NetBSD/gnu/dist/gdb/mipsnbsd-nat.c

196 lines
5.6 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Functions specific to running gdb native on a mips running NetBSD
Copyright 1997 Free Software Foundation, Inc.
Contributed by Jonathan Stone(jonathan@dsg.stanford.edu) at Stanford
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include <sys/types.h>
#include <sys/ptrace.h>
#include <machine/reg.h>
#include <machine/pcb.h>
#include <setjmp.h>
#include "defs.h"
#include "inferior.h"
#include "target.h"
#include "gdbcore.h"
#define JB_ELEMENT_SIZE 4
void
fetch_inferior_registers (regno)
int regno;
{
struct reg inferior_registers;
struct fpreg inferior_fp_registers;
bzero(&inferior_registers, sizeof(inferior_registers));
ptrace (PT_GETREGS, inferior_pid,
(PTRACE_ARG3_TYPE) &inferior_registers, 0);
memcpy (&registers[REGISTER_BYTE (0)],
&inferior_registers, sizeof(inferior_registers));
bzero(&inferior_fp_registers, sizeof(inferior_fp_registers));
ptrace (PT_GETFPREGS, inferior_pid,
(PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)],
&inferior_fp_registers, sizeof(struct fpreg));
registers_fetched ();
}
void
store_inferior_registers (regno)
int regno;
{
struct reg inferior_registers;
struct fpreg inferior_fp_registers;
memcpy (&inferior_registers, &registers[REGISTER_BYTE (0)],
sizeof(inferior_registers));
ptrace (PT_SETREGS, inferior_pid,
(PTRACE_ARG3_TYPE) &inferior_registers, 0);
memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
sizeof(inferior_fp_registers));
ptrace (PT_SETFPREGS, inferior_pid,
(PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
registers_fetched ();
}
/* Figure out where the longjmp will land.
We expect the first arg to be a pointer to the jmp_buf structure from which
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
This routine returns true on success. */
int
get_longjmp_target(pc)
CORE_ADDR *pc;
{
CORE_ADDR jb_addr;
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
jb_addr = read_register (A0_REGNUM);
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
TARGET_PTR_BIT / TARGET_CHAR_BIT))
return 0;
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
return 1;
}
/* XXX - Add this to machine/regs.h instead? */
struct md_core {
struct reg intreg;
struct fpreg freg;
};
/* Extract the register values out of the core file and store
them where `read_register' will find them.
CORE_REG_SECT points to the register values themselves, read into memory.
CORE_REG_SIZE is the size of that area.
WHICH says which set of registers we are handling (0 = int, 2 = float
on machines where they are discontiguous).
REG_ADDR is the offset from u.u_ar0 to the register values relative to
core_reg_sect. This is used with old-fashioned core files to
locate the registers in a large upage-plus-stack ".reg" section.
Original upage address X is at location core_reg_sect+x+reg_addr.
*/
void
fetch_core_registers (core_reg_sect, core_reg_size, which, ignore)
char *core_reg_sect;
unsigned core_reg_size;
int which;
unsigned int ignore; /* reg addr, unused in this version */
{
struct md_core *core_reg;
core_reg = (struct md_core *)core_reg_sect;
/* We get everything from the .reg section. */
if (which != 0)
return;
/* Integer registers */
memcpy(&registers[REGISTER_BYTE (0)],
&core_reg->intreg, sizeof(struct reg));
/* Floating point registers */
memcpy(&registers[REGISTER_BYTE (FP0_REGNUM)],
&core_reg->freg, sizeof(struct fpreg));
registers_fetched ();
}
#ifdef FETCH_KCORE_REGISTERS
/* Get registers from a kernel crash dump.
*/
void
fetch_kcore_registers(pcb)
struct pcb *pcb;
{
/* First clear out any garbage. */
memset(registers, '\0', REGISTER_BYTES);
supply_register(16, (char *)&pcb->pcb_context[0x0]); /* s0 */
supply_register(17, (char *)&pcb->pcb_context[0x1]); /* s1 */
supply_register(18, (char *)&pcb->pcb_context[0x2]); /* s2 */
supply_register(19, (char *)&pcb->pcb_context[0x3]); /* s3 */
supply_register(20, (char *)&pcb->pcb_context[0x4]); /* s4 */
supply_register(21, (char *)&pcb->pcb_context[0x5]); /* s5 */
supply_register(22, (char *)&pcb->pcb_context[0x6]); /* s6 */
supply_register(23, (char *)&pcb->pcb_context[0x7]); /* s7 */
supply_register(30, (char *)&pcb->pcb_context[0x9]); /* s8 */
supply_register(SP_REGNUM, (char *)&pcb->pcb_context[0x8]); /* sp */
supply_register(RA_REGNUM, (char *)&pcb->pcb_context[0xa]); /* ra */
supply_register(PC_REGNUM, (char *)&pcb->pcb_context[0xa]); /* ra is pc */
supply_register(PS_REGNUM, (char *)&pcb->pcb_context[0xb]); /* sr */
/* The kernel does not use the FPU, so ignore it. */
registers_fetched ();
}
#endif /* FETCH_KCORE_REGISTERS */
/* Register that we are able to handle core file formats.
FIXME: is this really bfd_target_unknown_flavour? */
static struct core_fns netbsd_core_fns =
{
bfd_target_unknown_flavour,
fetch_core_registers,
NULL
};
void
_initialize_mipsbsd_nat ()
{
add_core_fns (&netbsd_core_fns);
}