5499 lines
161 KiB
C
5499 lines
161 KiB
C
/* $NetBSD: if_lmc.c,v 1.62 2016/12/15 09:35:24 ozaki-r Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2002-2006 David Boggs. <boggs@boggs.palo-alto.ca.us>
|
|
* All rights reserved.
|
|
*
|
|
* BSD LICENSE:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* GNU GENERAL PUBLIC LICENSE:
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 59
|
|
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* This is an open-source Unix device driver for PCI-bus WAN interface cards.
|
|
* It sends and receives packets in HDLC frames over synchronous links.
|
|
* A generic PC plus Unix plus some LMC cards makes an OPEN router.
|
|
* This driver works with FreeBSD, NetBSD, OpenBSD, BSD/OS and Linux.
|
|
* It has been tested on i386 (32-bit little-end), PowerPC (32-bit
|
|
* big-end), Sparc (64-bit big-end), and Alpha (64-bit little-end)
|
|
* architectures.
|
|
*
|
|
* HISTORY AND AUTHORS:
|
|
*
|
|
* Ron Crane had the neat idea to use a Fast Ethernet chip as a PCI
|
|
* interface and add an Ethernet-to-HDLC gate array to make a WAN card.
|
|
* David Boggs designed the Ethernet-to-HDLC gate arrays and PC cards.
|
|
* We did this at our company, LAN Media Corporation (LMC).
|
|
* SBE Corp aquired LMC and continues to make the cards.
|
|
*
|
|
* Since the cards use Tulip Ethernet chips, we started with Matt Thomas'
|
|
* ubiquitous "de" driver. Michael Graff stripped out the Ethernet stuff
|
|
* and added HSSI stuff. Basil Gunn ported it to Solaris (lost) and
|
|
* Rob Braun ported it to Linux. Andrew Stanley-Jones added support
|
|
* for three more cards and wrote the first version of lmcconfig.
|
|
* During 2002-5 David Boggs rewrote it and now feels responsible for it.
|
|
*
|
|
* RESPONSIBLE INDIVIDUAL:
|
|
*
|
|
* Send bug reports and improvements to <boggs@boggs.palo-alto.ca.us>.
|
|
*/
|
|
|
|
# include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_lmc.c,v 1.62 2016/12/15 09:35:24 ozaki-r Exp $");
|
|
# include <sys/param.h> /* OS version */
|
|
# include "opt_inet.h" /* INET6, INET */
|
|
# include "opt_altq_enabled.h" /* ALTQ */
|
|
# define IOREF_CSR 1 /* 1=IO refs; 0=MEM refs */
|
|
# define IFNET 1
|
|
# define NETDEV 0
|
|
# define NAPI 0
|
|
# define SPPP 1
|
|
# define P2P 0
|
|
# define GEN_HDLC 0
|
|
# define SYNC_PPP 0
|
|
# define NETGRAPH 0
|
|
# define DEVICE_POLLING 0
|
|
#
|
|
# include <sys/systm.h>
|
|
# include <sys/kernel.h>
|
|
# include <sys/module.h>
|
|
# include <sys/mbuf.h>
|
|
# include <sys/socket.h>
|
|
# include <sys/sockio.h>
|
|
# include <sys/device.h>
|
|
# include <sys/reboot.h>
|
|
# include <sys/kauth.h>
|
|
# include <sys/proc.h>
|
|
# include <net/if.h>
|
|
# include <net/if_types.h>
|
|
# include <net/if_media.h>
|
|
# include <net/netisr.h>
|
|
# include <sys/bus.h>
|
|
# include <sys/intr.h>
|
|
# include <machine/lock.h>
|
|
# include <machine/types.h>
|
|
# include <dev/pci/pcivar.h>
|
|
# if INET || INET6
|
|
# include <netinet/in.h>
|
|
# include <netinet/in_var.h>
|
|
# endif
|
|
# if SPPP
|
|
# include <net/if_spppvar.h>
|
|
# endif
|
|
# include <net/bpf.h>
|
|
# if !defined(ALTQ)
|
|
# define ALTQ 0
|
|
# endif
|
|
/* and finally... */
|
|
# include "if_lmc.h"
|
|
|
|
|
|
|
|
|
|
/* The SROM is a generic 93C46 serial EEPROM (64 words by 16 bits). */
|
|
/* Data is set up before the RISING edge of CLK; CLK is parked low. */
|
|
static void /* context: process */
|
|
srom_shift_bits(softc_t *sc, u_int32_t data, u_int32_t len)
|
|
{
|
|
u_int32_t csr = READ_CSR(sc, TLP_SROM_MII);
|
|
for (; len>0; len--)
|
|
{ /* MSB first */
|
|
if (data & (1<<(len-1)))
|
|
csr |= TLP_SROM_DIN; /* DIN setup */
|
|
else
|
|
csr &= ~TLP_SROM_DIN; /* DIN setup */
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
csr |= TLP_SROM_CLK; /* CLK rising edge */
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
csr &= ~TLP_SROM_CLK; /* CLK falling edge */
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
}
|
|
}
|
|
|
|
/* Data is sampled on the RISING edge of CLK; CLK is parked low. */
|
|
static u_int16_t /* context: process */
|
|
srom_read(softc_t *sc, u_int8_t addr)
|
|
{
|
|
int i;
|
|
u_int32_t csr;
|
|
u_int16_t data;
|
|
|
|
/* Enable SROM access. */
|
|
csr = (TLP_SROM_SEL | TLP_SROM_RD | TLP_MII_MDOE);
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
/* CS rising edge prepares SROM for a new cycle. */
|
|
csr |= TLP_SROM_CS;
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */
|
|
srom_shift_bits(sc, 6, 4); /* issue read cmd */
|
|
srom_shift_bits(sc, addr, 6); /* issue address */
|
|
for (data=0, i=16; i>=0; i--) /* read ->17<- bits of data */
|
|
{ /* MSB first */
|
|
csr = READ_CSR(sc, TLP_SROM_MII); /* DOUT sampled */
|
|
data = (data<<1) | ((csr & TLP_SROM_DOUT) ? 1:0);
|
|
csr |= TLP_SROM_CLK; /* CLK rising edge */
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
csr &= ~TLP_SROM_CLK; /* CLK falling edge */
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
}
|
|
/* Disable SROM access. */
|
|
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE);
|
|
|
|
return data;
|
|
}
|
|
|
|
/* The SROM is formatted by the mfgr and should NOT be written! */
|
|
/* But lmcconfig can rewrite it in case it gets overwritten somehow. */
|
|
static void /* context: process */
|
|
srom_write(softc_t *sc, u_int8_t addr, u_int16_t data)
|
|
{
|
|
u_int32_t csr;
|
|
int i;
|
|
|
|
/* Enable SROM access. */
|
|
csr = (TLP_SROM_SEL | TLP_SROM_RD | TLP_MII_MDOE);
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
|
|
/* Issue write-enable command. */
|
|
csr |= TLP_SROM_CS;
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */
|
|
srom_shift_bits(sc, 4, 4); /* issue write enable cmd */
|
|
srom_shift_bits(sc, 63, 6); /* issue address */
|
|
csr &= ~TLP_SROM_CS;
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr); /* deassert CS */
|
|
|
|
/* Issue erase command. */
|
|
csr |= TLP_SROM_CS;
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */
|
|
srom_shift_bits(sc, 7, 4); /* issue erase cmd */
|
|
srom_shift_bits(sc, addr, 6); /* issue address */
|
|
csr &= ~TLP_SROM_CS;
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr); /* deassert CS */
|
|
|
|
/* Issue write command. */
|
|
csr |= TLP_SROM_CS;
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */
|
|
for (i=0; i<10; i++) /* 100 ms max wait */
|
|
if ((READ_CSR(sc, TLP_SROM_MII) & TLP_SROM_DOUT)==0) SLEEP(10000);
|
|
srom_shift_bits(sc, 5, 4); /* issue write cmd */
|
|
srom_shift_bits(sc, addr, 6); /* issue address */
|
|
srom_shift_bits(sc, data, 16); /* issue data */
|
|
csr &= ~TLP_SROM_CS;
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr); /* deassert CS */
|
|
|
|
/* Issue write-disable command. */
|
|
csr |= TLP_SROM_CS;
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr); /* assert CS */
|
|
for (i=0; i<10; i++) /* 100 ms max wait */
|
|
if ((READ_CSR(sc, TLP_SROM_MII) & TLP_SROM_DOUT)==0) SLEEP(10000);
|
|
srom_shift_bits(sc, 4, 4); /* issue write disable cmd */
|
|
srom_shift_bits(sc, 0, 6); /* issue address */
|
|
csr &= ~TLP_SROM_CS;
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr); /* deassert CS */
|
|
|
|
/* Disable SROM access. */
|
|
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE);
|
|
}
|
|
|
|
/* Not all cards have BIOS roms. */
|
|
/* The BIOS ROM is an AMD 29F010 1Mbit (128K by 8) EEPROM. */
|
|
static u_int8_t /* context: process */
|
|
bios_read(softc_t *sc, u_int32_t addr)
|
|
{
|
|
u_int32_t srom_mii;
|
|
|
|
/* Load the BIOS rom address register. */
|
|
WRITE_CSR(sc, TLP_BIOS_ROM, addr);
|
|
|
|
/* Enable the BIOS rom. */
|
|
srom_mii = TLP_BIOS_SEL | TLP_BIOS_RD | TLP_MII_MDOE;
|
|
WRITE_CSR(sc, TLP_SROM_MII, srom_mii);
|
|
|
|
/* Wait at least 20 PCI cycles. */
|
|
DELAY(20);
|
|
|
|
/* Read the BIOS rom data. */
|
|
srom_mii = READ_CSR(sc, TLP_SROM_MII);
|
|
|
|
/* Disable the BIOS rom. */
|
|
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE);
|
|
|
|
return (u_int8_t)srom_mii & 0xFF;
|
|
}
|
|
|
|
static void /* context: process */
|
|
bios_write_phys(softc_t *sc, u_int32_t addr, u_int8_t data)
|
|
{
|
|
u_int32_t srom_mii;
|
|
|
|
/* Load the BIOS rom address register. */
|
|
WRITE_CSR(sc, TLP_BIOS_ROM, addr);
|
|
|
|
/* Enable the BIOS rom. */
|
|
srom_mii = TLP_BIOS_SEL | TLP_BIOS_WR | TLP_MII_MDOE;
|
|
|
|
/* Load the data into the data register. */
|
|
srom_mii = (srom_mii & 0xFFFFFF00) | (data & 0xFF);
|
|
WRITE_CSR(sc, TLP_SROM_MII, srom_mii);
|
|
|
|
/* Wait at least 20 PCI cycles. */
|
|
DELAY(20);
|
|
|
|
/* Disable the BIOS rom. */
|
|
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE);
|
|
}
|
|
|
|
static void /* context: process */
|
|
bios_write(softc_t *sc, u_int32_t addr, u_int8_t data)
|
|
{
|
|
u_int8_t read_data;
|
|
|
|
/* this sequence enables writing */
|
|
bios_write_phys(sc, 0x5555, 0xAA);
|
|
bios_write_phys(sc, 0x2AAA, 0x55);
|
|
bios_write_phys(sc, 0x5555, 0xA0);
|
|
bios_write_phys(sc, addr, data);
|
|
|
|
/* Wait for the write operation to complete. */
|
|
for (;;) /* interruptible syscall */
|
|
{
|
|
for (;;)
|
|
{
|
|
read_data = bios_read(sc, addr);
|
|
if ((read_data & 0x80) == (data & 0x80)) break;
|
|
if (read_data & 0x20)
|
|
{ /* Data sheet says read it again. */
|
|
read_data = bios_read(sc, addr);
|
|
if ((read_data & 0x80) == (data & 0x80)) break;
|
|
if (sc->config.debug)
|
|
printf("%s: bios_write() failed; rom addr=0x%x\n",
|
|
NAME_UNIT, addr);
|
|
return;
|
|
}
|
|
}
|
|
read_data = bios_read(sc, addr);
|
|
if (read_data == data) break;
|
|
}
|
|
}
|
|
|
|
static void /* context: process */
|
|
bios_erase(softc_t *sc)
|
|
{
|
|
unsigned char read_data;
|
|
|
|
/* This sequence enables erasing: */
|
|
bios_write_phys(sc, 0x5555, 0xAA);
|
|
bios_write_phys(sc, 0x2AAA, 0x55);
|
|
bios_write_phys(sc, 0x5555, 0x80);
|
|
bios_write_phys(sc, 0x5555, 0xAA);
|
|
bios_write_phys(sc, 0x2AAA, 0x55);
|
|
bios_write_phys(sc, 0x5555, 0x10);
|
|
|
|
/* Wait for the erase operation to complete. */
|
|
for (;;) /* interruptible syscall */
|
|
{
|
|
for (;;)
|
|
{
|
|
read_data = bios_read(sc, 0);
|
|
if (read_data & 0x80) break;
|
|
if (read_data & 0x20)
|
|
{ /* Data sheet says read it again. */
|
|
read_data = bios_read(sc, 0);
|
|
if (read_data & 0x80) break;
|
|
if (sc->config.debug)
|
|
printf("%s: bios_erase() failed\n", NAME_UNIT);
|
|
return;
|
|
}
|
|
}
|
|
read_data = bios_read(sc, 0);
|
|
if (read_data == 0xFF) break;
|
|
}
|
|
}
|
|
|
|
/* MDIO is 3-stated between tranactions. */
|
|
/* MDIO is set up before the RISING edge of MDC; MDC is parked low. */
|
|
static void /* context: process */
|
|
mii_shift_bits(softc_t *sc, u_int32_t data, u_int32_t len)
|
|
{
|
|
u_int32_t csr = READ_CSR(sc, TLP_SROM_MII);
|
|
for (; len>0; len--)
|
|
{ /* MSB first */
|
|
if (data & (1<<(len-1)))
|
|
csr |= TLP_MII_MDOUT; /* MDOUT setup */
|
|
else
|
|
csr &= ~TLP_MII_MDOUT; /* MDOUT setup */
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
csr |= TLP_MII_MDC; /* MDC rising edge */
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
csr &= ~TLP_MII_MDC; /* MDC falling edge */
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
}
|
|
}
|
|
|
|
/* The specification for the MII is IEEE Std 802.3 clause 22. */
|
|
/* MDIO is sampled on the RISING edge of MDC; MDC is parked low. */
|
|
static u_int16_t /* context: process */
|
|
mii_read(softc_t *sc, u_int8_t regad)
|
|
{
|
|
int i;
|
|
u_int32_t csr;
|
|
u_int16_t data = 0;
|
|
|
|
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOUT);
|
|
|
|
mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */
|
|
mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */
|
|
mii_shift_bits(sc, 1, 2); /* start symbol */
|
|
mii_shift_bits(sc, 2, 2); /* read op */
|
|
mii_shift_bits(sc, 0, 5); /* phyad=0 */
|
|
mii_shift_bits(sc, regad, 5); /* regad */
|
|
csr = READ_CSR(sc, TLP_SROM_MII);
|
|
csr |= TLP_MII_MDOE;
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
mii_shift_bits(sc, 0, 2); /* turn-around */
|
|
for (i=15; i>=0; i--) /* data */
|
|
{ /* MSB first */
|
|
csr = READ_CSR(sc, TLP_SROM_MII); /* MDIN sampled */
|
|
data = (data<<1) | ((csr & TLP_MII_MDIN) ? 1:0);
|
|
csr |= TLP_MII_MDC; /* MDC rising edge */
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
csr &= ~TLP_MII_MDC; /* MDC falling edge */
|
|
WRITE_CSR(sc, TLP_SROM_MII, csr);
|
|
}
|
|
return data;
|
|
}
|
|
|
|
static void /* context: process */
|
|
mii_write(softc_t *sc, u_int8_t regad, u_int16_t data)
|
|
{
|
|
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOUT);
|
|
mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */
|
|
mii_shift_bits(sc, 0xFFFFF, 20); /* preamble */
|
|
mii_shift_bits(sc, 1, 2); /* start symbol */
|
|
mii_shift_bits(sc, 1, 2); /* write op */
|
|
mii_shift_bits(sc, 0, 5); /* phyad=0 */
|
|
mii_shift_bits(sc, regad, 5); /* regad */
|
|
mii_shift_bits(sc, 2, 2); /* turn-around */
|
|
mii_shift_bits(sc, data, 16); /* data */
|
|
WRITE_CSR(sc, TLP_SROM_MII, TLP_MII_MDOE);
|
|
if (regad == 16) sc->led_state = data; /* a small optimization */
|
|
}
|
|
|
|
static void
|
|
mii16_set_bits(softc_t *sc, u_int16_t bits)
|
|
{
|
|
u_int16_t mii16 = mii_read(sc, 16);
|
|
mii16 |= bits;
|
|
mii_write(sc, 16, mii16);
|
|
}
|
|
|
|
static void
|
|
mii16_clr_bits(softc_t *sc, u_int16_t bits)
|
|
{
|
|
u_int16_t mii16 = mii_read(sc, 16);
|
|
mii16 &= ~bits;
|
|
mii_write(sc, 16, mii16);
|
|
}
|
|
|
|
static void
|
|
mii17_set_bits(softc_t *sc, u_int16_t bits)
|
|
{
|
|
u_int16_t mii17 = mii_read(sc, 17);
|
|
mii17 |= bits;
|
|
mii_write(sc, 17, mii17);
|
|
}
|
|
|
|
static void
|
|
mii17_clr_bits(softc_t *sc, u_int16_t bits)
|
|
{
|
|
u_int16_t mii17 = mii_read(sc, 17);
|
|
mii17 &= ~bits;
|
|
mii_write(sc, 17, mii17);
|
|
}
|
|
|
|
/*
|
|
* Watchdog code is more readable if it refreshes LEDs
|
|
* once a second whether they need it or not.
|
|
* But MII refs take 150 uSecs each, so remember the last value
|
|
* written to MII16 and avoid LED writes that do nothing.
|
|
*/
|
|
|
|
static void
|
|
led_off(softc_t *sc, u_int16_t led)
|
|
{
|
|
if ((led & sc->led_state) == led) return;
|
|
mii16_set_bits(sc, led);
|
|
}
|
|
|
|
static void
|
|
led_on(softc_t *sc, u_int16_t led)
|
|
{
|
|
if ((led & sc->led_state) == 0) return;
|
|
mii16_clr_bits(sc, led);
|
|
}
|
|
|
|
static void
|
|
led_inv(softc_t *sc, u_int16_t led)
|
|
{
|
|
u_int16_t mii16 = mii_read(sc, 16);
|
|
mii16 ^= led;
|
|
mii_write(sc, 16, mii16);
|
|
}
|
|
|
|
/*
|
|
* T1 & T3 framer registers are accessed through MII regs 17 & 18.
|
|
* Write the address to MII reg 17 then R/W data through MII reg 18.
|
|
* The hardware interface is an Intel-style 8-bit muxed A/D bus.
|
|
*/
|
|
static void
|
|
framer_write(softc_t *sc, u_int16_t addr, u_int8_t data)
|
|
{
|
|
mii_write(sc, 17, addr);
|
|
mii_write(sc, 18, data);
|
|
}
|
|
|
|
static u_int8_t
|
|
framer_read(softc_t *sc, u_int16_t addr)
|
|
{
|
|
mii_write(sc, 17, addr);
|
|
return (u_int8_t)mii_read(sc, 18);
|
|
}
|
|
|
|
/* Tulip's hardware implementation of General Purpose IO
|
|
* (GPIO) pins makes life difficult for software.
|
|
* Bits 7-0 in the Tulip GPIO CSR are used for two purposes
|
|
* depending on the state of bit 8.
|
|
* If bit 8 is 0 then bits 7-0 are "data" bits.
|
|
* If bit 8 is 1 then bits 7-0 are "direction" bits.
|
|
* If a direction bit is one, the data bit is an output.
|
|
* The problem is that the direction bits are WRITE-ONLY.
|
|
* Software must remember the direction bits in a shadow copy.
|
|
* (sc->gpio_dir) in order to change some but not all of the bits.
|
|
* All accesses to the Tulip GPIO register use these five procedures.
|
|
*/
|
|
|
|
static void
|
|
gpio_make_input(softc_t *sc, u_int32_t bits)
|
|
{
|
|
sc->gpio_dir &= ~bits;
|
|
WRITE_CSR(sc, TLP_GPIO, TLP_GPIO_DIR | (sc->gpio_dir));
|
|
}
|
|
|
|
static void
|
|
gpio_make_output(softc_t *sc, u_int32_t bits)
|
|
{
|
|
sc->gpio_dir |= bits;
|
|
WRITE_CSR(sc, TLP_GPIO, TLP_GPIO_DIR | (sc->gpio_dir));
|
|
}
|
|
|
|
static u_int32_t
|
|
gpio_read(softc_t *sc)
|
|
{
|
|
return READ_CSR(sc, TLP_GPIO);
|
|
}
|
|
|
|
static void
|
|
gpio_set_bits(softc_t *sc, u_int32_t bits)
|
|
{
|
|
WRITE_CSR(sc, TLP_GPIO, (gpio_read(sc) | bits) & 0xFF);
|
|
}
|
|
|
|
static void
|
|
gpio_clr_bits(softc_t *sc, u_int32_t bits)
|
|
{
|
|
WRITE_CSR(sc, TLP_GPIO, (gpio_read(sc) & ~bits) & 0xFF);
|
|
}
|
|
|
|
/* Reset ALL of the flip-flops in the gate array to zero. */
|
|
/* This does NOT change the gate array programming. */
|
|
/* Called during initialization so it must not sleep. */
|
|
static void /* context: kernel (boot) or process (syscall) */
|
|
xilinx_reset(softc_t *sc)
|
|
{
|
|
/* Drive RESET low to force initialization. */
|
|
gpio_clr_bits(sc, GPIO_RESET);
|
|
gpio_make_output(sc, GPIO_RESET);
|
|
|
|
/* Hold RESET low for more than 10 uSec. */
|
|
DELAY(50);
|
|
|
|
/* Done with RESET; make it an input. */
|
|
gpio_make_input(sc, GPIO_RESET);
|
|
}
|
|
|
|
/* Load Xilinx gate array program from on-board rom. */
|
|
/* This changes the gate array programming. */
|
|
static void /* context: process */
|
|
xilinx_load_from_rom(softc_t *sc)
|
|
{
|
|
int i;
|
|
|
|
/* Drive MODE low to load from ROM rather than GPIO. */
|
|
gpio_clr_bits(sc, GPIO_MODE);
|
|
gpio_make_output(sc, GPIO_MODE);
|
|
|
|
/* Drive DP & RESET low to force configuration. */
|
|
gpio_clr_bits(sc, GPIO_RESET | GPIO_DP);
|
|
gpio_make_output(sc, GPIO_RESET | GPIO_DP);
|
|
|
|
/* Hold RESET & DP low for more than 10 uSec. */
|
|
DELAY(50);
|
|
|
|
/* Done with RESET & DP; make them inputs. */
|
|
gpio_make_input(sc, GPIO_DP | GPIO_RESET);
|
|
|
|
/* BUSY-WAIT for Xilinx chip to configure itself from ROM bits. */
|
|
for (i=0; i<100; i++) /* 1 sec max delay */
|
|
if ((gpio_read(sc) & GPIO_DP)==0) SLEEP(10000);
|
|
|
|
/* Done with MODE; make it an input. */
|
|
gpio_make_input(sc, GPIO_MODE);
|
|
}
|
|
|
|
/* Load the Xilinx gate array program from userland bits. */
|
|
/* This changes the gate array programming. */
|
|
static int /* context: process */
|
|
xilinx_load_from_file(softc_t *sc, char *addr, u_int32_t len)
|
|
{
|
|
char *data;
|
|
int i, j, error;
|
|
|
|
/* Get some pages to hold the Xilinx bits; biggest file is < 6 KB. */
|
|
if (len > 8192) return EFBIG; /* too big */
|
|
data = malloc(len, M_TEMP, M_WAITOK);
|
|
if (data == NULL) return ENOMEM;
|
|
|
|
/* Copy the Xilinx bits from userland. */
|
|
if ((error = copyin(addr, data, len)))
|
|
{
|
|
free(data, M_TEMP);
|
|
return error;
|
|
}
|
|
|
|
/* Drive MODE high to load from GPIO rather than ROM. */
|
|
gpio_set_bits(sc, GPIO_MODE);
|
|
gpio_make_output(sc, GPIO_MODE);
|
|
|
|
/* Drive DP & RESET low to force configuration. */
|
|
gpio_clr_bits(sc, GPIO_RESET | GPIO_DP);
|
|
gpio_make_output(sc, GPIO_RESET | GPIO_DP);
|
|
|
|
/* Hold RESET & DP low for more than 10 uSec. */
|
|
DELAY(50);
|
|
|
|
/* Done with RESET & DP; make them inputs. */
|
|
gpio_make_input(sc, GPIO_RESET | GPIO_DP);
|
|
|
|
/* BUSY-WAIT for Xilinx chip to clear its config memory. */
|
|
gpio_make_input(sc, GPIO_INIT);
|
|
for (i=0; i<10000; i++) /* 1 sec max delay */
|
|
if ((gpio_read(sc) & GPIO_INIT)==0) SLEEP(10000);
|
|
|
|
/* Configure CLK and DATA as outputs. */
|
|
gpio_set_bits(sc, GPIO_CLK); /* park CLK high */
|
|
gpio_make_output(sc, GPIO_CLK | GPIO_DATA);
|
|
|
|
/* Write bits to Xilinx; CLK is parked HIGH. */
|
|
/* DATA is set up before the RISING edge of CLK. */
|
|
for (i=0; i<len; i++)
|
|
for (j=0; j<8; j++)
|
|
{ /* LSB first */
|
|
if (data[i] & (1<<j))
|
|
gpio_set_bits(sc, GPIO_DATA); /* DATA setup */
|
|
else
|
|
gpio_clr_bits(sc, GPIO_DATA); /* DATA setup */
|
|
gpio_clr_bits(sc, GPIO_CLK); /* CLK falling edge */
|
|
gpio_set_bits(sc, GPIO_CLK); /* CLK rising edge */
|
|
}
|
|
|
|
/* Stop driving all Xilinx-related signals. */
|
|
/* Pullup and pulldown resistors take over. */
|
|
gpio_make_input(sc, GPIO_CLK | GPIO_DATA | GPIO_MODE);
|
|
|
|
free(data, M_TEMP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Write fragments of a command into the synthesized oscillator. */
|
|
/* DATA is set up before the RISING edge of CLK. CLK is parked low. */
|
|
static void
|
|
synth_shift_bits(softc_t *sc, u_int32_t data, u_int32_t len)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<len; i++)
|
|
{ /* LSB first */
|
|
if (data & (1<<i))
|
|
gpio_set_bits(sc, GPIO_DATA); /* DATA setup */
|
|
else
|
|
gpio_clr_bits(sc, GPIO_DATA); /* DATA setup */
|
|
gpio_set_bits(sc, GPIO_CLK); /* CLK rising edge */
|
|
gpio_clr_bits(sc, GPIO_CLK); /* CLK falling edge */
|
|
}
|
|
}
|
|
|
|
/* Write a command to the synthesized oscillator on SSI and HSSIc. */
|
|
static void /* context: process */
|
|
synth_write(softc_t *sc, struct synth *synth)
|
|
{
|
|
/* SSI cards have a programmable prescaler */
|
|
if (sc->status.card_type == CSID_LMC_SSI)
|
|
{
|
|
if (synth->prescale == 9) /* divide by 512 */
|
|
mii17_set_bits(sc, MII17_SSI_PRESCALE);
|
|
else /* divide by 32 */
|
|
mii17_clr_bits(sc, MII17_SSI_PRESCALE);
|
|
}
|
|
|
|
gpio_clr_bits(sc, GPIO_DATA | GPIO_CLK);
|
|
gpio_make_output(sc, GPIO_DATA | GPIO_CLK);
|
|
|
|
/* SYNTH is a low-true chip enable for the AV9110 chip. */
|
|
gpio_set_bits(sc, GPIO_SSI_SYNTH);
|
|
gpio_make_output(sc, GPIO_SSI_SYNTH);
|
|
gpio_clr_bits(sc, GPIO_SSI_SYNTH);
|
|
|
|
/* Serially shift the command into the AV9110 chip. */
|
|
synth_shift_bits(sc, synth->n, 7);
|
|
synth_shift_bits(sc, synth->m, 7);
|
|
synth_shift_bits(sc, synth->v, 1);
|
|
synth_shift_bits(sc, synth->x, 2);
|
|
synth_shift_bits(sc, synth->r, 2);
|
|
synth_shift_bits(sc, 0x16, 5); /* enable clk/x output */
|
|
|
|
/* SYNTH (chip enable) going high ends the command. */
|
|
gpio_set_bits(sc, GPIO_SSI_SYNTH);
|
|
gpio_make_input(sc, GPIO_SSI_SYNTH);
|
|
|
|
/* Stop driving serial-related signals; pullups/pulldowns take over. */
|
|
gpio_make_input(sc, GPIO_DATA | GPIO_CLK);
|
|
|
|
/* remember the new synthesizer parameters */
|
|
if (&sc->config.synth != synth) sc->config.synth = *synth;
|
|
}
|
|
|
|
/* Write a command to the DAC controlling the VCXO on some T3 adapters. */
|
|
/* The DAC is a TI-TLV5636: 12-bit resolution and a serial interface. */
|
|
/* DATA is set up before the FALLING edge of CLK. CLK is parked HIGH. */
|
|
static void /* context: process */
|
|
dac_write(softc_t *sc, u_int16_t data)
|
|
{
|
|
int i;
|
|
|
|
/* Prepare to use DATA and CLK. */
|
|
gpio_set_bits(sc, GPIO_DATA | GPIO_CLK);
|
|
gpio_make_output(sc, GPIO_DATA | GPIO_CLK);
|
|
|
|
/* High-to-low transition prepares DAC for new value. */
|
|
gpio_set_bits(sc, GPIO_T3_DAC);
|
|
gpio_make_output(sc, GPIO_T3_DAC);
|
|
gpio_clr_bits(sc, GPIO_T3_DAC);
|
|
|
|
/* Serially shift command bits into DAC. */
|
|
for (i=0; i<16; i++)
|
|
{ /* MSB first */
|
|
if (data & (1<<(15-i)))
|
|
gpio_set_bits(sc, GPIO_DATA); /* DATA setup */
|
|
else
|
|
gpio_clr_bits(sc, GPIO_DATA); /* DATA setup */
|
|
gpio_clr_bits(sc, GPIO_CLK); /* CLK falling edge */
|
|
gpio_set_bits(sc, GPIO_CLK); /* CLK rising edge */
|
|
}
|
|
|
|
/* Done with DAC; make it an input; loads new value into DAC. */
|
|
gpio_set_bits(sc, GPIO_T3_DAC);
|
|
gpio_make_input(sc, GPIO_T3_DAC);
|
|
|
|
/* Stop driving serial-related signals; pullups/pulldowns take over. */
|
|
gpio_make_input(sc, GPIO_DATA | GPIO_CLK);
|
|
}
|
|
|
|
/* Begin HSSI card code */
|
|
|
|
static struct card hssi_card =
|
|
{
|
|
.ident = hssi_ident,
|
|
.watchdog = hssi_watchdog,
|
|
.ioctl = hssi_ioctl,
|
|
.attach = hssi_attach,
|
|
.detach = hssi_detach,
|
|
};
|
|
|
|
static void
|
|
hssi_ident(softc_t *sc)
|
|
{
|
|
printf(", EIA-613");
|
|
}
|
|
|
|
static void /* context: softirq */
|
|
hssi_watchdog(softc_t *sc)
|
|
{
|
|
u_int16_t mii16 = mii_read(sc, 16) & MII16_HSSI_MODEM;
|
|
|
|
sc->status.link_state = STATE_UP;
|
|
|
|
led_inv(sc, MII16_HSSI_LED_UL); /* Software is alive. */
|
|
led_on(sc, MII16_HSSI_LED_LL); /* always on (SSI cable) */
|
|
|
|
/* Check the transmit clock. */
|
|
if (sc->status.tx_speed == 0)
|
|
{
|
|
led_on(sc, MII16_HSSI_LED_UR);
|
|
sc->status.link_state = STATE_DOWN;
|
|
}
|
|
else
|
|
led_off(sc, MII16_HSSI_LED_UR);
|
|
|
|
/* Is the modem ready? */
|
|
if ((mii16 & MII16_HSSI_CA)==0)
|
|
{
|
|
led_off(sc, MII16_HSSI_LED_LR);
|
|
sc->status.link_state = STATE_DOWN;
|
|
}
|
|
else
|
|
led_on(sc, MII16_HSSI_LED_LR);
|
|
|
|
/* Print the modem control signals if they changed. */
|
|
if ((sc->config.debug) && (mii16 != sc->last_mii16))
|
|
{
|
|
const char *on = "ON ", *off = "OFF";
|
|
printf("%s: TA=%s CA=%s LA=%s LB=%s LC=%s TM=%s\n", NAME_UNIT,
|
|
(mii16 & MII16_HSSI_TA) ? on : off,
|
|
(mii16 & MII16_HSSI_CA) ? on : off,
|
|
(mii16 & MII16_HSSI_LA) ? on : off,
|
|
(mii16 & MII16_HSSI_LB) ? on : off,
|
|
(mii16 & MII16_HSSI_LC) ? on : off,
|
|
(mii16 & MII16_HSSI_TM) ? on : off);
|
|
}
|
|
|
|
/* SNMP one-second-report */
|
|
sc->status.snmp.hssi.sigs = mii16 & MII16_HSSI_MODEM;
|
|
|
|
/* Remember this state until next time. */
|
|
sc->last_mii16 = mii16;
|
|
|
|
/* If a loop back is in effect, link status is UP */
|
|
if (sc->config.loop_back != CFG_LOOP_NONE)
|
|
sc->status.link_state = STATE_UP;
|
|
}
|
|
|
|
static int /* context: process */
|
|
hssi_ioctl(softc_t *sc, struct ioctl *ioctl)
|
|
{
|
|
int error = 0;
|
|
|
|
if (ioctl->cmd == IOCTL_SNMP_SIGS)
|
|
{
|
|
u_int16_t mii16 = mii_read(sc, 16);
|
|
mii16 &= ~MII16_HSSI_MODEM;
|
|
mii16 |= (MII16_HSSI_MODEM & ioctl->data);
|
|
mii_write(sc, 16, mii16);
|
|
}
|
|
else if (ioctl->cmd == IOCTL_SET_STATUS)
|
|
{
|
|
if (ioctl->data)
|
|
mii16_set_bits(sc, MII16_HSSI_TA);
|
|
else
|
|
mii16_clr_bits(sc, MII16_HSSI_TA);
|
|
}
|
|
else
|
|
error = EINVAL;
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Must not sleep. */
|
|
static void
|
|
hssi_attach(softc_t *sc, struct config *config)
|
|
{
|
|
if (config == NULL) /* startup config */
|
|
{
|
|
sc->status.card_type = READ_PCI_CFG(sc, TLP_CSID);
|
|
sc->config.crc_len = CFG_CRC_16;
|
|
sc->config.loop_back = CFG_LOOP_NONE;
|
|
sc->config.tx_clk_src = CFG_CLKMUX_ST;
|
|
sc->config.dte_dce = CFG_DTE;
|
|
sc->config.synth.n = 52; /* 52.000 Mbs */
|
|
sc->config.synth.m = 5;
|
|
sc->config.synth.v = 0;
|
|
sc->config.synth.x = 0;
|
|
sc->config.synth.r = 0;
|
|
sc->config.synth.prescale = 2;
|
|
}
|
|
else if (config != &sc->config) /* change config */
|
|
{
|
|
u_int32_t *old_synth = (u_int32_t *)&sc->config.synth;
|
|
u_int32_t *new_synth = (u_int32_t *)&config->synth;
|
|
if ((sc->config.crc_len == config->crc_len) &&
|
|
(sc->config.loop_back == config->loop_back) &&
|
|
(sc->config.tx_clk_src == config->tx_clk_src) &&
|
|
(sc->config.dte_dce == config->dte_dce) &&
|
|
(*old_synth == *new_synth))
|
|
return; /* nothing changed */
|
|
sc->config.crc_len = config->crc_len;
|
|
sc->config.loop_back = config->loop_back;
|
|
sc->config.tx_clk_src = config->tx_clk_src;
|
|
sc->config.dte_dce = config->dte_dce;
|
|
*old_synth = *new_synth;
|
|
}
|
|
/* If (config == &sc->config) then the FPGA microcode
|
|
* was just initialized and the current config should
|
|
* be reloaded into the card.
|
|
*/
|
|
|
|
/* set CRC length */
|
|
if (sc->config.crc_len == CFG_CRC_32)
|
|
mii16_set_bits(sc, MII16_HSSI_CRC32);
|
|
else
|
|
mii16_clr_bits(sc, MII16_HSSI_CRC32);
|
|
|
|
/* Assert pin LA in HSSI conn: ask modem for local loop. */
|
|
if (sc->config.loop_back == CFG_LOOP_LL)
|
|
mii16_set_bits(sc, MII16_HSSI_LA);
|
|
else
|
|
mii16_clr_bits(sc, MII16_HSSI_LA);
|
|
|
|
/* Assert pin LB in HSSI conn: ask modem for remote loop. */
|
|
if (sc->config.loop_back == CFG_LOOP_RL)
|
|
mii16_set_bits(sc, MII16_HSSI_LB);
|
|
else
|
|
mii16_clr_bits(sc, MII16_HSSI_LB);
|
|
|
|
if (sc->status.card_type == CSID_LMC_HSSI)
|
|
{
|
|
/* set TXCLK src */
|
|
if (sc->config.tx_clk_src == CFG_CLKMUX_ST)
|
|
gpio_set_bits(sc, GPIO_HSSI_TXCLK);
|
|
else
|
|
gpio_clr_bits(sc, GPIO_HSSI_TXCLK);
|
|
gpio_make_output(sc, GPIO_HSSI_TXCLK);
|
|
}
|
|
else if (sc->status.card_type == CSID_LMC_HSSIc)
|
|
{ /* cPCI HSSI rev C has extra features */
|
|
/* Set TXCLK source. */
|
|
u_int16_t mii16 = mii_read(sc, 16);
|
|
mii16 &= ~MII16_HSSI_CLKMUX;
|
|
mii16 |= (sc->config.tx_clk_src&3)<<13;
|
|
mii_write(sc, 16, mii16);
|
|
|
|
/* cPCI HSSI implements loopback towards the net. */
|
|
if (sc->config.loop_back == CFG_LOOP_LINE)
|
|
mii16_set_bits(sc, MII16_HSSI_LOOP);
|
|
else
|
|
mii16_clr_bits(sc, MII16_HSSI_LOOP);
|
|
|
|
/* Set DTE/DCE mode. */
|
|
if (sc->config.dte_dce == CFG_DCE)
|
|
gpio_set_bits(sc, GPIO_HSSI_DCE);
|
|
else
|
|
gpio_clr_bits(sc, GPIO_HSSI_DCE);
|
|
gpio_make_output(sc, GPIO_HSSI_DCE);
|
|
|
|
/* Program the synthesized oscillator. */
|
|
synth_write(sc, &sc->config.synth);
|
|
}
|
|
}
|
|
|
|
static void
|
|
hssi_detach(softc_t *sc)
|
|
{
|
|
mii16_clr_bits(sc, MII16_HSSI_TA);
|
|
led_on(sc, MII16_LED_ALL);
|
|
}
|
|
|
|
/* End HSSI card code */
|
|
|
|
/* Begin DS3 card code */
|
|
|
|
static struct card t3_card =
|
|
{
|
|
.ident = t3_ident,
|
|
.watchdog = t3_watchdog,
|
|
.ioctl = t3_ioctl,
|
|
.attach = t3_attach,
|
|
.detach = t3_detach,
|
|
};
|
|
|
|
static void
|
|
t3_ident(softc_t *sc)
|
|
{
|
|
printf(", TXC03401 rev B");
|
|
}
|
|
|
|
static void /* context: softirq */
|
|
t3_watchdog(softc_t *sc)
|
|
{
|
|
u_int16_t CV;
|
|
u_int8_t CERR, PERR, MERR, FERR, FEBE;
|
|
u_int8_t ctl1, stat16, feac;
|
|
u_int16_t mii16;
|
|
|
|
sc->status.link_state = STATE_UP;
|
|
|
|
/* Read the alarm registers. */
|
|
ctl1 = framer_read(sc, T3CSR_CTL1);
|
|
stat16 = framer_read(sc, T3CSR_STAT16);
|
|
mii16 = mii_read(sc, 16);
|
|
|
|
/* Always ignore the RTLOC alarm bit. */
|
|
stat16 &= ~STAT16_RTLOC;
|
|
|
|
/* Software is alive. */
|
|
led_inv(sc, MII16_DS3_LED_GRN);
|
|
|
|
/* Receiving Alarm Indication Signal (AIS). */
|
|
if (stat16 & STAT16_RAIS) /* receiving ais */
|
|
led_on(sc, MII16_DS3_LED_BLU);
|
|
else if (ctl1 & CTL1_TXAIS) /* sending ais */
|
|
led_inv(sc, MII16_DS3_LED_BLU);
|
|
else
|
|
led_off(sc, MII16_DS3_LED_BLU);
|
|
|
|
/* Receiving Remote Alarm Indication (RAI). */
|
|
if (stat16 & STAT16_XERR) /* receiving rai */
|
|
led_on(sc, MII16_DS3_LED_YEL);
|
|
else if ((ctl1 & CTL1_XTX) == 0) /* sending rai */
|
|
led_inv(sc, MII16_DS3_LED_YEL);
|
|
else
|
|
led_off(sc, MII16_DS3_LED_YEL);
|
|
|
|
/* If certain status bits are set then the link is 'down'. */
|
|
/* The bad bits are: rxlos rxoof rxais rxidl xerr. */
|
|
if (stat16 & ~(STAT16_FEAC | STAT16_SEF))
|
|
sc->status.link_state = STATE_DOWN;
|
|
|
|
/* Declare local Red Alarm if the link is down. */
|
|
if (sc->status.link_state == STATE_DOWN)
|
|
led_on(sc, MII16_DS3_LED_RED);
|
|
else if (sc->loop_timer) /* loopback is active */
|
|
led_inv(sc, MII16_DS3_LED_RED);
|
|
else
|
|
led_off(sc, MII16_DS3_LED_RED);
|
|
|
|
/* Print latched error bits if they changed. */
|
|
if ((sc->config.debug) && ((stat16 & ~STAT16_FEAC) != sc->last_stat16))
|
|
{
|
|
const char *on = "ON ", *off = "OFF";
|
|
printf("%s: RLOS=%s ROOF=%s RAIS=%s RIDL=%s SEF=%s XERR=%s\n",
|
|
NAME_UNIT,
|
|
(stat16 & STAT16_RLOS) ? on : off,
|
|
(stat16 & STAT16_ROOF) ? on : off,
|
|
(stat16 & STAT16_RAIS) ? on : off,
|
|
(stat16 & STAT16_RIDL) ? on : off,
|
|
(stat16 & STAT16_SEF) ? on : off,
|
|
(stat16 & STAT16_XERR) ? on : off);
|
|
}
|
|
|
|
/* Check and print error counters if non-zero. */
|
|
CV = framer_read(sc, T3CSR_CVHI)<<8;
|
|
CV += framer_read(sc, T3CSR_CVLO);
|
|
PERR = framer_read(sc, T3CSR_PERR);
|
|
CERR = framer_read(sc, T3CSR_CERR);
|
|
FERR = framer_read(sc, T3CSR_FERR);
|
|
MERR = framer_read(sc, T3CSR_MERR);
|
|
FEBE = framer_read(sc, T3CSR_FEBE);
|
|
|
|
/* CV is invalid during LOS. */
|
|
if (stat16 & STAT16_RLOS) CV = 0;
|
|
/* CERR & FEBE are invalid in M13 mode */
|
|
if (sc->config.format == CFG_FORMAT_T3M13) CERR = FEBE = 0;
|
|
/* FEBE is invalid during AIS. */
|
|
if (stat16 & STAT16_RAIS) FEBE = 0;
|
|
if (sc->config.debug && (CV || PERR || CERR || FERR || MERR || FEBE))
|
|
printf("%s: CV=%u PERR=%u CERR=%u FERR=%u MERR=%u FEBE=%u\n",
|
|
NAME_UNIT, CV, PERR, CERR, FERR, MERR, FEBE);
|
|
|
|
/* Driver keeps crude link-level error counters (SNMP is better). */
|
|
sc->status.cntrs.lcv_errs += CV;
|
|
sc->status.cntrs.par_errs += PERR;
|
|
sc->status.cntrs.cpar_errs += CERR;
|
|
sc->status.cntrs.frm_errs += FERR;
|
|
sc->status.cntrs.mfrm_errs += MERR;
|
|
sc->status.cntrs.febe_errs += FEBE;
|
|
|
|
/* Check for FEAC messages (FEAC not defined in M13 mode). */
|
|
if (FORMAT_T3CPAR && (stat16 & STAT16_FEAC)) do
|
|
{
|
|
feac = framer_read(sc, T3CSR_FEAC_STK);
|
|
if ((feac & FEAC_STK_VALID)==0) break;
|
|
/* Ignore RxFEACs while a far end loopback has been requested. */
|
|
if (sc->status.snmp.t3.line & TLOOP_FAR_LINE) continue;
|
|
switch (feac & FEAC_STK_FEAC)
|
|
{
|
|
case T3BOP_LINE_UP: break;
|
|
case T3BOP_LINE_DOWN: break;
|
|
case T3BOP_LOOP_DS3:
|
|
{
|
|
if (sc->last_FEAC == T3BOP_LINE_DOWN)
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'line loopback deactivate' FEAC msg\n", NAME_UNIT);
|
|
mii16_clr_bits(sc, MII16_DS3_LNLBK);
|
|
sc->loop_timer = 0;
|
|
}
|
|
if (sc->last_FEAC == T3BOP_LINE_UP)
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'line loopback activate' FEAC msg\n", NAME_UNIT);
|
|
mii16_set_bits(sc, MII16_DS3_LNLBK);
|
|
sc->loop_timer = 300;
|
|
}
|
|
break;
|
|
}
|
|
case T3BOP_OOF:
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'far end LOF' FEAC msg\n", NAME_UNIT);
|
|
break;
|
|
}
|
|
case T3BOP_IDLE:
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'far end IDL' FEAC msg\n", NAME_UNIT);
|
|
break;
|
|
}
|
|
case T3BOP_AIS:
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'far end AIS' FEAC msg\n", NAME_UNIT);
|
|
break;
|
|
}
|
|
case T3BOP_LOS:
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'far end LOS' FEAC msg\n", NAME_UNIT);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'type 0x%02X' FEAC msg\n", NAME_UNIT, feac & FEAC_STK_FEAC);
|
|
break;
|
|
}
|
|
}
|
|
sc->last_FEAC = feac & FEAC_STK_FEAC;
|
|
} while (feac & FEAC_STK_MORE);
|
|
stat16 &= ~STAT16_FEAC;
|
|
|
|
/* Send Service-Affecting priority FEAC messages */
|
|
if (((sc->last_stat16 ^ stat16) & 0xF0) && (FORMAT_T3CPAR))
|
|
{
|
|
/* Transmit continuous FEACs */
|
|
framer_write(sc, T3CSR_CTL14,
|
|
framer_read(sc, T3CSR_CTL14) & ~CTL14_FEAC10);
|
|
if (stat16 & STAT16_RLOS)
|
|
framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_LOS);
|
|
else if (stat16 & STAT16_ROOF)
|
|
framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_OOF);
|
|
else if (stat16 & STAT16_RAIS)
|
|
framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_AIS);
|
|
else if (stat16 & STAT16_RIDL)
|
|
framer_write(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_IDLE);
|
|
else
|
|
framer_write(sc, T3CSR_TX_FEAC, CTL5_EMODE);
|
|
}
|
|
|
|
/* Start sending RAI, Remote Alarm Indication. */
|
|
if ((stat16 & STAT16_ROOF) && !(stat16 & STAT16_RLOS) &&
|
|
!(sc->last_stat16 & STAT16_ROOF))
|
|
framer_write(sc, T3CSR_CTL1, ctl1 &= ~CTL1_XTX);
|
|
/* Stop sending RAI, Remote Alarm Indication. */
|
|
else if (!(stat16 & STAT16_ROOF) && (sc->last_stat16 & STAT16_ROOF))
|
|
framer_write(sc, T3CSR_CTL1, ctl1 |= CTL1_XTX);
|
|
|
|
/* Start sending AIS, Alarm Indication Signal */
|
|
if ((stat16 & STAT16_RLOS) && !(sc->last_stat16 & STAT16_RLOS))
|
|
{
|
|
mii16_set_bits(sc, MII16_DS3_FRAME);
|
|
framer_write(sc, T3CSR_CTL1, ctl1 | CTL1_TXAIS);
|
|
}
|
|
/* Stop sending AIS, Alarm Indication Signal */
|
|
else if (!(stat16 & STAT16_RLOS) && (sc->last_stat16 & STAT16_RLOS))
|
|
{
|
|
mii16_clr_bits(sc, MII16_DS3_FRAME);
|
|
framer_write(sc, T3CSR_CTL1, ctl1 & ~CTL1_TXAIS);
|
|
}
|
|
|
|
/* Time out loopback requests. */
|
|
if (sc->loop_timer)
|
|
if (--sc->loop_timer == 0)
|
|
if (mii16 & MII16_DS3_LNLBK)
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Timeout: Loop Down after 300 seconds\n", NAME_UNIT);
|
|
mii16_clr_bits(sc, MII16_DS3_LNLBK); /* line loopback off */
|
|
}
|
|
|
|
/* SNMP error counters */
|
|
sc->status.snmp.t3.lcv = CV;
|
|
sc->status.snmp.t3.pcv = PERR;
|
|
sc->status.snmp.t3.ccv = CERR;
|
|
sc->status.snmp.t3.febe = FEBE;
|
|
|
|
/* SNMP Line Status */
|
|
sc->status.snmp.t3.line = 0;
|
|
if (!(ctl1 & CTL1_XTX)) sc->status.snmp.t3.line |= TLINE_TX_RAI;
|
|
if (stat16 & STAT16_XERR) sc->status.snmp.t3.line |= TLINE_RX_RAI;
|
|
if (ctl1 & CTL1_TXAIS) sc->status.snmp.t3.line |= TLINE_TX_AIS;
|
|
if (stat16 & STAT16_RAIS) sc->status.snmp.t3.line |= TLINE_RX_AIS;
|
|
if (stat16 & STAT16_ROOF) sc->status.snmp.t3.line |= TLINE_LOF;
|
|
if (stat16 & STAT16_RLOS) sc->status.snmp.t3.line |= TLINE_LOS;
|
|
if (stat16 & STAT16_SEF) sc->status.snmp.t3.line |= T3LINE_SEF;
|
|
|
|
/* SNMP Loopback Status */
|
|
sc->status.snmp.t3.loop &= ~TLOOP_FAR_LINE;
|
|
if (sc->config.loop_back == CFG_LOOP_TULIP)
|
|
sc->status.snmp.t3.loop |= TLOOP_NEAR_OTHER;
|
|
if (ctl1 & CTL1_3LOOP) sc->status.snmp.t3.loop |= TLOOP_NEAR_INWARD;
|
|
if (mii16 & MII16_DS3_TRLBK) sc->status.snmp.t3.loop |= TLOOP_NEAR_OTHER;
|
|
if (mii16 & MII16_DS3_LNLBK) sc->status.snmp.t3.loop |= TLOOP_NEAR_LINE;
|
|
/*if (ctl12 & CTL12_RTPLOOP) sc->status.snmp.t3.loop |= TLOOP_NEAR_PAYLOAD; */
|
|
|
|
/* Remember this state until next time. */
|
|
sc->last_stat16 = stat16;
|
|
|
|
/* If an INWARD loopback is in effect, link status is UP */
|
|
if (sc->config.loop_back != CFG_LOOP_NONE) /* XXX INWARD ONLY */
|
|
sc->status.link_state = STATE_UP;
|
|
}
|
|
|
|
static void /* context: process */
|
|
t3_send_dbl_feac(softc_t *sc, int feac1, int feac2)
|
|
{
|
|
u_int8_t tx_feac;
|
|
int i;
|
|
|
|
/* The FEAC transmitter could be sending a continuous */
|
|
/* FEAC msg when told to send a double FEAC message. */
|
|
/* So save the current state of the FEAC transmitter. */
|
|
tx_feac = framer_read(sc, T3CSR_TX_FEAC);
|
|
/* Load second FEAC code and stop FEAC transmitter. */
|
|
framer_write(sc, T3CSR_TX_FEAC, CTL5_EMODE + feac2);
|
|
/* FEAC transmitter sends 10 more FEACs and then stops. */
|
|
SLEEP(20000); /* sending one FEAC takes 1700 uSecs */
|
|
/* Load first FEAC code and start FEAC transmitter. */
|
|
framer_write(sc, T3CSR_DBL_FEAC, CTL13_DFEXEC + feac1);
|
|
/* Wait for double FEAC sequence to complete -- about 70 ms. */
|
|
for (i=0; i<10; i++) /* max delay 100 ms */
|
|
if (framer_read(sc, T3CSR_DBL_FEAC) & CTL13_DFEXEC) SLEEP(10000);
|
|
/* Flush received FEACS; do not respond to our own loop cmd! */
|
|
while (framer_read(sc, T3CSR_FEAC_STK) & FEAC_STK_VALID) DELAY(1);
|
|
/* Restore previous state of the FEAC transmitter. */
|
|
/* If it was sending a continous FEAC, it will resume. */
|
|
framer_write(sc, T3CSR_TX_FEAC, tx_feac);
|
|
}
|
|
|
|
static int /* context: process */
|
|
t3_ioctl(softc_t *sc, struct ioctl *ioctl)
|
|
{
|
|
int error = 0;
|
|
|
|
switch (ioctl->cmd)
|
|
{
|
|
case IOCTL_SNMP_SEND: /* set opstatus? */
|
|
{
|
|
if (sc->config.format != CFG_FORMAT_T3CPAR)
|
|
error = EINVAL;
|
|
else if (ioctl->data == TSEND_LINE)
|
|
{
|
|
sc->status.snmp.t3.loop |= TLOOP_FAR_LINE;
|
|
t3_send_dbl_feac(sc, T3BOP_LINE_UP, T3BOP_LOOP_DS3);
|
|
}
|
|
else if (ioctl->data == TSEND_RESET)
|
|
{
|
|
t3_send_dbl_feac(sc, T3BOP_LINE_DOWN, T3BOP_LOOP_DS3);
|
|
sc->status.snmp.t3.loop &= ~TLOOP_FAR_LINE;
|
|
}
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
case IOCTL_SNMP_LOOP: /* set opstatus = test? */
|
|
{
|
|
if (ioctl->data == CFG_LOOP_NONE)
|
|
{
|
|
mii16_clr_bits(sc, MII16_DS3_FRAME);
|
|
mii16_clr_bits(sc, MII16_DS3_TRLBK);
|
|
mii16_clr_bits(sc, MII16_DS3_LNLBK);
|
|
framer_write(sc, T3CSR_CTL1,
|
|
framer_read(sc, T3CSR_CTL1) & ~CTL1_3LOOP);
|
|
framer_write(sc, T3CSR_CTL12,
|
|
framer_read(sc, T3CSR_CTL12) & ~(CTL12_RTPLOOP | CTL12_RTPLLEN));
|
|
}
|
|
else if (ioctl->data == CFG_LOOP_LINE)
|
|
mii16_set_bits(sc, MII16_DS3_LNLBK);
|
|
else if (ioctl->data == CFG_LOOP_OTHER)
|
|
mii16_set_bits(sc, MII16_DS3_TRLBK);
|
|
else if (ioctl->data == CFG_LOOP_INWARD)
|
|
framer_write(sc, T3CSR_CTL1,
|
|
framer_read(sc, T3CSR_CTL1) | CTL1_3LOOP);
|
|
else if (ioctl->data == CFG_LOOP_DUAL)
|
|
{
|
|
mii16_set_bits(sc, MII16_DS3_LNLBK);
|
|
framer_write(sc, T3CSR_CTL1,
|
|
framer_read(sc, T3CSR_CTL1) | CTL1_3LOOP);
|
|
}
|
|
else if (ioctl->data == CFG_LOOP_PAYLOAD)
|
|
{
|
|
mii16_set_bits(sc, MII16_DS3_FRAME);
|
|
framer_write(sc, T3CSR_CTL12,
|
|
framer_read(sc, T3CSR_CTL12) | CTL12_RTPLOOP);
|
|
framer_write(sc, T3CSR_CTL12,
|
|
framer_read(sc, T3CSR_CTL12) | CTL12_RTPLLEN);
|
|
DELAY(25); /* at least two frames (22 uS) */
|
|
framer_write(sc, T3CSR_CTL12,
|
|
framer_read(sc, T3CSR_CTL12) & ~CTL12_RTPLLEN);
|
|
}
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
case IOCTL_SET_STATUS:
|
|
{
|
|
#if 0
|
|
if (ioctl->data)
|
|
framer_write(sc, T3CSR_CTL1,
|
|
framer_read(sc, T3CSR_CTL1) & ~CTL1_TXIDL);
|
|
else /* off */
|
|
framer_write(sc, T3CSR_CTL1,
|
|
framer_read(sc, T3CSR_CTL1) | CTL1_TXIDL);
|
|
#endif
|
|
break;
|
|
}
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Must not sleep. */
|
|
static void
|
|
t3_attach(softc_t *sc, struct config *config)
|
|
{
|
|
int i;
|
|
u_int8_t ctl1;
|
|
|
|
if (config == NULL) /* startup config */
|
|
{
|
|
sc->status.card_type = CSID_LMC_T3;
|
|
sc->config.crc_len = CFG_CRC_16;
|
|
sc->config.loop_back = CFG_LOOP_NONE;
|
|
sc->config.format = CFG_FORMAT_T3CPAR;
|
|
sc->config.cable_len = 10; /* meters */
|
|
sc->config.scrambler = CFG_SCRAM_DL_KEN;
|
|
sc->config.tx_clk_src = CFG_CLKMUX_INT;
|
|
|
|
/* Center the VCXO -- get within 20 PPM of 44736000. */
|
|
dac_write(sc, 0x9002); /* set Vref = 2.048 volts */
|
|
dac_write(sc, 2048); /* range is 0..4095 */
|
|
}
|
|
else if (config != &sc->config) /* change config */
|
|
{
|
|
if ((sc->config.crc_len == config->crc_len) &&
|
|
(sc->config.loop_back == config->loop_back) &&
|
|
(sc->config.format == config->format) &&
|
|
(sc->config.cable_len == config->cable_len) &&
|
|
(sc->config.scrambler == config->scrambler) &&
|
|
(sc->config.tx_clk_src == config->tx_clk_src))
|
|
return; /* nothing changed */
|
|
sc->config.crc_len = config->crc_len;
|
|
sc->config.loop_back = config->loop_back;
|
|
sc->config.format = config->format;
|
|
sc->config.cable_len = config->cable_len;
|
|
sc->config.scrambler = config->scrambler;
|
|
sc->config.tx_clk_src = config->tx_clk_src;
|
|
}
|
|
|
|
/* Set cable length. */
|
|
if (sc->config.cable_len > 30)
|
|
mii16_clr_bits(sc, MII16_DS3_ZERO);
|
|
else
|
|
mii16_set_bits(sc, MII16_DS3_ZERO);
|
|
|
|
/* Set payload scrambler polynomial. */
|
|
if (sc->config.scrambler == CFG_SCRAM_LARS)
|
|
mii16_set_bits(sc, MII16_DS3_POLY);
|
|
else
|
|
mii16_clr_bits(sc, MII16_DS3_POLY);
|
|
|
|
/* Set payload scrambler on/off. */
|
|
if (sc->config.scrambler == CFG_SCRAM_OFF)
|
|
mii16_clr_bits(sc, MII16_DS3_SCRAM);
|
|
else
|
|
mii16_set_bits(sc, MII16_DS3_SCRAM);
|
|
|
|
/* Set CRC length. */
|
|
if (sc->config.crc_len == CFG_CRC_32)
|
|
mii16_set_bits(sc, MII16_DS3_CRC32);
|
|
else
|
|
mii16_clr_bits(sc, MII16_DS3_CRC32);
|
|
|
|
/* Loopback towards host thru the line interface. */
|
|
if (sc->config.loop_back == CFG_LOOP_OTHER)
|
|
mii16_set_bits(sc, MII16_DS3_TRLBK);
|
|
else
|
|
mii16_clr_bits(sc, MII16_DS3_TRLBK);
|
|
|
|
/* Loopback towards network thru the line interface. */
|
|
if (sc->config.loop_back == CFG_LOOP_LINE)
|
|
mii16_set_bits(sc, MII16_DS3_LNLBK);
|
|
else if (sc->config.loop_back == CFG_LOOP_DUAL)
|
|
mii16_set_bits(sc, MII16_DS3_LNLBK);
|
|
else
|
|
mii16_clr_bits(sc, MII16_DS3_LNLBK);
|
|
|
|
/* Configure T3 framer chip; write EVERY writeable register. */
|
|
ctl1 = CTL1_SER | CTL1_XTX;
|
|
if (sc->config.format == CFG_FORMAT_T3M13) ctl1 |= CTL1_M13MODE;
|
|
if (sc->config.loop_back == CFG_LOOP_INWARD) ctl1 |= CTL1_3LOOP;
|
|
if (sc->config.loop_back == CFG_LOOP_DUAL) ctl1 |= CTL1_3LOOP;
|
|
framer_write(sc, T3CSR_CTL1, ctl1);
|
|
framer_write(sc, T3CSR_TX_FEAC, CTL5_EMODE);
|
|
framer_write(sc, T3CSR_CTL8, CTL8_FBEC);
|
|
framer_write(sc, T3CSR_CTL12, CTL12_DLCB1 | CTL12_C21 | CTL12_MCB1);
|
|
framer_write(sc, T3CSR_DBL_FEAC, 0);
|
|
framer_write(sc, T3CSR_CTL14, CTL14_RGCEN | CTL14_TGCEN);
|
|
framer_write(sc, T3CSR_INTEN, 0);
|
|
framer_write(sc, T3CSR_CTL20, CTL20_CVEN);
|
|
|
|
/* Clear error counters and latched error bits */
|
|
/* that may have happened while initializing. */
|
|
for (i=0; i<21; i++) framer_read(sc, i);
|
|
}
|
|
|
|
static void
|
|
t3_detach(softc_t *sc)
|
|
{
|
|
framer_write(sc, T3CSR_CTL1,
|
|
framer_read(sc, T3CSR_CTL1) | CTL1_TXIDL);
|
|
led_on(sc, MII16_LED_ALL);
|
|
}
|
|
|
|
/* End DS3 card code */
|
|
|
|
/* Begin SSI card code */
|
|
|
|
static struct card ssi_card =
|
|
{
|
|
.ident = ssi_ident,
|
|
.watchdog = ssi_watchdog,
|
|
.ioctl = ssi_ioctl,
|
|
.attach = ssi_attach,
|
|
.detach = ssi_detach,
|
|
};
|
|
|
|
static void
|
|
ssi_ident(softc_t *sc)
|
|
{
|
|
printf(", LTC1343/44");
|
|
}
|
|
|
|
static void /* context: softirq */
|
|
ssi_watchdog(softc_t *sc)
|
|
{
|
|
u_int16_t cable;
|
|
u_int16_t mii16 = mii_read(sc, 16) & MII16_SSI_MODEM;
|
|
|
|
sc->status.link_state = STATE_UP;
|
|
|
|
/* Software is alive. */
|
|
led_inv(sc, MII16_SSI_LED_UL);
|
|
|
|
/* Check the transmit clock. */
|
|
if (sc->status.tx_speed == 0)
|
|
{
|
|
led_on(sc, MII16_SSI_LED_UR);
|
|
sc->status.link_state = STATE_DOWN;
|
|
}
|
|
else
|
|
led_off(sc, MII16_SSI_LED_UR);
|
|
|
|
/* Check the external cable. */
|
|
cable = mii_read(sc, 17);
|
|
cable = cable & MII17_SSI_CABLE_MASK;
|
|
cable = cable >> MII17_SSI_CABLE_SHIFT;
|
|
if (cable == 7)
|
|
{
|
|
led_off(sc, MII16_SSI_LED_LL); /* no cable */
|
|
sc->status.link_state = STATE_DOWN;
|
|
}
|
|
else
|
|
led_on(sc, MII16_SSI_LED_LL);
|
|
|
|
/* The unit at the other end of the cable is ready if: */
|
|
/* DTE mode and DCD pin is asserted */
|
|
/* DCE mode and DSR pin is asserted */
|
|
if (((sc->config.dte_dce == CFG_DTE) && !(mii16 & MII16_SSI_DCD)) ||
|
|
((sc->config.dte_dce == CFG_DCE) && !(mii16 & MII16_SSI_DSR)))
|
|
{
|
|
led_off(sc, MII16_SSI_LED_LR);
|
|
sc->status.link_state = STATE_DOWN;
|
|
}
|
|
else
|
|
led_on(sc, MII16_SSI_LED_LR);
|
|
|
|
if (sc->config.debug && (cable != sc->status.cable_type))
|
|
printf("%s: SSI cable type changed to '%s'\n",
|
|
NAME_UNIT, ssi_cables[cable]);
|
|
sc->status.cable_type = cable;
|
|
|
|
/* Print the modem control signals if they changed. */
|
|
if ((sc->config.debug) && (mii16 != sc->last_mii16))
|
|
{
|
|
const char *on = "ON ", *off = "OFF";
|
|
printf("%s: DTR=%s DSR=%s RTS=%s CTS=%s DCD=%s RI=%s LL=%s RL=%s TM=%s\n",
|
|
NAME_UNIT,
|
|
(mii16 & MII16_SSI_DTR) ? on : off,
|
|
(mii16 & MII16_SSI_DSR) ? on : off,
|
|
(mii16 & MII16_SSI_RTS) ? on : off,
|
|
(mii16 & MII16_SSI_CTS) ? on : off,
|
|
(mii16 & MII16_SSI_DCD) ? on : off,
|
|
(mii16 & MII16_SSI_RI) ? on : off,
|
|
(mii16 & MII16_SSI_LL) ? on : off,
|
|
(mii16 & MII16_SSI_RL) ? on : off,
|
|
(mii16 & MII16_SSI_TM) ? on : off);
|
|
}
|
|
|
|
/* SNMP one-second report */
|
|
sc->status.snmp.ssi.sigs = mii16 & MII16_SSI_MODEM;
|
|
|
|
/* Remember this state until next time. */
|
|
sc->last_mii16 = mii16;
|
|
|
|
/* If a loop back is in effect, link status is UP */
|
|
if (sc->config.loop_back != CFG_LOOP_NONE)
|
|
sc->status.link_state = STATE_UP;
|
|
}
|
|
|
|
static int /* context: process */
|
|
ssi_ioctl(softc_t *sc, struct ioctl *ioctl)
|
|
{
|
|
int error = 0;
|
|
|
|
if (ioctl->cmd == IOCTL_SNMP_SIGS)
|
|
{
|
|
u_int16_t mii16 = mii_read(sc, 16);
|
|
mii16 &= ~MII16_SSI_MODEM;
|
|
mii16 |= (MII16_SSI_MODEM & ioctl->data);
|
|
mii_write(sc, 16, mii16);
|
|
}
|
|
else if (ioctl->cmd == IOCTL_SET_STATUS)
|
|
{
|
|
if (ioctl->data)
|
|
mii16_set_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD));
|
|
else
|
|
mii16_clr_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD));
|
|
}
|
|
else
|
|
error = EINVAL;
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Must not sleep. */
|
|
static void
|
|
ssi_attach(softc_t *sc, struct config *config)
|
|
{
|
|
if (config == NULL) /* startup config */
|
|
{
|
|
sc->status.card_type = CSID_LMC_SSI;
|
|
sc->config.crc_len = CFG_CRC_16;
|
|
sc->config.loop_back = CFG_LOOP_NONE;
|
|
sc->config.tx_clk_src = CFG_CLKMUX_ST;
|
|
sc->config.dte_dce = CFG_DTE;
|
|
sc->config.synth.n = 51; /* 1.536 MHz */
|
|
sc->config.synth.m = 83;
|
|
sc->config.synth.v = 1;
|
|
sc->config.synth.x = 1;
|
|
sc->config.synth.r = 1;
|
|
sc->config.synth.prescale = 4;
|
|
}
|
|
else if (config != &sc->config) /* change config */
|
|
{
|
|
u_int32_t *old_synth = (u_int32_t *)&sc->config.synth;
|
|
u_int32_t *new_synth = (u_int32_t *)&config->synth;
|
|
if ((sc->config.crc_len == config->crc_len) &&
|
|
(sc->config.loop_back == config->loop_back) &&
|
|
(sc->config.tx_clk_src == config->tx_clk_src) &&
|
|
(sc->config.dte_dce == config->dte_dce) &&
|
|
(*old_synth == *new_synth))
|
|
return; /* nothing changed */
|
|
sc->config.crc_len = config->crc_len;
|
|
sc->config.loop_back = config->loop_back;
|
|
sc->config.tx_clk_src = config->tx_clk_src;
|
|
sc->config.dte_dce = config->dte_dce;
|
|
*old_synth = *new_synth;
|
|
}
|
|
|
|
/* Disable the TX clock driver while programming the oscillator. */
|
|
gpio_clr_bits(sc, GPIO_SSI_DCE);
|
|
gpio_make_output(sc, GPIO_SSI_DCE);
|
|
|
|
/* Program the synthesized oscillator. */
|
|
synth_write(sc, &sc->config.synth);
|
|
|
|
/* Set DTE/DCE mode. */
|
|
/* If DTE mode then DCD & TXC are received. */
|
|
/* If DCE mode then DCD & TXC are driven. */
|
|
/* Boards with MII rev=4.0 do not drive DCD. */
|
|
if (sc->config.dte_dce == CFG_DCE)
|
|
gpio_set_bits(sc, GPIO_SSI_DCE);
|
|
else
|
|
gpio_clr_bits(sc, GPIO_SSI_DCE);
|
|
gpio_make_output(sc, GPIO_SSI_DCE);
|
|
|
|
/* Set CRC length. */
|
|
if (sc->config.crc_len == CFG_CRC_32)
|
|
mii16_set_bits(sc, MII16_SSI_CRC32);
|
|
else
|
|
mii16_clr_bits(sc, MII16_SSI_CRC32);
|
|
|
|
/* Loop towards host thru cable drivers and receivers. */
|
|
/* Asserts DCD at the far end of a null modem cable. */
|
|
if (sc->config.loop_back == CFG_LOOP_PINS)
|
|
mii16_set_bits(sc, MII16_SSI_LOOP);
|
|
else
|
|
mii16_clr_bits(sc, MII16_SSI_LOOP);
|
|
|
|
/* Assert pin LL in modem conn: ask modem for local loop. */
|
|
/* Asserts TM at the far end of a null modem cable. */
|
|
if (sc->config.loop_back == CFG_LOOP_LL)
|
|
mii16_set_bits(sc, MII16_SSI_LL);
|
|
else
|
|
mii16_clr_bits(sc, MII16_SSI_LL);
|
|
|
|
/* Assert pin RL in modem conn: ask modem for remote loop. */
|
|
if (sc->config.loop_back == CFG_LOOP_RL)
|
|
mii16_set_bits(sc, MII16_SSI_RL);
|
|
else
|
|
mii16_clr_bits(sc, MII16_SSI_RL);
|
|
}
|
|
|
|
static void
|
|
ssi_detach(softc_t *sc)
|
|
{
|
|
mii16_clr_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD));
|
|
led_on(sc, MII16_LED_ALL);
|
|
}
|
|
|
|
/* End SSI card code */
|
|
|
|
/* Begin T1E1 card code */
|
|
|
|
static struct card t1_card =
|
|
{
|
|
.ident = t1_ident,
|
|
.watchdog = t1_watchdog,
|
|
.ioctl = t1_ioctl,
|
|
.attach = t1_attach,
|
|
.detach = t1_detach,
|
|
};
|
|
|
|
static void
|
|
t1_ident(softc_t *sc)
|
|
{
|
|
printf(", Bt837%x rev %x",
|
|
framer_read(sc, Bt8370_DID)>>4,
|
|
framer_read(sc, Bt8370_DID)&0x0F);
|
|
}
|
|
|
|
static void /* context: softirq */
|
|
t1_watchdog(softc_t *sc)
|
|
{
|
|
u_int16_t LCV = 0, FERR = 0, CRC = 0, FEBE = 0;
|
|
u_int8_t alm1, alm3, loop, isr0;
|
|
int i;
|
|
|
|
sc->status.link_state = STATE_UP;
|
|
|
|
/* Read the alarm registers */
|
|
alm1 = framer_read(sc, Bt8370_ALM1);
|
|
alm3 = framer_read(sc, Bt8370_ALM3);
|
|
loop = framer_read(sc, Bt8370_LOOP);
|
|
isr0 = framer_read(sc, Bt8370_ISR0);
|
|
|
|
/* Always ignore the SIGFRZ alarm bit, */
|
|
alm1 &= ~ALM1_SIGFRZ;
|
|
if (FORMAT_T1ANY) /* ignore RYEL in T1 modes */
|
|
alm1 &= ~ALM1_RYEL;
|
|
else if (FORMAT_E1NONE) /* ignore all alarms except LOS */
|
|
alm1 &= ALM1_RLOS;
|
|
|
|
/* Software is alive. */
|
|
led_inv(sc, MII16_T1_LED_GRN);
|
|
|
|
/* Receiving Alarm Indication Signal (AIS). */
|
|
if (alm1 & ALM1_RAIS) /* receiving ais */
|
|
led_on(sc, MII16_T1_LED_BLU);
|
|
else if (alm1 & ALM1_RLOS) /* sending ais */
|
|
led_inv(sc, MII16_T1_LED_BLU);
|
|
else
|
|
led_off(sc, MII16_T1_LED_BLU);
|
|
|
|
/* Receiving Remote Alarm Indication (RAI). */
|
|
if (alm1 & (ALM1_RMYEL | ALM1_RYEL)) /* receiving rai */
|
|
led_on(sc, MII16_T1_LED_YEL);
|
|
else if (alm1 & ALM1_RLOF) /* sending rai */
|
|
led_inv(sc, MII16_T1_LED_YEL);
|
|
else
|
|
led_off(sc, MII16_T1_LED_YEL);
|
|
|
|
/* If any alarm bits are set then the link is 'down'. */
|
|
/* The bad bits are: rmyel ryel rais ralos rlos rlof. */
|
|
/* Some alarm bits have been masked by this point. */
|
|
if (alm1) sc->status.link_state = STATE_DOWN;
|
|
|
|
/* Declare local Red Alarm if the link is down. */
|
|
if (sc->status.link_state == STATE_DOWN)
|
|
led_on(sc, MII16_T1_LED_RED);
|
|
else if (sc->loop_timer) /* loopback is active */
|
|
led_inv(sc, MII16_T1_LED_RED);
|
|
else
|
|
led_off(sc, MII16_T1_LED_RED);
|
|
|
|
/* Print latched error bits if they changed. */
|
|
if ((sc->config.debug) && (alm1 != sc->last_alm1))
|
|
{
|
|
const char *on = "ON ", *off = "OFF";
|
|
printf("%s: RLOF=%s RLOS=%s RALOS=%s RAIS=%s RYEL=%s RMYEL=%s\n",
|
|
NAME_UNIT,
|
|
(alm1 & ALM1_RLOF) ? on : off,
|
|
(alm1 & ALM1_RLOS) ? on : off,
|
|
(alm1 & ALM1_RALOS) ? on : off,
|
|
(alm1 & ALM1_RAIS) ? on : off,
|
|
(alm1 & ALM1_RYEL) ? on : off,
|
|
(alm1 & ALM1_RMYEL) ? on : off);
|
|
}
|
|
|
|
/* Check and print error counters if non-zero. */
|
|
LCV = framer_read(sc, Bt8370_LCV_LO) +
|
|
(framer_read(sc, Bt8370_LCV_HI)<<8);
|
|
if (!FORMAT_E1NONE)
|
|
FERR = framer_read(sc, Bt8370_FERR_LO) +
|
|
(framer_read(sc, Bt8370_FERR_HI)<<8);
|
|
if (FORMAT_E1CRC || FORMAT_T1ESF)
|
|
CRC = framer_read(sc, Bt8370_CRC_LO) +
|
|
(framer_read(sc, Bt8370_CRC_HI)<<8);
|
|
if (FORMAT_E1CRC)
|
|
FEBE = framer_read(sc, Bt8370_FEBE_LO) +
|
|
(framer_read(sc, Bt8370_FEBE_HI)<<8);
|
|
/* Only LCV is valid if Out-Of-Frame */
|
|
if (FORMAT_E1NONE) FERR = CRC = FEBE = 0;
|
|
if ((sc->config.debug) && (LCV || FERR || CRC || FEBE))
|
|
printf("%s: LCV=%u FERR=%u CRC=%u FEBE=%u\n",
|
|
NAME_UNIT, LCV, FERR, CRC, FEBE);
|
|
|
|
/* Driver keeps crude link-level error counters (SNMP is better). */
|
|
sc->status.cntrs.lcv_errs += LCV;
|
|
sc->status.cntrs.frm_errs += FERR;
|
|
sc->status.cntrs.crc_errs += CRC;
|
|
sc->status.cntrs.febe_errs += FEBE;
|
|
|
|
/* Check for BOP messages in the ESF Facility Data Link. */
|
|
if ((FORMAT_T1ESF) && (framer_read(sc, Bt8370_ISR1) & 0x80))
|
|
{
|
|
u_int8_t bop_code = framer_read(sc, Bt8370_RBOP) & 0x3F;
|
|
|
|
switch (bop_code)
|
|
{
|
|
case T1BOP_OOF:
|
|
{
|
|
if ((sc->config.debug) && !(sc->last_alm1 & ALM1_RMYEL))
|
|
printf("%s: Receiving a 'yellow alarm' BOP msg\n", NAME_UNIT);
|
|
break;
|
|
}
|
|
case T1BOP_LINE_UP:
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'line loopback activate' BOP msg\n", NAME_UNIT);
|
|
framer_write(sc, Bt8370_LOOP, LOOP_LINE);
|
|
sc->loop_timer = 305;
|
|
break;
|
|
}
|
|
case T1BOP_LINE_DOWN:
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'line loopback deactivate' BOP msg\n", NAME_UNIT);
|
|
framer_write(sc, Bt8370_LOOP,
|
|
framer_read(sc, Bt8370_LOOP) & ~LOOP_LINE);
|
|
sc->loop_timer = 0;
|
|
break;
|
|
}
|
|
case T1BOP_PAY_UP:
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'payload loopback activate' BOP msg\n", NAME_UNIT);
|
|
framer_write(sc, Bt8370_LOOP, LOOP_PAYLOAD);
|
|
sc->loop_timer = 305;
|
|
break;
|
|
}
|
|
case T1BOP_PAY_DOWN:
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'payload loopback deactivate' BOP msg\n", NAME_UNIT);
|
|
framer_write(sc, Bt8370_LOOP,
|
|
framer_read(sc, Bt8370_LOOP) & ~LOOP_PAYLOAD);
|
|
sc->loop_timer = 0;
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Received a type 0x%02X BOP msg\n", NAME_UNIT, bop_code);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check for HDLC pkts in the ESF Facility Data Link. */
|
|
if ((FORMAT_T1ESF) && (framer_read(sc, Bt8370_ISR2) & 0x70))
|
|
{
|
|
/* while (not fifo-empty && not start-of-msg) flush fifo */
|
|
while ((framer_read(sc, Bt8370_RDL1_STAT) & 0x0C)==0)
|
|
framer_read(sc, Bt8370_RDL1);
|
|
/* If (not fifo-empty), then begin processing fifo contents. */
|
|
if ((framer_read(sc, Bt8370_RDL1_STAT) & 0x0C) == 0x08)
|
|
{
|
|
u_int8_t msg[64];
|
|
u_int8_t stat = framer_read(sc, Bt8370_RDL1);
|
|
sc->status.cntrs.fdl_pkts++;
|
|
for (i=0; i<(stat & 0x3F); i++)
|
|
msg[i] = framer_read(sc, Bt8370_RDL1);
|
|
/* Is this FDL message a T1.403 performance report? */
|
|
if (((stat & 0x3F)==11) &&
|
|
((msg[0]==0x38) || (msg[0]==0x3A)) &&
|
|
(msg[1]==1) && (msg[2]==3))
|
|
/* Copy 4 PRs from FDL pkt to SNMP struct. */
|
|
memcpy(sc->status.snmp.t1.prm, msg+3, 8);
|
|
}
|
|
}
|
|
|
|
/* Check for inband loop up/down commands. */
|
|
if (FORMAT_T1ANY)
|
|
{
|
|
u_int8_t isr6 = framer_read(sc, Bt8370_ISR6);
|
|
u_int8_t alarm2 = framer_read(sc, Bt8370_ALM2);
|
|
u_int8_t tlb = framer_read(sc, Bt8370_TLB);
|
|
|
|
/* Inband Code == Loop Up && On Transition && Inband Tx Inactive */
|
|
if ((isr6 & 0x40) && (alarm2 & 0x40) && !(tlb & 1))
|
|
{ /* CSU loop up is 10000 10000 ... */
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'CSU Loop Up' inband msg\n", NAME_UNIT);
|
|
framer_write(sc, Bt8370_LOOP, LOOP_LINE); /* Loop up */
|
|
sc->loop_timer = 305;
|
|
}
|
|
/* Inband Code == Loop Down && On Transition && Inband Tx Inactive */
|
|
if ((isr6 & 0x80) && (alarm2 & 0x80) && !(tlb & 1))
|
|
{ /* CSU loop down is 100 100 100 ... */
|
|
if (sc->config.debug)
|
|
printf("%s: Received a 'CSU Loop Down' inband msg\n", NAME_UNIT);
|
|
framer_write(sc, Bt8370_LOOP,
|
|
framer_read(sc, Bt8370_LOOP) & ~LOOP_LINE); /* loop down */
|
|
sc->loop_timer = 0;
|
|
}
|
|
}
|
|
|
|
/* Manually send Yellow Alarm BOP msgs. */
|
|
if (FORMAT_T1ESF)
|
|
{
|
|
u_int8_t isr7 = framer_read(sc, Bt8370_ISR7);
|
|
|
|
if ((isr7 & 0x02) && (alm1 & 0x02)) /* RLOF on-transition */
|
|
{ /* Start sending continuous Yellow Alarm BOP messages. */
|
|
framer_write(sc, Bt8370_BOP, RBOP_25 | TBOP_CONT);
|
|
framer_write(sc, Bt8370_TBOP, 0x00); /* send BOP; order matters */
|
|
}
|
|
else if ((isr7 & 0x02) && !(alm1 & 0x02)) /* RLOF off-transition */
|
|
{ /* Stop sending continuous Yellow Alarm BOP messages. */
|
|
framer_write(sc, Bt8370_BOP, RBOP_25 | TBOP_OFF);
|
|
}
|
|
}
|
|
|
|
/* Time out loopback requests. */
|
|
if (sc->loop_timer)
|
|
if (--sc->loop_timer == 0)
|
|
if (loop)
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: Timeout: Loop Down after 300 seconds\n", NAME_UNIT);
|
|
framer_write(sc, Bt8370_LOOP, loop & ~(LOOP_PAYLOAD | LOOP_LINE));
|
|
}
|
|
|
|
/* RX Test Pattern status */
|
|
if ((sc->config.debug) && (isr0 & 0x10))
|
|
printf("%s: RX Test Pattern Sync\n", NAME_UNIT);
|
|
|
|
/* SNMP Error Counters */
|
|
sc->status.snmp.t1.lcv = LCV;
|
|
sc->status.snmp.t1.fe = FERR;
|
|
sc->status.snmp.t1.crc = CRC;
|
|
sc->status.snmp.t1.febe = FEBE;
|
|
|
|
/* SNMP Line Status */
|
|
sc->status.snmp.t1.line = 0;
|
|
if (alm1 & ALM1_RMYEL) sc->status.snmp.t1.line |= TLINE_RX_RAI;
|
|
if (alm1 & ALM1_RYEL) sc->status.snmp.t1.line |= TLINE_RX_RAI;
|
|
if (alm1 & ALM1_RLOF) sc->status.snmp.t1.line |= TLINE_TX_RAI;
|
|
if (alm1 & ALM1_RAIS) sc->status.snmp.t1.line |= TLINE_RX_AIS;
|
|
if (alm1 & ALM1_RLOS) sc->status.snmp.t1.line |= TLINE_TX_AIS;
|
|
if (alm1 & ALM1_RLOF) sc->status.snmp.t1.line |= TLINE_LOF;
|
|
if (alm1 & ALM1_RLOS) sc->status.snmp.t1.line |= TLINE_LOS;
|
|
if (alm3 & ALM3_RMAIS) sc->status.snmp.t1.line |= T1LINE_RX_TS16_AIS;
|
|
if (alm3 & ALM3_SRED) sc->status.snmp.t1.line |= T1LINE_TX_TS16_LOMF;
|
|
if (alm3 & ALM3_SEF) sc->status.snmp.t1.line |= T1LINE_SEF;
|
|
if (isr0 & 0x10) sc->status.snmp.t1.line |= T1LINE_RX_TEST;
|
|
if ((alm1 & ALM1_RMYEL) && (FORMAT_E1CAS))
|
|
sc->status.snmp.t1.line |= T1LINE_RX_TS16_LOMF;
|
|
|
|
/* SNMP Loopback Status */
|
|
sc->status.snmp.t1.loop &= ~(TLOOP_FAR_LINE | TLOOP_FAR_PAYLOAD);
|
|
if (sc->config.loop_back == CFG_LOOP_TULIP)
|
|
sc->status.snmp.t1.loop |= TLOOP_NEAR_OTHER;
|
|
if (loop & LOOP_PAYLOAD) sc->status.snmp.t1.loop |= TLOOP_NEAR_PAYLOAD;
|
|
if (loop & LOOP_LINE) sc->status.snmp.t1.loop |= TLOOP_NEAR_LINE;
|
|
if (loop & LOOP_ANALOG) sc->status.snmp.t1.loop |= TLOOP_NEAR_OTHER;
|
|
if (loop & LOOP_FRAMER) sc->status.snmp.t1.loop |= TLOOP_NEAR_INWARD;
|
|
|
|
/* Remember this state until next time. */
|
|
sc->last_alm1 = alm1;
|
|
|
|
/* If an INWARD loopback is in effect, link status is UP */
|
|
if (sc->config.loop_back != CFG_LOOP_NONE) /* XXX INWARD ONLY */
|
|
sc->status.link_state = STATE_UP;
|
|
}
|
|
|
|
static void /* context: process */
|
|
t1_send_bop(softc_t *sc, int bop_code)
|
|
{
|
|
u_int8_t bop;
|
|
int i;
|
|
|
|
/* The BOP transmitter could be sending a continuous */
|
|
/* BOP msg when told to send this BOP_25 message. */
|
|
/* So save and restore the state of the BOP machine. */
|
|
bop = framer_read(sc, Bt8370_BOP);
|
|
framer_write(sc, Bt8370_BOP, RBOP_OFF | TBOP_OFF);
|
|
for (i=0; i<40; i++) /* max delay 400 ms. */
|
|
if (framer_read(sc, Bt8370_BOP_STAT) & 0x80) SLEEP(10000);
|
|
/* send 25 repetitions of bop_code */
|
|
framer_write(sc, Bt8370_BOP, RBOP_OFF | TBOP_25);
|
|
framer_write(sc, Bt8370_TBOP, bop_code); /* order matters */
|
|
/* wait for tx to stop */
|
|
for (i=0; i<40; i++) /* max delay 400 ms. */
|
|
if (framer_read(sc, Bt8370_BOP_STAT) & 0x80) SLEEP(10000);
|
|
/* Restore previous state of the BOP machine. */
|
|
framer_write(sc, Bt8370_BOP, bop);
|
|
}
|
|
|
|
static int /* context: process */
|
|
t1_ioctl(softc_t *sc, struct ioctl *ioctl)
|
|
{
|
|
int error = 0;
|
|
|
|
switch (ioctl->cmd)
|
|
{
|
|
case IOCTL_SNMP_SEND: /* set opstatus? */
|
|
{
|
|
switch (ioctl->data)
|
|
{
|
|
case TSEND_NORMAL:
|
|
{
|
|
framer_write(sc, Bt8370_TPATT, 0x00); /* tx pattern generator off */
|
|
framer_write(sc, Bt8370_RPATT, 0x00); /* rx pattern detector off */
|
|
framer_write(sc, Bt8370_TLB, 0x00); /* tx inband generator off */
|
|
break;
|
|
}
|
|
case TSEND_LINE:
|
|
{
|
|
if (FORMAT_T1ESF)
|
|
t1_send_bop(sc, T1BOP_LINE_UP);
|
|
else if (FORMAT_T1SF)
|
|
{
|
|
framer_write(sc, Bt8370_LBP, 0x08); /* 10000 10000 ... */
|
|
framer_write(sc, Bt8370_TLB, 0x05); /* 5 bits, framed, start */
|
|
}
|
|
sc->status.snmp.t1.loop |= TLOOP_FAR_LINE;
|
|
break;
|
|
}
|
|
case TSEND_PAYLOAD:
|
|
{
|
|
t1_send_bop(sc, T1BOP_PAY_UP);
|
|
sc->status.snmp.t1.loop |= TLOOP_FAR_PAYLOAD;
|
|
break;
|
|
}
|
|
case TSEND_RESET:
|
|
{
|
|
if (sc->status.snmp.t1.loop == TLOOP_FAR_LINE)
|
|
{
|
|
if (FORMAT_T1ESF)
|
|
t1_send_bop(sc, T1BOP_LINE_DOWN);
|
|
else if (FORMAT_T1SF)
|
|
{
|
|
framer_write(sc, Bt8370_LBP, 0x24); /* 100100 100100 ... */
|
|
framer_write(sc, Bt8370_TLB, 0x09); /* 6 bits, framed, start */
|
|
}
|
|
sc->status.snmp.t1.loop &= ~TLOOP_FAR_LINE;
|
|
}
|
|
if (sc->status.snmp.t1.loop == TLOOP_FAR_PAYLOAD)
|
|
{
|
|
t1_send_bop(sc, T1BOP_PAY_DOWN);
|
|
sc->status.snmp.t1.loop &= ~TLOOP_FAR_PAYLOAD;
|
|
}
|
|
break;
|
|
}
|
|
case TSEND_QRS:
|
|
{
|
|
framer_write(sc, Bt8370_TPATT, 0x1E); /* framed QRSS */
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case IOCTL_SNMP_LOOP: /* set opstatus = test? */
|
|
{
|
|
u_int8_t new_loop = 0;
|
|
|
|
if (ioctl->data == CFG_LOOP_NONE)
|
|
new_loop = 0;
|
|
else if (ioctl->data == CFG_LOOP_PAYLOAD)
|
|
new_loop = LOOP_PAYLOAD;
|
|
else if (ioctl->data == CFG_LOOP_LINE)
|
|
new_loop = LOOP_LINE;
|
|
else if (ioctl->data == CFG_LOOP_OTHER)
|
|
new_loop = LOOP_ANALOG;
|
|
else if (ioctl->data == CFG_LOOP_INWARD)
|
|
new_loop = LOOP_FRAMER;
|
|
else if (ioctl->data == CFG_LOOP_DUAL)
|
|
new_loop = LOOP_DUAL;
|
|
else
|
|
error = EINVAL;
|
|
if (!error)
|
|
{
|
|
framer_write(sc, Bt8370_LOOP, new_loop);
|
|
sc->config.loop_back = ioctl->data;
|
|
}
|
|
break;
|
|
}
|
|
case IOCTL_SET_STATUS:
|
|
{
|
|
#if 0
|
|
if (ioctl->data)
|
|
mii16_set_bits(sc, MII16_T1_XOE);
|
|
else
|
|
mii16_clr_bits(sc, MII16_T1_XOE);
|
|
#endif
|
|
break;
|
|
}
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Must not sleep. */
|
|
static void
|
|
t1_attach(softc_t *sc, struct config *config)
|
|
{
|
|
int i;
|
|
u_int8_t pulse, lbo, gain;
|
|
|
|
if (config == NULL) /* startup config */
|
|
{
|
|
/* Disable transmitter output drivers. */
|
|
mii16_clr_bits(sc, MII16_T1_XOE);
|
|
/* Bt8370 occasionally powers up in a loopback mode. */
|
|
/* Data sheet says zero LOOP reg and do a sw-reset. */
|
|
framer_write(sc, Bt8370_LOOP, 0x00); /* no loopback */
|
|
framer_write(sc, Bt8370_CR0, 0x80); /* sw-reset */
|
|
for (i=0; i<10; i++) /* wait for sw-reset to clear; max 10 ms */
|
|
if (framer_read(sc, Bt8370_CR0) & 0x80) DELAY(1000);
|
|
|
|
sc->status.card_type = CSID_LMC_T1E1;
|
|
sc->config.crc_len = CFG_CRC_16;
|
|
sc->config.loop_back = CFG_LOOP_NONE;
|
|
sc->config.tx_clk_src = CFG_CLKMUX_RT; /* loop timed */
|
|
#if 1 /* USA */ /* decide using time zone? */
|
|
sc->config.format = CFG_FORMAT_T1ESF;
|
|
#else /* REST OF PLANET */
|
|
sc->config.format = CFG_FORMAT_E1FASCRC;
|
|
#endif
|
|
sc->config.time_slots = 0xFFFFFFFF;
|
|
sc->config.cable_len = 10;
|
|
sc->config.tx_pulse = CFG_PULSE_AUTO;
|
|
sc->config.rx_gain_max = CFG_GAIN_AUTO;
|
|
sc->config.tx_lbo = CFG_LBO_AUTO;
|
|
}
|
|
else if (config != &sc->config) /* change config */
|
|
{
|
|
if ((sc->config.crc_len == config->crc_len) &&
|
|
(sc->config.loop_back == config->loop_back) &&
|
|
(sc->config.tx_clk_src == config->tx_clk_src) &&
|
|
(sc->config.format == config->format) &&
|
|
(sc->config.time_slots == config->time_slots) &&
|
|
(sc->config.cable_len == config->cable_len) &&
|
|
(sc->config.tx_pulse == config->tx_pulse) &&
|
|
(sc->config.rx_gain_max == config->rx_gain_max) &&
|
|
(sc->config.tx_lbo == config->tx_lbo))
|
|
return; /* nothing changed */
|
|
sc->config.crc_len = config->crc_len;
|
|
sc->config.loop_back = config->loop_back;
|
|
sc->config.tx_clk_src = config->tx_clk_src;
|
|
sc->config.format = config->format;
|
|
sc->config.cable_len = config->cable_len;
|
|
sc->config.time_slots = config->time_slots;
|
|
sc->config.tx_pulse = config->tx_pulse;
|
|
sc->config.rx_gain_max = config->rx_gain_max;
|
|
sc->config.tx_lbo = config->tx_lbo;
|
|
}
|
|
|
|
/* Set CRC length. */
|
|
if (sc->config.crc_len == CFG_CRC_32)
|
|
mii16_set_bits(sc, MII16_T1_CRC32);
|
|
else
|
|
mii16_clr_bits(sc, MII16_T1_CRC32);
|
|
|
|
/* Invert HDLC payload data in SF/AMI mode. */
|
|
/* HDLC stuff bits satisfy T1 pulse density. */
|
|
if (FORMAT_T1SF)
|
|
mii16_set_bits(sc, MII16_T1_INVERT);
|
|
else
|
|
mii16_clr_bits(sc, MII16_T1_INVERT);
|
|
|
|
/* Set the transmitter output impedance. */
|
|
if (FORMAT_E1ANY) mii16_set_bits(sc, MII16_T1_Z);
|
|
|
|
/* 001:CR0 -- Control Register 0 - T1/E1 and frame format */
|
|
framer_write(sc, Bt8370_CR0, sc->config.format);
|
|
|
|
/* 002:JAT_CR -- Jitter Attenuator Control Register */
|
|
if (sc->config.tx_clk_src == CFG_CLKMUX_RT) /* loop timing */
|
|
framer_write(sc, Bt8370_JAT_CR, 0xA3); /* JAT in RX path */
|
|
else
|
|
{ /* 64-bit elastic store; free-running JCLK and CLADO */
|
|
framer_write(sc, Bt8370_JAT_CR, 0x4B); /* assert jcenter */
|
|
framer_write(sc, Bt8370_JAT_CR, 0x43); /* release jcenter */
|
|
}
|
|
|
|
/* 00C-013:IERn -- Interrupt Enable Registers */
|
|
for (i=Bt8370_IER7; i<=Bt8370_IER0; i++)
|
|
framer_write(sc, i, 0); /* no interrupts; polled */
|
|
|
|
/* 014:LOOP -- loopbacks */
|
|
if (sc->config.loop_back == CFG_LOOP_PAYLOAD)
|
|
framer_write(sc, Bt8370_LOOP, LOOP_PAYLOAD);
|
|
else if (sc->config.loop_back == CFG_LOOP_LINE)
|
|
framer_write(sc, Bt8370_LOOP, LOOP_LINE);
|
|
else if (sc->config.loop_back == CFG_LOOP_OTHER)
|
|
framer_write(sc, Bt8370_LOOP, LOOP_ANALOG);
|
|
else if (sc->config.loop_back == CFG_LOOP_INWARD)
|
|
framer_write(sc, Bt8370_LOOP, LOOP_FRAMER);
|
|
else if (sc->config.loop_back == CFG_LOOP_DUAL)
|
|
framer_write(sc, Bt8370_LOOP, LOOP_DUAL);
|
|
else
|
|
framer_write(sc, Bt8370_LOOP, 0x00); /* no loopback */
|
|
|
|
/* 015:DL3_TS -- Data Link 3 */
|
|
framer_write(sc, Bt8370_DL3_TS, 0x00); /* disabled */
|
|
|
|
/* 018:PIO -- Programmable I/O */
|
|
framer_write(sc, Bt8370_PIO, 0xFF); /* all pins are outputs */
|
|
|
|
/* 019:POE -- Programmable Output Enable */
|
|
framer_write(sc, Bt8370_POE, 0x00); /* all outputs are enabled */
|
|
|
|
/* 01A;CMUX -- Clock Input Mux */
|
|
if (sc->config.tx_clk_src == CFG_CLKMUX_EXT)
|
|
framer_write(sc, Bt8370_CMUX, 0x0C); /* external timing */
|
|
else
|
|
framer_write(sc, Bt8370_CMUX, 0x0F); /* internal timing */
|
|
|
|
/* 020:LIU_CR -- Line Interface Unit Config Register */
|
|
framer_write(sc, Bt8370_LIU_CR, 0xC1); /* reset LIU, squelch */
|
|
|
|
/* 022:RLIU_CR -- RX Line Interface Unit Config Reg */
|
|
/* Errata sheet says do not use freeze-short, but we do anyway! */
|
|
framer_write(sc, Bt8370_RLIU_CR, 0xB1); /* AGC=2048, Long Eye */
|
|
|
|
/* Select Rx sensitivity based on cable length. */
|
|
if ((gain = sc->config.rx_gain_max) == CFG_GAIN_AUTO)
|
|
{
|
|
if (sc->config.cable_len > 2000)
|
|
gain = CFG_GAIN_EXTEND;
|
|
else if (sc->config.cable_len > 1000)
|
|
gain = CFG_GAIN_LONG;
|
|
else if (sc->config.cable_len > 100)
|
|
gain = CFG_GAIN_MEDIUM;
|
|
else
|
|
gain = CFG_GAIN_SHORT;
|
|
}
|
|
|
|
/* 024:VGA_MAX -- Variable Gain Amplifier Max gain */
|
|
framer_write(sc, Bt8370_VGA_MAX, gain);
|
|
|
|
/* 028:PRE_EQ -- Pre Equalizer */
|
|
if (gain == CFG_GAIN_EXTEND)
|
|
framer_write(sc, Bt8370_PRE_EQ, 0xE6); /* ON; thresh 6 */
|
|
else
|
|
framer_write(sc, Bt8370_PRE_EQ, 0xA6); /* OFF; thresh 6 */
|
|
|
|
/* 038-03C:GAINn -- RX Equalizer gain thresholds */
|
|
framer_write(sc, Bt8370_GAIN0, 0x24);
|
|
framer_write(sc, Bt8370_GAIN1, 0x28);
|
|
framer_write(sc, Bt8370_GAIN2, 0x2C);
|
|
framer_write(sc, Bt8370_GAIN3, 0x30);
|
|
framer_write(sc, Bt8370_GAIN4, 0x34);
|
|
|
|
/* 040:RCR0 -- Receiver Control Register 0 */
|
|
if (FORMAT_T1ESF)
|
|
framer_write(sc, Bt8370_RCR0, 0x05); /* B8ZS, 2/5 FErrs */
|
|
else if (FORMAT_T1SF)
|
|
framer_write(sc, Bt8370_RCR0, 0x84); /* AMI, 2/5 FErrs */
|
|
else if (FORMAT_E1NONE)
|
|
framer_write(sc, Bt8370_RCR0, 0x41); /* HDB3, rabort */
|
|
else if (FORMAT_E1CRC)
|
|
framer_write(sc, Bt8370_RCR0, 0x09); /* HDB3, 3 FErrs or 915 CErrs */
|
|
else /* E1 no CRC */
|
|
framer_write(sc, Bt8370_RCR0, 0x19); /* HDB3, 3 FErrs */
|
|
|
|
/* 041:RPATT -- Receive Test Pattern configuration */
|
|
framer_write(sc, Bt8370_RPATT, 0x3E); /* looking for framed QRSS */
|
|
|
|
/* 042:RLB -- Receive Loop Back code detector config */
|
|
framer_write(sc, Bt8370_RLB, 0x09); /* 6 bits down; 5 bits up */
|
|
|
|
/* 043:LBA -- Loop Back Activate code */
|
|
framer_write(sc, Bt8370_LBA, 0x08); /* 10000 10000 10000 ... */
|
|
|
|
/* 044:LBD -- Loop Back Deactivate code */
|
|
framer_write(sc, Bt8370_LBD, 0x24); /* 100100 100100 100100 ... */
|
|
|
|
/* 045:RALM -- Receive Alarm signal configuration */
|
|
framer_write(sc, Bt8370_RALM, 0x0C); /* yel_intg rlof_intg */
|
|
|
|
/* 046:LATCH -- Alarm/Error/Counter Latch register */
|
|
framer_write(sc, Bt8370_LATCH, 0x1F); /* stop_cnt latch_{cnt,err,alm} */
|
|
|
|
/* Select Pulse Shape based on cable length (T1 only). */
|
|
if ((pulse = sc->config.tx_pulse) == CFG_PULSE_AUTO)
|
|
{
|
|
if (FORMAT_T1ANY)
|
|
{
|
|
if (sc->config.cable_len > 200)
|
|
pulse = CFG_PULSE_T1CSU;
|
|
else if (sc->config.cable_len > 160)
|
|
pulse = CFG_PULSE_T1DSX4;
|
|
else if (sc->config.cable_len > 120)
|
|
pulse = CFG_PULSE_T1DSX3;
|
|
else if (sc->config.cable_len > 80)
|
|
pulse = CFG_PULSE_T1DSX2;
|
|
else if (sc->config.cable_len > 40)
|
|
pulse = CFG_PULSE_T1DSX1;
|
|
else
|
|
pulse = CFG_PULSE_T1DSX0;
|
|
}
|
|
else
|
|
pulse = CFG_PULSE_E1TWIST;
|
|
}
|
|
|
|
/* Select Line Build Out based on cable length (T1CSU only). */
|
|
if ((lbo = sc->config.tx_lbo) == CFG_LBO_AUTO)
|
|
{
|
|
if (pulse == CFG_PULSE_T1CSU)
|
|
{
|
|
if (sc->config.cable_len > 1500)
|
|
lbo = CFG_LBO_0DB;
|
|
else if (sc->config.cable_len > 1000)
|
|
lbo = CFG_LBO_7DB;
|
|
else if (sc->config.cable_len > 500)
|
|
lbo = CFG_LBO_15DB;
|
|
else
|
|
lbo = CFG_LBO_22DB;
|
|
}
|
|
else
|
|
lbo = 0;
|
|
}
|
|
|
|
/* 068:TLIU_CR -- Transmit LIU Control Register */
|
|
framer_write(sc, Bt8370_TLIU_CR, (0x40 | (lbo & 0x30) | (pulse & 0x0E)));
|
|
|
|
/* 070:TCR0 -- Transmit Framer Configuration */
|
|
framer_write(sc, Bt8370_TCR0, sc->config.format>>1);
|
|
|
|
/* 071:TCR1 -- Transmitter Configuration */
|
|
if (FORMAT_T1SF)
|
|
framer_write(sc, Bt8370_TCR1, 0x43); /* tabort, AMI PDV enforced */
|
|
else
|
|
framer_write(sc, Bt8370_TCR1, 0x41); /* tabort, B8ZS or HDB3 */
|
|
|
|
/* 072:TFRM -- Transmit Frame format MYEL YEL MF FE CRC FBIT */
|
|
if (sc->config.format == CFG_FORMAT_T1ESF)
|
|
framer_write(sc, Bt8370_TFRM, 0x0B); /* - YEL MF - CRC FBIT */
|
|
else if (sc->config.format == CFG_FORMAT_T1SF)
|
|
framer_write(sc, Bt8370_TFRM, 0x19); /* - YEL MF - - FBIT */
|
|
else if (sc->config.format == CFG_FORMAT_E1FAS)
|
|
framer_write(sc, Bt8370_TFRM, 0x11); /* - YEL - - - FBIT */
|
|
else if (sc->config.format == CFG_FORMAT_E1FASCRC)
|
|
framer_write(sc, Bt8370_TFRM, 0x1F); /* - YEL MF FE CRC FBIT */
|
|
else if (sc->config.format == CFG_FORMAT_E1FASCAS)
|
|
framer_write(sc, Bt8370_TFRM, 0x31); /* MYEL YEL - - - FBIT */
|
|
else if (sc->config.format == CFG_FORMAT_E1FASCRCCAS)
|
|
framer_write(sc, Bt8370_TFRM, 0x3F); /* MYEL YEL MF FE CRC FBIT */
|
|
else if (sc->config.format == CFG_FORMAT_E1NONE)
|
|
framer_write(sc, Bt8370_TFRM, 0x00); /* NO FRAMING BITS AT ALL! */
|
|
|
|
/* 073:TERROR -- Transmit Error Insert */
|
|
framer_write(sc, Bt8370_TERROR, 0x00); /* no errors, please! */
|
|
|
|
/* 074:TMAN -- Transmit Manual Sa-byte/FEBE configuration */
|
|
framer_write(sc, Bt8370_TMAN, 0x00); /* none */
|
|
|
|
/* 075:TALM -- Transmit Alarm Signal Configuration */
|
|
if (FORMAT_E1ANY)
|
|
framer_write(sc, Bt8370_TALM, 0x38); /* auto_myel auto_yel auto_ais */
|
|
else if (FORMAT_T1ANY)
|
|
framer_write(sc, Bt8370_TALM, 0x18); /* auto_yel auto_ais */
|
|
|
|
/* 076:TPATT -- Transmit Test Pattern Configuration */
|
|
framer_write(sc, Bt8370_TPATT, 0x00); /* disabled */
|
|
|
|
/* 077:TLB -- Transmit Inband Loopback Code Configuration */
|
|
framer_write(sc, Bt8370_TLB, 0x00); /* disabled */
|
|
|
|
/* 090:CLAD_CR -- Clack Rate Adapter Configuration */
|
|
if (FORMAT_T1ANY)
|
|
framer_write(sc, Bt8370_CLAD_CR, 0x06); /* loop filter gain 1/2^6 */
|
|
else
|
|
framer_write(sc, Bt8370_CLAD_CR, 0x08); /* loop filter gain 1/2^8 */
|
|
|
|
/* 091:CSEL -- CLAD frequency Select */
|
|
if (FORMAT_T1ANY)
|
|
framer_write(sc, Bt8370_CSEL, 0x55); /* 1544 kHz */
|
|
else
|
|
framer_write(sc, Bt8370_CSEL, 0x11); /* 2048 kHz */
|
|
|
|
/* 092:CPHASE -- CLAD Phase detector */
|
|
if (FORMAT_T1ANY)
|
|
framer_write(sc, Bt8370_CPHASE, 0x22); /* phase compare @ 386 kHz */
|
|
else
|
|
framer_write(sc, Bt8370_CPHASE, 0x00); /* phase compare @ 2048 kHz */
|
|
|
|
if (FORMAT_T1ESF) /* BOP & PRM are enabled in T1ESF mode only. */
|
|
{
|
|
/* 0A0:BOP -- Bit Oriented Protocol messages */
|
|
framer_write(sc, Bt8370_BOP, RBOP_25 | TBOP_OFF);
|
|
/* 0A4:DL1_TS -- Data Link 1 Time Slot Enable */
|
|
framer_write(sc, Bt8370_DL1_TS, 0x40); /* FDL bits in odd frames */
|
|
/* 0A6:DL1_CTL -- Data Link 1 Control */
|
|
framer_write(sc, Bt8370_DL1_CTL, 0x03); /* FCS mode, TX on, RX on */
|
|
/* 0A7:RDL1_FFC -- Rx Data Link 1 Fifo Fill Control */
|
|
framer_write(sc, Bt8370_RDL1_FFC, 0x30); /* assert "near full" at 48 */
|
|
/* 0AA:PRM -- Performance Report Messages */
|
|
framer_write(sc, Bt8370_PRM, 0x80);
|
|
}
|
|
|
|
/* 0D0:SBI_CR -- System Bus Interface Configuration Register */
|
|
if (FORMAT_T1ANY)
|
|
framer_write(sc, Bt8370_SBI_CR, 0x47); /* 1.544 with 24 TS +Fbits */
|
|
else
|
|
framer_write(sc, Bt8370_SBI_CR, 0x46); /* 2.048 with 32 TS */
|
|
|
|
/* 0D1:RSB_CR -- Receive System Bus Configuration Register */
|
|
/* Change RINDO & RFSYNC on falling edge of RSBCLKI. */
|
|
framer_write(sc, Bt8370_RSB_CR, 0x70);
|
|
|
|
/* 0D2,0D3:RSYNC_{TS,BIT} -- Receive frame Sync offset */
|
|
framer_write(sc, Bt8370_RSYNC_BIT, 0x00);
|
|
framer_write(sc, Bt8370_RSYNC_TS, 0x00);
|
|
|
|
/* 0D4:TSB_CR -- Transmit System Bus Configuration Register */
|
|
/* Change TINDO & TFSYNC on falling edge of TSBCLKI. */
|
|
framer_write(sc, Bt8370_TSB_CR, 0x30);
|
|
|
|
/* 0D5,0D6:TSYNC_{TS,BIT} -- Transmit frame Sync offset */
|
|
framer_write(sc, Bt8370_TSYNC_BIT, 0x00);
|
|
framer_write(sc, Bt8370_TSYNC_TS, 0x00);
|
|
|
|
/* 0D7:RSIG_CR -- Receive SIGnalling Configuration Register */
|
|
framer_write(sc, Bt8370_RSIG_CR, 0x00);
|
|
|
|
/* Assign and configure 64Kb TIME SLOTS. */
|
|
/* TS24..TS1 must be assigned for T1, TS31..TS0 for E1. */
|
|
/* Timeslots with no user data have RINDO and TINDO off. */
|
|
for (sc->status.time_slots = 0, i=0; i<32; i++)
|
|
{
|
|
/* 0E0-0FF:SBCn -- System Bus Per-Channel Control */
|
|
if (FORMAT_T1ANY && (i==0 || i>24))
|
|
framer_write(sc, Bt8370_SBCn +i, 0x00); /* not assigned in T1 mode */
|
|
else if (FORMAT_E1ANY && (i==0) && !FORMAT_E1NONE)
|
|
framer_write(sc, Bt8370_SBCn +i, 0x01); /* assigned, TS0 o/h bits */
|
|
else if (FORMAT_E1CAS && (i==16) && !FORMAT_E1NONE)
|
|
framer_write(sc, Bt8370_SBCn +i, 0x01); /* assigned, TS16 o/h bits */
|
|
else if ((sc->status.time_slots |= (sc->config.time_slots & (1<<i))))
|
|
framer_write(sc, Bt8370_SBCn +i, 0x0D); /* assigned, RINDO, TINDO */
|
|
else
|
|
framer_write(sc, Bt8370_SBCn +i, 0x01); /* assigned, idle */
|
|
|
|
/* 100-11F:TPCn -- Transmit Per-Channel Control */
|
|
if (FORMAT_E1CAS && (i==0))
|
|
framer_write(sc, Bt8370_TPCn +i, 0x30); /* tidle, sig=0000 (MAS) */
|
|
else if (FORMAT_E1CAS && (i==16))
|
|
framer_write(sc, Bt8370_TPCn +i, 0x3B); /* tidle, sig=1011 (XYXX) */
|
|
else if ((sc->config.time_slots & (1<<i)) == 0)
|
|
framer_write(sc, Bt8370_TPCn +i, 0x20); /* tidle: use TSLIP_LOn */
|
|
else
|
|
framer_write(sc, Bt8370_TPCn +i, 0x00); /* nothing special */
|
|
|
|
/* 140-15F:TSLIP_LOn -- Transmit PCM Slip Buffer */
|
|
framer_write(sc, Bt8370_TSLIP_LOn +i, 0x7F); /* idle chan data */
|
|
/* 180-19F:RPCn -- Receive Per-Channel Control */
|
|
framer_write(sc, Bt8370_RPCn +i, 0x00); /* nothing special */
|
|
}
|
|
|
|
/* Enable transmitter output drivers. */
|
|
mii16_set_bits(sc, MII16_T1_XOE);
|
|
}
|
|
|
|
static void
|
|
t1_detach(softc_t *sc)
|
|
{
|
|
led_on(sc, MII16_LED_ALL);
|
|
}
|
|
|
|
/* End T1E1 card code */
|
|
|
|
|
|
#if SYNC_PPP /* Linux */
|
|
|
|
static struct stack sync_ppp_stack =
|
|
{
|
|
.ioctl = sync_ppp_ioctl,
|
|
.type = sync_ppp_type,
|
|
.mtu = sync_ppp_mtu,
|
|
.watchdog = sync_ppp_watchdog,
|
|
.open = sync_ppp_open,
|
|
.attach = sync_ppp_attach,
|
|
.detach = sync_ppp_detach,
|
|
};
|
|
|
|
static int /* context: process */
|
|
sync_ppp_ioctl(softc_t *sc, struct ifreq *ifr, int cmd)
|
|
{
|
|
return sppp_do_ioctl(sc->netdev, ifr, cmd);
|
|
}
|
|
|
|
static int /* context: interrupt */
|
|
sync_ppp_type(softc_t *sc, struct sk_buff *skb)
|
|
{
|
|
return htons(ETH_P_WAN_PPP);
|
|
}
|
|
|
|
static int /* context: process */
|
|
sync_ppp_mtu(softc_t *sc, int mtu)
|
|
{
|
|
return ((mtu < 128) || (mtu > PPP_MTU)) ? -EINVAL : 0;
|
|
}
|
|
|
|
static void /* context: softirq */
|
|
sync_ppp_watchdog(softc_t *sc)
|
|
{
|
|
/* Notice when the link comes up. */
|
|
if ((sc->last_link_state != STATE_UP) &&
|
|
(sc->status.link_state == STATE_UP))
|
|
sppp_reopen(sc->netdev);
|
|
|
|
/* Notice when the link goes down. */
|
|
if ((sc->last_link_state == STATE_UP) &&
|
|
(sc->status.link_state != STATE_UP))
|
|
sppp_close(sc->netdev);
|
|
|
|
/* Report current line protocol. */
|
|
sc->status.stack = STACK_SYNC_PPP;
|
|
if (sc->sppp->pp_flags & PP_CISCO)
|
|
sc->status.proto = PROTO_C_HDLC;
|
|
else
|
|
sc->status.proto = PROTO_PPP;
|
|
|
|
/* Report keep-alive status. */
|
|
sc->status.keep_alive = sc->sppp->pp_flags & PP_KEEPALIVE;
|
|
}
|
|
|
|
static int /* never fails */
|
|
sync_ppp_open(softc_t *sc, struct config *config)
|
|
{
|
|
/* Refresh the keep_alive flag. */
|
|
if (config->keep_alive)
|
|
sc->sppp->pp_flags |= PP_KEEPALIVE;
|
|
else
|
|
sc->sppp->pp_flags &= ~PP_KEEPALIVE;
|
|
sc->config.keep_alive = config->keep_alive;
|
|
|
|
/* Done if proto is not changing. */
|
|
if (config->proto == sc->config.proto)
|
|
return 0;
|
|
|
|
/* Close */
|
|
sppp_close(sc->netdev);
|
|
|
|
/* Change line protocol. */
|
|
switch (config->proto)
|
|
{
|
|
case PROTO_PPP:
|
|
sc->sppp->pp_flags &= ~PP_CISCO;
|
|
sc->netdev->type = ARPHRD_PPP;
|
|
sc->config.proto = PROTO_PPP;
|
|
break;
|
|
default:
|
|
case PROTO_C_HDLC:
|
|
sc->sppp->pp_flags |= PP_CISCO;
|
|
sc->netdev->type = ARPHRD_CISCO;
|
|
sc->config.proto = PROTO_C_HDLC;
|
|
break;
|
|
}
|
|
|
|
/* Open */
|
|
sppp_open(sc->netdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int /* never fails */
|
|
sync_ppp_attach(softc_t *sc, struct config *config)
|
|
{
|
|
sc->ppd = &sc->ppp_dev; /* struct ppp_device* */
|
|
sc->netdev->priv = &sc->ppd; /* struct ppp_device** */
|
|
sc->ppp_dev.dev = sc->netdev;
|
|
sc->sppp = &sc->ppp_dev.sppp;
|
|
|
|
sppp_attach(&sc->ppp_dev);
|
|
sc->netdev->do_ioctl = netdev_ioctl;
|
|
config->keep_alive = 1;
|
|
|
|
sc->config.stack = STACK_SYNC_PPP;
|
|
sc->stack = &sync_ppp_stack;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int /* never fails */
|
|
sync_ppp_detach(softc_t *sc)
|
|
{
|
|
sppp_close(sc->netdev);
|
|
sppp_detach(sc->netdev);
|
|
|
|
netdev_setup(sc->netdev);
|
|
sc->config.stack = STACK_NONE;
|
|
sc->config.proto = PROTO_NONE;
|
|
sc->stack = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* SYNC_PPP */
|
|
|
|
#if GEN_HDLC /* Linux only */
|
|
|
|
static struct stack gen_hdlc_stack =
|
|
{
|
|
.ioctl = gen_hdlc_ioctl,
|
|
.type = gen_hdlc_type,
|
|
.mtu = gen_hdlc_mtu,
|
|
.watchdog = gen_hdlc_watchdog,
|
|
.open = gen_hdlc_open,
|
|
.attach = gen_hdlc_attach,
|
|
.detach = gen_hdlc_detach,
|
|
};
|
|
|
|
static int /* context: process */
|
|
gen_hdlc_ioctl(softc_t *sc, struct ifreq *ifr, int cmd)
|
|
{
|
|
te1_settings settings;
|
|
int error = 0;
|
|
|
|
if (cmd == SIOCWANDEV)
|
|
switch (ifr->ifr_settings.type)
|
|
{
|
|
case IF_GET_IFACE: /* get interface config */
|
|
{
|
|
unsigned int size;
|
|
|
|
/* NOTE: This assumes struct sync_serial_settings has the */
|
|
/* same layout as the first part of struct te1_settings. */
|
|
if (sc->status.card_type == CSID_LMC_T1E1)
|
|
{
|
|
if (FORMAT_T1ANY) ifr->ifr_settings.type = IF_IFACE_T1;
|
|
if (FORMAT_E1ANY) ifr->ifr_settings.type = IF_IFACE_E1;
|
|
size = sizeof(te1_settings);
|
|
}
|
|
else
|
|
{
|
|
ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
|
|
size = sizeof(sync_serial_settings);
|
|
}
|
|
if (ifr->ifr_settings.size < size)
|
|
{
|
|
ifr->ifr_settings.size = size;
|
|
return -ENOBUFS;
|
|
}
|
|
ifr->ifr_settings.size = size;
|
|
|
|
if (sc->config.tx_clk_src == CFG_CLKMUX_ST)
|
|
settings.clock_type = CLOCK_EXT;
|
|
if (sc->config.tx_clk_src == CFG_CLKMUX_INT)
|
|
settings.clock_type = CLOCK_TXINT;
|
|
if (sc->config.tx_clk_src == CFG_CLKMUX_RT)
|
|
settings.clock_type = CLOCK_TXFROMRX;
|
|
settings.loopback = (sc->config.loop_back != CFG_LOOP_NONE) ? 1:0;
|
|
settings.clock_rate = sc->status.tx_speed;
|
|
if (sc->status.card_type == CSID_LMC_T1E1)
|
|
settings.slot_map = sc->status.time_slots;
|
|
|
|
error = copy_to_user(ifr->ifr_settings.ifs_ifsu.te1,
|
|
&settings, size);
|
|
break;
|
|
}
|
|
case IF_IFACE_SYNC_SERIAL: /* set interface config */
|
|
case IF_IFACE_T1:
|
|
case IF_IFACE_E1:
|
|
{
|
|
struct config config = sc->config;
|
|
|
|
if (!capable(CAP_NET_ADMIN)) return -EPERM;
|
|
if (ifr->ifr_settings.size > sizeof(te1_settings))
|
|
return -ENOBUFS;
|
|
error = copy_from_user(&settings,
|
|
ifr->ifr_settings.ifs_ifsu.te1, sizeof(te1_settings));
|
|
|
|
if (settings.clock_type == CLOCK_EXT)
|
|
config.tx_clk_src = CFG_CLKMUX_ST;
|
|
else if (settings.clock_type == CLOCK_TXINT)
|
|
config.tx_clk_src = CFG_CLKMUX_INT;
|
|
else if (settings.clock_type == CLOCK_TXFROMRX)
|
|
config.tx_clk_src = CFG_CLKMUX_RT;
|
|
|
|
if (settings.loopback)
|
|
config.loop_back = CFG_LOOP_TULIP;
|
|
else
|
|
config.loop_back = CFG_LOOP_NONE;
|
|
|
|
tulip_loop(sc, &config);
|
|
sc->card->attach(sc, &config);
|
|
break;
|
|
}
|
|
default: /* Pass the rest to the line pkg. */
|
|
{
|
|
error = hdlc_ioctl(sc->netdev, ifr, cmd);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
error = -EINVAL;
|
|
|
|
return error;
|
|
}
|
|
|
|
static int /* context: interrupt */
|
|
gen_hdlc_type(softc_t *sc, struct sk_buff *skb)
|
|
{
|
|
return hdlc_type_trans(skb, sc->netdev);
|
|
}
|
|
|
|
static int /* context: process */
|
|
gen_hdlc_mtu(softc_t *sc, int mtu)
|
|
{
|
|
return ((mtu < 68) || (mtu > HDLC_MAX_MTU)) ? -EINVAL : 0;
|
|
}
|
|
|
|
static void /* context: softirq */
|
|
gen_hdlc_watchdog(softc_t *sc)
|
|
{
|
|
/* Notice when the link comes up. */
|
|
if ((sc->last_link_state != STATE_UP) &&
|
|
(sc->status.link_state == STATE_UP))
|
|
hdlc_set_carrier(1, sc->netdev);
|
|
|
|
/* Notice when the link goes down. */
|
|
if ((sc->last_link_state == STATE_UP) &&
|
|
(sc->status.link_state != STATE_UP))
|
|
hdlc_set_carrier(0, sc->netdev);
|
|
|
|
/* Report current line protocol. */
|
|
sc->status.stack = STACK_GEN_HDLC;
|
|
switch (sc->hdlcdev->proto.id)
|
|
{
|
|
case IF_PROTO_PPP:
|
|
{
|
|
struct sppp* sppp = &sc->hdlcdev->state.ppp.pppdev.sppp;
|
|
sc->status.keep_alive = sppp->pp_flags & PP_KEEPALIVE;
|
|
sc->status.proto = PROTO_PPP;
|
|
break;
|
|
}
|
|
case IF_PROTO_CISCO:
|
|
sc->status.proto = PROTO_C_HDLC;
|
|
break;
|
|
case IF_PROTO_FR:
|
|
sc->status.proto = PROTO_FRM_RLY;
|
|
break;
|
|
case IF_PROTO_HDLC:
|
|
sc->status.proto = PROTO_IP_HDLC;
|
|
break;
|
|
case IF_PROTO_X25:
|
|
sc->status.proto = PROTO_X25;
|
|
break;
|
|
case IF_PROTO_HDLC_ETH:
|
|
sc->status.proto = PROTO_ETH_HDLC;
|
|
break;
|
|
default:
|
|
sc->status.proto = PROTO_NONE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
gen_hdlc_open(softc_t *sc, struct config *config)
|
|
{
|
|
int error = 0;
|
|
|
|
/* Refresh the keep_alive flag. */
|
|
if (sc->hdlcdev->proto.id == IF_PROTO_PPP)
|
|
{
|
|
struct sppp* sppp = &sc->hdlcdev->state.ppp.pppdev.sppp;
|
|
if (config->keep_alive)
|
|
sppp->pp_flags |= PP_KEEPALIVE;
|
|
else
|
|
sppp->pp_flags &= ~PP_KEEPALIVE;
|
|
sc->config.keep_alive = config->keep_alive;
|
|
}
|
|
|
|
/* Done if proto is not changing. */
|
|
if (config->proto == sc->config.proto)
|
|
return 0;
|
|
|
|
/* Close */
|
|
hdlc_close(sc->netdev);
|
|
|
|
/* Generic-HDLC gets protocol params using copy_from_user().
|
|
* This is a problem for a kernel-resident device driver.
|
|
* Luckily, PPP does not need any params so no copy_from_user().
|
|
*/
|
|
|
|
/* Change line protocol. */
|
|
if (config->proto == PROTO_PPP)
|
|
{
|
|
struct ifreq ifr;
|
|
ifr.ifr_settings.size = 0;
|
|
ifr.ifr_settings.type = IF_PROTO_PPP;
|
|
hdlc_ioctl(sc->netdev, &ifr, SIOCWANDEV);
|
|
}
|
|
/* Changing to any protocol other than PPP */
|
|
/* requires using the 'sethdlc' program. */
|
|
|
|
/* Open */
|
|
if ((error = hdlc_open(sc->netdev)))
|
|
{
|
|
if (sc->config.debug)
|
|
printk("%s: hdlc_open(): error %d\n", NAME_UNIT, error);
|
|
if (error == -ENOSYS)
|
|
printk("%s: Try 'sethdlc %s hdlc|ppp|cisco|fr'\n",
|
|
NAME_UNIT, NAME_UNIT);
|
|
sc->config.proto = PROTO_NONE;
|
|
}
|
|
else
|
|
sc->config.proto = config->proto;
|
|
|
|
return error;
|
|
}
|
|
|
|
static int /* never fails */
|
|
gen_hdlc_attach(softc_t *sc, struct config *config)
|
|
{
|
|
sc->netdev->priv = sc->hdlcdev;
|
|
|
|
/* hdlc_attach(sc->netdev); */
|
|
sc->netdev->mtu = HDLC_MAX_MTU;
|
|
sc->hdlcdev->attach = gen_hdlc_card_params;
|
|
sc->hdlcdev->xmit = netdev_start;
|
|
config->keep_alive = 1;
|
|
|
|
sc->config.stack = STACK_GEN_HDLC;
|
|
sc->stack = &gen_hdlc_stack;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int /* never fails */
|
|
gen_hdlc_detach(softc_t *sc)
|
|
{
|
|
hdlc_close(sc->netdev);
|
|
/* hdlc_detach(sc->netdev); */
|
|
hdlc_proto_detach(sc->hdlcdev);
|
|
memset(&sc->hdlcdev->proto, 0, sizeof sc->hdlcdev->proto);
|
|
|
|
netdev_setup(sc->netdev);
|
|
sc->config.stack = STACK_NONE;
|
|
sc->config.proto = PROTO_NONE;
|
|
sc->stack = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen_hdlc_card_params(struct net_device *netdev,
|
|
unsigned short encoding, unsigned short parity)
|
|
{
|
|
softc_t *sc = NETDEV2SC(netdev);
|
|
struct config config = sc->config;
|
|
|
|
/* Encoding does not seem to apply to synchronous interfaces, */
|
|
/* but Parity seems to be generic-HDLC's name for CRC. */
|
|
if (parity == PARITY_CRC32_PR1_CCITT)
|
|
config.crc_len = CFG_CRC_32;
|
|
if (parity == PARITY_CRC16_PR1_CCITT)
|
|
config.crc_len = CFG_CRC_16;
|
|
sc->card->attach(sc, &config);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* GEN_HDLC */
|
|
|
|
#if P2P /* BSD/OS */
|
|
|
|
static struct stack p2p_stack =
|
|
{
|
|
.ioctl = p2p_stack_ioctl,
|
|
.input = p2p_stack_input,
|
|
.output = p2p_stack_output,
|
|
.watchdog = p2p_stack_watchdog,
|
|
.open = p2p_stack_open,
|
|
.attach = p2p_stack_attach,
|
|
.detach = p2p_stack_detach,
|
|
};
|
|
|
|
static int /* context: process */
|
|
p2p_stack_ioctl(softc_t *sc, u_long cmd, void *data)
|
|
{
|
|
return p2p_ioctl(sc->ifp, cmd, data);
|
|
}
|
|
|
|
static void /* context: interrupt */
|
|
p2p_stack_input(softc_t *sc, struct mbuf *mbuf)
|
|
{
|
|
struct mbuf *new_mbuf = mbuf;
|
|
|
|
while (new_mbuf)
|
|
{
|
|
sc->p2p->p2p_hdrinput(sc->p2p, new_mbuf->m_data, new_mbuf->m_len);
|
|
new_mbuf = new_mbuf->m_next;
|
|
}
|
|
sc->p2p->p2p_input(sc->p2p, NULL);
|
|
m_freem(mbuf);
|
|
}
|
|
|
|
static void /* context: interrupt */
|
|
p2p_stack_output(softc_t *sc)
|
|
{
|
|
if (!IFQ_IS_EMPTY(&sc->p2p->p2p_isnd))
|
|
IFQ_DEQUEUE(&sc->p2p->p2p_isnd, sc->tx_mbuf);
|
|
else
|
|
IFQ_DEQUEUE(&sc->ifp->if_snd, sc->tx_mbuf);
|
|
}
|
|
|
|
static void /* context: softirq */
|
|
p2p_stack_watchdog(softc_t *sc)
|
|
{
|
|
/* Notice change in link status. */
|
|
if ((sc->last_link_state != sc->status.link_state) &&
|
|
/* if_slowtimo() can run before raw_init() has inited rawcb. */
|
|
(sc->p2p->p2p_modem != NULL) && (rawcb.rcb_next != NULL))
|
|
(*sc->p2p->p2p_modem)(sc->p2p, sc->status.link_state==STATE_UP);
|
|
|
|
/* Report current line protocol. */
|
|
sc->status.stack = STACK_P2P;
|
|
switch (sc->ifp->if_type)
|
|
{
|
|
case IFT_PPP:
|
|
sc->status.proto = PROTO_PPP;
|
|
break;
|
|
case IFT_PTPSERIAL:
|
|
sc->status.proto = PROTO_C_HDLC;
|
|
break;
|
|
case IFT_FRELAY:
|
|
sc->status.proto = PROTO_FRM_RLY;
|
|
break;
|
|
default:
|
|
sc->status.proto = PROTO_NONE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
p2p_stack_open(softc_t *sc, struct config *config)
|
|
{
|
|
int error = 0;
|
|
|
|
/* Done if proto is not changing. */
|
|
if (config->proto == sc->config.proto)
|
|
return 0;
|
|
|
|
if (error = p2p_stack_detach(sc))
|
|
return error;
|
|
|
|
/* Change line protocol. */
|
|
switch (config->proto)
|
|
{
|
|
case PROTO_PPP:
|
|
sc->ifp->if_type = IFT_PPP;
|
|
sc->config.proto = PROTO_PPP;
|
|
break;
|
|
case PROTO_C_HDLC:
|
|
sc->ifp->if_type = IFT_PTPSERIAL;
|
|
sc->config.proto = PROTO_C_HDLC;
|
|
break;
|
|
case PROTO_FRM_RLY:
|
|
sc->ifp->if_type = IFT_FRELAY;
|
|
sc->config.proto = PROTO_FRM_RLY;
|
|
break;
|
|
default:
|
|
case PROTO_NONE:
|
|
sc->ifp->if_type = IFT_NONE;
|
|
sc->config.proto = PROTO_NONE;
|
|
return 0;
|
|
}
|
|
|
|
error = p2p_stack_attach(sc, config);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
p2p_stack_attach(softc_t *sc, struct config *config)
|
|
{
|
|
int error;
|
|
|
|
sc->p2p = &sc->p2pcom;
|
|
sc->p2p->p2p_proto = 0; /* force p2p_attach to re-init */
|
|
|
|
if ((error = p2p_attach(sc->p2p))) /* calls bpfattach() */
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: p2p_attach(): error %d\n", NAME_UNIT, error);
|
|
if (error == EPFNOSUPPORT)
|
|
printf("%s: Try 'ifconfig %s linktype ppp|frelay|chdlc'\n",
|
|
NAME_UNIT, NAME_UNIT);
|
|
sc->config.stack = STACK_NONE; /* not attached to P2P */
|
|
return error;
|
|
}
|
|
sc->p2p->p2p_mdmctl = p2p_mdmctl;
|
|
sc->p2p->p2p_getmdm = p2p_getmdm;
|
|
|
|
sc->config.stack = STACK_P2P;
|
|
sc->stack = &p2p_stack;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
p2p_stack_detach(softc_t *sc)
|
|
{
|
|
int error = 0;
|
|
|
|
if ((error = p2p_detach(sc->p2p))) /* calls bfpdetach() */
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: p2p_detach(): error %d\n", NAME_UNIT, error);
|
|
if (error == EBUSY)
|
|
printf("%s: Try 'ifconfig %s down -remove'\n",
|
|
NAME_UNIT, NAME_UNIT);
|
|
sc->config.stack = STACK_P2P; /* still attached to P2P */
|
|
return error;
|
|
}
|
|
|
|
ifnet_setup(sc->ifp);
|
|
sc->config.stack = STACK_NONE;
|
|
sc->config.proto = PROTO_NONE;
|
|
sc->stack = NULL;
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Callout from P2P: */
|
|
/* Get the state of DCD (Data Carrier Detect). */
|
|
static int /* never fails */
|
|
p2p_getmdm(struct p2pcom *p2p, void *result)
|
|
{
|
|
softc_t *sc = IFP2SC(&p2p->p2p_if);
|
|
|
|
/* Non-zero is not good enough; TIOCM_CAR is 0x40. */
|
|
*(int *)result = (sc->status.link_state==STATE_UP) ? TIOCM_CAR : 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Callout from P2P: */
|
|
/* Set the state of DTR (Data Terminal Ready). */
|
|
static int /* never fails */
|
|
p2p_mdmctl(struct p2pcom *p2p, int flag)
|
|
{
|
|
softc_t *sc = IFP2SC(&p2p->p2p_if);
|
|
|
|
set_ready(sc, flag);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* P2P */
|
|
|
|
#if SPPP /* FreeBSD, NetBSD, OpenBSD */
|
|
|
|
static struct stack sppp_stack =
|
|
{
|
|
.ioctl = sppp_stack_ioctl,
|
|
.input = sppp_stack_input,
|
|
.output = sppp_stack_output,
|
|
.watchdog = sppp_stack_watchdog,
|
|
.open = sppp_stack_open,
|
|
.attach = sppp_stack_attach,
|
|
.detach = sppp_stack_detach,
|
|
};
|
|
|
|
# if !defined(PP_FR)
|
|
# define PP_FR 0
|
|
# endif
|
|
# if !defined(DLT_C_HDLC)
|
|
# define DLT_C_HDLC DLT_PPP
|
|
# endif
|
|
# if !defined(DLT_FRELAY)
|
|
# define DLT_FRELAY DLT_PPP
|
|
# endif
|
|
|
|
static int /* context: process */
|
|
sppp_stack_ioctl(softc_t *sc, u_long cmd, void *data)
|
|
{
|
|
return sppp_ioctl(sc->ifp, cmd, data);
|
|
}
|
|
|
|
static void /* context: interrupt */
|
|
sppp_stack_input(softc_t *sc, struct mbuf *mbuf)
|
|
{
|
|
sppp_input(sc->ifp, mbuf);
|
|
}
|
|
|
|
static void /* context: interrupt */
|
|
sppp_stack_output(softc_t *sc)
|
|
{
|
|
sc->tx_mbuf = sppp_dequeue(sc->ifp);
|
|
}
|
|
|
|
static void /* context: softirq */
|
|
sppp_stack_watchdog(softc_t *sc)
|
|
{
|
|
/* Notice when the link comes up. */
|
|
if ((sc->last_link_state != STATE_UP) &&
|
|
(sc->status.link_state == STATE_UP))
|
|
sppp_tls(sc->sppp);
|
|
|
|
/* Notice when the link goes down. */
|
|
if ((sc->last_link_state == STATE_UP) &&
|
|
(sc->status.link_state != STATE_UP))
|
|
sppp_tlf(sc->sppp);
|
|
|
|
/* Report current line protocol. */
|
|
sc->status.stack = STACK_SPPP;
|
|
if (sc->sppp->pp_flags & PP_CISCO)
|
|
sc->status.proto = PROTO_C_HDLC;
|
|
else
|
|
sc->status.proto = PROTO_PPP;
|
|
|
|
/* Report keep-alive status. */
|
|
sc->status.keep_alive = sc->sppp->pp_flags & PP_KEEPALIVE;
|
|
}
|
|
|
|
static int /* never fails */
|
|
sppp_stack_open(softc_t *sc, struct config *config)
|
|
{
|
|
/* Refresh the keep_alive flag. */
|
|
if (config->keep_alive)
|
|
sc->sppp->pp_flags |= PP_KEEPALIVE;
|
|
else
|
|
sc->sppp->pp_flags &= ~PP_KEEPALIVE;
|
|
sc->config.keep_alive = config->keep_alive;
|
|
|
|
/* Done if proto is not changing. */
|
|
if (config->proto == sc->config.proto)
|
|
return 0;
|
|
|
|
/* Close */
|
|
sc->ifp->if_flags &= ~IFF_UP; /* down */
|
|
sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL);
|
|
|
|
/* Change line protocol. */
|
|
LMC_BPF_DETACH(sc);
|
|
switch (config->proto)
|
|
{
|
|
case PROTO_PPP:
|
|
{
|
|
sc->sppp->pp_flags &= ~PP_CISCO;
|
|
LMC_BPF_ATTACH(sc, DLT_PPP, 4);
|
|
sc->config.proto = PROTO_PPP;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
case PROTO_C_HDLC:
|
|
{
|
|
sc->sppp->pp_flags |= PP_CISCO;
|
|
LMC_BPF_ATTACH(sc, DLT_C_HDLC, 4);
|
|
sc->config.proto = PROTO_C_HDLC;
|
|
break;
|
|
}
|
|
|
|
} /* switch(config->proto) */
|
|
|
|
/* Open */
|
|
sc->ifp->if_flags |= IFF_UP; /* up and not running */
|
|
sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int /* never fails */
|
|
sppp_stack_attach(softc_t *sc, struct config *config)
|
|
{
|
|
sc->sppp = &sc->spppcom;
|
|
|
|
LMC_BPF_ATTACH(sc, DLT_RAW, 0);
|
|
sppp_attach(sc->ifp);
|
|
sc->sppp->pp_tls = sppp_tls;
|
|
sc->sppp->pp_tlf = sppp_tlf;
|
|
config->keep_alive = 1;
|
|
|
|
sc->config.stack = STACK_SPPP;
|
|
sc->stack = &sppp_stack;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int /* never fails */
|
|
sppp_stack_detach(softc_t *sc)
|
|
{
|
|
sc->ifp->if_flags &= ~IFF_UP; /* down */
|
|
sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL); /* close() */
|
|
sppp_detach(sc->ifp);
|
|
LMC_BPF_DETACH(sc);
|
|
|
|
ifnet_setup(sc->ifp);
|
|
sc->config.stack = STACK_NONE;
|
|
sc->config.proto = PROTO_NONE;
|
|
sc->stack = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Callout from SPPP: */
|
|
static void
|
|
sppp_tls(struct sppp *sppp)
|
|
{
|
|
/* Calling pp_up/down() required by PPP mode in OpenBSD. */
|
|
/* Calling pp_up/down() panics PPP mode in NetBSD. */
|
|
/* Calling pp_up/down() breaks Cisco mode in FreeBSD. */
|
|
if (!(sppp->pp_flags & PP_CISCO)) /* not Cisco */
|
|
sppp->pp_up(sppp);
|
|
}
|
|
|
|
/* Callout from SPPP: */
|
|
static void
|
|
sppp_tlf(struct sppp *sppp)
|
|
{
|
|
/* Calling pp_up/down() required by PPP mode in OpenBSD. */
|
|
/* Calling pp_up/down() panics PPP mode in NetBSD. */
|
|
/* Calling pp_up/down() breaks Cisco mode in FreeBSD. */
|
|
if (!(sppp->pp_flags & PP_CISCO)) /* not Cisco */
|
|
sppp->pp_down(sppp);
|
|
}
|
|
|
|
#endif /* SPPP */
|
|
|
|
/* RawIP is built into the driver. */
|
|
|
|
static struct stack rawip_stack =
|
|
{
|
|
#if IFNET
|
|
.ioctl = rawip_ioctl,
|
|
.input = rawip_input,
|
|
.output = rawip_output,
|
|
#elif NETDEV
|
|
.ioctl = rawip_ioctl,
|
|
.type = rawip_type,
|
|
.mtu = rawip_mtu,
|
|
#endif
|
|
.watchdog = rawip_watchdog,
|
|
.open = rawip_open,
|
|
.attach = rawip_attach,
|
|
.detach = rawip_detach,
|
|
};
|
|
|
|
#if IFNET
|
|
|
|
static int /* context: process */
|
|
rawip_ioctl(softc_t *sc, u_long cmd, void *data)
|
|
{
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int error = 0;
|
|
|
|
switch (cmd)
|
|
{
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if (sc->config.debug)
|
|
printf("%s: rawip_ioctl: SIOCADD/DELMULTI\n", NAME_UNIT);
|
|
case SIOCSIFFLAGS:
|
|
error = ifioctl_common(sc->ifp, cmd, data);
|
|
break;
|
|
case SIOCAIFADDR:
|
|
case SIOCSIFDSTADDR:
|
|
break;
|
|
case SIOCINITIFADDR:
|
|
sc->ifp->if_flags |= IFF_UP; /* a Unix tradition */
|
|
break;
|
|
case SIOCSIFMTU:
|
|
if ((ifr->ifr_mtu < 72) || (ifr->ifr_mtu > 65535))
|
|
error = EINVAL;
|
|
else if ((error = ifioctl_common(sc->ifp, cmd, data)) == ENETRESET)
|
|
error = 0;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static void /* context: interrupt */
|
|
rawip_input(softc_t *sc, struct mbuf *mbuf)
|
|
{
|
|
ifnet_input(sc->ifp, mbuf);
|
|
}
|
|
|
|
static void /* context: interrupt */
|
|
rawip_output(softc_t *sc)
|
|
{
|
|
IFQ_DEQUEUE(&sc->ifp->if_snd, sc->tx_mbuf);
|
|
}
|
|
|
|
#elif NETDEV
|
|
|
|
static int /* context: process */
|
|
rawip_ioctl(softc_t *sc, struct ifreq *ifr, int cmd)
|
|
{
|
|
if (sc->config.debug)
|
|
printk("%s: rawip_ioctl; cmd=0x%08x\n", NAME_UNIT, cmd);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int /* context: interrupt */
|
|
rawip_type(softc_t *sc, struct sk_buff *skb)
|
|
{
|
|
if (skb->data[0]>>4 == 4)
|
|
return htons(ETH_P_IP);
|
|
else if (skb->data[0]>>4 == 6)
|
|
return htons(ETH_P_IPV6);
|
|
else
|
|
return htons(ETH_P_HDLC);
|
|
}
|
|
|
|
static int /* Process Context */
|
|
rawip_mtu(softc_t *sc, int mtu)
|
|
{
|
|
return ((mtu < 72) || (mtu > 65535)) ? -EINVAL : 0;
|
|
}
|
|
|
|
#endif /* IFNET */
|
|
|
|
static void /* context: softirq */
|
|
rawip_watchdog(softc_t *sc)
|
|
{
|
|
#if IFNET
|
|
if ((sc->status.link_state == STATE_UP) &&
|
|
(sc->ifp->if_flags & IFF_UP))
|
|
sc->ifp->if_flags |= IFF_RUNNING;
|
|
if ((sc->status.link_state != STATE_UP) ||
|
|
!(sc->ifp->if_flags & IFF_UP))
|
|
sc->ifp->if_flags &= ~IFF_RUNNING;
|
|
#endif /* IFNET */
|
|
|
|
/* Report current line protocol. */
|
|
sc->status.stack = STACK_RAWIP;
|
|
sc->status.proto = PROTO_IP_HDLC;
|
|
}
|
|
|
|
static int
|
|
rawip_open(softc_t *sc, struct config *config)
|
|
{
|
|
sc->config.proto = PROTO_IP_HDLC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
rawip_attach(softc_t *sc, struct config *config)
|
|
{
|
|
#if IFNET
|
|
LMC_BPF_ATTACH(sc, DLT_RAW, 0);
|
|
#endif
|
|
|
|
sc->config.stack = STACK_RAWIP;
|
|
sc->stack = &rawip_stack;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
rawip_detach(softc_t *sc)
|
|
{
|
|
#if IFNET
|
|
LMC_BPF_DETACH(sc);
|
|
ifnet_setup(sc->ifp);
|
|
#elif NETDEV
|
|
netdev_setup(sc->netdev);
|
|
#endif
|
|
|
|
sc->config.stack = STACK_NONE;
|
|
sc->config.proto = PROTO_NONE;
|
|
sc->stack = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if IFNET
|
|
|
|
/* Called to give a newly arrived pkt to higher levels. */
|
|
/* Called from rxintr_cleanup() with bottom_lock held. */
|
|
/* This is only used with rawip_stack on a BSD. */
|
|
static void
|
|
ifnet_input(struct ifnet *ifp, struct mbuf *mbuf)
|
|
{
|
|
softc_t *sc = IFP2SC(ifp);
|
|
pktqueue_t *pktq = NULL;
|
|
|
|
# if INET
|
|
if (mbuf->m_data[0]>>4 == 4)
|
|
pktq = ip_pktq;
|
|
# endif /* INET */
|
|
|
|
# if INET6
|
|
if (mbuf->m_data[0]>>4 == 6)
|
|
pktq = ip6_pktq;
|
|
# endif /* INET6 */
|
|
|
|
if (!pktq)
|
|
{
|
|
m_freem(mbuf);
|
|
sc->status.cntrs.idrops++;
|
|
if (sc->config.debug)
|
|
printf("%s: ifnet_input: rx pkt dropped: not IPv4 or IPv6\n", NAME_UNIT);
|
|
return;
|
|
}
|
|
|
|
DISABLE_INTR;
|
|
if (__predict_false(!pktq_enqueue(pktq, mbuf, 0)))
|
|
{
|
|
sc->status.cntrs.idrops++;
|
|
m_freem(mbuf);
|
|
}
|
|
ENABLE_INTR;
|
|
}
|
|
|
|
/* sppp and p2p replace this with their own proc.
|
|
* This is only used with rawip_stack on a BSD.
|
|
* This procedure is very similar to ng_rcvdata().
|
|
*/
|
|
static int /* context: process */
|
|
ifnet_output(struct ifnet *ifp, struct mbuf *m,
|
|
const struct sockaddr *dst, const struct rtentry *rt)
|
|
{
|
|
softc_t *sc = IFP2SC(ifp);
|
|
int error = 0;
|
|
|
|
/* Fail if the link is down. */
|
|
if (sc->status.link_state != STATE_UP)
|
|
{
|
|
m_freem(m);
|
|
sc->status.cntrs.odrops++;
|
|
if (sc->config.debug)
|
|
printf("%s: ifnet_output: tx pkt dropped: link down\n", NAME_UNIT);
|
|
return ENETDOWN;
|
|
}
|
|
|
|
/* ifnet_output() ENQUEUEs in a syscall or softirq. */
|
|
/* txintr_setup() DEQUEUEs in a hard interrupt. */
|
|
/* Some BSD QUEUE routines are not interrupt-safe. */
|
|
{
|
|
DISABLE_INTR; /* noop in FreeBSD */
|
|
IFQ_ENQUEUE(&ifp->if_snd, m, error);
|
|
ENABLE_INTR; /* noop in FreeBSD */
|
|
}
|
|
|
|
if (error)
|
|
{
|
|
sc->status.cntrs.odrops++;
|
|
if (sc->config.debug)
|
|
printf("%s: ifnet_output: tx pkt dropped: IFQ_ENQUEUE(): error %d\n",
|
|
NAME_UNIT, error);
|
|
}
|
|
else
|
|
/* Process tx pkts; do not process rx pkts. */
|
|
lmc_interrupt(sc, 0, 0);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int /* context: process */
|
|
ifnet_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
softc_t *sc = IFP2SC(ifp);
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int error = 0;
|
|
|
|
/* Aquire ioctl/watchdog interlock. */
|
|
if ((error = TOP_LOCK(sc))) return error;
|
|
|
|
switch (cmd)
|
|
{
|
|
/* Catch the IOCTLs used by lmcconfig. */
|
|
case LMCIOCGSTAT:
|
|
case LMCIOCGCFG:
|
|
case LMCIOCSCFG:
|
|
case LMCIOCREAD:
|
|
case LMCIOCWRITE:
|
|
case LMCIOCTL:
|
|
error = lmc_ioctl(sc, cmd, data);
|
|
break;
|
|
|
|
case SIOCSIFCAP:
|
|
# if DEVICE_POLLING
|
|
if ((ifr->ifr_reqcap & IFCAP_POLLING) &&
|
|
!(ifp->if_capenable & IFCAP_POLLING) &&
|
|
!(error = ether_poll_register(bsd_poll, ifp)))
|
|
{ /* enable polling */
|
|
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_DISABLE);
|
|
ifp->if_capenable |= IFCAP_POLLING;
|
|
}
|
|
else if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
|
|
(ifp->if_capenable & IFCAP_POLLING) &&
|
|
!(error = ether_poll_deregister(ifp)))
|
|
{ /* disable polling */
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TXRX);
|
|
}
|
|
else
|
|
error = EINVAL;
|
|
# endif /* DEVICE_POLLING */
|
|
break;
|
|
|
|
case SIOCSIFMEDIA: /* calls lmc_ifmedia_change() */
|
|
case SIOCGIFMEDIA: /* calls ifmedia_status() */
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->ifm, cmd);
|
|
break;
|
|
|
|
|
|
/* Pass the rest to the line protocol. */
|
|
default:
|
|
if (sc->stack)
|
|
error = sc->stack->ioctl(sc, cmd, data);
|
|
else
|
|
error = ENOSYS;
|
|
break;
|
|
}
|
|
|
|
/* release ioctl/watchdog interlock */
|
|
TOP_UNLOCK(sc);
|
|
|
|
if (error && sc->config.debug)
|
|
printf("%s: ifnet_ioctl: op=IO%s%s len=%3lu grp='%c' num=%3lu err=%d\n",
|
|
NAME_UNIT, cmd&IOC_IN ? "W":"", cmd&IOC_OUT ? "R":"",
|
|
IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xFF, error);
|
|
|
|
return error;
|
|
}
|
|
|
|
static void /* context: process */
|
|
ifnet_start(struct ifnet *ifp)
|
|
{
|
|
softc_t *sc = IFP2SC(ifp);
|
|
|
|
/* Process tx pkts; do not process rx pkts. */
|
|
lmc_interrupt(sc, 0, 0);
|
|
}
|
|
|
|
static void /* context: softirq */
|
|
ifnet_watchdog(struct ifnet *ifp)
|
|
{
|
|
softc_t *sc = IFP2SC(ifp);
|
|
struct cntrs *cntrs = &sc->status.cntrs;
|
|
|
|
lmc_watchdog(sc); /* updates link_state */
|
|
|
|
if (sc->status.link_state == STATE_UP)
|
|
ifp->if_link_state = LINK_STATE_UP;
|
|
else
|
|
ifp->if_link_state = LINK_STATE_DOWN;
|
|
|
|
/* Copy statistics from sc to ifp. */
|
|
ifp->if_baudrate = sc->status.tx_speed;
|
|
ifp->if_ibytes = cntrs->ibytes;
|
|
ifp->if_obytes = cntrs->obytes;
|
|
ifp->if_ipackets = cntrs->ipackets;
|
|
ifp->if_opackets = cntrs->opackets;
|
|
ifp->if_ierrors = cntrs->ierrors;
|
|
ifp->if_oerrors = cntrs->oerrors;
|
|
ifp->if_iqdrops = cntrs->idrops;
|
|
|
|
/* If the interface debug flag is set, set the driver debug flag. */
|
|
if (sc->ifp->if_flags & IFF_DEBUG)
|
|
sc->config.debug = 1;
|
|
|
|
/* Call this procedure again after one second. */
|
|
ifp->if_timer = 1;
|
|
}
|
|
|
|
/* This setup is for RawIP; SPPP and P2P change many items. */
|
|
/* Note the similarity to linux's netdev_setup(). */
|
|
static void
|
|
ifnet_setup(struct ifnet *ifp)
|
|
{
|
|
ifp->if_flags = IFF_POINTOPOINT;
|
|
ifp->if_flags |= IFF_SIMPLEX;
|
|
ifp->if_flags |= IFF_NOARP;
|
|
ifp->_if_input = ifnet_input;
|
|
ifp->if_output = ifnet_output;
|
|
ifp->if_start = ifnet_start;
|
|
ifp->if_ioctl = ifnet_ioctl;
|
|
ifp->if_watchdog = ifnet_watchdog;
|
|
ifp->if_timer = 1;
|
|
ifp->if_type = IFT_PTPSERIAL;
|
|
ifp->if_addrlen = 0;
|
|
ifp->if_hdrlen = 0;
|
|
ifp->if_mtu = MAX_DESC_LEN;
|
|
}
|
|
|
|
/* Attach the ifnet kernel interface. */
|
|
/* context: kernel (boot) or process (syscall) */
|
|
static int
|
|
ifnet_attach(softc_t *sc)
|
|
{
|
|
# if SPPP
|
|
sc->ifp = &sc->spppcom.pp_if;
|
|
# elif P2P
|
|
sc->ifp = &sc->p2pcom.p2p_if;
|
|
# else
|
|
sc->ifp = &sc->ifnet;
|
|
# endif
|
|
|
|
sc->ifp->if_softc = sc;
|
|
ifnet_setup(sc->ifp);
|
|
|
|
# if DEVICE_POLLING
|
|
sc->ifp->if_capabilities |= IFCAP_POLLING;
|
|
# endif
|
|
|
|
/* Every OS does it differently! */
|
|
strlcpy(sc->ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
|
|
|
|
IFQ_SET_MAXLEN(&sc->ifp->if_snd, SNDQ_MAXLEN);
|
|
IFQ_SET_READY(&sc->ifp->if_snd);
|
|
|
|
if_attach(sc->ifp);
|
|
|
|
if_alloc_sadl(sc->ifp);
|
|
|
|
ifmedia_setup(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Detach the ifnet kernel interface. */
|
|
/* context: kernel (boot) or process (syscall). */
|
|
static void
|
|
ifnet_detach(softc_t *sc)
|
|
{
|
|
ifmedia_delete_instance(&sc->ifm, IFM_INST_ANY);
|
|
|
|
# if DEVICE_POLLING
|
|
if (sc->ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(sc->ifp);
|
|
# endif
|
|
|
|
IFQ_PURGE(&sc->ifp->if_snd);
|
|
|
|
if_detach(sc->ifp);
|
|
|
|
}
|
|
|
|
static void
|
|
ifmedia_setup(softc_t *sc)
|
|
{
|
|
/* Initialize ifmedia mechanism. */
|
|
ifmedia_init(&sc->ifm, IFM_OMASK | IFM_GMASK | IFM_IMASK,
|
|
lmc_ifmedia_change, ifmedia_status);
|
|
|
|
ifmedia_add(&sc->ifm, IFM_ETHER | IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->ifm, IFM_ETHER | IFM_NONE);
|
|
}
|
|
|
|
/* SIOCSIFMEDIA: context: process. */
|
|
static int
|
|
lmc_ifmedia_change(struct ifnet *ifp)
|
|
{
|
|
softc_t *sc = IFP2SC(ifp);
|
|
struct config config = sc->config;
|
|
int media = sc->ifm.ifm_media;
|
|
int error;
|
|
|
|
|
|
/* ifconfig lmc0 mediaopt loopback */
|
|
if (media & IFM_LOOP)
|
|
config.loop_back = CFG_LOOP_TULIP;
|
|
else
|
|
config.loop_back = CFG_LOOP_NONE;
|
|
|
|
error = open_proto(sc, &config);
|
|
tulip_loop(sc, &config);
|
|
sc->card->attach(sc, &config);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* SIOCGIFMEDIA: context: process. */
|
|
static void
|
|
ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
softc_t *sc = IFP2SC(ifp);
|
|
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
if (sc->status.link_state == STATE_UP)
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
|
|
if (sc->config.loop_back != CFG_LOOP_NONE)
|
|
ifmr->ifm_active |= IFM_LOOP;
|
|
|
|
}
|
|
|
|
#endif /* IFNET */
|
|
|
|
#if NETDEV
|
|
|
|
/* This net_device method is called when IFF_UP goes true. */
|
|
static int /* context: process */
|
|
netdev_open(struct net_device *netdev)
|
|
{
|
|
softc_t *sc = NETDEV2SC(netdev);
|
|
|
|
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TXRX);
|
|
netif_start_queue(sc->netdev);
|
|
set_ready(sc, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This net_device method is called when IFF_UP goes false. */
|
|
static int /* context: process */
|
|
netdev_stop(struct net_device *netdev)
|
|
{
|
|
softc_t *sc = NETDEV2SC(netdev);
|
|
|
|
set_ready(sc, 0);
|
|
netif_stop_queue(sc->netdev);
|
|
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_DISABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This net_device method hands outgoing packets to the transmitter. */
|
|
/* With txintr_setup(), it implements output flow control. */
|
|
static int /* context: netdev->xmit_lock held; BHs disabled */
|
|
netdev_start(struct sk_buff *skb, struct net_device *netdev)
|
|
{
|
|
softc_t *sc = NETDEV2SC(netdev);
|
|
|
|
if (sc->tx_skb == NULL)
|
|
{
|
|
/* Put this skb where the transmitter will see it. */
|
|
sc->tx_skb = skb;
|
|
|
|
/* Process tx pkts; do not process rx pkts. */
|
|
lmc_interrupt(sc, 0, 0);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
else
|
|
{
|
|
/* txintr_setup() calls netif_wake_queue(). */
|
|
netif_stop_queue(netdev);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
}
|
|
|
|
# if NAPI
|
|
|
|
/* This net_device method services the card without interrupts. */
|
|
/* With rxintr_cleanup(), it implements input flow control. */
|
|
static int /* context: softirq */
|
|
netdev_poll(struct net_device *netdev, int *budget)
|
|
{
|
|
softc_t *sc = NETDEV2SC(netdev);
|
|
int received;
|
|
|
|
/* Handle the card interrupt with kernel ints enabled. */
|
|
/* Allow processing up to netdev->quota incoming packets. */
|
|
/* This is the ONLY time lmc_interrupt() may process rx pkts. */
|
|
/* Otherwise (sc->quota == 0) and rxintr_cleanup() is a NOOP. */
|
|
lmc_interrupt(sc, min(netdev->quota, *budget), 0);
|
|
|
|
/* Report number of rx packets processed. */
|
|
received = netdev->quota - sc->quota;
|
|
netdev->quota -= received;
|
|
*budget -= received;
|
|
|
|
/* If quota prevented processing all rx pkts, leave rx ints disabled. */
|
|
if (sc->quota == 0) /* this is off by one...but harmless */
|
|
{
|
|
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TX);
|
|
return 1; /* more pkts to handle -- reschedule */
|
|
}
|
|
|
|
/* Remove self from poll list. */
|
|
netif_rx_complete(netdev);
|
|
|
|
/* Enable card interrupts. */
|
|
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TXRX);
|
|
|
|
return 0; /* all pkts handled -- success */
|
|
}
|
|
|
|
# endif /* NAPI */
|
|
|
|
/* This net_device method handles IOCTL syscalls. */
|
|
static int /* context: process */
|
|
netdev_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
|
|
{
|
|
softc_t *sc = NETDEV2SC(netdev);
|
|
int error = 0;
|
|
|
|
/* Aquire ioctl/watchdog interlock. */
|
|
if ((error = TOP_LOCK(sc))) return error;
|
|
|
|
if ((cmd >= SIOCDEVPRIVATE) && (cmd <= SIOCDEVPRIVATE+15))
|
|
{
|
|
struct iohdr *iohdr = (struct iohdr *)ifr;
|
|
u_int16_t direction = iohdr->direction;
|
|
u_int16_t length = iohdr->length;
|
|
char *user_addr = (char *)iohdr->iohdr;
|
|
char *kern_addr = NULL;
|
|
|
|
if (iohdr->cookie != NGM_LMC_COOKIE)
|
|
error = -EINVAL;
|
|
|
|
/* Emulate a BSD-style IOCTL syscall. */
|
|
if (!error)
|
|
error = (kern_addr = kmalloc(length, GFP_KERNEL)) ? 0: -ENOMEM;
|
|
if (!error && (direction & DIR_IOW))
|
|
error = copy_from_user(kern_addr, user_addr, length);
|
|
if (!error)
|
|
error = -lmc_ioctl(sc, (unsigned long)cmd, kern_addr);
|
|
if (!error && (direction & DIR_IOR))
|
|
error = copy_to_user(user_addr, kern_addr, length);
|
|
kfree(kern_addr);
|
|
}
|
|
else if (sc->stack)
|
|
error = sc->stack->ioctl(sc, ifr, cmd);
|
|
else
|
|
error = -ENOSYS;
|
|
# if GEN_HDLC
|
|
/* If generic-HDLC is present but not the currently-attached
|
|
* stack, call hdlc_ioctl() anyway because proto must
|
|
* be set using SIOCWANDEV or hdlc_open() will fail.
|
|
*/
|
|
if (sc->stack != &gen_hdlc_stack)
|
|
hdlc_ioctl(sc->netdev, ifr, cmd); /* ignore error result */
|
|
# endif
|
|
|
|
/* Release ioctl/watchdog interlock. */
|
|
TOP_UNLOCK(sc);
|
|
|
|
if (error && sc->config.debug)
|
|
printk("%s: netdev_ioctl; cmd=0x%08x error=%d\n",
|
|
NAME_UNIT, cmd, error);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* This net_device method sets the Maximum Tranmit Unit. */
|
|
/* This driver does not limit MTU; stacks and protos do. */
|
|
static int
|
|
netdev_mtu(struct net_device *netdev, int mtu)
|
|
{
|
|
softc_t *sc = NETDEV2SC(netdev);
|
|
int error = 0;
|
|
|
|
if (sc->stack)
|
|
error = sc->stack->mtu(sc, mtu);
|
|
else
|
|
error = -ENOSYS;
|
|
|
|
if (!error)
|
|
netdev->mtu = mtu;
|
|
|
|
return error;
|
|
}
|
|
|
|
/* This net_device method restarts the transmitter if it hangs. */
|
|
static void /* BHs disabled */
|
|
netdev_timeout(struct net_device *netdev)
|
|
{
|
|
softc_t *sc = NETDEV2SC(netdev);
|
|
|
|
/* Process tx pkts; do not process rx pkts. */
|
|
lmc_interrupt(sc, 0, 0);
|
|
}
|
|
|
|
/* This net_device method returns a pointer to device statistics. */
|
|
static struct net_device_stats * /* context: process */
|
|
netdev_stats(struct net_device *netdev)
|
|
{
|
|
softc_t *sc = NETDEV2SC(netdev);
|
|
|
|
# if GEN_HDLC
|
|
return &sc->hdlcdev->stats;
|
|
# else
|
|
return &sc->netdev_stats;
|
|
# endif
|
|
}
|
|
|
|
static void /* context: softirq */
|
|
netdev_watchdog(unsigned long softc)
|
|
{
|
|
softc_t *sc = (softc_t *)softc;
|
|
struct cntrs *cntrs = &sc->status.cntrs;
|
|
struct net_device_stats *stats = netdev_stats(sc->netdev);
|
|
|
|
lmc_watchdog(sc); /* updates link_state */
|
|
|
|
/* Notice when the link comes up. */
|
|
if ((sc->last_link_state != STATE_UP) &&
|
|
(sc->status.link_state == STATE_UP))
|
|
{
|
|
netif_wake_queue(sc->netdev);
|
|
netif_carrier_on(sc->netdev);
|
|
}
|
|
|
|
/* Notice when the link goes down. */
|
|
if ((sc->last_link_state == STATE_UP) &&
|
|
(sc->status.link_state != STATE_UP))
|
|
{
|
|
netif_tx_disable(sc->netdev);
|
|
netif_carrier_off(sc->netdev);
|
|
}
|
|
|
|
/* Copy statistics from sc to netdev. */
|
|
stats->rx_bytes = cntrs->ibytes;
|
|
stats->tx_bytes = cntrs->obytes;
|
|
stats->rx_packets = cntrs->ipackets;
|
|
stats->tx_packets = cntrs->opackets;
|
|
stats->rx_errors = cntrs->ierrors;
|
|
stats->tx_errors = cntrs->oerrors;
|
|
stats->rx_dropped = cntrs->idrops;
|
|
stats->rx_missed_errors = cntrs->missed;
|
|
stats->tx_dropped = cntrs->odrops;
|
|
stats->rx_fifo_errors = cntrs->fifo_over;
|
|
stats->rx_over_errors = cntrs->overruns;
|
|
stats->tx_fifo_errors = cntrs->fifo_under;
|
|
/*stats->tx_under_errors = cntrs=>underruns; */
|
|
|
|
/* If the interface debug flag is set, set the driver debug flag. */
|
|
if (sc->netdev->flags & IFF_DEBUG)
|
|
sc->config.debug = 1;
|
|
|
|
/* Call this procedure again after one second. */
|
|
sc->wd_timer.expires = jiffies + HZ -8; /* -8 is a FUDGE factor */
|
|
add_timer(&sc->wd_timer);
|
|
}
|
|
|
|
/* This setup is for RawIP; Generic-HDLC changes many items. */
|
|
/* Note the similarity to BSD's ifnet_setup(). */
|
|
static void
|
|
netdev_setup(struct net_device *netdev)
|
|
{
|
|
netdev->flags = IFF_POINTOPOINT;
|
|
netdev->flags |= IFF_NOARP;
|
|
netdev->open = netdev_open;
|
|
netdev->stop = netdev_stop;
|
|
netdev->hard_start_xmit = netdev_start;
|
|
# if NAPI
|
|
netdev->poll = netdev_poll;
|
|
netdev->weight = 32; /* sc->rxring.num_descs; */
|
|
# endif
|
|
netdev->rebuild_header = NULL; /* no arp */
|
|
netdev->hard_header = NULL; /* no arp */
|
|
netdev->do_ioctl = netdev_ioctl;
|
|
netdev->change_mtu = netdev_mtu;
|
|
netdev->tx_timeout = netdev_timeout;
|
|
netdev->get_stats = netdev_stats;
|
|
netdev->watchdog_timeo = 1 * HZ;
|
|
netdev->mtu = MAX_DESC_LEN;
|
|
netdev->type = ARPHRD_HDLC;
|
|
netdev->hard_header_len = 16;
|
|
netdev->addr_len = 0;
|
|
netdev->tx_queue_len = SNDQ_MAXLEN;
|
|
/* The receiver generates frag-lists for packets >4032 bytes. */
|
|
/* The transmitter accepts scatter/gather lists and frag-lists. */
|
|
/* However Linux linearizes outgoing packets since our hardware */
|
|
/* does not compute soft checksums. All that work for nothing! */
|
|
/*netdev->features |= NETIF_F_SG; */
|
|
/*netdev->features |= NETIF_F_FRAGLIST; */
|
|
}
|
|
|
|
/* Attach the netdevice kernel interface. */
|
|
/* context: kernel (boot) or process (syscall). */
|
|
static int
|
|
netdev_attach(softc_t *sc)
|
|
{
|
|
int error;
|
|
|
|
# if GEN_HDLC /* generic-hdlc line protocol pkg configured */
|
|
|
|
/* Allocate space for the HDLC network device struct. */
|
|
/* Allocating a netdev and attaching to generic-HDLC should be separate. */
|
|
if ((sc->netdev = alloc_hdlcdev(sc)) == NULL)
|
|
{
|
|
printk("%s: netdev_attach: alloc_hdlcdev() failed\n", DEVICE_NAME);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Initialize the basic network device struct. */
|
|
/* This clobbers some netdev stuff set by alloc_hdlcdev(). */
|
|
/* Our get_stats() and change_mtu() do the right thing. */
|
|
netdev_setup(sc->netdev);
|
|
|
|
/* HACK: make the private eco-net pointer -> struct softc. */
|
|
sc->netdev->ec_ptr = sc;
|
|
|
|
/* Cross-link pcidev and netdev. */
|
|
SET_NETDEV_DEV(sc->netdev, &sc->pcidev->dev);
|
|
sc->netdev->mem_end = pci_resource_end(sc->pcidev, 1);
|
|
sc->netdev->mem_start = pci_resource_start(sc->pcidev, 1);
|
|
sc->netdev->base_addr = pci_resource_start(sc->pcidev, 0);
|
|
sc->netdev->irq = sc->pcidev->irq;
|
|
|
|
/* Initialize the HDLC extension to the network device. */
|
|
sc->hdlcdev = sc->netdev->priv;
|
|
sc->hdlcdev->attach = gen_hdlc_card_params;
|
|
sc->hdlcdev->xmit = netdev_start; /* the REAL hard_start_xmit() */
|
|
|
|
if ((error = register_hdlc_device(sc->netdev)))
|
|
{
|
|
printk("%s: register_hdlc_device(): error %d\n", DEVICE_NAME, error);
|
|
free_netdev(sc->netdev);
|
|
return error;
|
|
}
|
|
|
|
# else
|
|
|
|
/* Allocate and initialize the basic network device struct. */
|
|
if ((sc->netdev = alloc_netdev(0, DEVICE_NAME"%d", netdev_setup)) == NULL)
|
|
{
|
|
printk("%s: netdev_attach: alloc_netdev() failed\n", DEVICE_NAME);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* HACK: make the private eco-net pointer -> struct softc. */
|
|
sc->netdev->ec_ptr = sc;
|
|
|
|
/* Cross-link pcidev and netdev. */
|
|
SET_NETDEV_DEV(sc->netdev, &sc->pcidev->dev);
|
|
sc->netdev->mem_end = pci_resource_end(sc->pcidev, 1);
|
|
sc->netdev->mem_start = pci_resource_start(sc->pcidev, 1);
|
|
sc->netdev->base_addr = pci_resource_start(sc->pcidev, 0);
|
|
sc->netdev->irq = sc->pcidev->irq;
|
|
|
|
if ((error = register_netdev(sc->netdev)))
|
|
{
|
|
printk("%s: register_netdev(): error %d\n", DEVICE_NAME, error);
|
|
free_netdev(sc->netdev);
|
|
return error;
|
|
}
|
|
|
|
# endif /* GEN_HDLC */
|
|
|
|
/* Arrange to call netdev_watchdog() once a second. */
|
|
init_timer(&sc->wd_timer);
|
|
sc->wd_timer.expires = jiffies + HZ; /* now plus one second */
|
|
sc->wd_timer.function = &netdev_watchdog;
|
|
sc->wd_timer.data = (unsigned long) sc;
|
|
add_timer(&sc->wd_timer);
|
|
|
|
return 0; /* success */
|
|
}
|
|
|
|
/* Detach the netdevice kernel interface. */
|
|
/* context: kernel (boot) or process (syscall). */
|
|
static void
|
|
netdev_detach(softc_t *sc)
|
|
{
|
|
if (sc->pcidev == NULL) return;
|
|
if (sc->netdev == NULL) return;
|
|
|
|
netdev_stop(sc->netdev); /* check for not inited */
|
|
del_timer(&sc->wd_timer);
|
|
|
|
# if GEN_HDLC
|
|
unregister_hdlc_device(sc->netdev);
|
|
# else
|
|
unregister_netdev(sc->netdev);
|
|
# endif
|
|
|
|
free_netdev(sc->netdev);
|
|
}
|
|
|
|
#endif /* NETDEV */
|
|
|
|
|
|
#if BSD
|
|
|
|
/* There are TWO VERSIONS of interrupt/DMA code: Linux & BSD.
|
|
* Handling Linux and the BSDs with CPP directives would
|
|
* make the code unreadable, so there are two versions.
|
|
* Conceptually, the two versions do the same thing and
|
|
* lmc_interrupt() does not know they are different.
|
|
*
|
|
* We are "standing on the head of a pin" in these routines.
|
|
* Tulip CSRs can be accessed, but nothing else is interrupt-safe!
|
|
* Do NOT access: MII, GPIO, SROM, BIOSROM, XILINX, SYNTH, or DAC.
|
|
*/
|
|
|
|
/* Initialize a DMA descriptor ring. */
|
|
/* context: kernel (boot) or process (syscall) */
|
|
static int /* BSD version */
|
|
create_ring(softc_t *sc, struct desc_ring *ring, int num_descs)
|
|
{
|
|
struct dma_desc *descs;
|
|
int size_descs = sizeof(struct dma_desc)*num_descs;
|
|
int i, error = 0;
|
|
|
|
/* The DMA descriptor array must not cross a page boundary. */
|
|
if (size_descs > PAGE_SIZE)
|
|
{
|
|
printf("%s: DMA descriptor array > PAGE_SIZE (%d)\n", NAME_UNIT,
|
|
(u_int)PAGE_SIZE);
|
|
return EINVAL;
|
|
}
|
|
|
|
|
|
/* Use the DMA tag passed to attach() for descriptors and buffers. */
|
|
ring->tag = sc->pa_dmat;
|
|
|
|
/* Allocate wired physical memory for DMA descriptor array. */
|
|
if ((error = bus_dmamem_alloc(ring->tag, size_descs, PAGE_SIZE, 0,
|
|
ring->segs, 1, &ring->nsegs, BUS_DMA_NOWAIT)))
|
|
{
|
|
printf("%s: bus_dmamem_alloc(): error %d\n", NAME_UNIT, error);
|
|
return error;
|
|
}
|
|
|
|
/* Map physical address to kernel virtual address. */
|
|
if ((error = bus_dmamem_map(ring->tag, ring->segs, ring->nsegs,
|
|
size_descs, (void **)&ring->first, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)))
|
|
{
|
|
printf("%s: bus_dmamem_map(): error %d\n", NAME_UNIT, error);
|
|
return error;
|
|
}
|
|
descs = ring->first; /* suppress compiler warning about aliasing */
|
|
memset(descs, 0, size_descs);
|
|
|
|
/* Allocate dmamap for PCI access to DMA descriptor array. */
|
|
if ((error = bus_dmamap_create(ring->tag, size_descs, 1,
|
|
size_descs, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ring->map)))
|
|
{
|
|
printf("%s: bus_dmamap_create(): error %d\n", NAME_UNIT, error);
|
|
return error;
|
|
}
|
|
|
|
/* Map kernel virt addr to PCI bus addr for DMA descriptor array. */
|
|
if ((error = bus_dmamap_load(ring->tag, ring->map, descs, size_descs,
|
|
0, BUS_DMA_NOWAIT)))
|
|
{
|
|
printf("%s: bus_dmamap_load(): error %d\n", NAME_UNIT, error);
|
|
return error;
|
|
}
|
|
ring->dma_addr = ring->map->dm_segs[0].ds_addr;
|
|
|
|
/* Allocate dmamaps for each DMA descriptor. */
|
|
for (i=0; i<num_descs; i++)
|
|
if ((error = bus_dmamap_create(ring->tag, MAX_DESC_LEN, 2,
|
|
MAX_CHUNK_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &descs[i].map)))
|
|
{
|
|
printf("%s: bus_dmamap_create(): error %d\n", NAME_UNIT, error);
|
|
return error;
|
|
}
|
|
|
|
|
|
ring->read = descs;
|
|
ring->write = descs;
|
|
ring->first = descs;
|
|
ring->last = descs + num_descs -1;
|
|
ring->last->control = TLP_DCTL_END_RING;
|
|
ring->num_descs = num_descs;
|
|
ring->size_descs = size_descs;
|
|
ring->head = NULL;
|
|
ring->tail = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Destroy a DMA descriptor ring */
|
|
/* context: kernel (boot) or process (syscall) */
|
|
static void /* BSD version */
|
|
destroy_ring(softc_t *sc, struct desc_ring *ring)
|
|
{
|
|
struct dma_desc *desc;
|
|
struct mbuf *m;
|
|
|
|
/* Free queued mbufs. */
|
|
while ((m = mbuf_dequeue(ring)))
|
|
m_freem(m);
|
|
|
|
/* TX may have one pkt that is not on any queue. */
|
|
if (sc->tx_mbuf)
|
|
{
|
|
m_freem(sc->tx_mbuf);
|
|
sc->tx_mbuf = NULL;
|
|
}
|
|
|
|
/* Unmap active DMA descriptors. */
|
|
while (ring->read != ring->write)
|
|
{
|
|
bus_dmamap_unload(ring->tag, ring->read->map);
|
|
if (ring->read++ == ring->last) ring->read = ring->first;
|
|
}
|
|
|
|
|
|
/* Free the dmamaps of all DMA descriptors. */
|
|
for (desc=ring->first; desc!=ring->last+1; desc++)
|
|
if (desc->map)
|
|
bus_dmamap_destroy(ring->tag, desc->map);
|
|
/* Unmap PCI address for DMA descriptor array. */
|
|
if (ring->dma_addr)
|
|
bus_dmamap_unload(ring->tag, ring->map);
|
|
/* Free dmamap for DMA descriptor array. */
|
|
if (ring->map)
|
|
bus_dmamap_destroy(ring->tag, ring->map);
|
|
/* Unmap kernel address for DMA descriptor array. */
|
|
if (ring->first)
|
|
bus_dmamem_unmap(ring->tag, (void *)ring->first, ring->size_descs);
|
|
/* Free kernel memory for DMA descriptor array. */
|
|
if (ring->segs[0].ds_addr)
|
|
bus_dmamem_free(ring->tag, ring->segs, ring->nsegs);
|
|
|
|
}
|
|
|
|
/* Singly-linked tail-queues hold mbufs with active DMA.
|
|
* For RX, single mbuf clusters; for TX, mbuf chains are queued.
|
|
* NB: mbufs are linked through their m_nextpkt field.
|
|
* Callers must hold sc->bottom_lock; not otherwise locked.
|
|
*/
|
|
|
|
/* Put an mbuf (chain) on the tail of the descriptor ring queue. */
|
|
static void /* BSD version */
|
|
mbuf_enqueue(struct desc_ring *ring, struct mbuf *m)
|
|
{
|
|
m->m_nextpkt = NULL;
|
|
if (ring->tail == NULL)
|
|
ring->head = m;
|
|
else
|
|
ring->tail->m_nextpkt = m;
|
|
ring->tail = m;
|
|
}
|
|
|
|
/* Get an mbuf (chain) from the head of the descriptor ring queue. */
|
|
static struct mbuf* /* BSD version */
|
|
mbuf_dequeue(struct desc_ring *ring)
|
|
{
|
|
struct mbuf *m = ring->head;
|
|
if (m)
|
|
if ((ring->head = m->m_nextpkt) == NULL)
|
|
ring->tail = NULL;
|
|
return m;
|
|
}
|
|
|
|
/* Clean up after a packet has been received. */
|
|
static int /* BSD version */
|
|
rxintr_cleanup(softc_t *sc)
|
|
{
|
|
struct desc_ring *ring = &sc->rxring;
|
|
struct dma_desc *first_desc, *last_desc;
|
|
struct mbuf *first_mbuf=NULL, *last_mbuf=NULL;
|
|
struct mbuf *new_mbuf;
|
|
int pkt_len, desc_len;
|
|
|
|
/* Input packet flow control (livelock prevention): */
|
|
/* Give pkts to higher levels only if quota is > 0. */
|
|
if (sc->quota <= 0) return 0;
|
|
|
|
/* This looks complicated, but remember: typically packets up */
|
|
/* to 2048 bytes long fit in one mbuf and use one descriptor. */
|
|
|
|
first_desc = last_desc = ring->read;
|
|
|
|
/* ASSERTION: If there is a descriptor in the ring and the hardware has */
|
|
/* finished with it, then that descriptor will have RX_FIRST_DESC set. */
|
|
if ((ring->read != ring->write) && /* descriptor ring not empty */
|
|
!(ring->read->status & TLP_DSTS_OWNER) && /* hardware done */
|
|
!(ring->read->status & TLP_DSTS_RX_FIRST_DESC)) /* should be set */
|
|
panic("%s: rxintr_cleanup: rx-first-descriptor not set.\n", NAME_UNIT);
|
|
|
|
/* First decide if a complete packet has arrived. */
|
|
/* Run down DMA descriptors looking for one marked "last". */
|
|
/* Bail out if an active descriptor is encountered. */
|
|
/* Accumulate most significant bits of packet length. */
|
|
pkt_len = 0;
|
|
for (;;)
|
|
{
|
|
if (last_desc == ring->write) return 0; /* no more descs */
|
|
if (last_desc->status & TLP_DSTS_OWNER) return 0; /* still active */
|
|
if (last_desc->status & TLP_DSTS_RX_LAST_DESC) break; /* end of packet */
|
|
pkt_len += last_desc->length1 + last_desc->length2; /* entire desc filled */
|
|
if (last_desc++->control & TLP_DCTL_END_RING) last_desc = ring->first; /* ring wrap */
|
|
}
|
|
|
|
/* A complete packet has arrived; how long is it? */
|
|
/* H/w ref man shows RX pkt length as a 14-bit field. */
|
|
/* An experiment found that only the 12 LSBs work. */
|
|
if (((last_desc->status>>16)&0xFFF) == 0) pkt_len += 4096; /* carry-bit */
|
|
pkt_len = (pkt_len & 0xF000) + ((last_desc->status>>16) & 0x0FFF);
|
|
/* Subtract the CRC length unless doing so would underflow. */
|
|
if (pkt_len >= sc->config.crc_len) pkt_len -= sc->config.crc_len;
|
|
|
|
/* Run down DMA descriptors again doing the following:
|
|
* 1) put pkt info in pkthdr of first mbuf,
|
|
* 2) link mbufs,
|
|
* 3) set mbuf lengths.
|
|
*/
|
|
first_desc = ring->read;
|
|
do
|
|
{
|
|
/* Read a DMA descriptor from the ring. */
|
|
last_desc = ring->read;
|
|
/* Advance the ring read pointer. */
|
|
if (ring->read++ == ring->last) ring->read = ring->first;
|
|
|
|
/* Dequeue the corresponding cluster mbuf. */
|
|
new_mbuf = mbuf_dequeue(ring);
|
|
if (new_mbuf == NULL)
|
|
panic("%s: rxintr_cleanup: expected an mbuf\n", NAME_UNIT);
|
|
|
|
desc_len = last_desc->length1 + last_desc->length2;
|
|
/* If bouncing, copy bounce buf to mbuf. */
|
|
DMA_SYNC(last_desc->map, desc_len, BUS_DMASYNC_POSTREAD);
|
|
/* Unmap kernel virtual address to PCI bus address. */
|
|
bus_dmamap_unload(ring->tag, last_desc->map);
|
|
|
|
/* 1) Put pkt info in pkthdr of first mbuf. */
|
|
if (last_desc == first_desc)
|
|
{
|
|
first_mbuf = new_mbuf;
|
|
first_mbuf->m_pkthdr.len = pkt_len; /* total pkt length */
|
|
# if IFNET
|
|
m_set_rcvif(first_mbuf, sc->ifp); /* how it got here */
|
|
# else
|
|
m_reset_rcvif(first_mbuf);
|
|
# endif
|
|
}
|
|
else /* 2) link mbufs. */
|
|
{
|
|
KASSERT(last_mbuf != NULL);
|
|
last_mbuf->m_next = new_mbuf;
|
|
/* M_PKTHDR should be set in the first mbuf only. */
|
|
new_mbuf->m_flags &= ~M_PKTHDR;
|
|
}
|
|
last_mbuf = new_mbuf;
|
|
|
|
/* 3) Set mbuf lengths. */
|
|
new_mbuf->m_len = (pkt_len >= desc_len) ? desc_len : pkt_len;
|
|
pkt_len -= new_mbuf->m_len;
|
|
} while ((last_desc->status & TLP_DSTS_RX_LAST_DESC)==0);
|
|
|
|
/* Decide whether to accept or to drop this packet. */
|
|
/* RxHDLC sets MIIERR for bad CRC, abort and partial byte at pkt end. */
|
|
if (!(last_desc->status & TLP_DSTS_RX_BAD) &&
|
|
(sc->status.link_state == STATE_UP) &&
|
|
(first_mbuf->m_pkthdr.len > 0))
|
|
{
|
|
/* Optimization: copy a small pkt into a small mbuf. */
|
|
if (first_mbuf->m_pkthdr.len <= COPY_BREAK)
|
|
{
|
|
MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA);
|
|
if (new_mbuf)
|
|
{
|
|
m_copy_rcvif(new_mbuf, first_mbuf);
|
|
new_mbuf->m_pkthdr.len = first_mbuf->m_pkthdr.len;
|
|
new_mbuf->m_len = first_mbuf->m_len;
|
|
memcpy(new_mbuf->m_data, first_mbuf->m_data,
|
|
first_mbuf->m_pkthdr.len);
|
|
m_freem(first_mbuf);
|
|
first_mbuf = new_mbuf;
|
|
}
|
|
}
|
|
|
|
/* Include CRC and one flag byte in input byte count. */
|
|
sc->status.cntrs.ibytes += first_mbuf->m_pkthdr.len + sc->config.crc_len +1;
|
|
sc->status.cntrs.ipackets++;
|
|
|
|
/* Berkeley Packet Filter */
|
|
LMC_BPF_MTAP(sc, first_mbuf); /* XXX not in softint */
|
|
|
|
/* Give this good packet to the network stacks. */
|
|
sc->quota--;
|
|
if (sc->stack)
|
|
sc->stack->input(sc, first_mbuf);
|
|
else
|
|
{
|
|
m_freem(first_mbuf);
|
|
sc->status.cntrs.idrops++;
|
|
}
|
|
}
|
|
else if (sc->status.link_state != STATE_UP)
|
|
{
|
|
/* If the link is down, this packet is probably noise. */
|
|
m_freem(first_mbuf);
|
|
sc->status.cntrs.idrops++;
|
|
if (sc->config.debug)
|
|
printf("%s: rxintr_cleanup: rx pkt dropped: link down\n", NAME_UNIT);
|
|
}
|
|
else /* Log and drop this bad packet. */
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: RX bad pkt; len=%d %s%s%s%s\n",
|
|
NAME_UNIT, first_mbuf->m_pkthdr.len,
|
|
(last_desc->status & TLP_DSTS_RX_MII_ERR) ? " miierr" : "",
|
|
(last_desc->status & TLP_DSTS_RX_DRIBBLE) ? " dribble" : "",
|
|
(last_desc->status & TLP_DSTS_RX_DESC_ERR) ? " descerr" : "",
|
|
(last_desc->status & TLP_DSTS_RX_OVERRUN) ? " overrun" : "");
|
|
if (last_desc->status & TLP_DSTS_RX_OVERRUN)
|
|
sc->status.cntrs.fifo_over++;
|
|
else
|
|
sc->status.cntrs.ierrors++;
|
|
m_freem(first_mbuf);
|
|
}
|
|
|
|
return 1; /* did something */
|
|
}
|
|
|
|
/* Setup (prepare) to receive a packet. */
|
|
/* Try to keep the RX descriptor ring full of empty buffers. */
|
|
static int /* BSD version */
|
|
rxintr_setup(softc_t *sc)
|
|
{
|
|
struct desc_ring *ring = &sc->rxring;
|
|
struct dma_desc *desc;
|
|
struct mbuf *m;
|
|
int desc_len;
|
|
int error;
|
|
|
|
/* Ring is full if (wrap(write+1)==read) */
|
|
if (((ring->write == ring->last) ? ring->first : ring->write+1) == ring->read)
|
|
return 0; /* ring is full; nothing to do */
|
|
|
|
/* Allocate a small mbuf and attach an mbuf cluster. */
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
{
|
|
sc->status.cntrs.rxbuf++;
|
|
if (sc->config.debug)
|
|
printf("%s: rxintr_setup: MGETHDR() failed\n", NAME_UNIT);
|
|
return 0;
|
|
}
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT)==0)
|
|
{
|
|
m_freem(m);
|
|
sc->status.cntrs.rxbuf++;
|
|
if (sc->config.debug)
|
|
printf("%s: rxintr_setup: MCLGET() failed\n", NAME_UNIT);
|
|
return 0;
|
|
}
|
|
|
|
/* Queue the mbuf for later processing by rxintr_cleanup. */
|
|
mbuf_enqueue(ring, m);
|
|
|
|
/* Write a DMA descriptor into the ring. */
|
|
/* Hardware will not see it until the OWNER bit is set. */
|
|
desc = ring->write;
|
|
/* Advance the ring write pointer. */
|
|
if (ring->write++ == ring->last) ring->write = ring->first;
|
|
|
|
desc_len = (MCLBYTES < MAX_DESC_LEN) ? MCLBYTES : MAX_DESC_LEN;
|
|
/* Map kernel virt addr to PCI bus addr. */
|
|
if ((error = DMA_LOAD(desc->map, m->m_data, desc_len)))
|
|
printf("%s: bus_dmamap_load(rx): error %d\n", NAME_UNIT, error);
|
|
/* Invalidate the cache for this mbuf. */
|
|
DMA_SYNC(desc->map, desc_len, BUS_DMASYNC_PREREAD);
|
|
|
|
/* Set up the DMA descriptor. */
|
|
desc->address1 = desc->map->dm_segs[0].ds_addr;
|
|
desc->length1 = desc_len>>1;
|
|
desc->address2 = desc->address1 + desc->length1;
|
|
desc->length2 = desc_len>>1;
|
|
|
|
/* Before setting the OWNER bit, flush cache backing DMA descriptors. */
|
|
DMA_SYNC(ring->map, ring->size_descs, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Commit the DMA descriptor to the hardware. */
|
|
desc->status = TLP_DSTS_OWNER;
|
|
|
|
/* Notify the receiver that there is another buffer available. */
|
|
WRITE_CSR(sc, TLP_RX_POLL, 1);
|
|
|
|
return 1; /* did something */
|
|
}
|
|
|
|
/* Clean up after a packet has been transmitted. */
|
|
/* Free the mbuf chain and update the DMA descriptor ring. */
|
|
static int /* BSD version */
|
|
txintr_cleanup(softc_t *sc)
|
|
{
|
|
struct desc_ring *ring = &sc->txring;
|
|
struct dma_desc *desc;
|
|
|
|
while ((ring->read != ring->write) && /* while ring is not empty */
|
|
!(ring->read->status & TLP_DSTS_OWNER))
|
|
{
|
|
/* Read a DMA descriptor from the ring. */
|
|
desc = ring->read;
|
|
/* Advance the ring read pointer. */
|
|
if (ring->read++ == ring->last) ring->read = ring->first;
|
|
|
|
/* This is a no-op on most architectures. */
|
|
DMA_SYNC(desc->map, desc->length1 + desc->length2, BUS_DMASYNC_POSTWRITE);
|
|
/* Unmap kernel virtual address to PCI bus address. */
|
|
bus_dmamap_unload(ring->tag, desc->map);
|
|
|
|
/* If this descriptor is the last segment of a packet, */
|
|
/* then dequeue and free the corresponding mbuf chain. */
|
|
if (desc->control & TLP_DCTL_TX_LAST_SEG)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
if ((m = mbuf_dequeue(ring)) == NULL)
|
|
panic("%s: txintr_cleanup: expected an mbuf\n", NAME_UNIT);
|
|
|
|
/* The only bad TX status is fifo underrun. */
|
|
if (desc->status & TLP_DSTS_TX_UNDERRUN)
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: txintr_cleanup: tx fifo underrun\n", NAME_UNIT);
|
|
sc->status.cntrs.fifo_under++;
|
|
sc->status.cntrs.oerrors++;
|
|
}
|
|
else
|
|
{
|
|
/* Include CRC and one flag byte in output byte count. */
|
|
sc->status.cntrs.obytes += m->m_pkthdr.len + sc->config.crc_len +1;
|
|
sc->status.cntrs.opackets++;
|
|
|
|
/* Berkeley Packet Filter */
|
|
LMC_BPF_MTAP(sc, m); /* XXX not in softint */
|
|
}
|
|
|
|
m_freem(m);
|
|
return 1; /* did something */
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Build DMA descriptors for a transmit packet mbuf chain. */
|
|
static int /* 0=success; 1=error */ /* BSD version */
|
|
txintr_setup_mbuf(softc_t *sc, struct mbuf *m)
|
|
{
|
|
struct desc_ring *ring = &sc->txring;
|
|
struct dma_desc *desc;
|
|
unsigned int desc_len;
|
|
|
|
/* build DMA descriptors for a chain of mbufs. */
|
|
while (m)
|
|
{
|
|
char *data = m->m_data;
|
|
int length = m->m_len; /* zero length mbufs happen! */
|
|
|
|
/* Build DMA descriptors for one mbuf. */
|
|
while (length > 0)
|
|
{
|
|
int error;
|
|
|
|
/* Ring is full if (wrap(write+1)==read) */
|
|
if (((ring->temp==ring->last) ? ring->first : ring->temp+1) == ring->read)
|
|
{ /* Not enough DMA descriptors; try later. */
|
|
for (; ring->temp!=ring->write;
|
|
ring->temp = (ring->temp==ring->first)? ring->last : ring->temp-1)
|
|
bus_dmamap_unload(ring->tag, ring->temp->map);
|
|
sc->status.cntrs.txdma++; /* IFF_OACTIVE? */
|
|
return 1;
|
|
}
|
|
|
|
/* Provisionally, write a descriptor into the ring. */
|
|
/* But do not change the REAL ring write pointer. */
|
|
/* Hardware will not see it until the OWNER bit is set. */
|
|
desc = ring->temp;
|
|
/* Advance the temporary ring write pointer. */
|
|
if (ring->temp++ == ring->last) ring->temp = ring->first;
|
|
|
|
/* Clear all control bits except the END_RING bit. */
|
|
desc->control &= TLP_DCTL_END_RING;
|
|
/* Do not pad short packets up to 64 bytes. */
|
|
desc->control |= TLP_DCTL_TX_NO_PAD;
|
|
/* Use Tulip's CRC-32 generator, if appropriate. */
|
|
if (sc->config.crc_len != CFG_CRC_32)
|
|
desc->control |= TLP_DCTL_TX_NO_CRC;
|
|
/* Set the OWNER bit, except in the first descriptor. */
|
|
if (desc != ring->write)
|
|
desc->status = TLP_DSTS_OWNER;
|
|
|
|
desc_len = (length > MAX_CHUNK_LEN) ? MAX_CHUNK_LEN : length;
|
|
/* Map kernel virt addr to PCI bus addr. */
|
|
if ((error = DMA_LOAD(desc->map, data, desc_len)))
|
|
printf("%s: bus_dmamap_load(tx): error %d\n", NAME_UNIT, error);
|
|
/* Flush the cache and if bouncing, copy mbuf to bounce buf. */
|
|
DMA_SYNC(desc->map, desc_len, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Prevent wild fetches if mapping fails (nsegs==0). */
|
|
desc->length1 = desc->length2 = 0;
|
|
desc->address1 = desc->address2 = 0;
|
|
{
|
|
bus_dma_segment_t *segs = desc->map->dm_segs;
|
|
int nsegs = desc->map->dm_nsegs;
|
|
if (nsegs >= 1)
|
|
{
|
|
desc->address1 = segs[0].ds_addr;
|
|
desc->length1 = segs[0].ds_len;
|
|
}
|
|
if (nsegs == 2)
|
|
{
|
|
desc->address2 = segs[1].ds_addr;
|
|
desc->length2 = segs[1].ds_len;
|
|
}
|
|
}
|
|
|
|
data += desc_len;
|
|
length -= desc_len;
|
|
} /* while (length > 0) */
|
|
|
|
m = m->m_next;
|
|
} /* while (m) */
|
|
|
|
return 0; /* success */
|
|
}
|
|
|
|
/* Setup (prepare) to transmit a packet. */
|
|
/* Select a packet, build DMA descriptors and give packet to hardware. */
|
|
/* If DMA descriptors run out, abandon the attempt and return 0. */
|
|
static int /* BSD version */
|
|
txintr_setup(softc_t *sc)
|
|
{
|
|
struct desc_ring *ring = &sc->txring;
|
|
struct dma_desc *first_desc, *last_desc;
|
|
|
|
/* Protect against half-up links: Do not transmit */
|
|
/* if the receiver can not hear the far end. */
|
|
if (sc->status.link_state != STATE_UP) return 0;
|
|
|
|
/* Pick a packet to transmit. */
|
|
if ((sc->tx_mbuf == NULL) && sc->stack)
|
|
sc->stack->output(sc);
|
|
if (sc->tx_mbuf == NULL) return 0; /* no pkt to transmit */
|
|
|
|
/* Build DMA descriptors for an outgoing mbuf chain. */
|
|
ring->temp = ring->write; /* temporary ring write pointer */
|
|
if (txintr_setup_mbuf(sc, sc->tx_mbuf)) return 0;
|
|
|
|
/* Enqueue the mbuf; txintr_cleanup will free it. */
|
|
mbuf_enqueue(ring, sc->tx_mbuf);
|
|
|
|
/* The transmitter has room for another packet. */
|
|
sc->tx_mbuf = NULL;
|
|
|
|
/* Set first & last segment bits. */
|
|
/* last_desc is the desc BEFORE the one pointed to by ring->temp. */
|
|
first_desc = ring->write;
|
|
first_desc->control |= TLP_DCTL_TX_FIRST_SEG;
|
|
last_desc = (ring->temp==ring->first)? ring->last : ring->temp-1;
|
|
last_desc->control |= TLP_DCTL_TX_LAST_SEG;
|
|
/* Interrupt at end-of-transmission? Why bother the poor computer! */
|
|
/* last_desc->control |= TLP_DCTL_TX_INTERRUPT; */
|
|
|
|
/* Make sure the OWNER bit is not set in the next descriptor. */
|
|
/* The OWNER bit may have been set if a previous call aborted. */
|
|
ring->temp->status = 0;
|
|
|
|
/* Commit the DMA descriptors to the software. */
|
|
ring->write = ring->temp;
|
|
|
|
/* Before setting the OWNER bit, flush cache backing DMA descriptors. */
|
|
DMA_SYNC(ring->map, ring->size_descs, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Commit the DMA descriptors to the hardware. */
|
|
first_desc->status = TLP_DSTS_OWNER;
|
|
|
|
/* Notify the transmitter that there is another packet to send. */
|
|
WRITE_CSR(sc, TLP_TX_POLL, 1);
|
|
|
|
return 1; /* did something */
|
|
}
|
|
|
|
/* BSD kernels call this when a hardware interrupt happens. */
|
|
static intr_return_t /* context: interrupt */
|
|
bsd_interrupt(void *arg)
|
|
{
|
|
softc_t *sc = arg;
|
|
|
|
# if DEVICE_POLLING
|
|
if (sc->ifp->if_capenable & IFCAP_POLLING)
|
|
return IRQ_NONE;
|
|
# endif
|
|
|
|
/* Cut losses early if this is not our interrupt. */
|
|
if ((READ_CSR(sc, TLP_STATUS) & TLP_INT_TXRX)==0)
|
|
return IRQ_NONE;
|
|
|
|
/* Process tx and rx pkts. */
|
|
lmc_interrupt(sc, sc->rxring.num_descs, 0);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#endif /* BSD */
|
|
|
|
# if DEVICE_POLLING
|
|
|
|
/* This procedure services the card without interrupts. */
|
|
/* With rxintr_cleanup(), it implements input flow control. */
|
|
static void /* context: softirq */
|
|
bsd_poll(struct ifnet *ifp, enum poll_cmd cmd, int quota)
|
|
{
|
|
softc_t *sc = IFP2SC(ifp);
|
|
|
|
/* Cut losses early if this is not our interrupt. */
|
|
if ((READ_CSR(sc, TLP_STATUS) & TLP_INT_TXRX)==0)
|
|
return;
|
|
|
|
/* Process all tx pkts and up to quota rx pkts. */
|
|
lmc_interrupt(sc, quota, (cmd==POLL_AND_CHECK_STATUS));
|
|
}
|
|
|
|
# endif /* DEVICE_POLLING */
|
|
|
|
|
|
/* Open a line protocol. */
|
|
/* context: kernel (boot) or process (syscall) */
|
|
static int
|
|
open_proto(softc_t *sc, struct config *config)
|
|
{
|
|
int error = 0;
|
|
|
|
if (sc->stack)
|
|
error = sc->stack->open(sc, config);
|
|
else
|
|
error = BSD ? ENOSYS : -ENOSYS;
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Attach a line protocol stack. */
|
|
/* context: kernel (boot) or process (syscall) */
|
|
static int
|
|
attach_stack(softc_t *sc, struct config *config)
|
|
{
|
|
int error = 0;
|
|
struct stack *stack = NULL;
|
|
|
|
/* Done if stack is not changing. */
|
|
if (sc->config.stack == config->stack)
|
|
return 0;
|
|
|
|
/* Detach the current stack. */
|
|
if (sc->stack && ((error = sc->stack->detach(sc))))
|
|
return error;
|
|
|
|
switch (config->stack)
|
|
{
|
|
case STACK_RAWIP: /* built-in */
|
|
stack = &rawip_stack;
|
|
break;
|
|
|
|
#if SPPP
|
|
case STACK_SPPP:
|
|
stack = &sppp_stack;
|
|
break;
|
|
#endif
|
|
|
|
#if P2P
|
|
case STACK_P2P:
|
|
stack = &p2p_stack;
|
|
break;
|
|
#endif
|
|
|
|
#if GEN_HDLC
|
|
case STACK_GEN_HDLC:
|
|
stack = &gen_hdlc_stack;
|
|
break;
|
|
#endif
|
|
|
|
#if SYNC_PPP
|
|
case STACK_SYNC_PPP:
|
|
stack = &sync_ppp_stack;
|
|
break;
|
|
#endif
|
|
|
|
|
|
default:
|
|
stack = NULL;
|
|
break;
|
|
}
|
|
|
|
if (stack)
|
|
error = stack->attach(sc, config);
|
|
else
|
|
error = BSD ? ENOSYS : -ENOSYS;
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
* This handles IOCTLs from lmcconfig(8).
|
|
* Must not run when card watchdogs run.
|
|
* Always called with top_lock held.
|
|
*/
|
|
static int /* context: process */
|
|
lmc_ioctl(softc_t *sc, u_long cmd, void *data)
|
|
{
|
|
struct iohdr *iohdr = (struct iohdr *) data;
|
|
struct ioctl *ioctl = (struct ioctl *) data;
|
|
struct status *status = (struct status *) data;
|
|
struct config *config = (struct config *) data;
|
|
int error = 0;
|
|
|
|
/* All structs start with a string and a cookie. */
|
|
if (iohdr->cookie != NGM_LMC_COOKIE)
|
|
return EINVAL;
|
|
|
|
switch (cmd)
|
|
{
|
|
case LMCIOCGSTAT:
|
|
{
|
|
*status = sc->status;
|
|
iohdr->cookie = NGM_LMC_COOKIE;
|
|
break;
|
|
}
|
|
case LMCIOCGCFG:
|
|
{
|
|
*config = sc->config;
|
|
iohdr->cookie = NGM_LMC_COOKIE;
|
|
break;
|
|
}
|
|
case LMCIOCSCFG:
|
|
{
|
|
if ((error = CHECK_CAP)) break;
|
|
if ((error = attach_stack(sc, config)));
|
|
else error = open_proto(sc, config);
|
|
tulip_loop(sc, config);
|
|
sc->card->attach(sc, config);
|
|
sc->config.debug = config->debug;
|
|
break;
|
|
}
|
|
case LMCIOCREAD:
|
|
{
|
|
if (ioctl->cmd == IOCTL_RW_PCI)
|
|
{
|
|
if (ioctl->address > 252) { error = EFAULT; break; }
|
|
ioctl->data = READ_PCI_CFG(sc, ioctl->address);
|
|
}
|
|
else if (ioctl->cmd == IOCTL_RW_CSR)
|
|
{
|
|
if (ioctl->address > 15) { error = EFAULT; break; }
|
|
ioctl->data = READ_CSR(sc, ioctl->address*TLP_CSR_STRIDE);
|
|
}
|
|
else if (ioctl->cmd == IOCTL_RW_SROM)
|
|
{
|
|
if (ioctl->address > 63) { error = EFAULT; break; }
|
|
ioctl->data = srom_read(sc, ioctl->address);
|
|
}
|
|
else if (ioctl->cmd == IOCTL_RW_BIOS)
|
|
ioctl->data = bios_read(sc, ioctl->address);
|
|
else if (ioctl->cmd == IOCTL_RW_MII)
|
|
ioctl->data = mii_read(sc, ioctl->address);
|
|
else if (ioctl->cmd == IOCTL_RW_FRAME)
|
|
ioctl->data = framer_read(sc, ioctl->address);
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
case LMCIOCWRITE:
|
|
{
|
|
if ((error = CHECK_CAP)) break;
|
|
if (ioctl->cmd == IOCTL_RW_PCI)
|
|
{
|
|
if (ioctl->address > 252) { error = EFAULT; break; }
|
|
WRITE_PCI_CFG(sc, ioctl->address, ioctl->data);
|
|
}
|
|
else if (ioctl->cmd == IOCTL_RW_CSR)
|
|
{
|
|
if (ioctl->address > 15) { error = EFAULT; break; }
|
|
WRITE_CSR(sc, ioctl->address*TLP_CSR_STRIDE, ioctl->data);
|
|
}
|
|
else if (ioctl->cmd == IOCTL_RW_SROM)
|
|
{
|
|
if (ioctl->address > 63) { error = EFAULT; break; }
|
|
srom_write(sc, ioctl->address, ioctl->data); /* can sleep */
|
|
}
|
|
else if (ioctl->cmd == IOCTL_RW_BIOS)
|
|
{
|
|
if (ioctl->address == 0) bios_erase(sc);
|
|
bios_write(sc, ioctl->address, ioctl->data); /* can sleep */
|
|
}
|
|
else if (ioctl->cmd == IOCTL_RW_MII)
|
|
mii_write(sc, ioctl->address, ioctl->data);
|
|
else if (ioctl->cmd == IOCTL_RW_FRAME)
|
|
framer_write(sc, ioctl->address, ioctl->data);
|
|
else if (ioctl->cmd == IOCTL_WO_SYNTH)
|
|
synth_write(sc, (struct synth *)&ioctl->data);
|
|
else if (ioctl->cmd == IOCTL_WO_DAC)
|
|
{
|
|
dac_write(sc, 0x9002); /* set Vref = 2.048 volts */
|
|
dac_write(sc, ioctl->data & 0xFFF);
|
|
}
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
case LMCIOCTL:
|
|
{
|
|
if ((error = CHECK_CAP)) break;
|
|
if (ioctl->cmd == IOCTL_XILINX_RESET)
|
|
{
|
|
xilinx_reset(sc);
|
|
sc->card->attach(sc, &sc->config);
|
|
}
|
|
else if (ioctl->cmd == IOCTL_XILINX_ROM)
|
|
{
|
|
xilinx_load_from_rom(sc);
|
|
sc->card->attach(sc, &sc->config);
|
|
}
|
|
else if (ioctl->cmd == IOCTL_XILINX_FILE)
|
|
{
|
|
error = xilinx_load_from_file(sc, ioctl->ucode, ioctl->data);
|
|
if (error) xilinx_load_from_rom(sc); /* try the rom */
|
|
sc->card->attach(sc, &sc->config);
|
|
}
|
|
else if (ioctl->cmd == IOCTL_RESET_CNTRS)
|
|
reset_cntrs(sc);
|
|
else
|
|
error = sc->card->ioctl(sc, ioctl);
|
|
break;
|
|
}
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* This is the core watchdog procedure.
|
|
* ioctl syscalls and card watchdog routines must be interlocked.
|
|
* Called by ng_watchdog(), ifnet_watchdog() and netdev_watchdog().
|
|
*/
|
|
static void /* context: softirq */
|
|
lmc_watchdog(softc_t *sc)
|
|
{
|
|
/* Read and restart the Tulip timer. */
|
|
u_int32_t tx_speed = READ_CSR(sc, TLP_TIMER);
|
|
WRITE_CSR(sc, TLP_TIMER, 0xFFFF);
|
|
|
|
/* Measure MII clock using a timer in the Tulip chip.
|
|
* This timer counts transmitter bits divided by 4096.
|
|
* Since this is called once a second the math is easy.
|
|
* This is only correct when the link is NOT sending pkts.
|
|
* On a fully-loaded link, answer will be HALF actual rate.
|
|
* Clock rate during pkt is HALF clk rate between pkts.
|
|
* Measuring clock rate really measures link utilization!
|
|
*/
|
|
sc->status.tx_speed = (0xFFFF - (tx_speed & 0xFFFF)) << 12;
|
|
|
|
/* Call the card-specific watchdog routine. */
|
|
if (TOP_TRYLOCK(sc))
|
|
{
|
|
/* Remember link_state before updating it. */
|
|
sc->last_link_state = sc->status.link_state;
|
|
/* Update status.link_state. */
|
|
sc->card->watchdog(sc);
|
|
|
|
/* Increment a counter which tells user-land */
|
|
/* observers that SNMP state has been updated. */
|
|
sc->status.ticks++;
|
|
|
|
TOP_UNLOCK(sc);
|
|
}
|
|
else
|
|
sc->status.cntrs.lck_watch++;
|
|
|
|
/* Kernel date/time can take up to 5 seconds to start running. */
|
|
if ((sc->status.ticks > 3) && /* h/w should be stable by now */
|
|
(sc->status.cntrs.reset_time.tv_sec < 1000))
|
|
{
|
|
microtime(&sc->status.cntrs.reset_time);
|
|
if (sc->status.cntrs.reset_time.tv_sec > 1000)
|
|
reset_cntrs(sc);
|
|
}
|
|
|
|
/* Call the stack-specific watchdog routine. */
|
|
if (sc->stack)
|
|
sc->stack->watchdog(sc);
|
|
|
|
/* In case an interrupt gets lost, process tx and rx pkts */
|
|
lmc_interrupt(sc, sc->rxring.num_descs, 1);
|
|
}
|
|
|
|
/* Administrative status of the driver (UP or DOWN) has changed.
|
|
* A card-specific action is taken:
|
|
* HSSI: drop TA.
|
|
* (T3: send T3 idle ckt signal. )
|
|
* SSI: drop RTS, DTR and DCD
|
|
* (T1: disable line interface tx; )
|
|
*/
|
|
static void
|
|
set_ready(softc_t *sc, int status)
|
|
{
|
|
struct ioctl ioctl;
|
|
|
|
ioctl.cmd = IOCTL_SET_STATUS;
|
|
ioctl.data = status;
|
|
|
|
sc->card->ioctl(sc, &ioctl);
|
|
}
|
|
|
|
static void
|
|
reset_cntrs(softc_t *sc)
|
|
{
|
|
memset(&sc->status.cntrs, 0, sizeof(struct cntrs));
|
|
microtime(&sc->status.cntrs.reset_time);
|
|
}
|
|
|
|
static void /* context: process, softirq, interrupt! */
|
|
lmc_interrupt(void *arg, int quota, int check_status)
|
|
{
|
|
softc_t *sc = arg;
|
|
int activity;
|
|
|
|
/* Do this FIRST! Otherwise UPs deadlock and MPs spin. */
|
|
WRITE_CSR(sc, TLP_STATUS, READ_CSR(sc, TLP_STATUS));
|
|
|
|
/* If any CPU is inside this critical section, then */
|
|
/* other CPUs should go away without doing anything. */
|
|
if (BOTTOM_TRYLOCK(sc) == 0)
|
|
{
|
|
sc->status.cntrs.lck_intr++;
|
|
return;
|
|
}
|
|
|
|
/* In Linux, pci_alloc_consistent() means DMA */
|
|
/* descriptors do not need explicit syncing? */
|
|
#if BSD
|
|
{
|
|
struct desc_ring *ring = &sc->txring;
|
|
DMA_SYNC(sc->txring.map, sc->txring.size_descs,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
ring = &sc->rxring;
|
|
DMA_SYNC(sc->rxring.map, sc->rxring.size_descs,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
}
|
|
#endif
|
|
|
|
/* This is the main loop for interrupt processing. */
|
|
sc->quota = quota;
|
|
do
|
|
{
|
|
activity = txintr_cleanup(sc);
|
|
activity += txintr_setup(sc);
|
|
activity += rxintr_cleanup(sc);
|
|
activity += rxintr_setup(sc);
|
|
} while (activity);
|
|
|
|
#if BSD
|
|
{
|
|
struct desc_ring *ring = &sc->txring;
|
|
DMA_SYNC(sc->txring.map, sc->txring.size_descs,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
ring = &sc->rxring;
|
|
DMA_SYNC(sc->rxring.map, sc->rxring.size_descs,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
#endif
|
|
|
|
/* As the interrupt is dismissed, check for four unusual events. */
|
|
if (check_status) check_intr_status(sc);
|
|
|
|
BOTTOM_UNLOCK(sc);
|
|
}
|
|
|
|
/* Check for four unusual events:
|
|
* 1) fatal PCI bus errors - some are recoverable
|
|
* 2) transmitter FIFO underruns - increase fifo threshold
|
|
* 3) receiver FIFO overruns - clear potential hangup
|
|
* 4) no receive descs or bufs - count missed packets
|
|
*/
|
|
static void
|
|
check_intr_status(softc_t *sc)
|
|
{
|
|
u_int32_t status, cfcs, op_mode;
|
|
u_int32_t missed, overruns;
|
|
|
|
/* 1) A fatal bus error causes a Tulip to stop initiating bus cycles.
|
|
* Module unload/load or boot are the only fixes for Parity Errors.
|
|
* Master and Target Aborts can be cleared and life may continue.
|
|
*/
|
|
status = READ_CSR(sc, TLP_STATUS);
|
|
if (status & TLP_STAT_FATAL_ERROR)
|
|
{
|
|
u_int32_t fatal = (status & TLP_STAT_FATAL_BITS)>>TLP_STAT_FATAL_SHIFT;
|
|
printf("%s: FATAL PCI BUS ERROR: %s%s%s%s\n", NAME_UNIT,
|
|
(fatal == 0) ? "PARITY ERROR" : "",
|
|
(fatal == 1) ? "MASTER ABORT" : "",
|
|
(fatal == 2) ? "TARGET ABORT" : "",
|
|
(fatal >= 3) ? "RESERVED (?)" : "");
|
|
cfcs = READ_PCI_CFG(sc, TLP_CFCS); /* try to clear it */
|
|
cfcs &= ~(TLP_CFCS_MSTR_ABORT | TLP_CFCS_TARG_ABORT);
|
|
WRITE_PCI_CFG(sc, TLP_CFCS, cfcs);
|
|
}
|
|
|
|
/* 2) If the transmitter fifo underruns, increase the transmit fifo
|
|
* threshold: the number of bytes required to be in the fifo
|
|
* before starting the transmitter (cost: increased tx delay).
|
|
* The TX_FSM must be stopped to change this parameter.
|
|
*/
|
|
if (status & TLP_STAT_TX_UNDERRUN)
|
|
{
|
|
op_mode = READ_CSR(sc, TLP_OP_MODE);
|
|
/* enable store-and-forward mode if tx_threshold tops out? */
|
|
if ((op_mode & TLP_OP_TX_THRESH) < TLP_OP_TX_THRESH)
|
|
{
|
|
op_mode += 0x4000; /* increment TX_THRESH field; can not overflow */
|
|
WRITE_CSR(sc, TLP_OP_MODE, op_mode & ~TLP_OP_TX_RUN);
|
|
/* Wait for the TX FSM to stop; it might be processing a pkt. */
|
|
while (READ_CSR(sc, TLP_STATUS) & TLP_STAT_TX_FSM); /* XXX HANG */
|
|
WRITE_CSR(sc, TLP_OP_MODE, op_mode); /* restart tx */
|
|
|
|
if (sc->config.debug)
|
|
printf("%s: tx fifo underrun; threshold now %d bytes\n",
|
|
NAME_UNIT, 128<<((op_mode>>TLP_OP_TR_SHIFT)&3));
|
|
sc->status.cntrs.underruns++;
|
|
}
|
|
}
|
|
|
|
/* 3) Errata memo from Digital Equipment Corp warns that 21140A
|
|
* receivers through rev 2.2 can hang if the fifo overruns.
|
|
* Recommended fix: stop and start the RX FSM after an overrun.
|
|
*/
|
|
missed = READ_CSR(sc, TLP_MISSED);
|
|
if ((overruns = ((missed & TLP_MISS_OVERRUN)>>TLP_OVERRUN_SHIFT)))
|
|
{
|
|
if ((READ_PCI_CFG(sc, TLP_CFRV) & 0xFF) <= 0x22)
|
|
{
|
|
op_mode = READ_CSR(sc, TLP_OP_MODE);
|
|
WRITE_CSR(sc, TLP_OP_MODE, op_mode & ~TLP_OP_RX_RUN);
|
|
/* Wait for the RX FSM to stop; it might be processing a pkt. */
|
|
while (READ_CSR(sc, TLP_STATUS) & TLP_STAT_RX_FSM); /* XXX HANG */
|
|
WRITE_CSR(sc, TLP_OP_MODE, op_mode); /* restart rx */
|
|
}
|
|
if (sc->config.debug)
|
|
printf("%s: rx fifo overruns=%d\n", NAME_UNIT, overruns);
|
|
sc->status.cntrs.overruns += overruns;
|
|
}
|
|
|
|
/* 4) When the receiver is enabled and a packet arrives, but no DMA
|
|
* descriptor is available, the packet is counted as 'missed'.
|
|
* The receiver should never miss packets; warn if it happens.
|
|
*/
|
|
if ((missed = (missed & TLP_MISS_MISSED)))
|
|
{
|
|
if (sc->config.debug)
|
|
printf("%s: rx missed %d pkts\n", NAME_UNIT, missed);
|
|
sc->status.cntrs.missed += missed;
|
|
}
|
|
}
|
|
|
|
/* Initialize the driver. */
|
|
/* context: kernel (boot) or process (syscall) */
|
|
static int
|
|
lmc_attach(softc_t *sc)
|
|
{
|
|
int error = 0;
|
|
struct config config;
|
|
|
|
/* Attach the Tulip PCI bus interface. */
|
|
if ((error = tulip_attach(sc))) return error;
|
|
|
|
/* Reset the Xilinx Field Programmable Gate Array. */
|
|
xilinx_reset(sc); /* side effect: turns on all four LEDs */
|
|
|
|
/* Attach card-specific stuff. */
|
|
sc->card->attach(sc, NULL); /* changes sc->config */
|
|
|
|
/* Reset the FIFOs between Gate array and Tulip chip. */
|
|
mii16_set_bits(sc, MII16_FIFO);
|
|
mii16_clr_bits(sc, MII16_FIFO);
|
|
|
|
#if IFNET
|
|
/* Attach the ifnet kernel interface. */
|
|
if ((error = ifnet_attach(sc))) return error;
|
|
#endif
|
|
|
|
#if NETDEV
|
|
/* Attach the netdevice kernel interface. */
|
|
if ((error = netdev_attach(sc))) return error;
|
|
#endif
|
|
|
|
/* Attach a protocol stack and open a line protocol. */
|
|
config = sc->config;
|
|
config.stack = STACK_RAWIP;
|
|
attach_stack(sc, &config);
|
|
config.proto = PROTO_IP_HDLC;
|
|
open_proto(sc, &config);
|
|
|
|
/* Print obscure card information. */
|
|
if (BOOT_VERBOSE)
|
|
{
|
|
u_int32_t cfrv = READ_PCI_CFG(sc, TLP_CFRV);
|
|
u_int16_t mii3 = mii_read(sc, 3);
|
|
u_int16_t srom[3];
|
|
u_int8_t *ieee = (u_int8_t *)srom;
|
|
int i;
|
|
|
|
printf("%s", NAME_UNIT);
|
|
printf(": PCI rev %d.%d", (cfrv>>4) & 0xF, cfrv & 0xF);
|
|
printf(", MII rev %d.%d", (mii3>>4) & 0xF, mii3 & 0xF);
|
|
for (i=0; i<3; i++) srom[i] = srom_read(sc, 10+i);
|
|
printf(", IEEE addr %02x:%02x:%02x:%02x:%02x:%02x",
|
|
ieee[0], ieee[1], ieee[2], ieee[3], ieee[4], ieee[5]);
|
|
sc->card->ident(sc);
|
|
}
|
|
|
|
/* BSDs enable card interrupts and appear "ready" here. */
|
|
/* Linux does this in netdev_open(). */
|
|
#if BSD
|
|
set_ready(sc, 1);
|
|
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_TXRX);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* context: kernel (boot) or process (syscall) */
|
|
static void
|
|
lmc_detach(softc_t *sc)
|
|
{
|
|
/* Disable card interrupts and appear "not ready". */
|
|
set_ready(sc, 0);
|
|
WRITE_CSR(sc, TLP_INT_ENBL, TLP_INT_DISABLE);
|
|
|
|
/* Detach the line protocol package. */
|
|
if (sc->stack)
|
|
sc->stack->detach(sc);
|
|
|
|
#if IFNET
|
|
/* Detach the ifnet kernel interface. */
|
|
ifnet_detach(sc);
|
|
#endif
|
|
|
|
#if NETDEV
|
|
/* Detach the netdevice kernel interface. */
|
|
netdev_detach(sc);
|
|
#endif
|
|
|
|
/* Detach framers, line interfaces, etc. on the card. */
|
|
sc->card->detach(sc);
|
|
|
|
/* Detach the Tulip PCI bus interface. */
|
|
tulip_detach(sc);
|
|
}
|
|
|
|
/* Loop back through the TULIP Ethernet chip; (no CRC).
|
|
* Data sheet says stop DMA before changing OPMODE register.
|
|
* But that's not as simple as it sounds; works anyway.
|
|
*/
|
|
static void
|
|
tulip_loop(softc_t *sc, struct config *config)
|
|
{
|
|
/* Check for enabling loopback thru Tulip chip. */
|
|
if ((sc->config.loop_back != CFG_LOOP_TULIP) &&
|
|
(config->loop_back == CFG_LOOP_TULIP))
|
|
{
|
|
u_int32_t op_mode = READ_CSR(sc, TLP_OP_MODE);
|
|
op_mode |= TLP_OP_INT_LOOP;
|
|
WRITE_CSR(sc, TLP_OP_MODE, op_mode);
|
|
config->crc_len = CFG_CRC_0;
|
|
}
|
|
|
|
/* Check for disabling loopback thru Tulip chip. */
|
|
if ((sc->config.loop_back == CFG_LOOP_TULIP) &&
|
|
(config->loop_back != CFG_LOOP_TULIP))
|
|
{
|
|
u_int32_t op_mode = READ_CSR(sc, TLP_OP_MODE);
|
|
op_mode &= ~TLP_OP_LOOP_MODE;
|
|
WRITE_CSR(sc, TLP_OP_MODE, op_mode);
|
|
config->crc_len = CFG_CRC_16;
|
|
}
|
|
|
|
sc->config.loop_back = config->loop_back;
|
|
}
|
|
|
|
/* Attach the Tulip PCI bus interface.
|
|
* Allocate DMA descriptors and enable DMA.
|
|
* Returns 0 on success; error code on failure.
|
|
* context: kernel (boot) or process (syscall)
|
|
*/
|
|
static int
|
|
tulip_attach(softc_t *sc)
|
|
{
|
|
int num_rx_descs, error = 0;
|
|
u_int32_t bus_pbl, bus_cal, op_tr;
|
|
u_int32_t cfdd, cfcs, cflt, csid, cfit;
|
|
|
|
/* Make sure the COMMAND bits are reasonable. */
|
|
cfcs = READ_PCI_CFG(sc, TLP_CFCS);
|
|
cfcs &= ~TLP_CFCS_MWI_ENABLE;
|
|
cfcs |= TLP_CFCS_BUS_MASTER;
|
|
cfcs |= TLP_CFCS_MEM_ENABLE;
|
|
cfcs |= TLP_CFCS_IO_ENABLE;
|
|
cfcs |= TLP_CFCS_PAR_ERROR;
|
|
cfcs |= TLP_CFCS_SYS_ERROR;
|
|
WRITE_PCI_CFG(sc, TLP_CFCS, cfcs);
|
|
|
|
/* Set the LATENCY TIMER to the recommended value, */
|
|
/* and make sure the CACHE LINE SIZE is reasonable. */
|
|
cfit = READ_PCI_CFG(sc, TLP_CFIT);
|
|
cflt = READ_PCI_CFG(sc, TLP_CFLT);
|
|
cflt &= ~TLP_CFLT_LATENCY;
|
|
cflt |= (cfit & TLP_CFIT_MAX_LAT)>>16;
|
|
/* "prgmbl burst length" and "cache alignment" used below. */
|
|
switch(cflt & TLP_CFLT_CACHE)
|
|
{
|
|
case 8: /* 8 bytes per cache line */
|
|
{ bus_pbl = 32; bus_cal = 1; break; }
|
|
case 16:
|
|
{ bus_pbl = 32; bus_cal = 2; break; }
|
|
case 32:
|
|
{ bus_pbl = 32; bus_cal = 3; break; }
|
|
default:
|
|
{
|
|
bus_pbl = 32; bus_cal = 1;
|
|
cflt &= ~TLP_CFLT_CACHE;
|
|
cflt |= 8;
|
|
break;
|
|
}
|
|
}
|
|
WRITE_PCI_CFG(sc, TLP_CFLT, cflt);
|
|
|
|
/* Make sure SNOOZE and SLEEP modes are disabled. */
|
|
cfdd = READ_PCI_CFG(sc, TLP_CFDD);
|
|
cfdd &= ~TLP_CFDD_SLEEP;
|
|
cfdd &= ~TLP_CFDD_SNOOZE;
|
|
WRITE_PCI_CFG(sc, TLP_CFDD, cfdd);
|
|
DELAY(11*1000); /* Tulip wakes up in 10 ms max */
|
|
|
|
/* Software Reset the Tulip chip; stops DMA and Interrupts. */
|
|
/* This does not change the PCI config regs just set above. */
|
|
WRITE_CSR(sc, TLP_BUS_MODE, TLP_BUS_RESET); /* self-clearing */
|
|
DELAY(5); /* Tulip is dead for 50 PCI cycles after reset. */
|
|
|
|
/* Initialize the PCI busmode register. */
|
|
/* The PCI bus cycle type "Memory Write and Invalidate" does NOT */
|
|
/* work cleanly in any version of the 21140A, so do not enable it! */
|
|
WRITE_CSR(sc, TLP_BUS_MODE,
|
|
(bus_cal ? TLP_BUS_READ_LINE : 0) |
|
|
(bus_cal ? TLP_BUS_READ_MULT : 0) |
|
|
(bus_pbl<<TLP_BUS_PBL_SHIFT) |
|
|
(bus_cal<<TLP_BUS_CAL_SHIFT) |
|
|
((BYTE_ORDER == BIG_ENDIAN) ? TLP_BUS_DESC_BIGEND : 0) |
|
|
((BYTE_ORDER == BIG_ENDIAN) ? TLP_BUS_DATA_BIGEND : 0) |
|
|
TLP_BUS_DSL_VAL |
|
|
TLP_BUS_ARB);
|
|
|
|
/* Pick number of RX descriptors and TX fifo threshold. */
|
|
/* tx_threshold in bytes: 0=128, 1=256, 2=512, 3=1024 */
|
|
csid = READ_PCI_CFG(sc, TLP_CSID);
|
|
switch(csid)
|
|
{
|
|
case CSID_LMC_HSSI: /* 52 Mb/s */
|
|
case CSID_LMC_HSSIc: /* 52 Mb/s */
|
|
case CSID_LMC_T3: /* 45 Mb/s */
|
|
{ num_rx_descs = 48; op_tr = 2; break; }
|
|
case CSID_LMC_SSI: /* 10 Mb/s */
|
|
{ num_rx_descs = 32; op_tr = 1; break; }
|
|
case CSID_LMC_T1E1: /* 2 Mb/s */
|
|
{ num_rx_descs = 16; op_tr = 0; break; }
|
|
default:
|
|
{ num_rx_descs = 16; op_tr = 0; break; }
|
|
}
|
|
|
|
/* Create DMA descriptors and initialize list head registers. */
|
|
if ((error = create_ring(sc, &sc->txring, NUM_TX_DESCS))) return error;
|
|
WRITE_CSR(sc, TLP_TX_LIST, sc->txring.dma_addr);
|
|
if ((error = create_ring(sc, &sc->rxring, num_rx_descs))) return error;
|
|
WRITE_CSR(sc, TLP_RX_LIST, sc->rxring.dma_addr);
|
|
|
|
/* Initialize the operating mode register. */
|
|
WRITE_CSR(sc, TLP_OP_MODE, TLP_OP_INIT | (op_tr<<TLP_OP_TR_SHIFT));
|
|
|
|
/* Read the missed frame register (result ignored) to zero it. */
|
|
error = READ_CSR(sc, TLP_MISSED); /* error is used as a bit-dump */
|
|
|
|
/* Disable rx watchdog and tx jabber features. */
|
|
WRITE_CSR(sc, TLP_WDOG, TLP_WDOG_INIT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Detach the Tulip PCI bus interface. */
|
|
/* Disable DMA and free DMA descriptors. */
|
|
/* context: kernel (boot) or process (syscall) */
|
|
static void
|
|
tulip_detach(void *arg)
|
|
{
|
|
softc_t *sc = arg;
|
|
|
|
/* Software reset the Tulip chip; stops DMA and Interrupts. */
|
|
WRITE_CSR(sc, TLP_BUS_MODE, TLP_BUS_RESET); /* self-clearing */
|
|
DELAY(5); /* Tulip is dead for 50 PCI cycles after reset. */
|
|
|
|
/* Disconnect from the PCI bus except for config cycles. */
|
|
/* Hmmm; Linux syslogs a warning that IO and MEM are disabled. */
|
|
WRITE_PCI_CFG(sc, TLP_CFCS, TLP_CFCS_MEM_ENABLE | TLP_CFCS_IO_ENABLE);
|
|
|
|
/* Free the DMA descriptor rings. */
|
|
destroy_ring(sc, &sc->txring);
|
|
destroy_ring(sc, &sc->rxring);
|
|
}
|
|
|
|
/* Called during config probing -- softc does not yet exist. */
|
|
static void
|
|
print_driver_info(void)
|
|
{
|
|
/* Print driver information once only. */
|
|
if (driver_announced++ == 0)
|
|
{
|
|
printf("LMC driver version %d/%d/%d; options",
|
|
VER_YEAR, VER_MONTH, VER_DAY);
|
|
if (ALTQ) printf(" ALTQ");
|
|
printf(" BPF"); /* always defined */
|
|
if (NAPI) printf(" NAPI");
|
|
if (DEVICE_POLLING) printf(" POLL");
|
|
if (P2P) printf(" P2P");
|
|
if (SPPP) printf(" SPPP");
|
|
if (GEN_HDLC) printf(" GEN_HDLC");
|
|
if (SYNC_PPP) printf(" SYNC_PPP");
|
|
if (NETGRAPH) printf(" NETGRAPH");
|
|
printf(".\n");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* This is the I/O configuration interface for NetBSD. */
|
|
|
|
/* Looking for a DEC 21140A chip on any Lan Media Corp card. */
|
|
/* context: kernel (boot) or process (syscall) */
|
|
static int
|
|
nbsd_match(device_t parent, cfdata_t match, void *aux)
|
|
{
|
|
struct pci_attach_args *pa = aux;
|
|
u_int32_t cfid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CFID);
|
|
u_int32_t csid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CSID);
|
|
|
|
if (cfid != TLP_CFID_TULIP) return 0;
|
|
switch (csid)
|
|
{
|
|
case CSID_LMC_HSSI:
|
|
case CSID_LMC_HSSIc:
|
|
case CSID_LMC_T3:
|
|
case CSID_LMC_SSI:
|
|
case CSID_LMC_T1E1:
|
|
print_driver_info();
|
|
return 100;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* NetBSD bottom-half initialization. */
|
|
/* context: kernel (boot) or process (syscall) */
|
|
static void
|
|
nbsd_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
softc_t *sc = device_private(self);
|
|
struct pci_attach_args *pa = aux;
|
|
const char *intrstr;
|
|
bus_addr_t csr_addr;
|
|
int error;
|
|
char intrbuf[PCI_INTRSTR_LEN];
|
|
|
|
/* for READ/WRITE_PCI_CFG() */
|
|
sc->sc_dev = self;
|
|
sc->pa_pc = pa->pa_pc;
|
|
sc->pa_tag = pa->pa_tag;
|
|
sc->pa_dmat = pa->pa_dmat;
|
|
|
|
/* What kind of card are we driving? */
|
|
switch (READ_PCI_CFG(sc, TLP_CSID))
|
|
{
|
|
case CSID_LMC_HSSI:
|
|
case CSID_LMC_HSSIc:
|
|
sc->dev_desc = HSSI_DESC;
|
|
sc->card = &hssi_card;
|
|
break;
|
|
case CSID_LMC_T3:
|
|
sc->dev_desc = T3_DESC;
|
|
sc->card = &t3_card;
|
|
break;
|
|
case CSID_LMC_SSI:
|
|
sc->dev_desc = SSI_DESC;
|
|
sc->card = &ssi_card;
|
|
break;
|
|
case CSID_LMC_T1E1:
|
|
sc->dev_desc = T1E1_DESC;
|
|
sc->card = &t1_card;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
/* Allocate PCI resources to access the Tulip chip CSRs. */
|
|
# if IOREF_CSR
|
|
csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBIO) & -2;
|
|
sc->csr_tag = pa->pa_iot; /* bus_space tag for IO refs */
|
|
# else
|
|
csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBMA);
|
|
sc->csr_tag = pa->pa_memt; /* bus_space tag for MEM refs */
|
|
# endif
|
|
if ((error = bus_space_map(sc->csr_tag, csr_addr,
|
|
TLP_CSR_SIZE, 0, &sc->csr_handle)))
|
|
{
|
|
aprint_error("%s: bus_space_map(): error %d\n", NAME_UNIT, error);
|
|
return;
|
|
}
|
|
|
|
/* Allocate PCI interrupt resources. */
|
|
if (pci_intr_map(pa, &sc->intr_handle))
|
|
{
|
|
aprint_error("%s: pci_intr_map() failed\n", NAME_UNIT);
|
|
nbsd_detach(self, 0);
|
|
return;
|
|
}
|
|
if ((sc->irq_cookie = pci_intr_establish(pa->pa_pc, sc->intr_handle,
|
|
IPL_NET, bsd_interrupt, sc)) == NULL)
|
|
{
|
|
aprint_error("%s: pci_intr_establish() failed\n", NAME_UNIT);
|
|
nbsd_detach(self, 0);
|
|
return;
|
|
}
|
|
intrstr = pci_intr_string(pa->pa_pc, sc->intr_handle, intrbuf, sizeof(intrbuf));
|
|
aprint_normal(" %s: %s\n", intrstr, sc->dev_desc);
|
|
aprint_naive(": %s\n", sc->dev_desc);
|
|
|
|
/* Install a shutdown hook. */
|
|
if ((sc->sdh_cookie = shutdownhook_establish(tulip_detach, sc)) == NULL)
|
|
{
|
|
aprint_error("%s: shutdown_hook_establish() failed\n", NAME_UNIT);
|
|
nbsd_detach(self, 0);
|
|
return;
|
|
}
|
|
|
|
/* Initialize the top-half and bottom-half locks. */
|
|
mutex_init(&sc->top_lock, MUTEX_DEFAULT, IPL_VM);
|
|
__cpu_simple_lock_init(&sc->bottom_lock);
|
|
|
|
/* Initialize the driver. */
|
|
if ((error = lmc_attach(sc))) nbsd_detach(self, 0);
|
|
}
|
|
|
|
/* context: kernel (boot) or process (syscall) */
|
|
static int
|
|
nbsd_detach(device_t self, int flags)
|
|
{
|
|
softc_t *sc = device_private(self);
|
|
|
|
/* Detach from the bus and the kernel. */
|
|
lmc_detach(sc);
|
|
|
|
/* Release resources. */
|
|
if (sc->sdh_cookie)
|
|
shutdownhook_disestablish(sc->sdh_cookie);
|
|
if (sc->irq_cookie)
|
|
pci_intr_disestablish(sc->pa_pc, sc->irq_cookie);
|
|
if (sc->csr_handle)
|
|
bus_space_unmap(sc->csr_tag, sc->csr_handle, TLP_CSR_SIZE);
|
|
|
|
/* Destroy locks. */
|
|
mutex_destroy(&sc->top_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
CFATTACH_DECL_NEW(lmc, sizeof(softc_t), /* lmc_ca */
|
|
nbsd_match, nbsd_attach, nbsd_detach, NULL);
|