NetBSD/sys/dev/ic/i82557.c
thorpej 191ab2b8e4 Since we have to go through fxp_init() to properly handle IFF_ALLMULTI
anyway, take advantage of this and greatly simplify the programming
of the multicast filter.  This solves the last reported "device timeout"
problem with this driver.
1999-08-05 01:35:40 +00:00

1648 lines
42 KiB
C

/* $NetBSD: i82557.c,v 1.8 1999/08/05 01:35:40 thorpej Exp $ */
/*-
* Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1995, David Greenman
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
*/
/*
* Device driver for the Intel i82557 fast Ethernet controller.
*/
#include "opt_inet.h"
#include "opt_ns.h"
#include "bpfilter.h"
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <vm/vm.h> /* for PAGE_SIZE */
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/mii/miivar.h>
#include <dev/ic/i82557reg.h>
#include <dev/ic/i82557var.h>
/*
* NOTE! On the Alpha, we have an alignment constraint. The
* card DMAs the packet immediately following the RFA. However,
* the first thing in the packet is a 14-byte Ethernet header.
* This means that the packet is misaligned. To compensate,
* we actually offset the RFA 2 bytes into the cluster. This
* alignes the packet after the Ethernet header at a 32-bit
* boundary. HOWEVER! This means that the RFA is misaligned!
*/
#define RFA_ALIGNMENT_FUDGE 2
/*
* Template for default configuration parameters.
* See struct fxp_cb_config for the bit definitions.
*/
u_int8_t fxp_cb_config_template[] = {
0x0, 0x0, /* cb_status */
0x80, 0x2, /* cb_command */
0xff, 0xff, 0xff, 0xff, /* link_addr */
0x16, /* 0 */
0x8, /* 1 */
0x0, /* 2 */
0x0, /* 3 */
0x0, /* 4 */
0x80, /* 5 */
0xb2, /* 6 */
0x3, /* 7 */
0x1, /* 8 */
0x0, /* 9 */
0x26, /* 10 */
0x0, /* 11 */
0x60, /* 12 */
0x0, /* 13 */
0xf2, /* 14 */
0x48, /* 15 */
0x0, /* 16 */
0x40, /* 17 */
0xf3, /* 18 */
0x0, /* 19 */
0x3f, /* 20 */
0x5 /* 21 */
};
void fxp_mii_initmedia __P((struct fxp_softc *));
int fxp_mii_mediachange __P((struct ifnet *));
void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
void fxp_80c24_initmedia __P((struct fxp_softc *));
int fxp_80c24_mediachange __P((struct ifnet *));
void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
inline void fxp_scb_wait __P((struct fxp_softc *));
void fxp_start __P((struct ifnet *));
int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
int fxp_init __P((struct fxp_softc *));
void fxp_rxdrain __P((struct fxp_softc *));
void fxp_stop __P((struct fxp_softc *, int));
void fxp_watchdog __P((struct ifnet *));
int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
int fxp_mdi_read __P((struct device *, int, int));
void fxp_statchg __P((struct device *));
void fxp_mdi_write __P((struct device *, int, int, int));
void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
void fxp_tick __P((void *));
void fxp_mc_setup __P((struct fxp_softc *));
void fxp_shutdown __P((void *));
int fxp_copy_small = 0;
struct fxp_phytype {
int fp_phy; /* type of PHY, -1 for MII at the end. */
void (*fp_init) __P((struct fxp_softc *));
} fxp_phytype_table[] = {
{ FXP_PHY_80C24, fxp_80c24_initmedia },
{ -1, fxp_mii_initmedia },
};
/*
* Set initial transmit threshold at 64 (512 bytes). This is
* increased by 64 (512 bytes) at a time, to maximum of 192
* (1536 bytes), if an underrun occurs.
*/
static int tx_threshold = 64;
/*
* Wait for the previous command to be accepted (but not necessarily
* completed).
*/
inline void
fxp_scb_wait(sc)
struct fxp_softc *sc;
{
int i = 10000;
while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
delay(2);
if (i == 0)
printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
}
/*
* Finish attaching an i82557 interface. Called by bus-specific front-end.
*/
void
fxp_attach(sc)
struct fxp_softc *sc;
{
u_int8_t enaddr[6];
struct ifnet *ifp;
bus_dma_segment_t seg;
int rseg, i, error;
struct fxp_phytype *fp;
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
0)) != 0) {
printf("%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct fxp_control_data), 1,
sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
0)) != 0) {
printf("%s: can't load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_3;
}
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < FXP_NTXCB; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
FXP_NTXSEG, MCLBYTES, 0, 0,
&FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
printf("%s: unable to create tx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < FXP_NRFABUFS; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
printf("%s: unable to create rx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_5;
}
}
/* Initialize MAC address and media structures. */
fxp_get_info(sc, enaddr);
printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
ifp = &sc->sc_ethercom.ec_if;
/*
* Get info about our media interface, and initialize it. Note
* the table terminates itself with a phy of -1, indicating
* that we're using MII.
*/
for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
if (fp->fp_phy == sc->phy_primary_device)
break;
(*fp->fp_init)(sc);
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = fxp_ioctl;
ifp->if_start = fxp_start;
ifp->if_watchdog = fxp_watchdog;
/*
* Attach the interface.
*/
if_attach(ifp);
ether_ifattach(ifp, enaddr);
#if NBPFILTER > 0
bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
sizeof(struct ether_header));
#endif
#if NRND > 0
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
RND_TYPE_NET, 0);
#endif
/*
* Add shutdown hook so that DMA is disabled prior to reboot. Not
* doing do could allow DMA to corrupt kernel memory during the
* reboot before the driver initializes.
*/
sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
if (sc->sc_sdhook == NULL)
printf("%s: WARNING: unable to establish shutdown hook\n",
sc->sc_dev.dv_xname);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall though.
*/
fail_5:
for (i = 0; i < FXP_NRFABUFS; i++) {
if (sc->sc_rxmaps[i] != NULL)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
}
fail_4:
for (i = 0; i < FXP_NTXCB; i++) {
if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
FXP_DSTX(sc, i)->txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
sizeof(struct fxp_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_0:
return;
}
void
fxp_mii_initmedia(sc)
struct fxp_softc *sc;
{
sc->sc_flags |= FXPF_MII;
sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
sc->sc_mii.mii_readreg = fxp_mdi_read;
sc->sc_mii.mii_writereg = fxp_mdi_write;
sc->sc_mii.mii_statchg = fxp_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
fxp_mii_mediastatus);
mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
}
void
fxp_80c24_initmedia(sc)
struct fxp_softc *sc;
{
/*
* The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
* doesn't have a programming interface of any sort. The
* media is sensed automatically based on how the link partner
* is configured. This is, in essence, manual configuration.
*/
printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
sc->sc_dev.dv_xname);
ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
fxp_80c24_mediastatus);
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
}
/*
* Device shutdown routine. Called at system shutdown after sync. The
* main purpose of this routine is to shut off receiver DMA so that
* kernel memory doesn't get clobbered during warmboot.
*/
void
fxp_shutdown(arg)
void *arg;
{
struct fxp_softc *sc = arg;
fxp_stop(sc, 1);
}
/*
* Initialize the interface media.
*/
void
fxp_get_info(sc, enaddr)
struct fxp_softc *sc;
u_int8_t *enaddr;
{
u_int16_t data, myea[3];
/*
* Reset to a stable state.
*/
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
/*
* Get info about the primary PHY
*/
fxp_read_eeprom(sc, &data, 6, 1);
sc->phy_primary_addr = data & 0xff;
sc->phy_primary_device = (data >> 8) & 0x3f;
sc->phy_10Mbps_only = data >> 15;
/*
* Read MAC address.
*/
fxp_read_eeprom(sc, myea, 0, 3);
bcopy(myea, enaddr, ETHER_ADDR_LEN);
}
/*
* Read from the serial EEPROM. Basically, you manually shift in
* the read opcode (one bit at a time) and then shift in the address,
* and then you shift out the data (all of this one bit at a time).
* The word size is 16 bits, so you have to provide the address for
* every 16 bits of data.
*/
void
fxp_read_eeprom(sc, data, offset, words)
struct fxp_softc *sc;
u_int16_t *data;
int offset;
int words;
{
u_int16_t reg;
int i, x;
for (i = 0; i < words; i++) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
/*
* Shift in read opcode.
*/
for (x = 3; x > 0; x--) {
if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
/*
* Shift in address.
*/
for (x = 6; x > 0; x--) {
if ((i + offset) & (1 << (x - 1))) {
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
} else {
reg = FXP_EEPROM_EECS;
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
reg = FXP_EEPROM_EECS;
data[i] = 0;
/*
* Shift out data.
*/
for (x = 16; x > 0; x--) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(1);
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
FXP_EEPROM_EEDO)
data[i] |= (1 << (x - 1));
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
}
}
/*
* Start packet transmission on the interface.
*/
void
fxp_start(ifp)
struct ifnet *ifp;
{
struct fxp_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
struct fxp_cb_tx *txd;
struct fxp_txsoft *txs;
struct fxp_tbdlist *tbd;
bus_dmamap_t dmamap;
int error, lasttx, nexttx, opending, seg;
/*
* If we want a re-init, bail out now.
*/
if (sc->sc_flags & FXPF_WANTINIT) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous txpending and the current lasttx.
*/
opending = sc->sc_txpending;
lasttx = sc->sc_txlast;
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
while (sc->sc_txpending < FXP_NTXCB) {
/*
* Grab a packet off the queue.
*/
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
/*
* Get the next available transmit descriptor.
*/
nexttx = FXP_NEXTTX(sc->sc_txlast);
txd = FXP_CDTX(sc, nexttx);
tbd = FXP_CDTBD(sc, nexttx);
txs = FXP_DSTX(sc, nexttx);
dmamap = txs->txs_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the allotted number of frags, or we were
* short on resources. In this case, we'll copy and try
* again.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_NOWAIT) != 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Tx mbuf\n",
sc->sc_dev.dv_xname);
IF_PREPEND(&ifp->if_snd, m0);
break;
}
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Tx "
"cluster\n", sc->sc_dev.dv_xname);
m_freem(m);
IF_PREPEND(&ifp->if_snd, m0);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
m_freem(m0);
m0 = m;
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
m0, BUS_DMA_NOWAIT);
if (error) {
printf("%s: unable to load Tx buffer, "
"error = %d\n", sc->sc_dev.dv_xname, error);
IF_PREPEND(&ifp->if_snd, m0);
break;
}
}
/* Initialize the fraglist. */
for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
tbd->tbd_d[seg].tb_addr =
dmamap->dm_segs[seg].ds_addr;
tbd->tbd_d[seg].tb_size =
dmamap->dm_segs[seg].ds_len;
}
FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later.
*/
txs->txs_mbuf = m0;
/*
* Initialize the transmit descriptor.
*/
txd->cb_status = 0;
txd->cb_command =
FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF;
txd->tx_threshold = tx_threshold;
txd->tbd_number = dmamap->dm_nsegs;
FXP_CDTXSYNC(sc, nexttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Advance the tx pointer. */
sc->sc_txpending++;
sc->sc_txlast = nexttx;
#if NBPFILTER > 0
/*
* Pass packet to bpf if there is a listener.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
}
if (sc->sc_txpending == FXP_NTXCB) {
/* No more slots; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txpending != opending) {
/*
* We enqueued packets. If the transmitter was idle,
* reset the txdirty pointer.
*/
if (opending == 0)
sc->sc_txdirty = FXP_NEXTTX(lasttx);
/*
* Cause the chip to interrupt and suspend command
* processing once the last packet we've enqueued
* has been transmitted.
*/
FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
FXP_CB_COMMAND_I | FXP_CB_COMMAND_S;
FXP_CDTXSYNC(sc, sc->sc_txlast,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* The entire packet chain is set up. Clear the suspend bit
* on the command prior to the first packet we set up.
*/
FXP_CDTXSYNC(sc, lasttx,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
FXP_CDTX(sc, lasttx)->cb_command &= ~FXP_CB_COMMAND_S;
FXP_CDTXSYNC(sc, lasttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Issue a Resume command in case the chip was suspended.
*/
fxp_scb_wait(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* Process interface interrupts.
*/
int
fxp_intr(arg)
void *arg;
{
struct fxp_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct fxp_cb_tx *txd;
struct fxp_txsoft *txs;
struct mbuf *m, *m0;
bus_dmamap_t rxmap;
struct fxp_rfa *rfa;
struct ether_header *eh;
int i, claimed = 0;
u_int16_t len;
u_int8_t statack;
while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
claimed = 1;
/*
* First ACK all the interrupts in this pass.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
/*
* Process receiver interrupts. If a no-resource (RNR)
* condition exists, get whatever packets we can and
* re-start the receiver.
*/
if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
rcvloop:
m = sc->sc_rxq.ifq_head;
rfa = FXP_MTORFA(m);
rxmap = M_GETCTX(m, bus_dmamap_t);
FXP_RFASYNC(sc, m,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if ((rfa->rfa_status & FXP_RFA_STATUS_C) == 0) {
/*
* We have processed all of the
* receive buffers.
*/
goto do_transmit;
}
IF_DEQUEUE(&sc->sc_rxq, m);
FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
len = rfa->actual_size & (m->m_ext.ext_size - 1);
if (len < sizeof(struct ether_header)) {
/*
* Runt packet; drop it now.
*/
FXP_INIT_RFABUF(sc, m);
goto rcvloop;
}
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*
* Otherwise, we add a new buffer to the receive
* chain. If this fails, we drop the packet and
* recycle the old buffer.
*/
if (fxp_copy_small != 0 && len <= MHLEN) {
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m == NULL)
goto dropit;
memcpy(mtod(m0, caddr_t),
mtod(m, caddr_t), len);
FXP_INIT_RFABUF(sc, m);
m = m0;
} else {
if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
dropit:
ifp->if_ierrors++;
FXP_INIT_RFABUF(sc, m);
goto rcvloop;
}
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
/*
* Pass this up to any BPF listeners, but only
* pass it up the stack it its for us.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp->if_bpf, m);
if ((ifp->if_flags & IFF_PROMISC) != 0 &&
(rfa->rfa_status &
FXP_RFA_STATUS_IAMATCH) != 0 &&
(eh->ether_dhost[0] & 1) == 0) {
m_freem(m);
goto rcvloop;
}
}
#endif /* NBPFILTER > 0 */
/* Pass it on. */
(*ifp->if_input)(ifp, m);
goto rcvloop;
}
do_transmit:
if (statack & FXP_SCB_STATACK_RNR) {
rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
rxmap->dm_segs[0].ds_addr +
RFA_ALIGNMENT_FUDGE);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
FXP_SCB_COMMAND_RU_START);
}
/*
* Free any finished transmit mbuf chains.
*/
if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
ifp->if_flags &= ~IFF_OACTIVE;
for (i = sc->sc_txdirty; sc->sc_txpending != 0;
i = FXP_NEXTTX(i), sc->sc_txpending--) {
txd = FXP_CDTX(sc, i);
txs = FXP_DSTX(sc, i);
FXP_CDTXSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if ((txd->cb_status & FXP_CB_STATUS_C) == 0)
break;
FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
/* Update the dirty transmit buffer pointer. */
sc->sc_txdirty = i;
/*
* Cancel the watchdog timer if there are no pending
* transmissions.
*/
if (sc->sc_txpending == 0) {
ifp->if_timer = 0;
/*
* If we want a re-init, do that now.
*/
if (sc->sc_flags & FXPF_WANTINIT)
(void) fxp_init(sc);
}
/*
* Try to get more packets going.
*/
fxp_start(ifp);
}
}
#if NRND > 0
if (claimed)
rnd_add_uint32(&sc->rnd_source, statack);
#endif
return (claimed);
}
/*
* Update packet in/out/collision statistics. The i82557 doesn't
* allow you to access these counters without doing a fairly
* expensive DMA to get _all_ of the statistics it maintains, so
* we do this operation here only once per second. The statistics
* counters in the kernel are updated from the previous dump-stats
* DMA and then a new dump-stats DMA is started. The on-chip
* counters are zeroed when the DMA completes. If we can't start
* the DMA immediately, we don't wait - we just prepare to read
* them again next time.
*/
void
fxp_tick(arg)
void *arg;
{
struct fxp_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
int s;
s = splnet();
ifp->if_opackets += sp->tx_good;
ifp->if_collisions += sp->tx_total_collisions;
if (sp->rx_good) {
ifp->if_ipackets += sp->rx_good;
sc->sc_rxidle = 0;
} else {
sc->sc_rxidle++;
}
ifp->if_ierrors +=
sp->rx_crc_errors +
sp->rx_alignment_errors +
sp->rx_rnr_errors +
sp->rx_overrun_errors;
/*
* If any transmit underruns occured, bump up the transmit
* threshold by another 512 bytes (64 * 8).
*/
if (sp->tx_underruns) {
ifp->if_oerrors += sp->tx_underruns;
if (tx_threshold < 192)
tx_threshold += 64;
}
/*
* If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
* then assume the receiver has locked up and attempt to clear
* the condition by reprogramming the multicast filter (actually,
* resetting the interface). This is a work-around for a bug in
* the 82557 where the receiver locks up if it gets certain types
* of garbage in the syncronization bits prior to the packet header.
* This bug is supposed to only occur in 10Mbps mode, but has been
* seen to occur in 100Mbps mode as well (perhaps due to a 10/100
* speed transition).
*/
if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
(void) fxp_init(sc);
splx(s);
return;
}
/*
* If there is no pending command, start another stats
* dump. Otherwise punt for now.
*/
if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
/*
* Start another stats dump.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
FXP_SCB_COMMAND_CU_DUMPRESET);
} else {
/*
* A previous command is still waiting to be accepted.
* Just zero our copy of the stats and wait for the
* next timer event to update them.
*/
sp->tx_good = 0;
sp->tx_underruns = 0;
sp->tx_total_collisions = 0;
sp->rx_good = 0;
sp->rx_crc_errors = 0;
sp->rx_alignment_errors = 0;
sp->rx_rnr_errors = 0;
sp->rx_overrun_errors = 0;
}
if (sc->sc_flags & FXPF_MII) {
/* Tick the MII clock. */
mii_tick(&sc->sc_mii);
}
splx(s);
/*
* Schedule another timeout one second from now.
*/
timeout(fxp_tick, sc, hz);
}
/*
* Drain the receive queue.
*/
void
fxp_rxdrain(sc)
struct fxp_softc *sc;
{
bus_dmamap_t rxmap;
struct mbuf *m;
for (;;) {
IF_DEQUEUE(&sc->sc_rxq, m);
if (m == NULL)
break;
rxmap = M_GETCTX(m, bus_dmamap_t);
bus_dmamap_unload(sc->sc_dmat, rxmap);
FXP_RXMAP_PUT(sc, rxmap);
m_freem(m);
}
}
/*
* Stop the interface. Cancels the statistics updater and resets
* the interface.
*/
void
fxp_stop(sc, drain)
struct fxp_softc *sc;
int drain;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct fxp_txsoft *txs;
int i;
/*
* Cancel stats updater.
*/
untimeout(fxp_tick, sc);
/*
* Issue software reset
*/
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
/*
* Release any xmit buffers.
*/
for (i = 0; i < FXP_NTXCB; i++) {
txs = FXP_DSTX(sc, i);
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
}
sc->sc_txpending = 0;
if (drain) {
/*
* Release the receive buffers.
*/
fxp_rxdrain(sc);
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
/*
* Watchdog/transmission transmit timeout handler. Called when a
* transmission is started on the interface, but no interrupt is
* received before the timeout. This usually indicates that the
* card has wedged for some reason.
*/
void
fxp_watchdog(ifp)
struct ifnet *ifp;
{
struct fxp_softc *sc = ifp->if_softc;
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
(void) fxp_init(sc);
}
/*
* Initialize the interface. Must be called at splnet().
*/
int
fxp_init(sc)
struct fxp_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct fxp_cb_config *cbp;
struct fxp_cb_ias *cb_ias;
struct fxp_cb_tx *txd;
bus_dmamap_t rxmap;
int i, prm, allm, error = 0;
/*
* Cancel any pending I/O
*/
fxp_stop(sc, 0);
sc->sc_flags = 0;
/*
* Initialize base of CBL and RFA memory. Loading with zero
* sets it up for regular linear addressing.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
fxp_scb_wait(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
/*
* Initialize the multicast filter. Do this now, since we might
* have to setup the config block differently.
*/
fxp_mc_setup(sc);
prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
/*
* Initialize base of dump-stats buffer.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
sc->sc_cddma + FXP_CDSTATSOFF);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
cbp = &sc->sc_control_data->fcd_configcb;
memset(cbp, 0, sizeof(struct fxp_cb_config));
/*
* This copy is kind of disgusting, but there are a bunch of must be
* zero and must be one bits in this structure and this is the easiest
* way to initialize them all to proper values.
*/
memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
cbp->cb_status = 0;
cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
cbp->link_addr = -1; /* (no) next command */
cbp->byte_count = 22; /* (22) bytes to config */
cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
cbp->dma_bce = 0; /* (disable) dma max counters */
cbp->late_scb = 0; /* (don't) defer SCB update */
cbp->tno_int = 0; /* (disable) tx not okay interrupt */
cbp->ci_int = 1; /* interrupt on CU idle */
cbp->save_bf = prm; /* save bad frames */
cbp->disc_short_rx = !prm; /* discard short packets */
cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
cbp->nsai = 1; /* (don't) disable source addr insert */
cbp->preamble_length = 2; /* (7 byte) preamble */
cbp->loopback = 0; /* (don't) loopback */
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
cbp->promiscuous = prm; /* promiscuous mode */
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
cbp->crscdt = 0; /* (CRS only) */
cbp->stripping = !prm; /* truncate rx packet to byte count */
cbp->padding = 1; /* (do) pad short tx packets */
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
cbp->force_fdx = 0; /* (don't) force full duplex */
cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
cbp->mc_all = allm; /* accept all multicasts */
FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Start the config command/DMA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
do {
FXP_CDCONFIGSYNC(sc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
} while ((cbp->cb_status & FXP_CB_STATUS_C) == 0);
/*
* Initialize the station address.
*/
cb_ias = &sc->sc_control_data->fcd_iascb;
cb_ias->cb_status = 0;
cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
cb_ias->link_addr = -1;
memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Start the IAS (Individual Address Setup) command/DMA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
do {
FXP_CDIASSYNC(sc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
} while ((cb_ias->cb_status & FXP_CB_STATUS_C) == 0);
/*
* Initialize the transmit descriptor ring. txlast is initialized
* to the end of the list so that it will wrap around to the first
* descriptor when the first packet is transmitted.
*/
for (i = 0; i < FXP_NTXCB; i++) {
txd = FXP_CDTX(sc, i);
memset(txd, 0, sizeof(struct fxp_cb_tx));
txd->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
txd->tbd_array_addr = FXP_CDTBDADDR(sc, i);
txd->link_addr = FXP_CDTXADDR(sc, FXP_NEXTTX(i));
FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
sc->sc_txpending = 0;
sc->sc_txdirty = 0;
sc->sc_txlast = FXP_NTXCB - 1;
/*
* Initialize the receive buffer list.
*/
sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
rxmap = FXP_RXMAP_GET(sc);
if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
sc->sc_dev.dv_xname,
sc->sc_rxq.ifq_len, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
FXP_RXMAP_PUT(sc, rxmap);
fxp_rxdrain(sc);
goto out;
}
}
sc->sc_rxidle = 0;
/*
* Give the transmit ring to the chip. We do this by pointing
* the chip at the last descriptor (which is a NOP|SUSPEND), and
* issuing a start command. It will execute the NOP and then
* suspend, pointing at the first descriptor.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/*
* Initialize receiver buffer area - RFA.
*/
rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
if (sc->sc_flags & FXPF_MII) {
/*
* Set current media.
*/
mii_mediachg(&sc->sc_mii);
}
/*
* ...all done!
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Start the one second timer.
*/
timeout(fxp_tick, sc, hz);
/*
* Attempt to start output on the interface.
*/
fxp_start(ifp);
out:
if (error)
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
return (error);
}
/*
* Change media according to request.
*/
int
fxp_mii_mediachange(ifp)
struct ifnet *ifp;
{
struct fxp_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
mii_mediachg(&sc->sc_mii);
return (0);
}
/*
* Notify the world which media we're using.
*/
void
fxp_mii_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct fxp_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
int
fxp_80c24_mediachange(ifp)
struct ifnet *ifp;
{
/* Nothing to do here. */
return (0);
}
void
fxp_80c24_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct fxp_softc *sc = ifp->if_softc;
/*
* Media is currently-selected media. We cannot determine
* the link status.
*/
ifmr->ifm_status = 0;
ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
}
/*
* Add a buffer to the end of the RFA buffer list.
* Return 0 if successful, error code on failure.
*
* The RFA struct is stuck at the beginning of mbuf cluster and the
* data pointer is fixed up to point just past it.
*/
int
fxp_add_rfabuf(sc, rxmap, unload)
struct fxp_softc *sc;
bus_dmamap_t rxmap;
int unload;
{
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (unload)
bus_dmamap_unload(sc->sc_dmat, rxmap);
M_SETCTX(m, rxmap);
error = bus_dmamap_load(sc->sc_dmat, rxmap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
panic("fxp_add_rfabuf"); /* XXX */
}
FXP_INIT_RFABUF(sc, m);
return (0);
}
volatile int
fxp_mdi_read(self, phy, reg)
struct device *self;
int phy;
int reg;
{
struct fxp_softc *sc = (struct fxp_softc *)self;
int count = 10000;
int value;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
&& count--)
DELAY(10);
if (count <= 0)
printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
return (value & 0xffff);
}
void
fxp_statchg(self)
struct device *self;
{
/* XXX Update ifp->if_baudrate */
}
void
fxp_mdi_write(self, phy, reg, value)
struct device *self;
int phy;
int reg;
int value;
{
struct fxp_softc *sc = (struct fxp_softc *)self;
int count = 10000;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
(value & 0xffff));
while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
count--)
DELAY(10);
if (count <= 0)
printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
}
int
fxp_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct fxp_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct ifaddr *ifa = (struct ifaddr *)data;
int s, error = 0;
s = splnet();
switch (command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
if ((error = fxp_init(sc)) != 0)
break;
arp_ifinit(ifp, ifa);
break;
#endif /* INET */
#ifdef NS
case AF_NS:
{
struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host = *(union ns_host *)
LLADDR(ifp->if_sadl);
else
bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
ifp->if_addrlen);
/* Set new address. */
error = fxp_init(sc);
break;
}
#endif /* NS */
default:
error = fxp_init(sc);
break;
}
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu > ETHERMTU)
error = EINVAL;
else
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
fxp_stop(sc, 1);
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
error = fxp_init(sc);
} else if ((ifp->if_flags & IFF_UP) != 0) {
/*
* Reset the interface to pick up change in any other
* flags that affect the hardware state.
*/
error = fxp_init(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ethercom) :
ether_delmulti(ifr, &sc->sc_ethercom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware
* filter accordingly.
*/
if (sc->sc_txpending) {
sc->sc_flags |= FXPF_WANTINIT;
error = 0;
} else
error = fxp_init(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
break;
default:
error = EINVAL;
break;
}
splx(s);
return (error);
}
/*
* Program the multicast filter.
*
* This function must be called at splnet().
*/
void
fxp_mc_setup(sc)
struct fxp_softc *sc;
{
struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ethercom *ec = &sc->sc_ethercom;
struct ether_multi *enm;
struct ether_multistep step;
int nmcasts;
#ifdef DIAGNOSTIC
if (sc->sc_txpending)
panic("fxp_mc_setup: pending transmissions");
#endif
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Initialize multicast setup descriptor.
*/
nmcasts = 0;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
/*
* Check for too many multicast addresses or if we're
* listening to a range. Either way, we simply have
* to accept all multicasts.
*/
if (nmcasts >= MAXMCADDR ||
memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0) {
/*
* Callers of this function must do the
* right thing with this. If we're called
* from outside fxp_init(), the caller must
* detect if the state if IFF_ALLMULTI changes.
* If it does, the caller must then call
* fxp_init(), since allmulti is handled by
* the config block.
*/
ifp->if_flags |= IFF_ALLMULTI;
return;
}
memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
ETHER_ADDR_LEN);
nmcasts++;
ETHER_NEXT_MULTI(step, enm);
}
mcsp->cb_status = 0;
mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
mcsp->link_addr = FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast));
mcsp->mc_cnt = nmcasts * ETHER_ADDR_LEN;
FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Wait until the command unit is not active. This should never
* happen since nothing is queued, but make sure anyway.
*/
while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
FXP_SCB_CUS_ACTIVE)
/* nothing */ ;
/*
* Start the multicast setup command/DMA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
do {
FXP_CDMCSSYNC(sc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
} while ((mcsp->cb_status & FXP_CB_STATUS_C) == 0);
}