}
cgp = (struct cg *)bp->b_data;
if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
brelse(bp, 0);
return 1;
}
inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
ino %= fs->fs_ipg;
ret = isclr(inosused, ino);
brelse(bp, 0);
return ret;
}
/*
* Find a block of the specified size in the specified cylinder group.
*
* It is a panic if a request is made to find a block if none are
* available.
*/
static int32_t
ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
{
int32_t bno;
int start, len, loc, i;
int blk, field, subfield, pos;
int ostart, olen;
u_int8_t *blksfree;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
/* KASSERT(mutex_owned(&ump->um_lock)); */
/*
* find the fragment by searching through the free block
* map for an appropriate bit pattern
*/
if (bpref)
start = dtogd(fs, bpref) / NBBY;
else
start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
blksfree = cg_blksfree(cgp, needswap);
len = howmany(fs->fs_fpg, NBBY) - start;
ostart = start;
olen = len;
loc = scanc((u_int)len,
(const u_char *)&blksfree[start],
(const u_char *)fragtbl[fs->fs_frag],
(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
if (loc == 0) {
len = start + 1;
start = 0;
loc = scanc((u_int)len,
(const u_char *)&blksfree[0],
(const u_char *)fragtbl[fs->fs_frag],
(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
if (loc == 0) {
printf("start = %d, len = %d, fs = %s\n",
ostart, olen, fs->fs_fsmnt);
printf("offset=%d %ld\n",
ufs_rw32(cgp->cg_freeoff, needswap),
(long)blksfree - (long)cgp);
printf("cg %d\n", cgp->cg_cgx);
panic("ffs_alloccg: map corrupted");
/* NOTREACHED */
}
}
bno = (start + len - loc) * NBBY;
cgp->cg_frotor = ufs_rw32(bno, needswap);
/*
* found the byte in the map
* sift through the bits to find the selected frag
*/
for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
blk = blkmap(fs, blksfree, bno);
blk <<= 1;
field = around[allocsiz];
subfield = inside[allocsiz];
for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
if ((blk & field) == subfield)
return (bno + pos);
field <<= 1;
subfield <<= 1;
}
}
printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
panic("ffs_alloccg: block not in map");
/* return (-1); */
}
/*
* Update the cluster map because of an allocation or free.
*
* Cnt == 1 means free; cnt == -1 means allocating.
*/
void
ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
{
int32_t *sump;
int32_t *lp;
u_char *freemapp, *mapp;
int i, start, end, forw, back, map, bit;
#ifdef FFS_EI
const int needswap = UFS_FSNEEDSWAP(fs);
#endif
/* KASSERT(mutex_owned(&ump->um_lock)); */
if (fs->fs_contigsumsize <= 0)
return;
freemapp = cg_clustersfree(cgp, needswap);
sump = cg_clustersum(cgp, needswap);
/*
* Allocate or clear the actual block.
*/
if (cnt > 0)
setbit(freemapp, blkno);
else
clrbit(freemapp, blkno);
/*
* Find the size of the cluster going forward.
*/
start = blkno + 1;
end = start + fs->fs_contigsumsize;
if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
end = ufs_rw32(cgp->cg_nclusterblks, needswap);
mapp = &freemapp[start / NBBY];
map = *mapp++;
bit = 1 << (start % NBBY);
for (i = start; i < end; i++) {
if ((map & bit) == 0)
break;
if ((i & (NBBY - 1)) != (NBBY - 1)) {
bit <<= 1;
} else {
map = *mapp++;
bit = 1;
}
}
forw = i - start;
/*
* Find the size of the cluster going backward.
*/
start = blkno - 1;
end = start - fs->fs_contigsumsize;
if (end < 0)
end = -1;
mapp = &freemapp[start / NBBY];
map = *mapp--;
bit = 1 << (start % NBBY);
for (i = start; i > end; i--) {
if ((map & bit) == 0)
break;
if ((i & (NBBY - 1)) != 0) {
bit >>= 1;
} else {
map = *mapp--;
bit = 1 << (NBBY - 1);
}
}
back = start - i;
/*
* Account for old cluster and the possibly new forward and
* back clusters.
*/
i = back + forw + 1;
if (i > fs->fs_contigsumsize)
i = fs->fs_contigsumsize;
ufs_add32(sump[i], cnt, needswap);
if (back > 0)
ufs_add32(sump[back], -cnt, needswap);
if (forw > 0)
ufs_add32(sump[forw], -cnt, needswap);
/*
* Update cluster summary information.
*/
lp = &sump[fs->fs_contigsumsize];
for (i = fs->fs_contigsumsize; i > 0; i--)
if (ufs_rw32(*lp--, needswap) > 0)
break;
fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
}
/*
* Fserr prints the name of a file system with an error diagnostic.
*
* The form of the error message is:
* fs: error message
*/
static void
ffs_fserr(struct fs *fs, u_int uid, const char *cp)
{
log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
}