191ab2b8e4
anyway, take advantage of this and greatly simplify the programming of the multicast filter. This solves the last reported "device timeout" problem with this driver.
1648 lines
42 KiB
C
1648 lines
42 KiB
C
/* $NetBSD: i82557.c,v 1.8 1999/08/05 01:35:40 thorpej Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1995, David Greenman
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
|
|
*/
|
|
|
|
/*
|
|
* Device driver for the Intel i82557 fast Ethernet controller.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ns.h"
|
|
#include "bpfilter.h"
|
|
#include "rnd.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <vm/vm.h> /* for PAGE_SIZE */
|
|
|
|
#if NRND > 0
|
|
#include <sys/rnd.h>
|
|
#endif
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_inarp.h>
|
|
#endif
|
|
|
|
#ifdef NS
|
|
#include <netns/ns.h>
|
|
#include <netns/ns_if.h>
|
|
#endif
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/ic/i82557reg.h>
|
|
#include <dev/ic/i82557var.h>
|
|
|
|
/*
|
|
* NOTE! On the Alpha, we have an alignment constraint. The
|
|
* card DMAs the packet immediately following the RFA. However,
|
|
* the first thing in the packet is a 14-byte Ethernet header.
|
|
* This means that the packet is misaligned. To compensate,
|
|
* we actually offset the RFA 2 bytes into the cluster. This
|
|
* alignes the packet after the Ethernet header at a 32-bit
|
|
* boundary. HOWEVER! This means that the RFA is misaligned!
|
|
*/
|
|
#define RFA_ALIGNMENT_FUDGE 2
|
|
|
|
/*
|
|
* Template for default configuration parameters.
|
|
* See struct fxp_cb_config for the bit definitions.
|
|
*/
|
|
u_int8_t fxp_cb_config_template[] = {
|
|
0x0, 0x0, /* cb_status */
|
|
0x80, 0x2, /* cb_command */
|
|
0xff, 0xff, 0xff, 0xff, /* link_addr */
|
|
0x16, /* 0 */
|
|
0x8, /* 1 */
|
|
0x0, /* 2 */
|
|
0x0, /* 3 */
|
|
0x0, /* 4 */
|
|
0x80, /* 5 */
|
|
0xb2, /* 6 */
|
|
0x3, /* 7 */
|
|
0x1, /* 8 */
|
|
0x0, /* 9 */
|
|
0x26, /* 10 */
|
|
0x0, /* 11 */
|
|
0x60, /* 12 */
|
|
0x0, /* 13 */
|
|
0xf2, /* 14 */
|
|
0x48, /* 15 */
|
|
0x0, /* 16 */
|
|
0x40, /* 17 */
|
|
0xf3, /* 18 */
|
|
0x0, /* 19 */
|
|
0x3f, /* 20 */
|
|
0x5 /* 21 */
|
|
};
|
|
|
|
void fxp_mii_initmedia __P((struct fxp_softc *));
|
|
int fxp_mii_mediachange __P((struct ifnet *));
|
|
void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
|
|
|
|
void fxp_80c24_initmedia __P((struct fxp_softc *));
|
|
int fxp_80c24_mediachange __P((struct ifnet *));
|
|
void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
|
|
|
|
inline void fxp_scb_wait __P((struct fxp_softc *));
|
|
|
|
void fxp_start __P((struct ifnet *));
|
|
int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
int fxp_init __P((struct fxp_softc *));
|
|
void fxp_rxdrain __P((struct fxp_softc *));
|
|
void fxp_stop __P((struct fxp_softc *, int));
|
|
void fxp_watchdog __P((struct ifnet *));
|
|
int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
|
|
int fxp_mdi_read __P((struct device *, int, int));
|
|
void fxp_statchg __P((struct device *));
|
|
void fxp_mdi_write __P((struct device *, int, int, int));
|
|
void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
|
|
void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
|
|
void fxp_tick __P((void *));
|
|
void fxp_mc_setup __P((struct fxp_softc *));
|
|
|
|
void fxp_shutdown __P((void *));
|
|
|
|
int fxp_copy_small = 0;
|
|
|
|
struct fxp_phytype {
|
|
int fp_phy; /* type of PHY, -1 for MII at the end. */
|
|
void (*fp_init) __P((struct fxp_softc *));
|
|
} fxp_phytype_table[] = {
|
|
{ FXP_PHY_80C24, fxp_80c24_initmedia },
|
|
{ -1, fxp_mii_initmedia },
|
|
};
|
|
|
|
/*
|
|
* Set initial transmit threshold at 64 (512 bytes). This is
|
|
* increased by 64 (512 bytes) at a time, to maximum of 192
|
|
* (1536 bytes), if an underrun occurs.
|
|
*/
|
|
static int tx_threshold = 64;
|
|
|
|
/*
|
|
* Wait for the previous command to be accepted (but not necessarily
|
|
* completed).
|
|
*/
|
|
inline void
|
|
fxp_scb_wait(sc)
|
|
struct fxp_softc *sc;
|
|
{
|
|
int i = 10000;
|
|
|
|
while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
|
|
delay(2);
|
|
if (i == 0)
|
|
printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
|
|
}
|
|
|
|
/*
|
|
* Finish attaching an i82557 interface. Called by bus-specific front-end.
|
|
*/
|
|
void
|
|
fxp_attach(sc)
|
|
struct fxp_softc *sc;
|
|
{
|
|
u_int8_t enaddr[6];
|
|
struct ifnet *ifp;
|
|
bus_dma_segment_t seg;
|
|
int rseg, i, error;
|
|
struct fxp_phytype *fp;
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
|
|
0)) != 0) {
|
|
printf("%s: unable to allocate control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
|
|
sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
|
|
BUS_DMA_COHERENT)) != 0) {
|
|
printf("%s: unable to map control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_1;
|
|
}
|
|
bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(struct fxp_control_data), 1,
|
|
sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
|
|
printf("%s: unable to create control data DMA map, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
|
|
sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
|
|
0)) != 0) {
|
|
printf("%s: can't load control data DMA map, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail_3;
|
|
}
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < FXP_NTXCB; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
FXP_NTXSEG, MCLBYTES, 0, 0,
|
|
&FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
|
|
printf("%s: unable to create tx DMA map %d, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < FXP_NRFABUFS; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
|
|
printf("%s: unable to create rx DMA map %d, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, i, error);
|
|
goto fail_5;
|
|
}
|
|
}
|
|
|
|
/* Initialize MAC address and media structures. */
|
|
fxp_get_info(sc, enaddr);
|
|
|
|
printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
|
|
ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/*
|
|
* Get info about our media interface, and initialize it. Note
|
|
* the table terminates itself with a phy of -1, indicating
|
|
* that we're using MII.
|
|
*/
|
|
for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
|
|
if (fp->fp_phy == sc->phy_primary_device)
|
|
break;
|
|
(*fp->fp_init)(sc);
|
|
|
|
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = fxp_ioctl;
|
|
ifp->if_start = fxp_start;
|
|
ifp->if_watchdog = fxp_watchdog;
|
|
|
|
/*
|
|
* Attach the interface.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, enaddr);
|
|
#if NBPFILTER > 0
|
|
bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
|
|
sizeof(struct ether_header));
|
|
#endif
|
|
#if NRND > 0
|
|
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
|
|
RND_TYPE_NET, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Add shutdown hook so that DMA is disabled prior to reboot. Not
|
|
* doing do could allow DMA to corrupt kernel memory during the
|
|
* reboot before the driver initializes.
|
|
*/
|
|
sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
|
|
if (sc->sc_sdhook == NULL)
|
|
printf("%s: WARNING: unable to establish shutdown hook\n",
|
|
sc->sc_dev.dv_xname);
|
|
return;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall though.
|
|
*/
|
|
fail_5:
|
|
for (i = 0; i < FXP_NRFABUFS; i++) {
|
|
if (sc->sc_rxmaps[i] != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < FXP_NTXCB; i++) {
|
|
if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
FXP_DSTX(sc, i)->txs_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
|
|
sizeof(struct fxp_control_data));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
|
|
fail_0:
|
|
return;
|
|
}
|
|
|
|
void
|
|
fxp_mii_initmedia(sc)
|
|
struct fxp_softc *sc;
|
|
{
|
|
|
|
sc->sc_flags |= FXPF_MII;
|
|
|
|
sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
|
|
sc->sc_mii.mii_readreg = fxp_mdi_read;
|
|
sc->sc_mii.mii_writereg = fxp_mdi_write;
|
|
sc->sc_mii.mii_statchg = fxp_statchg;
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
|
|
fxp_mii_mediastatus);
|
|
mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
}
|
|
|
|
void
|
|
fxp_80c24_initmedia(sc)
|
|
struct fxp_softc *sc;
|
|
{
|
|
|
|
/*
|
|
* The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
|
|
* doesn't have a programming interface of any sort. The
|
|
* media is sensed automatically based on how the link partner
|
|
* is configured. This is, in essence, manual configuration.
|
|
*/
|
|
printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
|
|
sc->sc_dev.dv_xname);
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
|
|
fxp_80c24_mediastatus);
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
|
|
}
|
|
|
|
/*
|
|
* Device shutdown routine. Called at system shutdown after sync. The
|
|
* main purpose of this routine is to shut off receiver DMA so that
|
|
* kernel memory doesn't get clobbered during warmboot.
|
|
*/
|
|
void
|
|
fxp_shutdown(arg)
|
|
void *arg;
|
|
{
|
|
struct fxp_softc *sc = arg;
|
|
|
|
fxp_stop(sc, 1);
|
|
}
|
|
|
|
/*
|
|
* Initialize the interface media.
|
|
*/
|
|
void
|
|
fxp_get_info(sc, enaddr)
|
|
struct fxp_softc *sc;
|
|
u_int8_t *enaddr;
|
|
{
|
|
u_int16_t data, myea[3];
|
|
|
|
/*
|
|
* Reset to a stable state.
|
|
*/
|
|
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
|
|
DELAY(10);
|
|
|
|
/*
|
|
* Get info about the primary PHY
|
|
*/
|
|
fxp_read_eeprom(sc, &data, 6, 1);
|
|
sc->phy_primary_addr = data & 0xff;
|
|
sc->phy_primary_device = (data >> 8) & 0x3f;
|
|
sc->phy_10Mbps_only = data >> 15;
|
|
|
|
/*
|
|
* Read MAC address.
|
|
*/
|
|
fxp_read_eeprom(sc, myea, 0, 3);
|
|
bcopy(myea, enaddr, ETHER_ADDR_LEN);
|
|
}
|
|
|
|
/*
|
|
* Read from the serial EEPROM. Basically, you manually shift in
|
|
* the read opcode (one bit at a time) and then shift in the address,
|
|
* and then you shift out the data (all of this one bit at a time).
|
|
* The word size is 16 bits, so you have to provide the address for
|
|
* every 16 bits of data.
|
|
*/
|
|
void
|
|
fxp_read_eeprom(sc, data, offset, words)
|
|
struct fxp_softc *sc;
|
|
u_int16_t *data;
|
|
int offset;
|
|
int words;
|
|
{
|
|
u_int16_t reg;
|
|
int i, x;
|
|
|
|
for (i = 0; i < words; i++) {
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
/*
|
|
* Shift in read opcode.
|
|
*/
|
|
for (x = 3; x > 0; x--) {
|
|
if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
|
|
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
|
|
} else {
|
|
reg = FXP_EEPROM_EECS;
|
|
}
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
|
|
reg | FXP_EEPROM_EESK);
|
|
DELAY(1);
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
DELAY(1);
|
|
}
|
|
/*
|
|
* Shift in address.
|
|
*/
|
|
for (x = 6; x > 0; x--) {
|
|
if ((i + offset) & (1 << (x - 1))) {
|
|
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
|
|
} else {
|
|
reg = FXP_EEPROM_EECS;
|
|
}
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
|
|
reg | FXP_EEPROM_EESK);
|
|
DELAY(1);
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
DELAY(1);
|
|
}
|
|
reg = FXP_EEPROM_EECS;
|
|
data[i] = 0;
|
|
/*
|
|
* Shift out data.
|
|
*/
|
|
for (x = 16; x > 0; x--) {
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
|
|
reg | FXP_EEPROM_EESK);
|
|
DELAY(1);
|
|
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
|
|
FXP_EEPROM_EEDO)
|
|
data[i] |= (1 << (x - 1));
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
DELAY(1);
|
|
}
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
|
|
DELAY(1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start packet transmission on the interface.
|
|
*/
|
|
void
|
|
fxp_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0, *m;
|
|
struct fxp_cb_tx *txd;
|
|
struct fxp_txsoft *txs;
|
|
struct fxp_tbdlist *tbd;
|
|
bus_dmamap_t dmamap;
|
|
int error, lasttx, nexttx, opending, seg;
|
|
|
|
/*
|
|
* If we want a re-init, bail out now.
|
|
*/
|
|
if (sc->sc_flags & FXPF_WANTINIT) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
return;
|
|
}
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
/*
|
|
* Remember the previous txpending and the current lasttx.
|
|
*/
|
|
opending = sc->sc_txpending;
|
|
lasttx = sc->sc_txlast;
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
while (sc->sc_txpending < FXP_NTXCB) {
|
|
/*
|
|
* Grab a packet off the queue.
|
|
*/
|
|
IF_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Get the next available transmit descriptor.
|
|
*/
|
|
nexttx = FXP_NEXTTX(sc->sc_txlast);
|
|
txd = FXP_CDTX(sc, nexttx);
|
|
tbd = FXP_CDTBD(sc, nexttx);
|
|
txs = FXP_DSTX(sc, nexttx);
|
|
dmamap = txs->txs_dmamap;
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the allotted number of frags, or we were
|
|
* short on resources. In this case, we'll copy and try
|
|
* again.
|
|
*/
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_NOWAIT) != 0) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
printf("%s: unable to allocate Tx mbuf\n",
|
|
sc->sc_dev.dv_xname);
|
|
IF_PREPEND(&ifp->if_snd, m0);
|
|
break;
|
|
}
|
|
if (m0->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
printf("%s: unable to allocate Tx "
|
|
"cluster\n", sc->sc_dev.dv_xname);
|
|
m_freem(m);
|
|
IF_PREPEND(&ifp->if_snd, m0);
|
|
break;
|
|
}
|
|
}
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
|
|
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
|
|
m_freem(m0);
|
|
m0 = m;
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
|
|
m0, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: unable to load Tx buffer, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, error);
|
|
IF_PREPEND(&ifp->if_snd, m0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Initialize the fraglist. */
|
|
for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
|
|
tbd->tbd_d[seg].tb_addr =
|
|
dmamap->dm_segs[seg].ds_addr;
|
|
tbd->tbd_d[seg].tb_size =
|
|
dmamap->dm_segs[seg].ds_len;
|
|
}
|
|
|
|
FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Store a pointer to the packet so we can free it later.
|
|
*/
|
|
txs->txs_mbuf = m0;
|
|
|
|
/*
|
|
* Initialize the transmit descriptor.
|
|
*/
|
|
txd->cb_status = 0;
|
|
txd->cb_command =
|
|
FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF;
|
|
txd->tx_threshold = tx_threshold;
|
|
txd->tbd_number = dmamap->dm_nsegs;
|
|
|
|
FXP_CDTXSYNC(sc, nexttx,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->sc_txpending++;
|
|
sc->sc_txlast = nexttx;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass packet to bpf if there is a listener.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m0);
|
|
#endif
|
|
}
|
|
|
|
if (sc->sc_txpending == FXP_NTXCB) {
|
|
/* No more slots; notify upper layer. */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
}
|
|
|
|
if (sc->sc_txpending != opending) {
|
|
/*
|
|
* We enqueued packets. If the transmitter was idle,
|
|
* reset the txdirty pointer.
|
|
*/
|
|
if (opending == 0)
|
|
sc->sc_txdirty = FXP_NEXTTX(lasttx);
|
|
|
|
/*
|
|
* Cause the chip to interrupt and suspend command
|
|
* processing once the last packet we've enqueued
|
|
* has been transmitted.
|
|
*/
|
|
FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
|
|
FXP_CB_COMMAND_I | FXP_CB_COMMAND_S;
|
|
FXP_CDTXSYNC(sc, sc->sc_txlast,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* The entire packet chain is set up. Clear the suspend bit
|
|
* on the command prior to the first packet we set up.
|
|
*/
|
|
FXP_CDTXSYNC(sc, lasttx,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
FXP_CDTX(sc, lasttx)->cb_command &= ~FXP_CB_COMMAND_S;
|
|
FXP_CDTXSYNC(sc, lasttx,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Issue a Resume command in case the chip was suspended.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
|
|
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process interface interrupts.
|
|
*/
|
|
int
|
|
fxp_intr(arg)
|
|
void *arg;
|
|
{
|
|
struct fxp_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct fxp_cb_tx *txd;
|
|
struct fxp_txsoft *txs;
|
|
struct mbuf *m, *m0;
|
|
bus_dmamap_t rxmap;
|
|
struct fxp_rfa *rfa;
|
|
struct ether_header *eh;
|
|
int i, claimed = 0;
|
|
u_int16_t len;
|
|
u_int8_t statack;
|
|
|
|
while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
|
|
claimed = 1;
|
|
|
|
/*
|
|
* First ACK all the interrupts in this pass.
|
|
*/
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
|
|
|
|
/*
|
|
* Process receiver interrupts. If a no-resource (RNR)
|
|
* condition exists, get whatever packets we can and
|
|
* re-start the receiver.
|
|
*/
|
|
if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
|
|
rcvloop:
|
|
m = sc->sc_rxq.ifq_head;
|
|
rfa = FXP_MTORFA(m);
|
|
rxmap = M_GETCTX(m, bus_dmamap_t);
|
|
|
|
FXP_RFASYNC(sc, m,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
if ((rfa->rfa_status & FXP_RFA_STATUS_C) == 0) {
|
|
/*
|
|
* We have processed all of the
|
|
* receive buffers.
|
|
*/
|
|
goto do_transmit;
|
|
}
|
|
|
|
IF_DEQUEUE(&sc->sc_rxq, m);
|
|
|
|
FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
|
|
|
|
len = rfa->actual_size & (m->m_ext.ext_size - 1);
|
|
|
|
if (len < sizeof(struct ether_header)) {
|
|
/*
|
|
* Runt packet; drop it now.
|
|
*/
|
|
FXP_INIT_RFABUF(sc, m);
|
|
goto rcvloop;
|
|
}
|
|
|
|
/*
|
|
* If the packet is small enough to fit in a
|
|
* single header mbuf, allocate one and copy
|
|
* the data into it. This greatly reduces
|
|
* memory consumption when we receive lots
|
|
* of small packets.
|
|
*
|
|
* Otherwise, we add a new buffer to the receive
|
|
* chain. If this fails, we drop the packet and
|
|
* recycle the old buffer.
|
|
*/
|
|
if (fxp_copy_small != 0 && len <= MHLEN) {
|
|
MGETHDR(m0, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
goto dropit;
|
|
memcpy(mtod(m0, caddr_t),
|
|
mtod(m, caddr_t), len);
|
|
FXP_INIT_RFABUF(sc, m);
|
|
m = m0;
|
|
} else {
|
|
if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
|
|
dropit:
|
|
ifp->if_ierrors++;
|
|
FXP_INIT_RFABUF(sc, m);
|
|
goto rcvloop;
|
|
}
|
|
}
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
eh = mtod(m, struct ether_header *);
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass this up to any BPF listeners, but only
|
|
* pass it up the stack it its for us.
|
|
*/
|
|
if (ifp->if_bpf) {
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0 &&
|
|
(rfa->rfa_status &
|
|
FXP_RFA_STATUS_IAMATCH) != 0 &&
|
|
(eh->ether_dhost[0] & 1) == 0) {
|
|
m_freem(m);
|
|
goto rcvloop;
|
|
}
|
|
}
|
|
#endif /* NBPFILTER > 0 */
|
|
|
|
/* Pass it on. */
|
|
(*ifp->if_input)(ifp, m);
|
|
goto rcvloop;
|
|
}
|
|
|
|
do_transmit:
|
|
if (statack & FXP_SCB_STATACK_RNR) {
|
|
rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
|
|
rxmap->dm_segs[0].ds_addr +
|
|
RFA_ALIGNMENT_FUDGE);
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
|
|
FXP_SCB_COMMAND_RU_START);
|
|
}
|
|
|
|
/*
|
|
* Free any finished transmit mbuf chains.
|
|
*/
|
|
if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
for (i = sc->sc_txdirty; sc->sc_txpending != 0;
|
|
i = FXP_NEXTTX(i), sc->sc_txpending--) {
|
|
txd = FXP_CDTX(sc, i);
|
|
txs = FXP_DSTX(sc, i);
|
|
|
|
FXP_CDTXSYNC(sc, i,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
if ((txd->cb_status & FXP_CB_STATUS_C) == 0)
|
|
break;
|
|
|
|
FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
|
|
0, txs->txs_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
|
|
/* Update the dirty transmit buffer pointer. */
|
|
sc->sc_txdirty = i;
|
|
|
|
/*
|
|
* Cancel the watchdog timer if there are no pending
|
|
* transmissions.
|
|
*/
|
|
if (sc->sc_txpending == 0) {
|
|
ifp->if_timer = 0;
|
|
|
|
/*
|
|
* If we want a re-init, do that now.
|
|
*/
|
|
if (sc->sc_flags & FXPF_WANTINIT)
|
|
(void) fxp_init(sc);
|
|
}
|
|
|
|
/*
|
|
* Try to get more packets going.
|
|
*/
|
|
fxp_start(ifp);
|
|
}
|
|
}
|
|
|
|
#if NRND > 0
|
|
if (claimed)
|
|
rnd_add_uint32(&sc->rnd_source, statack);
|
|
#endif
|
|
return (claimed);
|
|
}
|
|
|
|
/*
|
|
* Update packet in/out/collision statistics. The i82557 doesn't
|
|
* allow you to access these counters without doing a fairly
|
|
* expensive DMA to get _all_ of the statistics it maintains, so
|
|
* we do this operation here only once per second. The statistics
|
|
* counters in the kernel are updated from the previous dump-stats
|
|
* DMA and then a new dump-stats DMA is started. The on-chip
|
|
* counters are zeroed when the DMA completes. If we can't start
|
|
* the DMA immediately, we don't wait - we just prepare to read
|
|
* them again next time.
|
|
*/
|
|
void
|
|
fxp_tick(arg)
|
|
void *arg;
|
|
{
|
|
struct fxp_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
ifp->if_opackets += sp->tx_good;
|
|
ifp->if_collisions += sp->tx_total_collisions;
|
|
if (sp->rx_good) {
|
|
ifp->if_ipackets += sp->rx_good;
|
|
sc->sc_rxidle = 0;
|
|
} else {
|
|
sc->sc_rxidle++;
|
|
}
|
|
ifp->if_ierrors +=
|
|
sp->rx_crc_errors +
|
|
sp->rx_alignment_errors +
|
|
sp->rx_rnr_errors +
|
|
sp->rx_overrun_errors;
|
|
/*
|
|
* If any transmit underruns occured, bump up the transmit
|
|
* threshold by another 512 bytes (64 * 8).
|
|
*/
|
|
if (sp->tx_underruns) {
|
|
ifp->if_oerrors += sp->tx_underruns;
|
|
if (tx_threshold < 192)
|
|
tx_threshold += 64;
|
|
}
|
|
|
|
/*
|
|
* If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
|
|
* then assume the receiver has locked up and attempt to clear
|
|
* the condition by reprogramming the multicast filter (actually,
|
|
* resetting the interface). This is a work-around for a bug in
|
|
* the 82557 where the receiver locks up if it gets certain types
|
|
* of garbage in the syncronization bits prior to the packet header.
|
|
* This bug is supposed to only occur in 10Mbps mode, but has been
|
|
* seen to occur in 100Mbps mode as well (perhaps due to a 10/100
|
|
* speed transition).
|
|
*/
|
|
if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
|
|
(void) fxp_init(sc);
|
|
splx(s);
|
|
return;
|
|
}
|
|
/*
|
|
* If there is no pending command, start another stats
|
|
* dump. Otherwise punt for now.
|
|
*/
|
|
if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
|
|
/*
|
|
* Start another stats dump.
|
|
*/
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
|
|
FXP_SCB_COMMAND_CU_DUMPRESET);
|
|
} else {
|
|
/*
|
|
* A previous command is still waiting to be accepted.
|
|
* Just zero our copy of the stats and wait for the
|
|
* next timer event to update them.
|
|
*/
|
|
sp->tx_good = 0;
|
|
sp->tx_underruns = 0;
|
|
sp->tx_total_collisions = 0;
|
|
|
|
sp->rx_good = 0;
|
|
sp->rx_crc_errors = 0;
|
|
sp->rx_alignment_errors = 0;
|
|
sp->rx_rnr_errors = 0;
|
|
sp->rx_overrun_errors = 0;
|
|
}
|
|
|
|
if (sc->sc_flags & FXPF_MII) {
|
|
/* Tick the MII clock. */
|
|
mii_tick(&sc->sc_mii);
|
|
}
|
|
|
|
splx(s);
|
|
|
|
/*
|
|
* Schedule another timeout one second from now.
|
|
*/
|
|
timeout(fxp_tick, sc, hz);
|
|
}
|
|
|
|
/*
|
|
* Drain the receive queue.
|
|
*/
|
|
void
|
|
fxp_rxdrain(sc)
|
|
struct fxp_softc *sc;
|
|
{
|
|
bus_dmamap_t rxmap;
|
|
struct mbuf *m;
|
|
|
|
for (;;) {
|
|
IF_DEQUEUE(&sc->sc_rxq, m);
|
|
if (m == NULL)
|
|
break;
|
|
rxmap = M_GETCTX(m, bus_dmamap_t);
|
|
bus_dmamap_unload(sc->sc_dmat, rxmap);
|
|
FXP_RXMAP_PUT(sc, rxmap);
|
|
m_freem(m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop the interface. Cancels the statistics updater and resets
|
|
* the interface.
|
|
*/
|
|
void
|
|
fxp_stop(sc, drain)
|
|
struct fxp_softc *sc;
|
|
int drain;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct fxp_txsoft *txs;
|
|
int i;
|
|
|
|
/*
|
|
* Cancel stats updater.
|
|
*/
|
|
untimeout(fxp_tick, sc);
|
|
|
|
/*
|
|
* Issue software reset
|
|
*/
|
|
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
|
|
DELAY(10);
|
|
|
|
/*
|
|
* Release any xmit buffers.
|
|
*/
|
|
for (i = 0; i < FXP_NTXCB; i++) {
|
|
txs = FXP_DSTX(sc, i);
|
|
if (txs->txs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
}
|
|
sc->sc_txpending = 0;
|
|
|
|
if (drain) {
|
|
/*
|
|
* Release the receive buffers.
|
|
*/
|
|
fxp_rxdrain(sc);
|
|
}
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* Watchdog/transmission transmit timeout handler. Called when a
|
|
* transmission is started on the interface, but no interrupt is
|
|
* received before the timeout. This usually indicates that the
|
|
* card has wedged for some reason.
|
|
*/
|
|
void
|
|
fxp_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
|
|
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
|
|
ifp->if_oerrors++;
|
|
|
|
(void) fxp_init(sc);
|
|
}
|
|
|
|
/*
|
|
* Initialize the interface. Must be called at splnet().
|
|
*/
|
|
int
|
|
fxp_init(sc)
|
|
struct fxp_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct fxp_cb_config *cbp;
|
|
struct fxp_cb_ias *cb_ias;
|
|
struct fxp_cb_tx *txd;
|
|
bus_dmamap_t rxmap;
|
|
int i, prm, allm, error = 0;
|
|
|
|
/*
|
|
* Cancel any pending I/O
|
|
*/
|
|
fxp_stop(sc, 0);
|
|
|
|
sc->sc_flags = 0;
|
|
|
|
/*
|
|
* Initialize base of CBL and RFA memory. Loading with zero
|
|
* sets it up for regular linear addressing.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
|
|
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
|
|
|
|
/*
|
|
* Initialize the multicast filter. Do this now, since we might
|
|
* have to setup the config block differently.
|
|
*/
|
|
fxp_mc_setup(sc);
|
|
|
|
prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
|
|
allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
|
|
|
|
/*
|
|
* Initialize base of dump-stats buffer.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
|
|
sc->sc_cddma + FXP_CDSTATSOFF);
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
|
|
|
|
cbp = &sc->sc_control_data->fcd_configcb;
|
|
memset(cbp, 0, sizeof(struct fxp_cb_config));
|
|
|
|
/*
|
|
* This copy is kind of disgusting, but there are a bunch of must be
|
|
* zero and must be one bits in this structure and this is the easiest
|
|
* way to initialize them all to proper values.
|
|
*/
|
|
memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
|
|
|
|
cbp->cb_status = 0;
|
|
cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
|
|
cbp->link_addr = -1; /* (no) next command */
|
|
cbp->byte_count = 22; /* (22) bytes to config */
|
|
cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
|
|
cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
|
|
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
|
|
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
|
|
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
|
|
cbp->dma_bce = 0; /* (disable) dma max counters */
|
|
cbp->late_scb = 0; /* (don't) defer SCB update */
|
|
cbp->tno_int = 0; /* (disable) tx not okay interrupt */
|
|
cbp->ci_int = 1; /* interrupt on CU idle */
|
|
cbp->save_bf = prm; /* save bad frames */
|
|
cbp->disc_short_rx = !prm; /* discard short packets */
|
|
cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
|
|
cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
|
|
cbp->nsai = 1; /* (don't) disable source addr insert */
|
|
cbp->preamble_length = 2; /* (7 byte) preamble */
|
|
cbp->loopback = 0; /* (don't) loopback */
|
|
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
|
|
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
|
|
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
|
|
cbp->promiscuous = prm; /* promiscuous mode */
|
|
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
|
|
cbp->crscdt = 0; /* (CRS only) */
|
|
cbp->stripping = !prm; /* truncate rx packet to byte count */
|
|
cbp->padding = 1; /* (do) pad short tx packets */
|
|
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
|
|
cbp->force_fdx = 0; /* (don't) force full duplex */
|
|
cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
|
|
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
|
|
cbp->mc_all = allm; /* accept all multicasts */
|
|
|
|
FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Start the config command/DMA.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
|
|
/* ...and wait for it to complete. */
|
|
do {
|
|
FXP_CDCONFIGSYNC(sc,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
} while ((cbp->cb_status & FXP_CB_STATUS_C) == 0);
|
|
|
|
/*
|
|
* Initialize the station address.
|
|
*/
|
|
cb_ias = &sc->sc_control_data->fcd_iascb;
|
|
cb_ias->cb_status = 0;
|
|
cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
|
|
cb_ias->link_addr = -1;
|
|
memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
|
|
|
|
FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Start the IAS (Individual Address Setup) command/DMA.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
|
|
/* ...and wait for it to complete. */
|
|
do {
|
|
FXP_CDIASSYNC(sc,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
} while ((cb_ias->cb_status & FXP_CB_STATUS_C) == 0);
|
|
|
|
/*
|
|
* Initialize the transmit descriptor ring. txlast is initialized
|
|
* to the end of the list so that it will wrap around to the first
|
|
* descriptor when the first packet is transmitted.
|
|
*/
|
|
for (i = 0; i < FXP_NTXCB; i++) {
|
|
txd = FXP_CDTX(sc, i);
|
|
memset(txd, 0, sizeof(struct fxp_cb_tx));
|
|
txd->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
|
|
txd->tbd_array_addr = FXP_CDTBDADDR(sc, i);
|
|
txd->link_addr = FXP_CDTXADDR(sc, FXP_NEXTTX(i));
|
|
FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
sc->sc_txpending = 0;
|
|
sc->sc_txdirty = 0;
|
|
sc->sc_txlast = FXP_NTXCB - 1;
|
|
|
|
/*
|
|
* Initialize the receive buffer list.
|
|
*/
|
|
sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
|
|
while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
|
|
rxmap = FXP_RXMAP_GET(sc);
|
|
if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
|
|
printf("%s: unable to allocate or map rx "
|
|
"buffer %d, error = %d\n",
|
|
sc->sc_dev.dv_xname,
|
|
sc->sc_rxq.ifq_len, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
FXP_RXMAP_PUT(sc, rxmap);
|
|
fxp_rxdrain(sc);
|
|
goto out;
|
|
}
|
|
}
|
|
sc->sc_rxidle = 0;
|
|
|
|
/*
|
|
* Give the transmit ring to the chip. We do this by pointing
|
|
* the chip at the last descriptor (which is a NOP|SUSPEND), and
|
|
* issuing a start command. It will execute the NOP and then
|
|
* suspend, pointing at the first descriptor.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
|
|
|
|
/*
|
|
* Initialize receiver buffer area - RFA.
|
|
*/
|
|
rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
|
|
rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
|
|
|
|
if (sc->sc_flags & FXPF_MII) {
|
|
/*
|
|
* Set current media.
|
|
*/
|
|
mii_mediachg(&sc->sc_mii);
|
|
}
|
|
|
|
/*
|
|
* ...all done!
|
|
*/
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/*
|
|
* Start the one second timer.
|
|
*/
|
|
timeout(fxp_tick, sc, hz);
|
|
|
|
/*
|
|
* Attempt to start output on the interface.
|
|
*/
|
|
fxp_start(ifp);
|
|
|
|
out:
|
|
if (error)
|
|
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Change media according to request.
|
|
*/
|
|
int
|
|
fxp_mii_mediachange(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
|
|
if (ifp->if_flags & IFF_UP)
|
|
mii_mediachg(&sc->sc_mii);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Notify the world which media we're using.
|
|
*/
|
|
void
|
|
fxp_mii_mediastatus(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
|
|
mii_pollstat(&sc->sc_mii);
|
|
ifmr->ifm_status = sc->sc_mii.mii_media_status;
|
|
ifmr->ifm_active = sc->sc_mii.mii_media_active;
|
|
}
|
|
|
|
int
|
|
fxp_80c24_mediachange(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
|
|
/* Nothing to do here. */
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
fxp_80c24_mediastatus(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
|
|
/*
|
|
* Media is currently-selected media. We cannot determine
|
|
* the link status.
|
|
*/
|
|
ifmr->ifm_status = 0;
|
|
ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
|
|
}
|
|
|
|
/*
|
|
* Add a buffer to the end of the RFA buffer list.
|
|
* Return 0 if successful, error code on failure.
|
|
*
|
|
* The RFA struct is stuck at the beginning of mbuf cluster and the
|
|
* data pointer is fixed up to point just past it.
|
|
*/
|
|
int
|
|
fxp_add_rfabuf(sc, rxmap, unload)
|
|
struct fxp_softc *sc;
|
|
bus_dmamap_t rxmap;
|
|
int unload;
|
|
{
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (unload)
|
|
bus_dmamap_unload(sc->sc_dmat, rxmap);
|
|
|
|
M_SETCTX(m, rxmap);
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, rxmap,
|
|
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
printf("%s: can't load rx DMA map %d, error = %d\n",
|
|
sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
|
|
panic("fxp_add_rfabuf"); /* XXX */
|
|
}
|
|
|
|
FXP_INIT_RFABUF(sc, m);
|
|
|
|
return (0);
|
|
}
|
|
|
|
volatile int
|
|
fxp_mdi_read(self, phy, reg)
|
|
struct device *self;
|
|
int phy;
|
|
int reg;
|
|
{
|
|
struct fxp_softc *sc = (struct fxp_softc *)self;
|
|
int count = 10000;
|
|
int value;
|
|
|
|
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
|
|
(FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
|
|
|
|
while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
|
|
&& count--)
|
|
DELAY(10);
|
|
|
|
if (count <= 0)
|
|
printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
|
|
|
|
return (value & 0xffff);
|
|
}
|
|
|
|
void
|
|
fxp_statchg(self)
|
|
struct device *self;
|
|
{
|
|
|
|
/* XXX Update ifp->if_baudrate */
|
|
}
|
|
|
|
void
|
|
fxp_mdi_write(self, phy, reg, value)
|
|
struct device *self;
|
|
int phy;
|
|
int reg;
|
|
int value;
|
|
{
|
|
struct fxp_softc *sc = (struct fxp_softc *)self;
|
|
int count = 10000;
|
|
|
|
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
|
|
(FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
|
|
(value & 0xffff));
|
|
|
|
while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
|
|
count--)
|
|
DELAY(10);
|
|
|
|
if (count <= 0)
|
|
printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
|
|
}
|
|
|
|
int
|
|
fxp_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch (command) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if ((error = fxp_init(sc)) != 0)
|
|
break;
|
|
arp_ifinit(ifp, ifa);
|
|
break;
|
|
#endif /* INET */
|
|
#ifdef NS
|
|
case AF_NS:
|
|
{
|
|
struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
|
|
|
|
if (ns_nullhost(*ina))
|
|
ina->x_host = *(union ns_host *)
|
|
LLADDR(ifp->if_sadl);
|
|
else
|
|
bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
|
|
ifp->if_addrlen);
|
|
/* Set new address. */
|
|
error = fxp_init(sc);
|
|
break;
|
|
}
|
|
#endif /* NS */
|
|
default:
|
|
error = fxp_init(sc);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu > ETHERMTU)
|
|
error = EINVAL;
|
|
else
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
if ((ifp->if_flags & IFF_UP) == 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) != 0) {
|
|
/*
|
|
* If interface is marked down and it is running, then
|
|
* stop it.
|
|
*/
|
|
fxp_stop(sc, 1);
|
|
} else if ((ifp->if_flags & IFF_UP) != 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) == 0) {
|
|
/*
|
|
* If interface is marked up and it is stopped, then
|
|
* start it.
|
|
*/
|
|
error = fxp_init(sc);
|
|
} else if ((ifp->if_flags & IFF_UP) != 0) {
|
|
/*
|
|
* Reset the interface to pick up change in any other
|
|
* flags that affect the hardware state.
|
|
*/
|
|
error = fxp_init(sc);
|
|
}
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
error = (command == SIOCADDMULTI) ?
|
|
ether_addmulti(ifr, &sc->sc_ethercom) :
|
|
ether_delmulti(ifr, &sc->sc_ethercom);
|
|
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware
|
|
* filter accordingly.
|
|
*/
|
|
if (sc->sc_txpending) {
|
|
sc->sc_flags |= FXPF_WANTINIT;
|
|
error = 0;
|
|
} else
|
|
error = fxp_init(sc);
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Program the multicast filter.
|
|
*
|
|
* This function must be called at splnet().
|
|
*/
|
|
void
|
|
fxp_mc_setup(sc)
|
|
struct fxp_softc *sc;
|
|
{
|
|
struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
int nmcasts;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (sc->sc_txpending)
|
|
panic("fxp_mc_setup: pending transmissions");
|
|
#endif
|
|
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
|
|
/*
|
|
* Initialize multicast setup descriptor.
|
|
*/
|
|
nmcasts = 0;
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
/*
|
|
* Check for too many multicast addresses or if we're
|
|
* listening to a range. Either way, we simply have
|
|
* to accept all multicasts.
|
|
*/
|
|
if (nmcasts >= MAXMCADDR ||
|
|
memcmp(enm->enm_addrlo, enm->enm_addrhi,
|
|
ETHER_ADDR_LEN) != 0) {
|
|
/*
|
|
* Callers of this function must do the
|
|
* right thing with this. If we're called
|
|
* from outside fxp_init(), the caller must
|
|
* detect if the state if IFF_ALLMULTI changes.
|
|
* If it does, the caller must then call
|
|
* fxp_init(), since allmulti is handled by
|
|
* the config block.
|
|
*/
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
return;
|
|
}
|
|
memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
|
|
ETHER_ADDR_LEN);
|
|
nmcasts++;
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
mcsp->cb_status = 0;
|
|
mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
|
|
mcsp->link_addr = FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast));
|
|
mcsp->mc_cnt = nmcasts * ETHER_ADDR_LEN;
|
|
|
|
FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Wait until the command unit is not active. This should never
|
|
* happen since nothing is queued, but make sure anyway.
|
|
*/
|
|
while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
|
|
FXP_SCB_CUS_ACTIVE)
|
|
/* nothing */ ;
|
|
|
|
/*
|
|
* Start the multicast setup command/DMA.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
|
|
|
|
/* ...and wait for it to complete. */
|
|
do {
|
|
FXP_CDMCSSYNC(sc,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
} while ((mcsp->cb_status & FXP_CB_STATUS_C) == 0);
|
|
}
|