NetBSD/sys/dev/ic/nslm7x.c
2006-05-13 09:03:21 +00:00

896 lines
23 KiB
C

/* $NetBSD: nslm7x.c,v 1.25 2006/05/13 09:03:21 xtraeme Exp $ */
/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Bill Squier.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.25 2006/05/13 09:03:21 xtraeme Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <sys/queue.h>
#include <sys/lock.h>
#include <sys/ioctl.h>
#include <sys/conf.h>
#include <sys/time.h>
#include <machine/bus.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include <dev/sysmon/sysmonvar.h>
#include <dev/ic/nslm7xvar.h>
#include <machine/intr.h>
#include <machine/bus.h>
#if defined(LMDEBUG)
#define DPRINTF(x) printf x
#else
#define DPRINTF(x)
#endif
const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
/* for each unit type */
{ 7, 7, ENVSYS_STEMP },
{ 8, 10, ENVSYS_SFANRPM },
{ 1, 0, ENVSYS_SVOLTS_AC }, /* None */
{ 0, 6, ENVSYS_SVOLTS_DC },
{ 1, 0, ENVSYS_SOHMS }, /* None */
{ 1, 0, ENVSYS_SWATTS }, /* None */
{ 1, 0, ENVSYS_SAMPS } /* None */
};
static void setup_fan(struct lm_softc *, int, int);
static void setup_temp(struct lm_softc *, int, int);
static void wb_setup_volt(struct lm_softc *);
int lm_match(struct lm_softc *);
int wb_match(struct lm_softc *);
int def_match(struct lm_softc *);
void lm_common_match(struct lm_softc *);
static int lm_generic_banksel(struct lm_softc *, int);
static void generic_stemp(struct lm_softc *, struct envsys_tre_data *);
static void generic_svolt(struct lm_softc *, struct envsys_tre_data *,
struct envsys_basic_info *);
static void generic_fanrpm(struct lm_softc *, struct envsys_tre_data *);
void lm_refresh_sensor_data(struct lm_softc *);
static void wb_svolt(struct lm_softc *);
static void wb_stemp(struct lm_softc *, struct envsys_tre_data *, int);
static void wb781_fanrpm(struct lm_softc *, struct envsys_tre_data *);
static void wb_fanrpm(struct lm_softc *, struct envsys_tre_data *);
void wb781_refresh_sensor_data(struct lm_softc *);
void wb782_refresh_sensor_data(struct lm_softc *);
void wb697_refresh_sensor_data(struct lm_softc *);
int lm_gtredata(struct sysmon_envsys *, struct envsys_tre_data *);
int generic_streinfo_fan(struct lm_softc *, struct envsys_basic_info *,
int, struct envsys_basic_info *);
int lm_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
int wb781_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
int wb782_streinfo(struct sysmon_envsys *, struct envsys_basic_info *);
struct lm_chip {
int (*chip_match)(struct lm_softc *);
};
struct lm_chip lm_chips[] = {
{ wb_match },
{ lm_match },
{ def_match } /* Must be last */
};
int
lm_generic_banksel(lmsc, bank)
struct lm_softc *lmsc;
int bank;
{
(*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank);
return 0;
}
/*
* bus independent probe
*/
int
lm_probe(iot, ioh)
bus_space_tag_t iot;
bus_space_handle_t ioh;
{
u_int8_t cr;
int rv;
/* Check for some power-on defaults */
bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
/* Perform LM78 reset */
bus_space_write_1(iot, ioh, LMC_DATA, 0x80);
/* XXX - Why do I have to reselect the register? */
bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG);
cr = bus_space_read_1(iot, ioh, LMC_DATA);
/* XXX - spec says *only* 0x08! */
if ((cr == 0x08) || (cr == 0x01) || (cr == 0x03))
rv = 1;
else
rv = 0;
DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr));
return (rv);
}
/*
* pre: lmsc contains valid busspace tag and handle
*/
void
lm_attach(lmsc)
struct lm_softc *lmsc;
{
u_int i;
/* Install default bank selection routine, if none given. */
if (lmsc->lm_banksel == NULL)
lmsc->lm_banksel = lm_generic_banksel;
for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
if (lm_chips[i].chip_match(lmsc))
break;
/* Start the monitoring loop */
(*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01);
/* Indicate we have never read the registers */
timerclear(&lmsc->lastread);
/* Initialize sensors */
for (i = 0; i < lmsc->numsensors; ++i) {
lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
lmsc->info[i].validflags = ENVSYS_FVALID;
lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
}
/*
* Hook into the System Monitor.
*/
lmsc->sc_sysmon.sme_ranges = lm_ranges;
lmsc->sc_sysmon.sme_sensor_info = lmsc->info;
lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors;
lmsc->sc_sysmon.sme_cookie = lmsc;
lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
/* sme_streinfo set in chip-specific attach */
lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
lmsc->sc_sysmon.sme_envsys_version = 1000;
if (sysmon_envsys_register(&lmsc->sc_sysmon))
printf("%s: unable to register with sysmon\n",
lmsc->sc_dev.dv_xname);
}
int
lm_match(sc)
struct lm_softc *sc;
{
int i;
/* See if we have an LM78 or LM79 */
i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
switch(i) {
case LM_ID_LM78:
printf(": LM78\n");
break;
case LM_ID_LM78J:
printf(": LM78J\n");
break;
case LM_ID_LM79:
printf(": LM79\n");
break;
case LM_ID_LM81:
printf(": LM81\n");
break;
default:
return 0;
}
lm_common_match(sc);
return 1;
}
int
def_match(sc)
struct lm_softc *sc;
{
int i;
i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK;
printf(": Unknown chip (ID %d)\n", i);
lm_common_match(sc);
return 1;
}
void
lm_common_match(sc)
struct lm_softc *sc;
{
int i;
sc->numsensors = LM_NUM_SENSORS;
sc->refresh_sensor_data = lm_refresh_sensor_data;
for (i = 0; i < 7; ++i) {
sc->sensors[i].units = sc->info[i].units =
ENVSYS_SVOLTS_DC;
snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
"IN %d", i);
}
/* default correction factors for resistors on higher voltage inputs */
sc->info[0].rfact = sc->info[1].rfact =
sc->info[2].rfact = 10000;
sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
sc->sensors[7].units = ENVSYS_STEMP;
strcpy(sc->info[7].desc, "Temp");
setup_fan(sc, 8, 3);
sc->sc_sysmon.sme_streinfo = lm_streinfo;
}
int
wb_match(sc)
struct lm_softc *sc;
{
int i, j;
(*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
j = (*sc->lm_readreg)(sc, WB_VENDID) << 8;
(*sc->lm_writereg)(sc, WB_BANKSEL, 0);
j |= (*sc->lm_readreg)(sc, WB_VENDID);
DPRINTF(("winbond vend id 0x%x\n", j));
if (j != WB_VENDID_WINBOND)
return 0;
/* read device ID */
(*sc->lm_banksel)(sc, 0);
j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID);
DPRINTF(("winbond chip id 0x%x\n", j));
switch(j) {
case WB_CHIPID_83781:
case WB_CHIPID_83781_2:
printf(": W83781D\n");
for (i = 0; i < 7; ++i) {
sc->sensors[i].units = sc->info[i].units =
ENVSYS_SVOLTS_DC;
snprintf(sc->info[i].desc, sizeof(sc->info[i].desc),
"IN %d", i);
}
/* default correction factors for higher voltage inputs */
sc->info[0].rfact = sc->info[1].rfact =
sc->info[2].rfact = 10000;
sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
setup_temp(sc, 7, 3);
setup_fan(sc, 10, 3);
sc->numsensors = WB83781_NUM_SENSORS;
sc->refresh_sensor_data = wb781_refresh_sensor_data;
sc->sc_sysmon.sme_streinfo = wb781_streinfo;
return 1;
case WB_CHIPID_83697:
printf(": W83697HF\n");
wb_setup_volt(sc);
setup_temp(sc, 9, 2);
setup_fan(sc, 11, 3);
sc->numsensors = WB83697_NUM_SENSORS;
sc->refresh_sensor_data = wb697_refresh_sensor_data;
sc->sc_sysmon.sme_streinfo = wb782_streinfo;
return 1;
case WB_CHIPID_83782:
printf(": W83782D\n");
break;
case WB_CHIPID_83627:
printf(": W83627HF\n");
break;
case WB_CHIPID_83627THF:
printf(": W83627THF\n");
break;
default:
printf(": unknow winbond chip ID 0x%x\n", j);
/* handle as a standart lm7x */
lm_common_match(sc);
return 1;
}
/* common code for the W83782D and W83627HF */
wb_setup_volt(sc);
setup_temp(sc, 9, 3);
setup_fan(sc, 12, 3);
sc->numsensors = WB_NUM_SENSORS;
sc->refresh_sensor_data = wb782_refresh_sensor_data;
sc->sc_sysmon.sme_streinfo = wb782_streinfo;
return 1;
}
static void
wb_setup_volt(sc)
struct lm_softc *sc;
{
sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A");
sc->info[0].rfact = 10000;
sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B");
sc->info[1].rfact = 10000;
sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V");
sc->info[2].rfact = 10000;
sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V");
sc->info[3].rfact = 16778;
sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V");
sc->info[4].rfact = 38000;
sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V");
sc->info[5].rfact = 10000;
sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V");
sc->info[6].rfact = 10000;
sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB");
sc->info[7].rfact = 15151;
sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT");
sc->info[8].rfact = 10000;
}
static void
setup_temp(sc, start, n)
struct lm_softc *sc;
int start, n;
{
int i;
for (i = 0; i < n; i++) {
sc->sensors[start + i].units = ENVSYS_STEMP;
snprintf(sc->info[start + i].desc,
sizeof(sc->info[start + i].desc), "Temp %d", i + 1);
}
}
static void
setup_fan(sc, start, n)
struct lm_softc *sc;
int start, n;
{
int i;
for (i = 0; i < n; ++i) {
sc->sensors[start + i].units = ENVSYS_SFANRPM;
sc->info[start + i].units = ENVSYS_SFANRPM;
snprintf(sc->info[start + i].desc,
sizeof(sc->info[start + i].desc), "Fan %d", i + 1);
}
}
int
lm_gtredata(sme, tred)
struct sysmon_envsys *sme;
struct envsys_tre_data *tred;
{
static const struct timeval onepointfive = { 1, 500000 };
struct timeval t;
struct lm_softc *sc = sme->sme_cookie;
int i, s;
/* read new values at most once every 1.5 seconds */
timeradd(&sc->lastread, &onepointfive, &t);
s = splclock();
i = timercmp(&mono_time, &t, >);
if (i) {
sc->lastread.tv_sec = mono_time.tv_sec;
sc->lastread.tv_usec = mono_time.tv_usec;
}
splx(s);
if (i)
sc->refresh_sensor_data(sc);
*tred = sc->sensors[tred->sensor];
return 0;
}
int
generic_streinfo_fan(sc, info, n, binfo)
struct lm_softc *sc;
struct envsys_basic_info *info;
int n;
struct envsys_basic_info *binfo;
{
u_int8_t sdata;
int divisor;
/* FAN1 and FAN2 can have divisors set, but not FAN3 */
if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
&& (n < 2)) {
if (binfo->rpms == 0) {
binfo->validflags = 0;
return 0;
}
/* write back the nominal FAN speed */
info->rpms = binfo->rpms;
/* 153 is the nominal FAN speed value */
divisor = 1350000 / (binfo->rpms * 153);
/* ...but we need lg(divisor) */
if (divisor <= 1)
divisor = 0;
else if (divisor <= 2)
divisor = 1;
else if (divisor <= 4)
divisor = 2;
else
divisor = 3;
/*
* FAN1 div is in bits <5:4>, FAN2 div is
* in <7:6>
*/
sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
if ( n == 0 ) { /* FAN1 */
divisor <<= 4;
sdata = (sdata & 0xCF) | divisor;
} else { /* FAN2 */
divisor <<= 6;
sdata = (sdata & 0x3F) | divisor;
}
(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
}
return 0;
}
int
lm_streinfo(sme, binfo)
struct sysmon_envsys *sme;
struct envsys_basic_info *binfo;
{
struct lm_softc *sc = sme->sme_cookie;
if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
sc->info[binfo->sensor].rfact = binfo->rfact;
else {
if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
generic_streinfo_fan(sc, &sc->info[binfo->sensor],
binfo->sensor - 8, binfo);
}
strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
sizeof(sc->info[binfo->sensor].desc));
binfo->validflags = ENVSYS_FVALID;
}
return 0;
}
int
wb781_streinfo(sme, binfo)
struct sysmon_envsys *sme;
struct envsys_basic_info *binfo;
{
struct lm_softc *sc = sme->sme_cookie;
int divisor;
u_int8_t sdata;
int i;
if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
sc->info[binfo->sensor].rfact = binfo->rfact;
else {
if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
if (binfo->rpms == 0) {
binfo->validflags = 0;
return 0;
}
/* write back the nominal FAN speed */
sc->info[binfo->sensor].rpms = binfo->rpms;
/* 153 is the nominal FAN speed value */
divisor = 1350000 / (binfo->rpms * 153);
/* ...but we need lg(divisor) */
for (i = 0; i < 7; i++) {
if (divisor <= (1 << i))
break;
}
divisor = i;
if (binfo->sensor == 10 || binfo->sensor == 11) {
/*
* FAN1 div is in bits <5:4>, FAN2 div
* is in <7:6>
*/
sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
if ( binfo->sensor == 10 ) { /* FAN1 */
sdata = (sdata & 0xCF) |
((divisor & 0x3) << 4);
} else { /* FAN2 */
sdata = (sdata & 0x3F) |
((divisor & 0x3) << 6);
}
(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
} else {
/* FAN3 is in WB_PIN <7:6> */
sdata = (*sc->lm_readreg)(sc, WB_PIN);
sdata = (sdata & 0x3F) |
((divisor & 0x3) << 6);
(*sc->lm_writereg)(sc, WB_PIN, sdata);
}
}
strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
sizeof(sc->info[binfo->sensor].desc));
binfo->validflags = ENVSYS_FVALID;
}
return 0;
}
int
wb782_streinfo(sme, binfo)
struct sysmon_envsys *sme;
struct envsys_basic_info *binfo;
{
struct lm_softc *sc = sme->sme_cookie;
int divisor;
u_int8_t sdata;
int i;
if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
sc->info[binfo->sensor].rfact = binfo->rfact;
else {
if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
if (binfo->rpms == 0) {
binfo->validflags = 0;
return 0;
}
/* write back the nominal FAN speed */
sc->info[binfo->sensor].rpms = binfo->rpms;
/* 153 is the nominal FAN speed value */
divisor = 1350000 / (binfo->rpms * 153);
/* ...but we need lg(divisor) */
for (i = 0; i < 7; i++) {
if (divisor <= (1 << i))
break;
}
divisor = i;
if (binfo->sensor == 12 || binfo->sensor == 13) {
/*
* FAN1 div is in bits <5:4>, FAN2 div
* is in <7:6>
*/
sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN);
if ( binfo->sensor == 12 ) { /* FAN1 */
sdata = (sdata & 0xCF) |
((divisor & 0x3) << 4);
} else { /* FAN2 */
sdata = (sdata & 0x3F) |
((divisor & 0x3) << 6);
}
(*sc->lm_writereg)(sc, LMD_VIDFAN, sdata);
} else {
/* FAN3 is in WB_PIN <7:6> */
sdata = (*sc->lm_readreg)(sc, WB_PIN);
sdata = (sdata & 0x3F) |
((divisor & 0x3) << 6);
(*sc->lm_writereg)(sc, WB_PIN, sdata);
}
/* Bit 2 of divisor is in WB_BANK0_FANBAT */
(*sc->lm_banksel)(sc, 0);
sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT);
sdata &= ~(0x20 << (binfo->sensor - 12));
sdata |= (divisor & 0x4) << (binfo->sensor - 9);
(*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata);
}
strlcpy(sc->info[binfo->sensor].desc, binfo->desc,
sizeof(sc->info[binfo->sensor].desc));
binfo->validflags = ENVSYS_FVALID;
}
return 0;
}
static void
generic_stemp(sc, sensor)
struct lm_softc *sc;
struct envsys_tre_data *sensor;
{
int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
DPRINTF(("sdata[temp] 0x%x\n", sdata));
/* temp is given in deg. C, we convert to uK */
sensor->cur.data_us = sdata * 1000000 + 273150000;
}
static void
generic_svolt(sc, sensors, infos)
struct lm_softc *sc;
struct envsys_tre_data *sensors;
struct envsys_basic_info *infos;
{
int i, sdata;
for (i = 0; i < 7; i++) {
sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
/* voltage returned as (mV >> 4), we convert to uVDC */
sensors[i].cur.data_s = (sdata << 4);
/* rfact is (factor * 10^4) */
sensors[i].cur.data_s *= infos[i].rfact;
/* division by 10 gets us back to uVDC */
sensors[i].cur.data_s /= 10;
/* these two are negative voltages */
if ( (i == 5) || (i == 6) )
sensors[i].cur.data_s *= -1;
}
}
static void
generic_fanrpm(sc, sensors)
struct lm_softc *sc;
struct envsys_tre_data *sensors;
{
int i, sdata, divisor;
for (i = 0; i < 3; i++) {
sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i);
DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
if (i == 2)
divisor = 2; /* Fixed divisor for FAN3 */
else if (i == 1) /* Bits 7 & 6 of VID/FAN */
divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
else
divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
if (sdata == 0xff || sdata == 0x00) {
sensors[i].cur.data_us = 0;
} else {
sensors[i].cur.data_us = 1350000 / (sdata << divisor);
}
}
}
/*
* pre: last read occurred >= 1.5 seconds ago
* post: sensors[] current data are the latest from the chip
*/
void
lm_refresh_sensor_data(sc)
struct lm_softc *sc;
{
/* Refresh our stored data for every sensor */
generic_stemp(sc, &sc->sensors[7]);
generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
generic_fanrpm(sc, &sc->sensors[8]);
}
static void
wb_svolt(sc)
struct lm_softc *sc;
{
int i, sdata;
for (i = 0; i < 9; ++i) {
if (i < 7) {
sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i);
} else {
/* from bank5 */
(*sc->lm_banksel)(sc, 5);
sdata = (*sc->lm_readreg)(sc, (i == 7) ?
WB_BANK5_5VSB : WB_BANK5_VBAT);
}
DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata));
/* voltage returned as (mV >> 4), we convert to uV */
sdata = sdata << 4;
/* special case for negative voltages */
if (i == 5) {
/*
* -12Vdc, assume Winbond recommended values for
* resistors
*/
sdata = ((sdata * 1000) - (3600 * 805)) / 195;
} else if (i == 6) {
/*
* -5Vdc, assume Winbond recommended values for
* resistors
*/
sdata = ((sdata * 1000) - (3600 * 682)) / 318;
}
/* rfact is (factor * 10^4) */
sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
/* division by 10 gets us back to uVDC */
sc->sensors[i].cur.data_s /= 10;
}
}
static void
wb_stemp(sc, sensors, n)
struct lm_softc *sc;
struct envsys_tre_data *sensors;
int n;
{
int sdata;
/* temperatures. Given in dC, we convert to uK */
sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7);
DPRINTF(("sdata[temp0] 0x%x\n", sdata));
sensors[0].cur.data_us = sdata * 1000000 + 273150000;
/* from bank1 */
if ((*sc->lm_banksel)(sc, 1))
sensors[1].validflags &= ~ENVSYS_FCURVALID;
else {
sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1;
sdata |= ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7;
DPRINTF(("sdata[temp1] 0x%x\n", sdata));
sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000;
}
if (n < 3)
return;
/* from bank2 */
if ((*sc->lm_banksel)(sc, 2))
sensors[2].validflags &= ~ENVSYS_FCURVALID;
else {
sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1;
sdata |= ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7;
DPRINTF(("sdata[temp2] 0x%x\n", sdata));
sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000;
}
}
static void
wb781_fanrpm(sc, sensors)
struct lm_softc *sc;
struct envsys_tre_data *sensors;
{
int i, divisor, sdata;
(*sc->lm_banksel)(sc, 0);
for (i = 0; i < 3; i++) {
sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
if (i == 0)
divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
else if (i == 1)
divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
else
divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
if (sdata == 0xff || sdata == 0x00) {
sensors[i].cur.data_us = 0;
} else {
sensors[i].cur.data_us = 1350000 /
(sdata << divisor);
}
}
}
static void
wb_fanrpm(sc, sensors)
struct lm_softc *sc;
struct envsys_tre_data *sensors;
{
int i, divisor, sdata;
(*sc->lm_banksel)(sc, 0);
for (i = 0; i < 3; i++) {
sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8);
DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata));
if (i == 0)
divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3;
else if (i == 1)
divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3;
else
divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3;
divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4;
DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
if (sdata == 0xff || sdata == 0x00) {
sensors[i].cur.data_us = 0;
} else {
sensors[i].cur.data_us = 1350000 /
(sdata << divisor);
}
}
}
void
wb781_refresh_sensor_data(sc)
struct lm_softc *sc;
{
/* Refresh our stored data for every sensor */
/* we need to reselect bank0 to access common registers */
(*sc->lm_banksel)(sc, 0);
generic_svolt(sc, &sc->sensors[0], &sc->info[0]);
(*sc->lm_banksel)(sc, 0);
wb_stemp(sc, &sc->sensors[7], 3);
(*sc->lm_banksel)(sc, 0);
wb781_fanrpm(sc, &sc->sensors[10]);
}
void
wb782_refresh_sensor_data(sc)
struct lm_softc *sc;
{
/* Refresh our stored data for every sensor */
wb_svolt(sc);
wb_stemp(sc, &sc->sensors[9], 3);
wb_fanrpm(sc, &sc->sensors[12]);
}
void
wb697_refresh_sensor_data(sc)
struct lm_softc *sc;
{
/* Refresh our stored data for every sensor */
wb_svolt(sc);
wb_stemp(sc, &sc->sensors[9], 2);
wb_fanrpm(sc, &sc->sensors[11]);
}