2ecdd552dc
registers are registers that overlap with others on many controllers, but which may actually be distinct on some controllers. Right now, the two shadows are: - wd_status (usually overlaps wd_command) - wd_features (usually overlaps wd_error) Add a new helper function, wdc_init_shadow_regs(), used to initialize the shadow register handles on controllers where they do actually overlap. Partially from Jordan Rhody @ Wasabi Systems, Inc.
355 lines
11 KiB
C
355 lines
11 KiB
C
/* $NetBSD: rapide.c,v 1.20 2004/05/25 20:42:40 thorpej Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1997-1998 Mark Brinicombe
|
|
* Copyright (c) 1997-1998 Causality Limited
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Mark Brinicombe
|
|
* for the NetBSD Project.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Card driver and probe and attach functions to use generic IDE driver
|
|
* for the RapIDE podule
|
|
*/
|
|
|
|
/*
|
|
* Thanks to Chris Honey at Raymond Datalink for providing information on
|
|
* addressing the RapIDE podule.
|
|
* RapIDE32 is Copyright (C) 1995,1996 Raymond Datalink. RapIDE32 is
|
|
* manufactured under license by Yellowstone Educational Solutions.
|
|
*/
|
|
|
|
/*
|
|
* At present this driver only supports the Issue 2 RapIDE podule.
|
|
*/
|
|
|
|
/*
|
|
* A small amount of work is required for Issue 1 podule support.
|
|
* The primary differences are the register addresses.
|
|
* Things are eased by the fact that we can identify the card by register
|
|
* the same register on both issues of the podule.
|
|
* Once we kmnow the issue we must change all our addresses accordingly.
|
|
* All the control registers are mapped the same between cards.
|
|
* The interrupt handler needs to take note that the issue 1 card needs
|
|
* the interrupt to be cleared via the interrupt clear register.
|
|
* This means we share addresses for the mapping of the control block and
|
|
* thus the card driver does not need to know about the differences.
|
|
* The differences show up a the controller level.
|
|
* A structure is used to hold the information about the addressing etc.
|
|
* An array of these structures holds the information for the primary and
|
|
* secondary connectors. This needs to be extended to hold this information
|
|
* for both issues. Then the indexing of these structures will use the
|
|
* card version number.
|
|
*
|
|
* Opps just noticed a mistake. The interrupt request register is different
|
|
* between cards so the card level attach routine will need to consider this.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: rapide.c,v 1.20 2004/05/25 20:42:40 thorpej Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/device.h>
|
|
#include <sys/malloc.h>
|
|
|
|
#include <machine/intr.h>
|
|
#include <machine/io.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/bootconfig.h>
|
|
#include <arm/iomd/iomdreg.h>
|
|
#include <arm/iomd/iomdvar.h>
|
|
#include <acorn32/podulebus/podulebus.h>
|
|
#include <acorn32/podulebus/rapidereg.h>
|
|
|
|
#include <dev/ata/atavar.h>
|
|
#include <dev/ic/wdcreg.h>
|
|
#include <dev/ic/wdcvar.h>
|
|
#include <dev/podulebus/podules.h>
|
|
|
|
|
|
/*
|
|
* RapIDE podule device.
|
|
*
|
|
* This probes and attaches the top level RapIDE device to the podulebus.
|
|
* It then configures any children of the RapIDE device.
|
|
* The attach args specify whether it is configuring the primary or
|
|
* secondary channel.
|
|
* The children are expected to be wdc devices using rapide attachments.
|
|
*/
|
|
|
|
/*
|
|
* RapIDE card softc structure.
|
|
*
|
|
* Contains the device node, podule information and global information
|
|
* required by the driver such as the card version and the interrupt mask.
|
|
*/
|
|
|
|
struct rapide_softc {
|
|
struct wdc_softc sc_wdcdev; /* common wdc definitions */
|
|
struct wdc_channel *wdc_chanarray[2]; /* channels definition */
|
|
podule_t *sc_podule; /* Our podule info */
|
|
int sc_podule_number; /* Our podule number */
|
|
int sc_intr_enable_mask; /* Global intr mask */
|
|
int sc_version; /* Card version */
|
|
bus_space_tag_t sc_ctliot; /* Bus tag */
|
|
bus_space_handle_t sc_ctlioh; /* control handler */
|
|
struct rapide_channel {
|
|
struct wdc_channel wdc_channel; /* generic part */
|
|
struct ata_queue wdc_chqueue; /* channel queue */
|
|
irqhandler_t rc_ih; /* interrupt handler */
|
|
int rc_irqmask; /* IRQ mask for this channel */
|
|
} rapide_channels[2];
|
|
};
|
|
|
|
int rapide_probe __P((struct device *, struct cfdata *, void *));
|
|
void rapide_attach __P((struct device *, struct device *, void *));
|
|
void rapide_shutdown __P((void *arg));
|
|
int rapide_intr __P((void *));
|
|
|
|
CFATTACH_DECL(rapide, sizeof(struct rapide_softc),
|
|
rapide_probe, rapide_attach, NULL, NULL);
|
|
|
|
/*
|
|
* We have a private bus space tag.
|
|
* This is created by copying the podulebus tag and then replacing
|
|
* a couple of the transfer functions.
|
|
*/
|
|
|
|
static struct bus_space rapide_bs_tag;
|
|
|
|
bs_rm_4_proto(rapide);
|
|
bs_wm_4_proto(rapide);
|
|
|
|
/*
|
|
* Create an array of address structures. These define the addresses and
|
|
* masks needed for the different channels for the card.
|
|
*
|
|
* XXX - Needs some work for issue 1 cards.
|
|
*/
|
|
|
|
struct {
|
|
u_int registers;
|
|
u_int aux_register;
|
|
u_int data_register;
|
|
u_int irq_mask;
|
|
} rapide_info[] = {
|
|
{ PRIMARY_DRIVE_REGISTERS_OFFSET, PRIMARY_AUX_REGISTER_OFFSET,
|
|
PRIMARY_DATA_REGISTER_OFFSET, PRIMARY_IRQ_MASK },
|
|
{ SECONDARY_DRIVE_REGISTERS_OFFSET, SECONDARY_AUX_REGISTER_OFFSET,
|
|
SECONDARY_DATA_REGISTER_OFFSET, SECONDARY_IRQ_MASK }
|
|
};
|
|
|
|
|
|
/*
|
|
* Card probe function
|
|
*
|
|
* Just match the manufacturer and podule ID's
|
|
*/
|
|
|
|
int
|
|
rapide_probe(parent, cf, aux)
|
|
struct device *parent;
|
|
struct cfdata *cf;
|
|
void *aux;
|
|
{
|
|
struct podule_attach_args *pa = (void *)aux;
|
|
|
|
return (pa->pa_product == PODULE_RAPIDE);
|
|
}
|
|
|
|
/*
|
|
* Card attach function
|
|
*
|
|
* Identify the card version and configure any children.
|
|
* Install a shutdown handler to kill interrupts on shutdown
|
|
*/
|
|
|
|
void
|
|
rapide_attach(parent, self, aux)
|
|
struct device *parent, *self;
|
|
void *aux;
|
|
{
|
|
struct rapide_softc *sc = (void *)self;
|
|
struct podule_attach_args *pa = (void *)aux;
|
|
bus_space_tag_t iot;
|
|
bus_space_handle_t ctlioh;
|
|
u_int iobase;
|
|
int channel, i;
|
|
struct rapide_channel *rcp;
|
|
struct wdc_channel *cp;
|
|
irqhandler_t *ihp;
|
|
|
|
/* Note the podule number and validate */
|
|
if (pa->pa_podule_number == -1)
|
|
panic("Podule has disappeared !");
|
|
|
|
sc->sc_podule_number = pa->pa_podule_number;
|
|
sc->sc_podule = pa->pa_podule;
|
|
podules[sc->sc_podule_number].attached = 1;
|
|
|
|
set_easi_cycle_type(sc->sc_podule_number, EASI_CYCLE_TYPE_C);
|
|
|
|
/*
|
|
* Duplicate the podule bus space tag and provide alternative
|
|
* bus_space_read_multi_4() and bus_space_write_multi_4()
|
|
* functions.
|
|
*/
|
|
rapide_bs_tag = *pa->pa_iot;
|
|
rapide_bs_tag.bs_rm_4 = rapide_bs_rm_4;
|
|
rapide_bs_tag.bs_wm_4 = rapide_bs_wm_4;
|
|
sc->sc_ctliot = iot = &rapide_bs_tag;
|
|
|
|
if (bus_space_map(iot, pa->pa_podule->easi_base +
|
|
CONTROL_REGISTERS_OFFSET, CONTROL_REGISTER_SPACE, 0, &ctlioh))
|
|
panic("%s: Cannot map control registers", self->dv_xname);
|
|
|
|
sc->sc_ctlioh = ctlioh;
|
|
sc->sc_version = bus_space_read_1(iot, ctlioh, VERSION_REGISTER_OFFSET) & VERSION_REGISTER_MASK;
|
|
/* bus_space_unmap(iot, ctl_ioh, CONTROL_REGISTER_SPACE);*/
|
|
|
|
printf(": Issue %d\n", sc->sc_version + 1);
|
|
if (sc->sc_version != VERSION_2_ID)
|
|
return;
|
|
|
|
if (shutdownhook_establish(rapide_shutdown, (void *)sc) == NULL)
|
|
panic("%s: Cannot install shutdown handler", self->dv_xname);
|
|
|
|
/* Set the interrupt info for this podule */
|
|
sc->sc_podule->irq_addr = pa->pa_podule->easi_base
|
|
+ CONTROL_REGISTERS_OFFSET + IRQ_REQUEST_REGISTER_BYTE_OFFSET;
|
|
sc->sc_podule->irq_mask = IRQ_MASK;
|
|
|
|
iobase = pa->pa_podule->easi_base;
|
|
|
|
/* Fill in wdc and channel infos */
|
|
sc->sc_wdcdev.cap |= WDC_CAPABILITY_DATA32;
|
|
sc->sc_wdcdev.PIO_cap = 0;
|
|
sc->sc_wdcdev.channels = sc->wdc_chanarray;
|
|
sc->sc_wdcdev.nchannels = 2;
|
|
for (channel = 0 ; channel < 2; channel++) {
|
|
rcp = &sc->rapide_channels[channel];
|
|
sc->wdc_chanarray[channel] = &rcp->wdc_channel;
|
|
cp = &rcp->wdc_channel;
|
|
|
|
cp->ch_channel = channel;
|
|
cp->ch_wdc = &sc->sc_wdcdev;
|
|
cp->ch_queue = &rcp->wdc_chqueue;
|
|
cp->cmd_iot = iot;
|
|
cp->ctl_iot = iot;
|
|
cp->data32iot = iot;
|
|
|
|
if (bus_space_map(iot, iobase + rapide_info[channel].registers,
|
|
DRIVE_REGISTERS_SPACE, 0, &cp->cmd_baseioh))
|
|
continue;
|
|
for (i = 0; i < DRIVE_REGISTERS_SPACE; i++) {
|
|
if (bus_space_subregion(cp->cmd_iot, cp->cmd_baseioh,
|
|
i, i == 0 ? 4 : 1, &cp->cmd_iohs[i]) != 0) {
|
|
bus_space_unmap(iot, cp->cmd_baseioh,
|
|
DRIVE_REGISTERS_SPACE);
|
|
continue;
|
|
}
|
|
}
|
|
wdc_init_shadow_regs(cp);
|
|
if (bus_space_map(iot, iobase +
|
|
rapide_info[channel].aux_register, 4, 0, &cp->ctl_ioh)) {
|
|
bus_space_unmap(iot, cp->cmd_baseioh,
|
|
DRIVE_REGISTERS_SPACE);
|
|
continue;
|
|
}
|
|
if (bus_space_map(iot, iobase +
|
|
rapide_info[channel].data_register, 4, 0, &cp->data32ioh)) {
|
|
bus_space_unmap(iot, cp->cmd_baseioh,
|
|
DRIVE_REGISTERS_SPACE);
|
|
bus_space_unmap(iot, cp->ctl_ioh, 4);
|
|
continue;
|
|
}
|
|
/* Disable interrupts and clear any pending interrupts */
|
|
rcp->rc_irqmask = rapide_info[channel].irq_mask;
|
|
sc->sc_intr_enable_mask &= ~rcp->rc_irqmask;
|
|
bus_space_write_1(iot, sc->sc_ctlioh, IRQ_MASK_REGISTER_OFFSET,
|
|
sc->sc_intr_enable_mask);
|
|
/* XXX - Issue 1 cards will need to clear any pending interrupts */
|
|
ihp = &rcp->rc_ih;
|
|
ihp->ih_func = rapide_intr;
|
|
ihp->ih_arg = rcp;
|
|
ihp->ih_level = IPL_BIO;
|
|
ihp->ih_name = "rapide";
|
|
ihp->ih_maskaddr = pa->pa_podule->irq_addr;
|
|
ihp->ih_maskbits = rcp->rc_irqmask;
|
|
if (irq_claim(sc->sc_podule->interrupt, ihp))
|
|
panic("%s: Cannot claim interrupt %d",
|
|
self->dv_xname, sc->sc_podule->interrupt);
|
|
/* clear any pending interrupts and enable interrupts */
|
|
sc->sc_intr_enable_mask |= rcp->rc_irqmask;
|
|
bus_space_write_1(iot, sc->sc_ctlioh,
|
|
IRQ_MASK_REGISTER_OFFSET, sc->sc_intr_enable_mask);
|
|
/* XXX - Issue 1 cards will need to clear any pending interrupts */
|
|
wdcattach(cp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Card shutdown function
|
|
*
|
|
* Called via do_shutdown_hooks() during kernel shutdown.
|
|
* Clear the cards's interrupt mask to stop any podule interrupts.
|
|
*/
|
|
|
|
void
|
|
rapide_shutdown(arg)
|
|
void *arg;
|
|
{
|
|
struct rapide_softc *sc = arg;
|
|
|
|
/* Disable card interrupts */
|
|
bus_space_write_1(sc->sc_ctliot, sc->sc_ctlioh,
|
|
IRQ_MASK_REGISTER_OFFSET, 0);
|
|
}
|
|
|
|
/*
|
|
* Podule interrupt handler
|
|
*
|
|
* If the interrupt was from our card pass it on to the wdc interrupt handler
|
|
*/
|
|
|
|
int
|
|
rapide_intr(arg)
|
|
void *arg;
|
|
{
|
|
struct rapide_channel *rcp = arg;
|
|
irqhandler_t *ihp = &rcp->rc_ih;
|
|
volatile u_char *intraddr = (volatile u_char *)ihp->ih_maskaddr;
|
|
|
|
/* XXX - Issue 1 cards will need to clear the interrupt */
|
|
|
|
/* XXX - not bus space yet - should really be handled by podulebus */
|
|
if ((*intraddr) & ihp->ih_maskbits)
|
|
wdcintr(&rcp->wdc_channel);
|
|
|
|
return(0);
|
|
}
|