NetBSD/sys/dev/pci/if_et.c

2090 lines
49 KiB
C

/* $NetBSD: if_et.c,v 1.14 2016/12/15 09:28:05 ozaki-r Exp $ */
/* $OpenBSD: if_et.c,v 1.11 2008/06/08 06:18:07 jsg Exp $ */
/*
* Copyright (c) 2007 The DragonFly Project. All rights reserved.
*
* This code is derived from software contributed to The DragonFly Project
* by Sepherosa Ziehau <sepherosa@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of The DragonFly Project nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific, prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.14 2016/12/15 09:28:05 ozaki-r Exp $");
#include "opt_inet.h"
#include "vlan.h"
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/callout.h>
#include <sys/socket.h>
#include <sys/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/if_arp.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#include <net/bpf.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_etreg.h>
int et_match(device_t, cfdata_t, void *);
void et_attach(device_t, device_t, void *);
int et_detach(device_t, int flags);
int et_shutdown(device_t);
int et_miibus_readreg(device_t, int, int);
void et_miibus_writereg(device_t, int, int, int);
void et_miibus_statchg(struct ifnet *);
int et_init(struct ifnet *ifp);
int et_ioctl(struct ifnet *, u_long, void *);
void et_start(struct ifnet *);
void et_watchdog(struct ifnet *);
int et_intr(void *);
void et_enable_intrs(struct et_softc *, uint32_t);
void et_disable_intrs(struct et_softc *);
void et_rxeof(struct et_softc *);
void et_txeof(struct et_softc *);
void et_txtick(void *);
int et_dma_alloc(struct et_softc *);
void et_dma_free(struct et_softc *);
int et_dma_mem_create(struct et_softc *, bus_size_t,
void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
void et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
int et_dma_mbuf_create(struct et_softc *);
void et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
int et_init_tx_ring(struct et_softc *);
int et_init_rx_ring(struct et_softc *);
void et_free_tx_ring(struct et_softc *);
void et_free_rx_ring(struct et_softc *);
int et_encap(struct et_softc *, struct mbuf **);
int et_newbuf(struct et_rxbuf_data *, int, int, int);
int et_newbuf_cluster(struct et_rxbuf_data *, int, int);
int et_newbuf_hdr(struct et_rxbuf_data *, int, int);
void et_stop(struct et_softc *);
int et_chip_init(struct et_softc *);
void et_chip_attach(struct et_softc *);
void et_init_mac(struct et_softc *);
void et_init_rxmac(struct et_softc *);
void et_init_txmac(struct et_softc *);
int et_init_rxdma(struct et_softc *);
int et_init_txdma(struct et_softc *);
int et_start_rxdma(struct et_softc *);
int et_start_txdma(struct et_softc *);
int et_stop_rxdma(struct et_softc *);
int et_stop_txdma(struct et_softc *);
int et_enable_txrx(struct et_softc *);
void et_reset(struct et_softc *);
int et_bus_config(struct et_softc *);
void et_get_eaddr(struct et_softc *, uint8_t[]);
void et_setmulti(struct et_softc *);
void et_tick(void *);
static int et_rx_intr_npkts = 32;
static int et_rx_intr_delay = 20; /* x10 usec */
static int et_tx_intr_nsegs = 128;
static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */
struct et_bsize {
int bufsize;
et_newbuf_t newbuf;
};
static const struct et_bsize et_bufsize[ET_RX_NRING] = {
{ .bufsize = 0, .newbuf = et_newbuf_hdr },
{ .bufsize = 0, .newbuf = et_newbuf_cluster },
};
const struct et_product {
pci_vendor_id_t vendor;
pci_product_id_t product;
} et_devices[] = {
{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310 },
{ PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301 }
};
CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
NULL);
int
et_match(device_t dev, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
const struct et_product *ep;
int i;
for (i = 0; i < __arraycount(et_devices); i++) {
ep = &et_devices[i];
if (PCI_VENDOR(pa->pa_id) == ep->vendor &&
PCI_PRODUCT(pa->pa_id) == ep->product)
return 1;
}
return 0;
}
void
et_attach(device_t parent, device_t self, void *aux)
{
struct et_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
pcireg_t memtype;
int error;
char intrbuf[PCI_INTRSTR_LEN];
pci_aprint_devinfo(pa, "Ethernet controller");
sc->sc_dev = self;
/*
* Initialize tunables
*/
sc->sc_rx_intr_npkts = et_rx_intr_npkts;
sc->sc_rx_intr_delay = et_rx_intr_delay;
sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
sc->sc_timer = et_timer;
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
&sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
aprint_error_dev(self, "could not map mem space\n");
return;
}
if (pci_intr_map(pa, &ih) != 0) {
aprint_error_dev(self, "could not map interrupt\n");
goto fail;
}
intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, et_intr, sc);
if (sc->sc_irq_handle == NULL) {
aprint_error_dev(self, "could not establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
goto fail;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
sc->sc_dmat = pa->pa_dmat;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
error = et_bus_config(sc);
if (error)
goto fail;
et_get_eaddr(sc, sc->sc_enaddr);
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(sc->sc_enaddr));
CSR_WRITE_4(sc, ET_PM,
ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE);
et_reset(sc);
et_disable_intrs(sc);
error = et_dma_alloc(sc);
if (error)
goto fail;
ifp->if_softc = sc;
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = et_init;
ifp->if_ioctl = et_ioctl;
ifp->if_start = et_start;
ifp->if_watchdog = et_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
IFQ_SET_READY(&ifp->if_snd);
strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
et_chip_attach(sc);
sc->sc_miibus.mii_ifp = ifp;
sc->sc_miibus.mii_readreg = et_miibus_readreg;
sc->sc_miibus.mii_writereg = et_miibus_writereg;
sc->sc_miibus.mii_statchg = et_miibus_statchg;
sc->sc_ethercom.ec_mii = &sc->sc_miibus;
ifmedia_init(&sc->sc_miibus.mii_media, 0, ether_mediachange,
ether_mediastatus);
mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
aprint_error_dev(self, "no PHY found!\n");
ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
0, NULL);
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
} else
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, sc->sc_enaddr);
callout_init(&sc->sc_tick, 0);
callout_setfunc(&sc->sc_tick, et_tick, sc);
callout_init(&sc->sc_txtick, 0);
callout_setfunc(&sc->sc_txtick, et_txtick, sc);
if (pmf_device_register(self, NULL, NULL))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
return;
fail:
et_dma_free(sc);
if (sc->sc_irq_handle != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
sc->sc_irq_handle = NULL;
}
if (sc->sc_mem_size) {
bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
sc->sc_mem_size = 0;
}
}
int
et_detach(device_t self, int flags)
{
struct et_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int s;
pmf_device_deregister(self);
s = splnet();
et_stop(sc);
splx(s);
mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
et_dma_free(sc);
if (sc->sc_irq_handle != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
sc->sc_irq_handle = NULL;
}
if (sc->sc_mem_size) {
bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
sc->sc_mem_size = 0;
}
return 0;
}
int
et_shutdown(device_t self)
{
struct et_softc *sc = device_private(self);
int s;
s = splnet();
et_stop(sc);
splx(s);
return 0;
}
int
et_miibus_readreg(device_t dev, int phy, int reg)
{
struct et_softc *sc = device_private(dev);
uint32_t val;
int i, ret;
/* Stop any pending operations */
CSR_WRITE_4(sc, ET_MII_CMD, 0);
val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
__SHIFTIN(reg, ET_MII_ADDR_REG);
CSR_WRITE_4(sc, ET_MII_ADDR, val);
/* Start reading */
CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
#define NRETRY 50
for (i = 0; i < NRETRY; ++i) {
val = CSR_READ_4(sc, ET_MII_IND);
if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
break;
DELAY(50);
}
if (i == NRETRY) {
aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
phy, reg);
ret = 0;
goto back;
}
#undef NRETRY
val = CSR_READ_4(sc, ET_MII_STAT);
ret = __SHIFTOUT(val, ET_MII_STAT_VALUE);
back:
/* Make sure that the current operation is stopped */
CSR_WRITE_4(sc, ET_MII_CMD, 0);
return ret;
}
void
et_miibus_writereg(device_t dev, int phy, int reg, int val0)
{
struct et_softc *sc = device_private(dev);
uint32_t val;
int i;
/* Stop any pending operations */
CSR_WRITE_4(sc, ET_MII_CMD, 0);
val = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
__SHIFTIN(reg, ET_MII_ADDR_REG);
CSR_WRITE_4(sc, ET_MII_ADDR, val);
/* Start writing */
CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val0, ET_MII_CTRL_VALUE));
#define NRETRY 100
for (i = 0; i < NRETRY; ++i) {
val = CSR_READ_4(sc, ET_MII_IND);
if ((val & ET_MII_IND_BUSY) == 0)
break;
DELAY(50);
}
if (i == NRETRY) {
aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
phy, reg);
et_miibus_readreg(dev, phy, reg);
}
#undef NRETRY
/* Make sure that the current operation is stopped */
CSR_WRITE_4(sc, ET_MII_CMD, 0);
}
void
et_miibus_statchg(struct ifnet *ifp)
{
struct et_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
uint32_t cfg2, ctrl;
cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
__SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
cfg2 |= ET_MAC_CFG2_MODE_GMII;
} else {
cfg2 |= ET_MAC_CFG2_MODE_MII;
ctrl |= ET_MAC_CTRL_MODE_MII;
}
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
cfg2 |= ET_MAC_CFG2_FDX;
else
ctrl |= ET_MAC_CTRL_GHDX;
CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
}
void
et_stop(struct et_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
callout_stop(&sc->sc_tick);
callout_stop(&sc->sc_txtick);
et_stop_rxdma(sc);
et_stop_txdma(sc);
et_disable_intrs(sc);
et_free_tx_ring(sc);
et_free_rx_ring(sc);
et_reset(sc);
sc->sc_tx = 0;
sc->sc_tx_intr = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
}
int
et_bus_config(struct et_softc *sc)
{
uint32_t val; //, max_plsz;
// uint16_t ack_latency, replay_timer;
/*
* Test whether EEPROM is valid
* NOTE: Read twice to get the correct value
*/
pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
return ENXIO;
}
/* TODO: LED */
#if 0
/*
* Configure ACK latency and replay timer according to
* max playload size
*/
val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
switch (max_plsz) {
case ET_PCIV_DEVICE_CAPS_PLSZ_128:
ack_latency = ET_PCIV_ACK_LATENCY_128;
replay_timer = ET_PCIV_REPLAY_TIMER_128;
break;
case ET_PCIV_DEVICE_CAPS_PLSZ_256:
ack_latency = ET_PCIV_ACK_LATENCY_256;
replay_timer = ET_PCIV_REPLAY_TIMER_256;
break;
default:
ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
ET_PCIR_ACK_LATENCY) >> 16;
replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
ET_PCIR_REPLAY_TIMER) >> 16;
aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
ack_latency, replay_timer);
break;
}
if (ack_latency != 0) {
pci_conf_write(sc->sc_pct, sc->sc_pcitag,
ET_PCIR_ACK_LATENCY, ack_latency << 16);
pci_conf_write(sc->sc_pct, sc->sc_pcitag,
ET_PCIR_REPLAY_TIMER, replay_timer << 16);
}
/*
* Set L0s and L1 latency timer to 2us
*/
val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
val << 24);
/*
* Set max read request size to 2048 bytes
*/
val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
ET_PCIR_DEVICE_CTRL) >> 16;
val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
val << 16);
#endif
return 0;
}
void
et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
{
uint32_t r;
r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
eaddr[0] = r & 0xff;
eaddr[1] = (r >> 8) & 0xff;
eaddr[2] = (r >> 16) & 0xff;
eaddr[3] = (r >> 24) & 0xff;
r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
eaddr[4] = r & 0xff;
eaddr[5] = (r >> 8) & 0xff;
}
void
et_reset(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_MAC_CFG1,
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
CSR_WRITE_4(sc, ET_SWRST,
ET_SWRST_TXDMA | ET_SWRST_RXDMA |
ET_SWRST_TXMAC | ET_SWRST_RXMAC |
ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
CSR_WRITE_4(sc, ET_MAC_CFG1,
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
}
void
et_disable_intrs(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
}
void
et_enable_intrs(struct et_softc *sc, uint32_t intrs)
{
CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
}
int
et_dma_alloc(struct et_softc *sc)
{
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
struct et_txstatus_data *txsd = &sc->sc_tx_status;
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
int i, error;
/*
* Create TX ring DMA stuffs
*/
error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
(void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
&tx_ring->tr_seg);
if (error) {
aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
return error;
}
/*
* Create TX status DMA stuffs
*/
error = et_dma_mem_create(sc, sizeof(uint32_t),
(void **)&txsd->txsd_status,
&txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
if (error) {
aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
return error;
}
/*
* Create DMA stuffs for RX rings
*/
for (i = 0; i < ET_RX_NRING; ++i) {
static const uint32_t rx_ring_posreg[ET_RX_NRING] =
{ ET_RX_RING0_POS, ET_RX_RING1_POS };
struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
(void **)&rx_ring->rr_desc,
&rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
if (error) {
aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
"the %d RX ring\n", i);
return error;
}
rx_ring->rr_posreg = rx_ring_posreg[i];
}
/*
* Create RX stat ring DMA stuffs
*/
error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
(void **)&rxst_ring->rsr_stat,
&rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
if (error) {
aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
return error;
}
/*
* Create RX status DMA stuffs
*/
error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
(void **)&rxsd->rxsd_status,
&rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
if (error) {
aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
return error;
}
/*
* Create mbuf DMA stuffs
*/
error = et_dma_mbuf_create(sc);
if (error)
return error;
return 0;
}
void
et_dma_free(struct et_softc *sc)
{
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
struct et_txstatus_data *txsd = &sc->sc_tx_status;
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
int i, rx_done[ET_RX_NRING];
/*
* Destroy TX ring DMA stuffs
*/
et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
/*
* Destroy TX status DMA stuffs
*/
et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
/*
* Destroy DMA stuffs for RX rings
*/
for (i = 0; i < ET_RX_NRING; ++i) {
struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
}
/*
* Destroy RX stat ring DMA stuffs
*/
et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
/*
* Destroy RX status DMA stuffs
*/
et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
/*
* Destroy mbuf DMA stuffs
*/
for (i = 0; i < ET_RX_NRING; ++i)
rx_done[i] = ET_RX_NDESC;
et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
}
int
et_dma_mbuf_create(struct et_softc *sc)
{
struct et_txbuf_data *tbd = &sc->sc_tx_data;
int i, error, rx_done[ET_RX_NRING];
/*
* Create spare DMA map for RX mbufs
*/
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
if (error) {
aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
return error;
}
/*
* Create DMA maps for RX mbufs
*/
bzero(rx_done, sizeof(rx_done));
for (i = 0; i < ET_RX_NRING; ++i) {
struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
int j;
for (j = 0; j < ET_RX_NDESC; ++j) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT,
&rbd->rbd_buf[j].rb_dmap);
if (error) {
aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
"for %d RX ring\n", j, i);
rx_done[i] = j;
et_dma_mbuf_destroy(sc, 0, rx_done);
return error;
}
}
rx_done[i] = ET_RX_NDESC;
rbd->rbd_softc = sc;
rbd->rbd_ring = &sc->sc_rx_ring[i];
}
/*
* Create DMA maps for TX mbufs
*/
for (i = 0; i < ET_TX_NDESC; ++i) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
if (error) {
aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
"DMA map\n", i);
et_dma_mbuf_destroy(sc, i, rx_done);
return error;
}
}
return 0;
}
void
et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
{
struct et_txbuf_data *tbd = &sc->sc_tx_data;
int i;
/*
* Destroy DMA maps for RX mbufs
*/
for (i = 0; i < ET_RX_NRING; ++i) {
struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
int j;
for (j = 0; j < rx_done[i]; ++j) {
struct et_rxbuf *rb = &rbd->rbd_buf[j];
KASSERTMSG(rb->rb_mbuf == NULL,
"RX mbuf in %d RX ring is not freed yet\n", i);
bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
}
}
/*
* Destroy DMA maps for TX mbufs
*/
for (i = 0; i < tx_done; ++i) {
struct et_txbuf *tb = &tbd->tbd_buf[i];
KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
}
/*
* Destroy spare mbuf DMA map
*/
bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
}
int
et_dma_mem_create(struct et_softc *sc, bus_size_t size,
void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
{
int error, nsegs;
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
dmap);
if (error) {
aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
return error;
}
error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
1, &nsegs, BUS_DMA_WAITOK);
if (error) {
aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
return error;
}
error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
size, (void **)addr, BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
return (error);
}
error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
BUS_DMA_WAITOK);
if (error) {
aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
return error;
}
memset(*addr, 0, size);
*paddr = (*dmap)->dm_segs[0].ds_addr;
return 0;
}
void
et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
{
bus_dmamap_unload(sc->sc_dmat, dmap);
bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
}
void
et_chip_attach(struct et_softc *sc)
{
uint32_t val;
/*
* Perform minimal initialization
*/
/* Disable loopback */
CSR_WRITE_4(sc, ET_LOOPBACK, 0);
/* Reset MAC */
CSR_WRITE_4(sc, ET_MAC_CFG1,
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
/*
* Setup half duplex mode
*/
val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
__SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
__SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
ET_MAC_HDX_EXC_DEFER;
CSR_WRITE_4(sc, ET_MAC_HDX, val);
/* Clear MAC control */
CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
/* Reset MII */
CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
/* Bring MAC out of reset state */
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
/* Enable memory controllers */
CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
}
int
et_intr(void *xsc)
{
struct et_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t intrs;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return (0);
intrs = CSR_READ_4(sc, ET_INTR_STATUS);
if (intrs == 0 || intrs == 0xffffffff)
return (0);
et_disable_intrs(sc);
intrs &= ET_INTRS;
if (intrs == 0) /* Not interested */
goto back;
if (intrs & ET_INTR_RXEOF)
et_rxeof(sc);
if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
et_txeof(sc);
if (intrs & ET_INTR_TIMER)
CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
back:
et_enable_intrs(sc, ET_INTRS);
return (1);
}
int
et_init(struct ifnet *ifp)
{
struct et_softc *sc = ifp->if_softc;
int error, i, s;
if (ifp->if_flags & IFF_RUNNING)
return 0;
s = splnet();
et_stop(sc);
for (i = 0; i < ET_RX_NRING; ++i) {
sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
}
error = et_init_tx_ring(sc);
if (error)
goto back;
error = et_init_rx_ring(sc);
if (error)
goto back;
error = et_chip_init(sc);
if (error)
goto back;
error = et_enable_txrx(sc);
if (error)
goto back;
error = et_start_rxdma(sc);
if (error)
goto back;
error = et_start_txdma(sc);
if (error)
goto back;
et_enable_intrs(sc, ET_INTRS);
callout_schedule(&sc->sc_tick, hz);
CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
back:
if (error)
et_stop(sc);
splx(s);
return (0);
}
int
et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct et_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
/*
* If only the PROMISC or ALLMULTI flag changes, then
* don't do a full re-init of the chip, just update
* the Rx filter.
*/
if ((ifp->if_flags & IFF_RUNNING) &&
((ifp->if_flags ^ sc->sc_if_flags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0) {
et_setmulti(sc);
} else {
if (!(ifp->if_flags & IFF_RUNNING))
et_init(ifp);
}
} else {
if (ifp->if_flags & IFF_RUNNING)
et_stop(sc);
}
sc->sc_if_flags = ifp->if_flags;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_miibus.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
et_setmulti(sc);
error = 0;
}
break;
}
splx(s);
return error;
}
void
et_start(struct ifnet *ifp)
{
struct et_softc *sc = ifp->if_softc;
struct et_txbuf_data *tbd = &sc->sc_tx_data;
int trans;
struct mbuf *m;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
trans = 0;
for (;;) {
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
if (et_encap(sc, &m)) {
ifp->if_oerrors++;
ifp->if_flags |= IFF_OACTIVE;
break;
}
trans = 1;
bpf_mtap(ifp, m);
}
if (trans) {
callout_schedule(&sc->sc_txtick, hz);
ifp->if_timer = 5;
}
}
void
et_watchdog(struct ifnet *ifp)
{
struct et_softc *sc = ifp->if_softc;
aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
ifp->if_flags &= ~IFF_RUNNING;
et_init(ifp);
et_start(ifp);
}
int
et_stop_rxdma(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_RXDMA_CTRL,
ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
DELAY(5);
if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
return ETIMEDOUT;
}
return 0;
}
int
et_stop_txdma(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_TXDMA_CTRL,
ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
return 0;
}
void
et_free_tx_ring(struct et_softc *sc)
{
struct et_txbuf_data *tbd = &sc->sc_tx_data;
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
int i;
for (i = 0; i < ET_TX_NDESC; ++i) {
struct et_txbuf *tb = &tbd->tbd_buf[i];
if (tb->tb_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
m_freem(tb->tb_mbuf);
tb->tb_mbuf = NULL;
}
}
bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
void
et_free_rx_ring(struct et_softc *sc)
{
int n;
for (n = 0; n < ET_RX_NRING; ++n) {
struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
int i;
for (i = 0; i < ET_RX_NDESC; ++i) {
struct et_rxbuf *rb = &rbd->rbd_buf[i];
if (rb->rb_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
m_freem(rb->rb_mbuf);
rb->rb_mbuf = NULL;
}
}
bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
}
void
et_setmulti(struct et_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &ec->ec_if;
uint32_t hash[4] = { 0, 0, 0, 0 };
uint32_t rxmac_ctrl, pktfilt;
struct ether_multi *enm;
struct ether_multistep step;
uint8_t addr[ETHER_ADDR_LEN];
int i, count;
pktfilt = CSR_READ_4(sc, ET_PKTFILT);
rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
goto back;
}
bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
count = 0;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
uint32_t *hp, h;
for (i = 0; i < ETHER_ADDR_LEN; i++) {
addr[i] &= enm->enm_addrlo[i];
}
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)addr),
ETHER_ADDR_LEN);
h = (h & 0x3f800000) >> 23;
hp = &hash[0];
if (h >= 32 && h < 64) {
h -= 32;
hp = &hash[1];
} else if (h >= 64 && h < 96) {
h -= 64;
hp = &hash[2];
} else if (h >= 96) {
h -= 96;
hp = &hash[3];
}
*hp |= (1 << h);
++count;
ETHER_NEXT_MULTI(step, enm);
}
for (i = 0; i < 4; ++i)
CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
if (count > 0)
pktfilt |= ET_PKTFILT_MCAST;
rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
back:
CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
}
int
et_chip_init(struct et_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t rxq_end;
int error;
/*
* Split internal memory between TX and RX according to MTU
*/
if (ifp->if_mtu < 2048)
rxq_end = 0x2bc;
else if (ifp->if_mtu < 8192)
rxq_end = 0x1ff;
else
rxq_end = 0x1b3;
CSR_WRITE_4(sc, ET_RXQ_START, 0);
CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
/* No loopback */
CSR_WRITE_4(sc, ET_LOOPBACK, 0);
/* Clear MSI configure */
CSR_WRITE_4(sc, ET_MSI_CFG, 0);
/* Disable timer */
CSR_WRITE_4(sc, ET_TIMER, 0);
/* Initialize MAC */
et_init_mac(sc);
/* Enable memory controllers */
CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
/* Initialize RX MAC */
et_init_rxmac(sc);
/* Initialize TX MAC */
et_init_txmac(sc);
/* Initialize RX DMA engine */
error = et_init_rxdma(sc);
if (error)
return error;
/* Initialize TX DMA engine */
error = et_init_txdma(sc);
if (error)
return error;
return 0;
}
int
et_init_tx_ring(struct et_softc *sc)
{
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
struct et_txstatus_data *txsd = &sc->sc_tx_status;
struct et_txbuf_data *tbd = &sc->sc_tx_data;
bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
tbd->tbd_start_index = 0;
tbd->tbd_start_wrap = 0;
tbd->tbd_used = 0;
bzero(txsd->txsd_status, sizeof(uint32_t));
bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
return 0;
}
int
et_init_rx_ring(struct et_softc *sc)
{
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
int n;
for (n = 0; n < ET_RX_NRING; ++n) {
struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
int i, error;
for (i = 0; i < ET_RX_NDESC; ++i) {
error = rbd->rbd_newbuf(rbd, i, 1);
if (error) {
aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
"%d\n", n, i, error);
return error;
}
}
}
bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
return 0;
}
int
et_init_rxdma(struct et_softc *sc)
{
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
struct et_rxdesc_ring *rx_ring;
int error;
error = et_stop_rxdma(sc);
if (error) {
aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
return error;
}
/*
* Install RX status
*/
CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
/*
* Install RX stat ring
*/
CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
/* Match ET_RXSTAT_POS */
rxst_ring->rsr_index = 0;
rxst_ring->rsr_wrap = 0;
/*
* Install the 2nd RX descriptor ring
*/
rx_ring = &sc->sc_rx_ring[1];
CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
/* Match ET_RX_RING1_POS */
rx_ring->rr_index = 0;
rx_ring->rr_wrap = 1;
/*
* Install the 1st RX descriptor ring
*/
rx_ring = &sc->sc_rx_ring[0];
CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
/* Match ET_RX_RING0_POS */
rx_ring->rr_index = 0;
rx_ring->rr_wrap = 1;
/*
* RX intr moderation
*/
CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
return 0;
}
int
et_init_txdma(struct et_softc *sc)
{
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
struct et_txstatus_data *txsd = &sc->sc_tx_status;
int error;
error = et_stop_txdma(sc);
if (error) {
aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
return error;
}
/*
* Install TX descriptor ring
*/
CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
/*
* Install TX status
*/
CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
/* Match ET_TX_READY_POS */
tx_ring->tr_ready_index = 0;
tx_ring->tr_ready_wrap = 0;
return 0;
}
void
et_init_mac(struct et_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
uint32_t val;
/* Reset MAC */
CSR_WRITE_4(sc, ET_MAC_CFG1,
ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
/*
* Setup inter packet gap
*/
val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
__SHIFTIN(88, ET_IPG_NONB2B_2) |
__SHIFTIN(80, ET_IPG_MINIFG) |
__SHIFTIN(96, ET_IPG_B2B);
CSR_WRITE_4(sc, ET_IPG, val);
/*
* Setup half duplex mode
*/
val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
__SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
__SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
ET_MAC_HDX_EXC_DEFER;
CSR_WRITE_4(sc, ET_MAC_HDX, val);
/* Clear MAC control */
CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
/* Reset MII */
CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
/*
* Set MAC address
*/
val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
val = (eaddr[0] << 16) | (eaddr[1] << 24);
CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
/* Set max frame length */
CSR_WRITE_4(sc, ET_MAX_FRMLEN,
ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
/* Bring MAC out of reset state */
CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
}
void
et_init_rxmac(struct et_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
uint32_t val;
int i;
/* Disable RX MAC and WOL */
CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
/*
* Clear all WOL related registers
*/
for (i = 0; i < 3; ++i)
CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
for (i = 0; i < 20; ++i)
CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
/*
* Set WOL source address. XXX is this necessary?
*/
val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
val = (eaddr[0] << 8) | eaddr[1];
CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
/* Clear packet filters */
CSR_WRITE_4(sc, ET_PKTFILT, 0);
/* No ucast filtering */
CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
if (ifp->if_mtu > 8192) {
/*
* In order to transmit jumbo packets greater than 8k,
* the FIFO between RX MAC and RX DMA needs to be reduced
* in size to (16k - MTU). In order to implement this, we
* must use "cut through" mode in the RX MAC, which chops
* packets down into segments which are (max_size * 16).
* In this case we selected 256 bytes, since this is the
* size of the PCI-Express TLP's that the 1310 uses.
*/
val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
ET_RXMAC_MC_SEGSZ_ENABLE;
} else {
val = 0;
}
CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
/* Initialize RX MAC management register */
CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
CSR_WRITE_4(sc, ET_RXMAC_MGT,
ET_RXMAC_MGT_PASS_ECRC |
ET_RXMAC_MGT_PASS_ELEN |
ET_RXMAC_MGT_PASS_ETRUNC |
ET_RXMAC_MGT_CHECK_PKT);
/*
* Configure runt filtering (may not work on certain chip generation)
*/
val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
CSR_WRITE_4(sc, ET_PKTFILT, val);
/* Enable RX MAC but leave WOL disabled */
CSR_WRITE_4(sc, ET_RXMAC_CTRL,
ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
/*
* Setup multicast hash and allmulti/promisc mode
*/
et_setmulti(sc);
}
void
et_init_txmac(struct et_softc *sc)
{
/* Disable TX MAC and FC(?) */
CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
/* No flow control yet */
CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
/* Enable TX MAC but leave FC(?) diabled */
CSR_WRITE_4(sc, ET_TXMAC_CTRL,
ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
}
int
et_start_rxdma(struct et_softc *sc)
{
uint32_t val = 0;
val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
ET_RXDMA_CTRL_RING0_SIZE) |
ET_RXDMA_CTRL_RING0_ENABLE;
val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
ET_RXDMA_CTRL_RING1_SIZE) |
ET_RXDMA_CTRL_RING1_ENABLE;
CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
DELAY(5);
if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
return ETIMEDOUT;
}
return 0;
}
int
et_start_txdma(struct et_softc *sc)
{
CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
return 0;
}
int
et_enable_txrx(struct et_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t val;
int i, rc = 0;
val = CSR_READ_4(sc, ET_MAC_CFG1);
val |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
val &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
ET_MAC_CFG1_LOOPBACK);
CSR_WRITE_4(sc, ET_MAC_CFG1, val);
if ((rc = ether_mediachange(ifp)) != 0)
goto out;
#define NRETRY 100
for (i = 0; i < NRETRY; ++i) {
val = CSR_READ_4(sc, ET_MAC_CFG1);
if ((val & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
(ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
break;
DELAY(10);
}
if (i == NRETRY) {
aprint_error_dev(sc->sc_dev, "can't enable RX/TX\n");
return ETIMEDOUT;
}
#undef NRETRY
return 0;
out:
return rc;
}
void
et_rxeof(struct et_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
uint32_t rxs_stat_ring;
int rxst_wrap, rxst_index;
bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
while (rxst_index != rxst_ring->rsr_index ||
rxst_wrap != rxst_ring->rsr_wrap) {
struct et_rxbuf_data *rbd;
struct et_rxdesc_ring *rx_ring;
struct et_rxstat *st;
struct et_rxbuf *rb;
struct mbuf *m;
int buflen, buf_idx, ring_idx;
uint32_t rxstat_pos, rxring_pos;
KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
rxst_ring->rsr_index = 0;
rxst_ring->rsr_wrap ^= 1;
}
rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
ET_RXSTAT_POS_INDEX);
if (rxst_ring->rsr_wrap)
rxstat_pos |= ET_RXSTAT_POS_WRAP;
CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
if (ring_idx >= ET_RX_NRING) {
ifp->if_ierrors++;
aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
ring_idx);
continue;
}
if (buf_idx >= ET_RX_NDESC) {
ifp->if_ierrors++;
aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
buf_idx);
continue;
}
rbd = &sc->sc_rx_data[ring_idx];
rb = &rbd->rbd_buf[buf_idx];
m = rb->rb_mbuf;
bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
if (buflen < ETHER_CRC_LEN) {
m_freem(m);
ifp->if_ierrors++;
} else {
m->m_pkthdr.len = m->m_len = buflen -
ETHER_CRC_LEN;
m_set_rcvif(m, ifp);
if_percpuq_enqueue(ifp->if_percpuq, m);
}
} else {
ifp->if_ierrors++;
}
rx_ring = &sc->sc_rx_ring[ring_idx];
if (buf_idx != rx_ring->rr_index) {
aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
"buf_idx %d, rr_idx %d\n",
ring_idx, buf_idx, rx_ring->rr_index);
}
KASSERT(rx_ring->rr_index < ET_RX_NDESC);
if (++rx_ring->rr_index == ET_RX_NDESC) {
rx_ring->rr_index = 0;
rx_ring->rr_wrap ^= 1;
}
rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
if (rx_ring->rr_wrap)
rxring_pos |= ET_RX_RING_POS_WRAP;
CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
}
}
int
et_encap(struct et_softc *sc, struct mbuf **m0)
{
struct mbuf *m = *m0;
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
struct et_txbuf_data *tbd = &sc->sc_tx_data;
struct et_txdesc *td;
bus_dmamap_t map;
int error, maxsegs, first_idx, last_idx, i;
uint32_t tx_ready_pos, last_td_ctrl2;
maxsegs = ET_TX_NDESC - tbd->tbd_used;
if (maxsegs > ET_NSEG_MAX)
maxsegs = ET_NSEG_MAX;
KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
"not enough spare TX desc (%d)\n", maxsegs);
KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
first_idx = tx_ring->tr_ready_index;
map = tbd->tbd_buf[first_idx].tb_dmap;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
BUS_DMA_NOWAIT);
if (!error && map->dm_nsegs == 0) {
bus_dmamap_unload(sc->sc_dmat, map);
error = EFBIG;
}
if (error && error != EFBIG) {
aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
goto back;
}
if (error) { /* error == EFBIG */
struct mbuf *m_new;
error = 0;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
error = ENOBUFS;
goto back;
}
M_COPY_PKTHDR(m_new, m);
if (m->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
error = ENOBUFS;
}
}
if (error) {
aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
goto back;
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
m_freem(m);
m_new->m_len = m_new->m_pkthdr.len;
*m0 = m = m_new;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
BUS_DMA_NOWAIT);
if (error || map->dm_nsegs == 0) {
if (map->dm_nsegs == 0) {
bus_dmamap_unload(sc->sc_dmat, map);
error = EFBIG;
}
aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
goto back;
}
}
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
sc->sc_tx += map->dm_nsegs;
if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
last_td_ctrl2 |= ET_TDCTRL2_INTR;
}
last_idx = -1;
for (i = 0; i < map->dm_nsegs; ++i) {
int idx;
idx = (first_idx + i) % ET_TX_NDESC;
td = &tx_ring->tr_desc[idx];
td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
td->td_ctrl1 =
__SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
if (i == map->dm_nsegs - 1) { /* Last frag */
td->td_ctrl2 = last_td_ctrl2;
last_idx = idx;
}
KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
tx_ring->tr_ready_index = 0;
tx_ring->tr_ready_wrap ^= 1;
}
}
td = &tx_ring->tr_desc[first_idx];
td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG; /* First frag */
KASSERT(last_idx >= 0);
tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
tbd->tbd_buf[last_idx].tb_dmap = map;
tbd->tbd_buf[last_idx].tb_mbuf = m;
tbd->tbd_used += map->dm_nsegs;
KASSERT(tbd->tbd_used <= ET_TX_NDESC);
bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
ET_TX_READY_POS_INDEX);
if (tx_ring->tr_ready_wrap)
tx_ready_pos |= ET_TX_READY_POS_WRAP;
CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
error = 0;
back:
if (error) {
m_freem(m);
*m0 = NULL;
}
return error;
}
void
et_txeof(struct et_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
struct et_txbuf_data *tbd = &sc->sc_tx_data;
uint32_t tx_done;
int end, wrap;
if (tbd->tbd_used == 0)
return;
tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
struct et_txbuf *tb;
KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
tb = &tbd->tbd_buf[tbd->tbd_start_index];
bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
sizeof(struct et_txdesc));
bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
if (tb->tb_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
m_freem(tb->tb_mbuf);
tb->tb_mbuf = NULL;
ifp->if_opackets++;
}
if (++tbd->tbd_start_index == ET_TX_NDESC) {
tbd->tbd_start_index = 0;
tbd->tbd_start_wrap ^= 1;
}
KASSERT(tbd->tbd_used > 0);
tbd->tbd_used--;
}
if (tbd->tbd_used == 0) {
callout_stop(&sc->sc_txtick);
ifp->if_timer = 0;
}
if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
ifp->if_flags &= ~IFF_OACTIVE;
if_schedule_deferred_start(ifp);
}
void
et_txtick(void *xsc)
{
struct et_softc *sc = xsc;
int s;
s = splnet();
et_txeof(sc);
splx(s);
}
void
et_tick(void *xsc)
{
struct et_softc *sc = xsc;
int s;
s = splnet();
mii_tick(&sc->sc_miibus);
callout_schedule(&sc->sc_tick, hz);
splx(s);
}
int
et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
{
return et_newbuf(rbd, buf_idx, init, MCLBYTES);
}
int
et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
{
return et_newbuf(rbd, buf_idx, init, MHLEN);
}
int
et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
{
struct et_softc *sc = rbd->rbd_softc;
struct et_rxdesc_ring *rx_ring;
struct et_rxdesc *desc;
struct et_rxbuf *rb;
struct mbuf *m;
bus_dmamap_t dmap;
int error, len;
KASSERT(buf_idx < ET_RX_NDESC);
rb = &rbd->rbd_buf[buf_idx];
if (len0 >= MINCLSIZE) {
MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
len = MCLBYTES;
} else {
MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
len = MHLEN;
}
if (m == NULL) {
error = ENOBUFS;
/* XXX for debug */
aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
if (init) {
return error;
} else {
goto back;
}
}
m->m_len = m->m_pkthdr.len = len;
/*
* Try load RX mbuf into temporary DMA tag
*/
error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
/* XXX for debug */
aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
if (init) {
return error;
} else {
goto back;
}
}
if (!init)
bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
rb->rb_mbuf = m;
/*
* Swap RX buf's DMA map with the loaded temporary one
*/
dmap = rb->rb_dmap;
rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
sc->sc_mbuf_tmp_dmap = dmap;
error = 0;
back:
rx_ring = rbd->rbd_ring;
desc = &rx_ring->rr_desc[buf_idx];
desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
return error;
}