327 lines
9.1 KiB
C
327 lines
9.1 KiB
C
/* Subroutines for insn-output.c for SPUR. Adapted from routines for
|
||
the Motorola 68000 family.
|
||
Copyright (C) 1988, 1991, 1997 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include <stdio.h>
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "conditions.h"
|
||
#include "insn-flags.h"
|
||
#include "output.h"
|
||
#include "insn-attr.h"
|
||
|
||
static rtx find_addr_reg ();
|
||
|
||
char *
|
||
output_compare (operands, opcode, exchange_opcode,
|
||
neg_opcode, neg_exchange_opcode)
|
||
rtx *operands;
|
||
char *opcode;
|
||
char *exchange_opcode;
|
||
char *neg_opcode;
|
||
char *neg_exchange_opcode;
|
||
{
|
||
static char buf[100];
|
||
operands[2] = operands[0];
|
||
if (GET_CODE (cc_prev_status.value1) == CONST_INT)
|
||
{
|
||
operands[1] = cc_prev_status.value1;
|
||
operands[0] = cc_prev_status.value2;
|
||
opcode = exchange_opcode, neg_opcode = neg_exchange_opcode;
|
||
}
|
||
else
|
||
{
|
||
operands[0] = cc_prev_status.value1;
|
||
operands[1] = cc_prev_status.value2;
|
||
}
|
||
if (TARGET_LONG_JUMPS)
|
||
sprintf (buf,
|
||
"cmp_br_delayed %s,%%0,%%1,1f\n\tnop\n\tjump %%l2\n\tnop\n1:",
|
||
neg_opcode);
|
||
else
|
||
sprintf (buf, "cmp_br_delayed %s,%%0,%%1,%%l2\n\tnop", opcode);
|
||
return buf;
|
||
}
|
||
|
||
/* Return the best assembler insn template
|
||
for moving operands[1] into operands[0] as a fullword. */
|
||
|
||
static char *
|
||
singlemove_string (operands)
|
||
rtx *operands;
|
||
{
|
||
if (GET_CODE (operands[0]) == MEM)
|
||
return "st_32 %r1,%0";
|
||
if (GET_CODE (operands[1]) == MEM)
|
||
return "ld_32 %0,%1\n\tnop";
|
||
if (GET_CODE (operands[1]) == REG)
|
||
return "add_nt %0,%1,$0";
|
||
return "add_nt %0,r0,%1";
|
||
}
|
||
|
||
/* Output assembler code to perform a doubleword move insn
|
||
with operands OPERANDS. */
|
||
|
||
char *
|
||
output_move_double (operands)
|
||
rtx *operands;
|
||
{
|
||
enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
|
||
rtx latehalf[2];
|
||
rtx addreg0 = 0, addreg1 = 0;
|
||
|
||
/* First classify both operands. */
|
||
|
||
if (REG_P (operands[0]))
|
||
optype0 = REGOP;
|
||
else if (offsettable_memref_p (operands[0]))
|
||
optype0 = OFFSOP;
|
||
else if (GET_CODE (operands[0]) == MEM)
|
||
optype0 = MEMOP;
|
||
else
|
||
optype0 = RNDOP;
|
||
|
||
if (REG_P (operands[1]))
|
||
optype1 = REGOP;
|
||
else if (CONSTANT_P (operands[1]))
|
||
optype1 = CNSTOP;
|
||
else if (offsettable_memref_p (operands[1]))
|
||
optype1 = OFFSOP;
|
||
else if (GET_CODE (operands[1]) == MEM)
|
||
optype1 = MEMOP;
|
||
else
|
||
optype1 = RNDOP;
|
||
|
||
/* Check for the cases that the operand constraints are not
|
||
supposed to allow to happen. Abort if we get one,
|
||
because generating code for these cases is painful. */
|
||
|
||
if (optype0 == RNDOP || optype1 == RNDOP)
|
||
abort ();
|
||
|
||
/* If an operand is an unoffsettable memory ref, find a register
|
||
we can increment temporarily to make it refer to the second word. */
|
||
|
||
if (optype0 == MEMOP)
|
||
addreg0 = find_addr_reg (XEXP (operands[0], 0));
|
||
|
||
if (optype1 == MEMOP)
|
||
addreg1 = find_addr_reg (XEXP (operands[1], 0));
|
||
|
||
/* Ok, we can do one word at a time.
|
||
Normally we do the low-numbered word first,
|
||
but if either operand is autodecrementing then we
|
||
do the high-numbered word first.
|
||
|
||
In either case, set up in LATEHALF the operands to use
|
||
for the high-numbered word and in some cases alter the
|
||
operands in OPERANDS to be suitable for the low-numbered word. */
|
||
|
||
if (optype0 == REGOP)
|
||
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
|
||
else if (optype0 == OFFSOP)
|
||
latehalf[0] = adj_offsettable_operand (operands[0], 4);
|
||
else
|
||
latehalf[0] = operands[0];
|
||
|
||
if (optype1 == REGOP)
|
||
latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
|
||
else if (optype1 == OFFSOP)
|
||
latehalf[1] = adj_offsettable_operand (operands[1], 4);
|
||
else if (optype1 == CNSTOP)
|
||
{
|
||
if (GET_CODE (operands[1]) == CONST_DOUBLE)
|
||
{
|
||
latehalf[1] = GEN_INT (CONST_DOUBLE_HIGH (operands[1]));
|
||
operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]));
|
||
}
|
||
else if (CONSTANT_P (operands[1]))
|
||
latehalf[1] = const0_rtx;
|
||
}
|
||
else
|
||
latehalf[1] = operands[1];
|
||
|
||
/* If the first move would clobber the source of the second one,
|
||
do them in the other order. This happens only for registers;
|
||
such overlap can't happen in memory unless the user explicitly
|
||
sets it up, and that is an undefined circumstance. */
|
||
|
||
if (optype0 == REGOP && optype1 == REGOP
|
||
&& REGNO (operands[0]) == REGNO (latehalf[1]))
|
||
{
|
||
/* Make any unoffsettable addresses point at high-numbered word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add_nt %0,%0,$4", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add_nt %0,%0,$4", &addreg1);
|
||
|
||
/* Do that word. */
|
||
output_asm_insn (singlemove_string (latehalf), latehalf);
|
||
|
||
/* Undo the adds we just did. */
|
||
if (addreg0)
|
||
output_asm_insn ("add_nt %0,%0,$-4", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add_nt %0,%0,$-4", &addreg0);
|
||
|
||
/* Do low-numbered word. */
|
||
return singlemove_string (operands);
|
||
}
|
||
|
||
/* Normal case: do the two words, low-numbered first. */
|
||
|
||
output_asm_insn (singlemove_string (operands), operands);
|
||
|
||
/* Make any unoffsettable addresses point at high-numbered word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add_nt %0,%0,$4", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add_nt %0,%0,$4", &addreg1);
|
||
|
||
/* Do that word. */
|
||
output_asm_insn (singlemove_string (latehalf), latehalf);
|
||
|
||
/* Undo the adds we just did. */
|
||
if (addreg0)
|
||
output_asm_insn ("add_nt %0,%0,$-4", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add_nt %0,%0,$-4", &addreg1);
|
||
|
||
return "";
|
||
}
|
||
|
||
static char *
|
||
output_fp_move_double (operands)
|
||
rtx *operands;
|
||
{
|
||
if (FP_REG_P (operands[0]))
|
||
{
|
||
if (FP_REG_P (operands[1]))
|
||
return "fmov %0,%1";
|
||
if (GET_CODE (operands[1]) == REG)
|
||
{
|
||
rtx xoperands[2];
|
||
int offset = - get_frame_size () - 8;
|
||
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
|
||
xoperands[0] = GEN_INT (offset + 4);
|
||
output_asm_insn ("st_32 %1,r25,%0", xoperands);
|
||
xoperands[1] = operands[1];
|
||
xoperands[0] = GEN_INT (offset);
|
||
output_asm_insn ("st_32 %1,r25,%0", xoperands);
|
||
xoperands[1] = operands[0];
|
||
output_asm_insn ("ld_dbl %1,r25,%0\n\tnop", xoperands);
|
||
return "";
|
||
}
|
||
return "ld_dbl %0,%1\n\tnop";
|
||
}
|
||
else if (FP_REG_P (operands[1]))
|
||
{
|
||
if (GET_CODE (operands[0]) == REG)
|
||
{
|
||
rtx xoperands[2];
|
||
int offset = - get_frame_size () - 8;
|
||
xoperands[0] = GEN_INT (offset);
|
||
xoperands[1] = operands[1];
|
||
output_asm_insn ("st_dbl %1,r25,%0", xoperands);
|
||
xoperands[1] = operands[0];
|
||
output_asm_insn ("ld_32 %1,r25,%0\n\tnop", xoperands);
|
||
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
|
||
xoperands[0] = GEN_INT (offset + 4);
|
||
output_asm_insn ("ld_32 %1,r25,%0\n\tnop", xoperands);
|
||
return "";
|
||
}
|
||
return "st_dbl %1,%0";
|
||
}
|
||
}
|
||
|
||
/* Return a REG that occurs in ADDR with coefficient 1.
|
||
ADDR can be effectively incremented by incrementing REG. */
|
||
|
||
static rtx
|
||
find_addr_reg (addr)
|
||
rtx addr;
|
||
{
|
||
while (GET_CODE (addr) == PLUS)
|
||
{
|
||
if (GET_CODE (XEXP (addr, 0)) == REG)
|
||
addr = XEXP (addr, 0);
|
||
else if (GET_CODE (XEXP (addr, 1)) == REG)
|
||
addr = XEXP (addr, 1);
|
||
else if (CONSTANT_P (XEXP (addr, 0)))
|
||
addr = XEXP (addr, 1);
|
||
else if (CONSTANT_P (XEXP (addr, 1)))
|
||
addr = XEXP (addr, 0);
|
||
else
|
||
abort ();
|
||
}
|
||
if (GET_CODE (addr) == REG)
|
||
return addr;
|
||
abort ();
|
||
}
|
||
|
||
/* Generate code to add a large integer constant to register, reg, storing
|
||
* the result in a register, target. Offset must be 27-bit signed quantity */
|
||
|
||
static char *
|
||
output_add_large_offset (target, reg, offset)
|
||
rtx target, reg;
|
||
int offset;
|
||
{
|
||
rtx operands[3];
|
||
int high, n, i;
|
||
operands[0] = target, operands[1] = reg;
|
||
|
||
for (high = offset, n = 0;
|
||
(unsigned) (high + 0x2000) >= 0x4000;
|
||
high >>= 1, n += 1)
|
||
;
|
||
operands[2] = GEN_INT (high);
|
||
output_asm_insn ("add_nt r2,r0,%2", operands);
|
||
i = n;
|
||
while (i >= 3)
|
||
output_asm_insn ("sll r2,r2,$3", operands), i -= 3;
|
||
if (i == 2)
|
||
output_asm_insn ("sll r2,r2,$2", operands);
|
||
else if (i == 1)
|
||
output_asm_insn ("sll r2,r2,$1", operands);
|
||
output_asm_insn ("add_nt %0,r2,%1", operands);
|
||
if (offset - (high << n) != 0)
|
||
{
|
||
operands[2] = GEN_INT (offset - (high << n));
|
||
output_asm_insn ("add_nt %0,%0,%2", operands);
|
||
}
|
||
return "";
|
||
}
|
||
|
||
/* Additional TESTFN for matching. Like immediate_operand, but matches big
|
||
* constants */
|
||
|
||
int
|
||
big_immediate_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == CONST_INT);
|
||
}
|