NetBSD/sys/dev/pci/if_iwn.c

3825 lines
101 KiB
C
Raw Blame History

/* $NetBSD: if_iwn.c,v 1.5 2008/02/16 18:51:42 ober Exp $ */
/*-
* Copyright (c) 2007
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.5 2008/02/16 18:51:42 ober Exp $");
/*
* Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <sys/callout.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <machine/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <net/if_ether.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/firmload.h>
#include <dev/pci/if_iwnreg.h>
#include <dev/pci/if_iwnvar.h>
#if 0
static const struct pci_matchid iwn_devices[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2 }
};
#endif
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset iwn_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset iwn_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset iwn_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
#define EDCA_NUM_AC 4
static int iwn_match(device_t , struct cfdata *, void *);
static void iwn_attach(device_t , device_t, void *);
static int iwn_detach(device_t, int);
static void iwn_radiotap_attach(struct iwn_softc *);
static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
void **, bus_size_t, bus_size_t, int);
static void iwn_dma_contig_free(struct iwn_dma_info *);
static int iwn_alloc_shared(struct iwn_softc *);
static void iwn_free_shared(struct iwn_softc *);
static int iwn_alloc_kw(struct iwn_softc *);
static void iwn_free_kw(struct iwn_softc *);
static int iwn_alloc_fwmem(struct iwn_softc *);
static void iwn_free_fwmem(struct iwn_softc *);
static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
static int iwn_alloc_rpool(struct iwn_softc *);
static void iwn_free_rpool(struct iwn_softc *);
static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
int, int);
static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
static void iwn_newassoc(struct ieee80211_node *, int);
static int iwn_media_change(struct ifnet *);
static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void iwn_mem_lock(struct iwn_softc *);
static void iwn_mem_unlock(struct iwn_softc *);
static uint32_t iwn_mem_read(struct iwn_softc *, uint32_t);
static void iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t);
static void iwn_mem_write_region_4(struct iwn_softc *, uint32_t,
const uint32_t *, int);
static int iwn_eeprom_lock(struct iwn_softc *);
static void iwn_eeprom_unlock(struct iwn_softc *);
static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
static int iwn_load_microcode(struct iwn_softc *, const uint8_t *, int);
static int iwn_load_firmware(struct iwn_softc *);
static void iwn_calib_timeout(void *);
static void iwn_iter_func(void *, struct ieee80211_node *);
static void iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *);
static void iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
static void iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *);
static void iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *);
static void iwn_notif_intr(struct iwn_softc *);
static int iwn_intr(void *);
static void iwn_read_eeprom(struct iwn_softc *);
static void iwn_read_eeprom_channels(struct iwn_softc *, int);
static void iwn_print_power_group(struct iwn_softc *, int);
static uint8_t iwn_plcp_signal(int);
static int iwn_tx_data(struct iwn_softc *, struct mbuf *,
struct ieee80211_node *, int);
static void iwn_start(struct ifnet *);
static void iwn_watchdog(struct ifnet *);
static int iwn_ioctl(struct ifnet *, u_long, void *);
static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
static int iwn_wme_update(struct ieee80211com *);
static int iwn_setup_node_mrr(struct iwn_softc *, uint8_t, int);
static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
static int iwn_set_critical_temp(struct iwn_softc *);
static void iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *);
static void iwn_power_calibration(struct iwn_softc *, int);
static int iwn_set_txpower(struct iwn_softc *,
struct ieee80211_channel *, int);
static int iwn_get_rssi(const struct iwn_rx_stat *);
static int iwn_get_noise(const struct iwn_rx_general_stats *);
static int iwn_get_temperature(struct iwn_softc *);
static int iwn_init_sensitivity(struct iwn_softc *);
static void iwn_compute_differential_gain(struct iwn_softc *,
const struct iwn_rx_general_stats *);
static void iwn_tune_sensitivity(struct iwn_softc *,
const struct iwn_rx_stats *);
static int iwn_send_sensitivity(struct iwn_softc *);
/*static int iwn_setup_beacon(struct iwn_softc *, struct ieee80211_node *);*/
static int iwn_auth(struct iwn_softc *);
static int iwn_run(struct iwn_softc *);
static int iwn_scan(struct iwn_softc *, uint16_t);
static int iwn_config(struct iwn_softc *);
static void iwn_post_alive(struct iwn_softc *);
static void iwn_stop_master(struct iwn_softc *);
static int iwn_reset(struct iwn_softc *);
static void iwn_hw_config(struct iwn_softc *);
static int iwn_init(struct ifnet *);
static void iwn_stop(struct ifnet *, int);
static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
static bool iwn_resume(device_t dv);
#define IWN_DEBUG
#ifdef IWN_DEBUG
#define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
int iwn_debug = 2;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
iwn_detach, NULL);
static int
iwn_match(device_t parent, struct cfdata *match __unused, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
return 0;
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2)
return 1;
return 0;
}
/* Base Address Register */
#define IWN_PCI_BAR0 0x10
static void
iwn_attach(device_t parent __unused, device_t self, void *aux)
{
struct iwn_softc *sc = device_private(self);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct pci_attach_args *pa = aux;
const char *intrstr;
char devinfo[256];
pci_intr_handle_t ih;
pcireg_t memtype, data;
int i, error, revision;
sc->sc_dev = self;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
callout_init(&sc->calib_to, 0);
callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
revision = PCI_REVISION(pa->pa_class);
aprint_normal(": %s (rev. 0x%2x)\n", devinfo, revision);
/* clear device specific PCI configuration register 0x41 */
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
data &= ~0x0000ff00;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
data |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
/* enable bus-mastering */
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
data |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
/* map the register window */
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
&sc->sc_sh, NULL, &sc->sc_sz);
if (error != 0) {
aprint_error_dev(self, "could not map memory space\n");
return;
}
sc->sc_dmat = pa->pa_dmat;
if (pci_intr_map(pa, &ih) != 0) {
aprint_error_dev(self, "could not map interrupt\n");
return;
}
intrstr = pci_intr_string(sc->sc_pct, ih);
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "could not establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
if (iwn_reset(sc) != 0) {
aprint_error_dev(self, "could not reset adapter\n");
return;
}
/*
* Allocate DMA memory for firmware transfers.
*/
if ((error = iwn_alloc_fwmem(sc)) != 0) {
aprint_error_dev(self, "could not allocate firmware memory\n");
return;
}
/*
* Allocate a "keep warm" page.
*/
if ((error = iwn_alloc_kw(sc)) != 0) {
aprint_error_dev(self, "could not allocate keep warm page\n");
goto fail1;
}
/*
* Allocate shared area (communication area).
*/
if ((error = iwn_alloc_shared(sc)) != 0) {
aprint_error_dev(self, "could not allocate shared area\n");
goto fail2;
}
/*
* Allocate Rx buffers and Tx/Rx rings.
*/
if ((error = iwn_alloc_rpool(sc)) != 0) {
aprint_error_dev(self, "could not allocate Rx buffers\n");
goto fail3;
}
for (i = 0; i < IWN_NTXQUEUES; i++) {
struct iwn_tx_ring *txq = &sc->txq[i];
error = iwn_alloc_tx_ring(sc, txq, IWN_TX_RING_COUNT, i);
if (error != 0) {
aprint_error_dev(self, "could not allocate Tx ring %d\n", i);
goto fail4;
}
}
if (iwn_alloc_rx_ring(sc, &sc->rxq) != 0) {
aprint_error_dev(self, "could not allocate Rx ring\n");
goto fail4;
}
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_IBSS | /* IBSS mode support */
IEEE80211_C_WPA | /* 802.11i */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_SHPREAMBLE| /* short preamble supported */
IEEE80211_C_WME; /* 802.11e */
/* read supported channels and MAC address from EEPROM */
iwn_read_eeprom(sc);
/* set supported .11a, .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
/* IBSS channel undefined for now */
ic->ic_ibss_chan = &ic->ic_channels[0];
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = iwn_init;
ifp->if_stop = iwn_stop;
ifp->if_ioctl = iwn_ioctl;
ifp->if_start = iwn_start;
ifp->if_watchdog = iwn_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ic);
ic->ic_node_alloc = iwn_node_alloc;
ic->ic_newassoc = iwn_newassoc;
ic->ic_wme.wme_update = iwn_wme_update;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = iwn_newstate;
ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 15;
if (!pmf_device_register(self, NULL, iwn_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
else
pmf_class_network_register(self, ifp);
iwn_radiotap_attach(sc);
ieee80211_announce(ic);
return;
/* free allocated memory if something failed during attachment */
fail4: while (--i >= 0)
iwn_free_tx_ring(sc, &sc->txq[i]);
iwn_free_rpool(sc);
fail3: iwn_free_shared(sc);
fail2: iwn_free_kw(sc);
fail1: iwn_free_fwmem(sc);
}
static int
iwn_detach(struct device* self, int flags __unused)
{
struct iwn_softc *sc = (struct iwn_softc *)self;
struct ifnet *ifp = sc->sc_ic.ic_ifp;
int ac;
iwn_stop(ifp, 1);
#if NBPFILTER > 0
if (ifp != NULL)
bpfdetach(ifp);
#endif
ieee80211_ifdetach(&sc->sc_ic);
if (ifp != NULL)
if_detach(ifp);
for (ac = 0; ac < IWN_NTXQUEUES; ac++)
iwn_free_tx_ring(sc, &sc->txq[ac]);
iwn_free_rx_ring(sc, &sc->rxq);
iwn_free_rpool(sc);
iwn_free_shared(sc);
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
sc->sc_ih = NULL;
}
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
return 0;
}
/*
* Attach the interface to 802.11 radiotap.
*/
static void
iwn_radiotap_attach(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
#if NBPFILTER > 0
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
#endif
}
/*
* Build a beacon frame that the firmware will broadcast periodically in
* IBSS or HostAP modes.
*/
#if 0
static int
iwn_setup_beacon(struct iwn_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
struct iwn_cmd_beacon *bcn;
struct ieee80211_beacon_offsets bo;
struct mbuf *m0;
bus_addr_t paddr;
int error;
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
m0 = ieee80211_beacon_alloc(ic, ni, &bo);
if (m0 == NULL) {
aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
return ENOMEM;
}
cmd = &ring->cmd[ring->cur];
cmd->code = IWN_CMD_SET_BEACON;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
bcn = (struct iwn_cmd_beacon *)cmd->data;
memset(bcn, 0, sizeof (struct iwn_cmd_beacon));
bcn->id = IWN_ID_BROADCAST;
bcn->ofdm_mask = 0xff;
bcn->cck_mask = 0x0f;
bcn->lifetime = htole32(IWN_LIFETIME_INFINITE);
bcn->len = htole16(m0->m_pkthdr.len);
bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
iwn_plcp_signal(12) : iwn_plcp_signal(2);
bcn->flags = htole32(IWN_TX_AUTO_SEQ | IWN_TX_INSERT_TSTAMP);
/* save and trim IEEE802.11 header */
m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
m_adj(m0, sizeof (struct ieee80211_frame));
/* assume beacon frame is contiguous */
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev, "could not map beacon\n");
m_freem(m0);
return error;
}
data->m = m0;
/* first scatter/gather segment is used by the beacon command */
paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
IWN_SET_DESC_NSEGS(desc, 2);
IWN_SET_DESC_SEG(desc, 0, paddr , 4 + sizeof(struct iwn_cmd_beacon));
IWN_SET_DESC_SEG(desc, 1, data->map->dm_segs[0].ds_addr,
data->map->dm_segs[1].ds_len);
/* kick cmd ring */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
return 0;
}
#endif
static int
iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
bus_size_t size, bus_size_t alignment, int flags)
{
int nsegs, error;
dma->tag = tag;
dma->size = size;
error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
if (error != 0)
goto fail;
error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
flags);
if (error != 0)
goto fail;
error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
if (error != 0)
goto fail;
error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
if (error != 0)
goto fail;
memset(dma->vaddr, 0, size);
dma->paddr = dma->map->dm_segs[0].ds_addr;
if (kvap != NULL)
*kvap = dma->vaddr;
return 0;
fail: iwn_dma_contig_free(dma);
return error;
}
static void
iwn_dma_contig_free(struct iwn_dma_info *dma)
{
if (dma->map != NULL) {
if (dma->vaddr != NULL) {
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
bus_dmamem_free(dma->tag, &dma->seg, 1);
dma->vaddr = NULL;
}
bus_dmamap_destroy(dma->tag, dma->map);
dma->map = NULL;
}
}
static int
iwn_alloc_shared(struct iwn_softc *sc)
{
int error;
/* must be aligned on a 1KB boundary */
error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
(void **)&sc->shared, sizeof (struct iwn_shared),
1024,BUS_DMA_NOWAIT);
if (error != 0)
aprint_error_dev(sc->sc_dev,
"could not allocate shared area DMA memory\n");
return error;
}
static void
iwn_free_shared(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->shared_dma);
}
static int
iwn_alloc_kw(struct iwn_softc *sc)
{
/* must be aligned on a 16-byte boundary */
return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL,
PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
}
static void
iwn_free_kw(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->kw_dma);
}
static int
iwn_alloc_fwmem(struct iwn_softc *sc)
{
int error;
/* allocate enough contiguous space to store text and data */
error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16,
BUS_DMA_NOWAIT);
if (error != 0){
aprint_error_dev(sc->sc_dev,
"could not allocate firmware transfer area DMA memory\n" );
}
return error;
}
static void
iwn_free_fwmem(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->fw_dma);
}
static struct iwn_rbuf *
iwn_alloc_rbuf(struct iwn_softc *sc)
{
struct iwn_rbuf *rbuf;
rbuf = SLIST_FIRST(&sc->rxq.freelist);
if (rbuf == NULL)
return NULL;
SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
sc->rxq.nb_free_entries --;
return rbuf;
}
/*
* This is called automatically by the network stack when the mbuf to which
* our Rx buffer is attached is freed.
*/
static void
iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
{
struct iwn_rbuf *rbuf = arg;
struct iwn_softc *sc = rbuf->sc;
/* put the buffer back in the free list */
SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
sc->rxq.nb_free_entries ++;
if (__predict_true(m != NULL))
pool_cache_put(mb_cache, m);
}
static int
iwn_alloc_rpool(struct iwn_softc *sc)
{
struct iwn_rx_ring *ring = &sc->rxq;
struct iwn_rbuf *rbuf;
int i, error;
/* allocate a big chunk of DMA'able memory.. */
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
IWN_RBUF_COUNT * IWN_RBUF_SIZE, IWN_BUF_ALIGN, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate Rx buffers DMA memory\n");
return error;
}
/* ..and split it into chunks of "rbufsz" bytes */
SLIST_INIT(&ring->freelist);
for (i = 0; i < IWN_RBUF_COUNT; i++) {
rbuf = &ring->rbuf[i];
rbuf->sc = sc; /* backpointer for callbacks */
rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE;
rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
}
ring->nb_free_entries = IWN_RBUF_COUNT;
return 0;
}
static void
iwn_free_rpool(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->rxq.buf_dma);
}
static int
iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
struct iwn_rx_data *data;
struct iwn_rbuf *rbuf;
int i, error;
ring->cur = 0;
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
(void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (struct iwn_rx_desc),
IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate rx ring DMA memory\n");
goto fail;
}
/*
* Setup Rx buffers.
*/
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
data = &ring->data[i];
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
if ((rbuf = iwn_alloc_rbuf(sc)) == NULL) {
m_freem(data->m);
data->m = NULL;
aprint_error_dev(sc->sc_dev, "could not allocate rx buffer\n");
error = ENOMEM;
goto fail;
}
/* attach Rx buffer to mbuf */
MEXTADD(data->m, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
rbuf);
data->m->m_flags |= M_EXT_RW;
/* Rx buffers are aligned on a 256-byte boundary */
ring->desc[i] = htole32(rbuf->paddr >> 8);
}
return 0;
fail: iwn_free_rx_ring(sc, ring);
return error;
}
static void
iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
int ntries;
iwn_mem_lock(sc);
IWN_WRITE(sc, IWN_RX_CONFIG, 0);
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE)
break;
DELAY(10);
}
#ifdef IWN_DEBUG
if (ntries == 100 && iwn_debug > 0)
aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
#endif
iwn_mem_unlock(sc);
ring->cur = 0;
}
static void
iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
int i;
iwn_dma_contig_free(&ring->desc_dma);
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
if (ring->data[i].m != NULL)
m_freem(ring->data[i].m);
}
}
static int
iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int count,
int qid)
{
struct iwn_tx_data *data;
int i, error;
ring->qid = qid;
ring->count = count;
ring->queued = 0;
ring->cur = 0;
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
(void **)&ring->desc, count * sizeof (struct iwn_tx_desc),
IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
goto fail;
}
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
(void **)&ring->cmd, count * sizeof (struct iwn_tx_cmd), 4,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct iwn_tx_data), M_DEVBUF, M_NOWAIT);
if (ring->data == NULL) {
aprint_error_dev(sc->sc_dev,"could not allocate tx data slots\n");
goto fail;
}
memset(ring->data, 0, count * sizeof (struct iwn_tx_data));
for (i = 0; i < count; i++) {
data = &ring->data[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
&data->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
goto fail;
}
}
return 0;
fail: iwn_free_tx_ring(sc, ring);
return error;
}
static void
iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
struct iwn_tx_data *data;
uint32_t tmp;
int i, ntries;
iwn_mem_lock(sc);
IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0);
for (ntries = 0; ntries < 100; ntries++) {
tmp = IWN_READ(sc, IWN_TX_STATUS);
if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid))
break;
DELAY(10);
}
#ifdef IWN_DEBUG
if (ntries == 100 && iwn_debug > 1) {
aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n", ring->qid);
}
#endif
iwn_mem_unlock(sc);
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
}
ring->queued = 0;
ring->cur = 0;
}
static void
iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
struct iwn_tx_data *data;
int i;
iwn_dma_contig_free(&ring->desc_dma);
iwn_dma_contig_free(&ring->cmd_dma);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
}
free(ring->data, M_DEVBUF);
}
}
/*ARGUSED*/
struct ieee80211_node *
iwn_node_alloc(struct ieee80211_node_table *nt __unused)
{
struct iwn_node *wn;
wn = malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT);
if (wn != NULL)
memset(wn, 0, sizeof (struct iwn_node));
return (struct ieee80211_node *)wn;
}
static void
iwn_newassoc(struct ieee80211_node *ni, int isnew)
{
struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
int i;
ieee80211_amrr_node_init(&sc->amrr, &((struct iwn_node *)ni)->amn);
/* set rate to some reasonable initial value */
for (i = ni->ni_rates.rs_nrates - 1;
i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
i--);
ni->ni_txrate = i;
}
static int
iwn_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
iwn_init(ifp);
return 0;
}
static int
iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct iwn_softc *sc = ifp->if_softc;
int error;
callout_stop(&sc->calib_to);
switch (nstate) {
case IEEE80211_S_SCAN:
if (sc->is_scanning)
break;
sc->is_scanning = true;
ieee80211_node_table_reset(&ic->ic_scan);
ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
/* make the link LED blink while we're scanning */
iwn_set_led(sc, IWN_LED_LINK, 20, 2);
if ((error = iwn_scan(sc, IEEE80211_CHAN_G)) != 0) {
aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
return error;
}
ic->ic_state = nstate;
return 0;
case IEEE80211_S_ASSOC:
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* FALLTHROUGH */
case IEEE80211_S_AUTH:
/* reset state to handle reassociations correctly */
sc->config.associd = 0;
sc->config.filter &= ~htole32(IWN_FILTER_BSS);
/*sc->calib.state = IWN_CALIB_STATE_INIT;*/
if ((error = iwn_auth(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not move to auth state\n");
return error;
}
break;
case IEEE80211_S_RUN:
if ((error = iwn_run(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not move to run state\n");
return error;
}
break;
case IEEE80211_S_INIT:
sc->is_scanning = false;
break;
}
return sc->sc_newstate(ic, nstate, arg);
}
/*
* Grab exclusive access to NIC memory.
*/
static void
iwn_mem_lock(struct iwn_softc *sc)
{
uint32_t tmp;
int ntries;
tmp = IWN_READ(sc, IWN_GPIO_CTL);
IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC);
/* spin until we actually get the lock */
for (ntries = 0; ntries < 1000; ntries++) {
if ((IWN_READ(sc, IWN_GPIO_CTL) &
(IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK)
break;
DELAY(10);
}
if (ntries == 1000)
aprint_error_dev(sc->sc_dev, "could not lock memory\n");
}
/*
* Release lock on NIC memory.
*/
static void
iwn_mem_unlock(struct iwn_softc *sc)
{
uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC);
}
static uint32_t
iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
{
IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr);
return IWN_READ(sc, IWN_READ_MEM_DATA);
}
static void
iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
{
IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr);
IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data);
}
static void
iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr,
const uint32_t *data, int wlen)
{
for (; wlen > 0; wlen--, data++, addr += 4)
iwn_mem_write(sc, addr, *data);
}
static int
iwn_eeprom_lock(struct iwn_softc *sc)
{
uint32_t tmp;
int ntries;
tmp = IWN_READ(sc, IWN_HWCONFIG);
IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED);
/* spin until we actually get the lock */
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED)
return 0;
DELAY(10);
}
return ETIMEDOUT;
}
static void
iwn_eeprom_unlock(struct iwn_softc *sc)
{
uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG);
IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED);
}
/*
* Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
* instead of using the traditional bit-bang method.
*/
static int
iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len)
{
uint8_t *out = data;
uint32_t val;
int ntries;
iwn_mem_lock(sc);
for (; len > 0; len -= 2, addr++) {
IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2);
IWN_WRITE(sc, IWN_EEPROM_CTL,
IWN_READ(sc, IWN_EEPROM_CTL) & ~IWN_EEPROM_CMD);
for (ntries = 0; ntries < 10; ntries++) {
if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) &
IWN_EEPROM_READY)
break;
DELAY(5);
}
if (ntries == 10) {
aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
return ETIMEDOUT;
}
*out++ = val >> 16;
if (len > 1)
*out++ = val >> 24;
}
iwn_mem_unlock(sc);
return 0;
}
/*
* The firmware boot code is small and is intended to be copied directly into
* the NIC internal memory.
*/
static int
iwn_load_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
{
int ntries;
size /= sizeof (uint32_t);
iwn_mem_lock(sc);
/* copy microcode image into NIC memory */
iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE,
(const uint32_t *)ucode, size);
iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0);
iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT);
iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size);
/* run microcode */
iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN);
/* wait for transfer to complete */
for (ntries = 0; ntries < 1000; ntries++) {
if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN))
break;
DELAY(10);
}
if (ntries == 1000) {
iwn_mem_unlock(sc);
aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
return ETIMEDOUT;
}
iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE);
iwn_mem_unlock(sc);
return 0;
}
static int
iwn_load_firmware(struct iwn_softc *sc)
{
struct iwn_dma_info *dma = &sc->fw_dma;
struct iwn_firmware_hdr hdr;
const uint8_t *init_text, *init_data, *main_text, *main_data;
const uint8_t *boot_text;
uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
uint32_t boot_textsz;
firmware_handle_t fw;
u_char *dfw;
size_t size;
int error;
/* load firmware image from disk */
if ((error = firmware_open("if_iwn","iwlwifi-4965.ucode", &fw) != 0)) {
aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
goto fail1;
}
size = firmware_get_size(fw);
/* extract firmware header information */
if (size < sizeof (struct iwn_firmware_hdr)) {
aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n", size);
error = EINVAL;
goto fail2;
}
if ((error = firmware_read(fw, 0, &hdr,
sizeof (struct iwn_firmware_hdr))) != 0) {
aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
goto fail2;
}
main_textsz = le32toh(hdr.main_textsz);
main_datasz = le32toh(hdr.main_datasz);
init_textsz = le32toh(hdr.init_textsz);
init_datasz = le32toh(hdr.init_datasz);
boot_textsz = le32toh(hdr.boot_textsz);
/* sanity-check firmware segments sizes */
if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ ||
main_datasz > IWN_FW_MAIN_DATA_MAXSZ ||
init_textsz > IWN_FW_INIT_TEXT_MAXSZ ||
init_datasz > IWN_FW_INIT_DATA_MAXSZ ||
boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
(boot_textsz & 3) != 0) {
aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
error = EINVAL;
goto fail2;
}
/* check that all firmware segments are present */
if (size < sizeof (struct iwn_firmware_hdr) + main_textsz +
main_datasz + init_textsz + init_datasz + boot_textsz) {
aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n", size);
error = EINVAL;
goto fail2;
}
dfw = firmware_malloc(size);
if (dfw == NULL) {
aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
error = ENOMEM;
goto fail2;
}
if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
aprint_error_dev(sc->sc_dev, "can't get firmware\n");
goto fail2;
}
/* get pointers to firmware segments */
main_text = dfw + sizeof (struct iwn_firmware_hdr);
main_data = main_text + main_textsz;
init_text = main_data + main_datasz;
init_data = init_text + init_textsz;
boot_text = init_data + init_datasz;
/* copy initialization images into pre-allocated DMA-safe memory */
memcpy(dma->vaddr, init_data, init_datasz);
memcpy((char *)dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
/* tell adapter where to find initialization images */
iwn_mem_lock(sc);
iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz);
iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
(dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4);
iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz);
iwn_mem_unlock(sc);
/* load firmware boot code */
if ((error = iwn_load_microcode(sc, boot_text, boot_textsz)) != 0) {
aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
goto fail3;
}
/* now press "execute" ;-) */
IWN_WRITE(sc, IWN_RESET, 0);
/* ..and wait at most one second for adapter to initialize */
if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
/* this isn't what was supposed to happen.. */
aprint_error_dev(sc->sc_dev, "timeout waiting for adapter to initialize\n");
}
/* copy runtime images into pre-allocated DMA-safe memory */
memcpy((char *)dma->vaddr, main_data, main_datasz);
memcpy((char *)dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
/* tell adapter where to find runtime images */
iwn_mem_lock(sc);
iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz);
iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
(dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4);
iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz);
iwn_mem_unlock(sc);
/* wait at most one second for second alive notification */
if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
/* this isn't what was supposed to happen.. */
aprint_error_dev(sc->sc_dev, "timeout waiting for adapter to initialize\n");
}
fail3: firmware_free(dfw,size);
fail2: firmware_close(fw);
fail1: return error;
}
static void
iwn_calib_timeout(void *arg)
{
struct iwn_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int s;
/* automatic rate control triggered every 500ms */
if (ic->ic_fixed_rate == -1) {
s = splnet();
if (ic->ic_opmode == IEEE80211_M_STA)
iwn_iter_func(sc, ic->ic_bss);
else
ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
splx(s);
}
/* automatic calibration every 60s */
if (++sc->calib_cnt >= 120) {
DPRINTF(("sending request for statistics\n"));
(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1);
sc->calib_cnt = 0;
}
callout_schedule(&sc->calib_to, hz/2);
}
static void
iwn_iter_func(void *arg, struct ieee80211_node *ni)
{
struct iwn_softc *sc = arg;
struct iwn_node *wn = (struct iwn_node *)ni;
ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
}
static void
iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc)
{
struct iwn_rx_stat *stat;
DPRINTFN(2, ("received AMPDU stats\n"));
/* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */
stat = (struct iwn_rx_stat *)(desc + 1);
memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
sc->last_rx_valid = 1;
}
void
iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwn_rx_ring *ring = &sc->rxq;
struct iwn_rbuf *rbuf;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m, *mnew;
struct iwn_rx_stat *stat;
char *head;
uint32_t *tail;
int len, rssi;
if (desc->type == IWN_AMPDU_RX_DONE) {
/* check for prior AMPDU_RX_START */
if (!sc->last_rx_valid) {
DPRINTF(("missing AMPDU_RX_START\n"));
ifp->if_ierrors++;
return;
}
sc->last_rx_valid = 0;
stat = &sc->last_rx_stat;
} else
stat = (struct iwn_rx_stat *)(desc + 1);
if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
ifp->if_ierrors++;
return;
}
if (desc->type == IWN_AMPDU_RX_DONE) {
struct iwn_rx_ampdu *ampdu =
(struct iwn_rx_ampdu *)(desc + 1);
head = (char *)(ampdu + 1);
len = le16toh(ampdu->len);
} else {
head = (char *)(stat + 1) + stat->cfg_phy_len;
len = le16toh(stat->len);
}
/* discard Rx frames with bad CRC early */
tail = (uint32_t *)(head + len);
if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
DPRINTFN(2, ("rx flags error %x\n", le32toh(*tail)));
ifp->if_ierrors++;
return;
}
/* XXX for ieee80211_find_rxnode() */
if (len < sizeof (struct ieee80211_frame)) {
DPRINTF(("frame too short: %d\n", len));
ic->ic_stats.is_rx_tooshort++;
ifp->if_ierrors++;
return;
}
m = data->m;
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_data = head;
m->m_pkthdr.len = m->m_len = len;
if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) {
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
ic->ic_stats.is_rx_nobuf++;
ifp->if_ierrors++;
return;
}
/* attach Rx buffer to mbuf */
MEXTADD(mnew, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
rbuf);
mnew->m_flags |= M_EXT_RW;
SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
data->m = mnew;
/* update Rx descriptor */
ring->desc[ring->cur] = htole32(rbuf->paddr >> 8);
} else {
/* no free rbufs, copy frame */
m = m_dup(m, 0, M_COPYALL, M_DONTWAIT);
if (m == NULL) {
/* no free mbufs either, drop frame */
ic->ic_stats.is_rx_nobuf++;
ifp->if_ierrors++;
return;
}
}
rssi = iwn_get_rssi(stat);
if (ic->ic_state == IEEE80211_S_SCAN)
iwn_fix_channel(ic, m);
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_chan_freq =
htole16(ic->ic_channels[stat->chan].ic_freq);
tap->wr_chan_flags =
htole16(ic->ic_channels[stat->chan].ic_flags);
tap->wr_dbm_antsignal = (int8_t)rssi;
tap->wr_dbm_antnoise = (int8_t)sc->noise;
tap->wr_tsft = stat->tstamp;
switch (stat->rate) {
/* CCK rates */
case 10: tap->wr_rate = 2; break;
case 20: tap->wr_rate = 4; break;
case 55: tap->wr_rate = 11; break;
case 110: tap->wr_rate = 22; break;
/* OFDM rates */
case 0xd: tap->wr_rate = 12; break;
case 0xf: tap->wr_rate = 18; break;
case 0x5: tap->wr_rate = 24; break;
case 0x7: tap->wr_rate = 36; break;
case 0x9: tap->wr_rate = 48; break;
case 0xb: tap->wr_rate = 72; break;
case 0x1: tap->wr_rate = 96; break;
case 0x3: tap->wr_rate = 108; break;
/* unknown rate: should not happen */
default: tap->wr_rate = 0;
}
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
#endif
/* grab a reference to the source node */
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic,(struct ieee80211_frame_min *)wh);
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
}
/*
* XXX: Hack to set the current channel to the value advertised in beacons or
* probe responses. Only used during AP detection.
* XXX: Duplicated from if_iwi.c
*/
static void
iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
{
struct ieee80211_frame *wh;
uint8_t subtype;
uint8_t *frm, *efrm;
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
return;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
return;
frm = (uint8_t *)(wh + 1);
efrm = mtod(m, uint8_t *) + m->m_len;
frm += 12; /* skip tstamp, bintval and capinfo fields */
while (frm < efrm) {
if (*frm == IEEE80211_ELEMID_DSPARMS)
#if IEEE80211_CHAN_MAX < 255
if (frm[2] <= IEEE80211_CHAN_MAX)
#endif
ic->ic_curchan = &ic->ic_channels[frm[2]];
frm += frm[1] + 2;
}
}
static void
iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_calib_state *calib = &sc->calib;
struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
/* ignore beacon statistics received during a scan */
if (ic->ic_state != IEEE80211_S_RUN)
return;
DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
sc->calib_cnt = 0; /* reset timeout */
/* test if temperature has changed */
if (stats->general.temp != sc->rawtemp) {
int temp;
sc->rawtemp = stats->general.temp;
temp = iwn_get_temperature(sc);
DPRINTFN(2, ("temperature=%d\n", temp));
/* update Tx power if need be */
iwn_power_calibration(sc, temp);
}
if (desc->type != IWN_BEACON_STATISTICS)
return; /* reply to a statistics request */
sc->noise = iwn_get_noise(&stats->rx.general);
DPRINTFN(3, ("noise=%d\n", sc->noise));
/* test that RSSI and noise are present in stats report */
if (le32toh(stats->rx.general.flags) != 1) {
DPRINTF(("received statistics without RSSI\n"));
return;
}
if (calib->state == IWN_CALIB_STATE_ASSOC)
iwn_compute_differential_gain(sc, &stats->rx.general);
else if (calib->state == IWN_CALIB_STATE_RUN)
iwn_tune_sensitivity(sc, &stats->rx);
}
static void
iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
struct iwn_tx_data *txdata = &ring->data[desc->idx];
struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1);
struct iwn_node *wn = (struct iwn_node *)txdata->ni;
uint32_t status;
DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
stat->nkill, stat->rate, le16toh(stat->duration),
le32toh(stat->status)));
/*
* Update rate control statistics for the node.
*/
wn->amn.amn_txcnt++;
if (stat->ntries > 0) {
DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
wn->amn.amn_retrycnt++;
}
status = le32toh(stat->status) & 0xff;
if (status != 1 && status != 2)
ifp->if_oerrors++;
else
ifp->if_opackets++;
bus_dmamap_unload(sc->sc_dmat, txdata->map);
m_freem(txdata->m);
txdata->m = NULL;
ieee80211_free_node(txdata->ni);
txdata->ni = NULL;
ring->queued--;
sc->sc_tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
iwn_start(ifp);
}
static void
iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
{
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_data *data;
if ((desc->qid & 0xf) != 4)
return; /* not a command ack */
data = &ring->data[desc->idx];
/* if the command was mapped in a mbuf, free it */
if (data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
wakeup(&ring->cmd[desc->idx]);
}
static void
iwn_notif_intr(struct iwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
uint16_t hw;
hw = le16toh(sc->shared->closed_count);
while (sc->rxq.cur != hw) {
struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf;
DPRINTFN(4,("rx notification qid=%x idx=%d flags=%x type=%d "
"len=%d\n", desc->qid, desc->idx, desc->flags, desc->type,
le32toh(desc->len)));
if (!(desc->qid & 0x80)) /* reply to a command */
iwn_cmd_intr(sc, desc);
switch (desc->type) {
case IWN_RX_DONE:
case IWN_AMPDU_RX_DONE:
iwn_rx_intr(sc, desc, data);
break;
case IWN_AMPDU_RX_START:
iwn_ampdu_rx_start(sc, desc);
break;
case IWN_TX_DONE:
/* a 802.11 frame has been transmitted */
iwn_tx_intr(sc, desc);
break;
case IWN_RX_STATISTICS:
case IWN_BEACON_STATISTICS:
iwn_rx_statistics(sc, desc);
break;
case IWN_BEACON_MISSED:
{
struct iwn_beacon_missed *miss =
(struct iwn_beacon_missed *)(desc + 1);
/*
* If more than 5 consecutive beacons are missed,
* reinitialize the sensitivity state machine.
*/
DPRINTFN(2, ("beacons missed %d/%d\n",
le32toh(miss->consecutive), le32toh(miss->total)));
if (ic->ic_state == IEEE80211_S_RUN &&
le32toh(miss->consecutive) > 5)
(void)iwn_init_sensitivity(sc);
break;
}
case IWN_UC_READY:
{
struct iwn_ucode_info *uc =
(struct iwn_ucode_info *)(desc + 1);
/* the microcontroller is ready */
DPRINTF(("microcode alive notification version=%d.%d "
"subtype=%x alive=%x\n", uc->major, uc->minor,
uc->subtype, le32toh(uc->valid)));
if (le32toh(uc->valid) != 1) {
aprint_error_dev(sc->sc_dev, "microcontroller initialization "
"failed\n");
break;
}
if (uc->subtype == IWN_UCODE_INIT) {
/* save microcontroller's report */
memcpy(&sc->ucode_info, uc, sizeof (*uc));
}
break;
}
case IWN_STATE_CHANGED:
{
uint32_t *status = (uint32_t *)(desc + 1);
/* enabled/disabled notification */
DPRINTF(("state changed to %x\n", le32toh(*status)));
if (le32toh(*status) & 1) {
/* the radio button has to be pushed */
aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
/* turn the interface down */
ifp->if_flags &= ~IFF_UP;
iwn_stop(ifp, 1);
return; /* no further processing */
}
break;
}
case IWN_START_SCAN:
{
struct iwn_start_scan *scan =
(struct iwn_start_scan *)(desc + 1);
DPRINTFN(2, ("scanning channel %d status %x\n",
scan->chan, le32toh(scan->status)));
/* fix current channel */
ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
break;
}
case IWN_STOP_SCAN:
{
struct iwn_stop_scan *scan =
(struct iwn_stop_scan *)(desc + 1);
DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
scan->nchan, scan->status, scan->chan));
if (scan->status == 1 && scan->chan <= 14) {
/*
* We just finished scanning 802.11g channels,
* start scanning 802.11a ones.
*/
if (iwn_scan(sc, IEEE80211_CHAN_A) == 0)
break;
}
sc->is_scanning = false;
ieee80211_end_scan(ic);
break;
}
}
sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
}
/* tell the firmware what we have processed */
hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7);
}
static int
iwn_intr(void *arg)
{
struct iwn_softc *sc = arg;
struct ifnet *ifp = sc->sc_ic.ic_ifp;
uint32_t r1, r2;
/* disable interrupts */
IWN_WRITE(sc, IWN_MASK, 0);
r1 = IWN_READ(sc, IWN_INTR);
r2 = IWN_READ(sc, IWN_INTR_STATUS);
if (r1 == 0 && r2 == 0) {
if (ifp->if_flags & IFF_UP)
IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
return 0; /* not for us */
}
if (r1 == 0xffffffff)
return 0; /* hardware gone */
/* ack interrupts */
IWN_WRITE(sc, IWN_INTR, r1);
IWN_WRITE(sc, IWN_INTR_STATUS, r2);
DPRINTFN(5, ("interrupt reg1=%x reg2=%x\n", r1, r2));
if (r1 & IWN_RF_TOGGLED) {
uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
aprint_error_dev(sc->sc_dev, "RF switch: radio %s\n",
(tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled");
}
if (r1 & IWN_CT_REACHED) {
aprint_error_dev(sc->sc_dev, "critical temperature reached!\n");
}
if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) {
aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
iwn_stop(sc->sc_ic.ic_ifp, 1);
return 1;
}
if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) ||
(r2 & IWN_RX_STATUS_INTR))
iwn_notif_intr(sc);
if (r1 & IWN_ALIVE_INTR)
wakeup(sc);
/* re-enable interrupts */
if (ifp->if_flags & IFF_UP)
IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
return 1;
}
static uint8_t
iwn_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return 10;
case 4: return 20;
case 11: return 55;
case 22: return 110;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
/* R1-R4, (u)ral is R4-R1 */
case 12: return 0xd;
case 18: return 0xf;
case 24: return 0x5;
case 36: return 0x7;
case 48: return 0x9;
case 72: return 0xb;
case 96: return 0x1;
case 108: return 0x3;
case 120: return 0x3;
}
/* unknown rate (should not get there) */
return 0;
}
/* determine if a given rate is CCK or OFDM */
#define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
static int
iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
int ac)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_tx_ring *ring = &sc->txq[ac];
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
struct iwn_cmd_data *tx;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
const struct chanAccParams *cap;
struct mbuf *mnew;
bus_addr_t paddr;
uint32_t flags;
uint8_t type;
int i, error, pad, rate, hdrlen, noack = 0;
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
wh = mtod(m0, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
if (IEEE80211_QOS_HAS_SEQ(wh)) {
hdrlen = sizeof (struct ieee80211_qosframe);
cap = &ic->ic_wme.wme_chanParams;
noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
} else
hdrlen = sizeof (struct ieee80211_frame);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
/* pickup a rate */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
/* mgmt frames are sent at the lowest available bit-rate */
rate = ni->ni_rates.rs_rates[0];
} else {
if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate];
} else
rate = ni->ni_rates.rs_rates[ni->ni_txrate];
}
rate &= IEEE80211_RATE_VAL;
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
tap->wt_rate = rate;
tap->wt_hwqueue = ac;
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
#endif
cmd = &ring->cmd[ring->cur];
cmd->code = IWN_CMD_TX_DATA;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
tx = (struct iwn_cmd_data *)cmd->data;
flags = IWN_TX_AUTO_SEQ;
if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)){
flags |= IWN_TX_NEED_ACK;
}else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
flags |= htole32(IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP);
tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? IWN_ID_BROADCAST : IWN_ID_BSS;
if (type == IEEE80211_FC0_TYPE_MGT) {
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
/* tell h/w to set timestamp in probe responses */
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= IWN_TX_INSERT_TSTAMP;
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
tx->timeout = htole16(3);
else
tx->timeout = htole16(2);
} else
tx->timeout = htole16(0);
if (hdrlen & 3) {
/* first segment's length must be a multiple of 4 */
flags |= IWN_TX_NEED_PADDING;
pad = 4 - (hdrlen & 3);
} else
pad = 0;
tx->flags = htole32(flags);
tx->len = htole16(m0->m_pkthdr.len);
tx->rate = iwn_plcp_signal(rate);
tx->rts_ntries = 60;
tx->data_ntries = 15;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
/* XXX alternate between Ant A and Ant B ? */
tx->rflags = IWN_RFLAG_ANT_B;
if (tx->id == IWN_ID_BROADCAST) {
tx->ridx = IWN_MAX_TX_RETRIES - 1;
if (!IWN_RATE_IS_OFDM(rate))
tx->rflags |= IWN_RFLAG_CCK;
} else {
tx->ridx = 0;
/* tell adapter to ignore rflags */
tx->flags |= htole32(IWN_TX_USE_NODE_RATE);
}
/* copy and trim IEEE802.11 header */
memcpy((uint8_t *)(tx + 1), wh, hdrlen);
m_adj(m0, hdrlen);
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
if (error != 0) {
/* too many fragments, linearize */
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
m_freem(m0);
return ENOMEM;
}
M_COPY_PKTHDR(mnew, m0);
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(m0);
m_freem(mnew);
return ENOMEM;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
m_freem(m0);
mnew->m_len = mnew->m_pkthdr.len;
m0 = mnew;
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
}
data->m = m0;
data->ni = ni;
DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
tx->loaddr = htole32(paddr + 4 +
offsetof(struct iwn_cmd_data, ntries));
tx->hiaddr = 0; /* limit to 32-bit physical addresses */
/* first scatter/gather segment is used by the tx data command */
IWN_SET_DESC_NSEGS(desc, 1 + data->map->dm_nsegs);
IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
for (i = 1; i <= data->map->dm_nsegs; i++) {
IWN_SET_DESC_SEG(desc, i, data->map->dm_segs[i - 1].ds_addr,
data->map->dm_segs[i - 1].ds_len);
}
sc->shared->len[ring->qid][ring->cur] =
htole16(hdrlen + m0->m_pkthdr.len + 8);
if (ring->cur < IWN_TX_WINDOW) {
sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
htole16(hdrlen + m0->m_pkthdr.len + 8);
}
ring->queued++;
/* kick ring */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
return 0;
}
static void
iwn_start(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ether_header *eh;
struct mbuf *m0;
int ac;
/*
* net80211 may still try to send management frames even if the
* IFF_RUNNING flag is not set...
*/
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
IF_DEQUEUE(&ic->ic_mgtq, m0);
if (m0 != NULL) {
/* management frames go into ring 0 */
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
m0->m_pkthdr.rcvif = NULL;
/* management goes into ring 0 */
if (sc->txq[0].queued > sc->txq[0].count - 8) {
ifp->if_oerrors++;
continue;
}
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0);
#endif
if (iwn_tx_data(sc, m0, ni, 0) != 0) {
ifp->if_oerrors++;
break;
}
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (m0->m_len < sizeof (*eh) &&
(m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
ifp->if_oerrors++;
continue;
}
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
/* classify mbuf so we can find which tx ring to use */
if (ieee80211_classify(ic, m0, ni) != 0) {
m_freem(m0);
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
/* no QoS encapsulation for EAPOL frames */
ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
M_WME_GETAC(m0) : WME_AC_BE;
if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
/* there is no place left in this ring */
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m0);
#endif
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0);
#endif
if (iwn_tx_data(sc, m0, ni, ac) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
static void
iwn_watchdog(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
aprint_error_dev(sc->sc_dev, "device timeout\n");
ifp->if_flags &= ~IFF_UP;
iwn_stop(ifp, 1);
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
static int
iwn_ioctl(struct ifnet *ifp, u_long cmd, void * data)
{
#define IS_RUNNING(ifp) \
((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
iwn_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
iwn_stop(ifp, 1);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* XXX no h/w multicast filter? --dyoung */
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
/* setup multicast filter, etc */
error = 0;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if (IS_RUNNING(ifp) &&
(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
iwn_init(ifp);
error = 0;
}
splx(s);
return error;
#undef IS_RUNNING
}
static void
iwn_read_eeprom(struct iwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
char domain[4];
uint16_t val;
int i, error;
if ((error = iwn_eeprom_lock(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not lock EEPROM (error=%d)\n", error);
return;
}
/* read and print regulatory domain */
iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4);
aprint_error_dev(sc->sc_dev, "%.4s", domain);
/* read and print MAC address */
iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
aprint_error(", address %s\n", ether_sprintf(ic->ic_myaddr));
/* read the list of authorized channels */
for (i = 0; i < IWN_CHAN_BANDS_COUNT; i++)
iwn_read_eeprom_channels(sc, i);
/* read maximum allowed Tx power for 2GHz and 5GHz bands */
iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2);
sc->maxpwr2GHz = val & 0xff;
sc->maxpwr5GHz = val >> 8;
/* check that EEPROM values are correct */
if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
sc->maxpwr5GHz = 38;
if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
sc->maxpwr2GHz = 38;
DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
/* read voltage at which samples were taken */
iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2);
sc->eeprom_voltage = (int16_t)le16toh(val);
DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
/* read power groups */
iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands);
#ifdef IWN_DEBUG
if (iwn_debug > 0) {
for (i = 0; i < IWN_NBANDS; i++)
iwn_print_power_group(sc, i);
}
#endif
iwn_eeprom_unlock(sc);
}
static void
iwn_read_eeprom_channels(struct iwn_softc *sc, int n)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct iwn_chan_band *band = &iwn_bands[n];
struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
int chan, i;
iwn_read_prom_data(sc, band->addr, channels,
band->nchan * sizeof (struct iwn_eeprom_chan));
for (i = 0; i < band->nchan; i++) {
if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
continue;
chan = band->chan[i];
if (n == 0) { /* 2GHz band */
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
ic->ic_channels[chan].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
} else { /* 5GHz band */
/*
* Some adapters support channels 7, 8, 11 and 12
* both in the 2GHz *and* 5GHz bands.
* Because of limitations in our net80211(9) stack,
* we can't support these channels in 5GHz band.
*/
if (chan <= 14)
continue;
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
}
/* is active scan allowed on this channel? */
if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
ic->ic_channels[chan].ic_flags |=
IEEE80211_CHAN_PASSIVE;
}
/* save maximum allowed power for this channel */
sc->maxpwr[chan] = channels[i].maxpwr;
DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
chan, channels[i].flags, sc->maxpwr[chan]));
}
}
#ifdef IWN_DEBUG
static void
iwn_print_power_group(struct iwn_softc *sc, int i)
{
struct iwn_eeprom_band *band = &sc->bands[i];
struct iwn_eeprom_chan_samples *chans = band->chans;
int j, c;
DPRINTF(("===band %d===\n", i));
DPRINTF(("chan lo=%d, chan hi=%d\n", band->lo, band->hi));
DPRINTF(("chan1 num=%d\n", chans[0].num));
for (c = 0; c < IWN_NTXCHAINS; c++) {
for (j = 0; j < IWN_NSAMPLES; j++) {
DPRINTF(("chain %d, sample %d: temp=%d gain=%d "
"power=%d pa_det=%d\n", c, j,
chans[0].samples[c][j].temp,
chans[0].samples[c][j].gain,
chans[0].samples[c][j].power,
chans[0].samples[c][j].pa_det));
}
}
DPRINTF(("chan2 num=%d\n", chans[1].num));
for (c = 0; c < IWN_NTXCHAINS; c++) {
for (j = 0; j < IWN_NSAMPLES; j++) {
DPRINTF(("chain %d, sample %d: temp=%d gain=%d "
"power=%d pa_det=%d\n", c, j,
chans[1].samples[c][j].temp,
chans[1].samples[c][j].gain,
chans[1].samples[c][j].power,
chans[1].samples[c][j].pa_det));
}
}
}
#endif
/*
* Send a command to the firmware.
*/
static int
iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
{
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_desc *desc;
struct iwn_tx_cmd *cmd;
bus_addr_t paddr;
KASSERT(size <= sizeof cmd->data);
desc = &ring->desc[ring->cur];
cmd = &ring->cmd[ring->cur];
cmd->code = code;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
memcpy(cmd->data, buf, size);
paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
IWN_SET_DESC_NSEGS(desc, 1);
IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size);
sc->shared->len[ring->qid][ring->cur] = htole16(8);
if (ring->cur < IWN_TX_WINDOW) {
sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
htole16(8);
}
/* kick cmd ring */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
return async ? 0 : tsleep(cmd, PCATCH, "iwncmd", hz);
}
/*
* Configure hardware multi-rate retries for one node.
*/
static int
iwn_setup_node_mrr(struct iwn_softc *sc, uint8_t id, int async)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_cmd_mrr mrr;
int i, ridx;
memset(&mrr, 0, sizeof mrr);
mrr.id = id;
mrr.ssmask = 2;
mrr.dsmask = 3;
mrr.ampdu_disable = 3;
mrr.ampdu_limit = 4000;
if (id == IWN_ID_BSS)
ridx = IWN_OFDM54;
else if (ic->ic_curmode == IEEE80211_MODE_11A)
ridx = IWN_OFDM6;
else
ridx = IWN_CCK1;
for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
mrr.table[i].rate = iwn_ridx_to_plcp[ridx];
mrr.table[i].rflags = IWN_RFLAG_ANT_B;
if (ridx <= IWN_CCK11)
mrr.table[i].rflags |= IWN_RFLAG_CCK;
ridx = iwn_prev_ridx[ridx];
}
return iwn_cmd(sc, IWN_CMD_NODE_MRR_SETUP, &mrr, sizeof mrr, async);
}
static int
iwn_wme_update(struct ieee80211com *ic)
{
#define IWN_EXP2(v) htole16((1 << (v)) - 1)
#define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
struct iwn_softc *sc = ic->ic_ifp->if_softc;
const struct wmeParams *wmep;
struct iwn_wme_setup wme;
int ac;
/* don't override default WME values if WME is not actually enabled */
if (!(ic->ic_flags & IEEE80211_F_WME))
return 0;
wme.flags = 0;
for (ac = 0; ac < WME_NUM_AC; ac++) {
wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
wme.ac[ac].aifsn = wmep->wmep_aifsn;
wme.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
wme.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
wme.ac[ac].txop = IWN_USEC(wmep->wmep_txopLimit);
DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
"txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
wme.ac[ac].cwmax, wme.ac[ac].txop));
}
return iwn_cmd(sc, IWN_CMD_SET_WME, &wme, sizeof wme, 1);
#undef IWN_USEC
#undef IWN_EXP2
}
static void
iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
{
struct iwn_cmd_led led;
led.which = which;
led.unit = htole32(100000); /* on/off in unit of 100ms */
led.off = off;
led.on = on;
(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
}
/*
* Set the critical temperature at which the firmware will automatically stop
* the radio transmitter.
*/
static int
iwn_set_critical_temp(struct iwn_softc *sc)
{
struct iwn_ucode_info *uc = &sc->ucode_info;
struct iwn_critical_temp crit;
uint32_t r1, r2, r3, temp;
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF);
r1 = le32toh(uc->temp[0].chan20MHz);
r2 = le32toh(uc->temp[1].chan20MHz);
r3 = le32toh(uc->temp[2].chan20MHz);
/* inverse function of iwn_get_temperature() */
temp = r2 + ((IWN_CTOK(110) * (r3 - r1)) / 259);
memset(&crit, 0, sizeof crit);
crit.tempR = htole32(temp);
DPRINTF(("setting critical temperature to %u\n", temp));
return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
}
static void
iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni)
{
struct iwn_cmd_tsf tsf;
uint64_t val, mod;
memset(&tsf, 0, sizeof tsf);
memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
tsf.bintval = htole16(ni->ni_intval);
tsf.lintval = htole16(10);
/* compute remaining time until next beacon */
val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
mod = le64toh(tsf.tstamp) % val;
tsf.binitval = htole32((uint32_t)(val - mod));
DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%" PRIu64 "\n",
ni->ni_intval, le64toh(tsf.tstamp), val - mod));
if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
}
static void
iwn_power_calibration(struct iwn_softc *sc, int temp)
{
struct ieee80211com *ic = &sc->sc_ic;
DPRINTF(("temperature %d->%d\n", sc->temp, temp));
/* adjust Tx power if need be (delta >= 3<>C) */
if (abs(temp - sc->temp) < 3)
return;
sc->temp = temp;
DPRINTF(("setting Tx power for channel %d\n",
ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan)));
if (iwn_set_txpower(sc, ic->ic_bss->ni_chan, 1) != 0) {
/* just warn, too bad for the automatic calibration... */
aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
}
}
/*
* Set Tx power for a given channel (each rate has its own power settings).
* This function takes into account the regulatory information from EEPROM,
* the current temperature and the current voltage.
*/
static int
iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async)
{
/* fixed-point arithmetic division using a n-bit fractional part */
#define fdivround(a, b, n) \
((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
/* linear interpolation */
#define interpolate(x, x1, y1, x2, y2, n) \
((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_ucode_info *uc = &sc->ucode_info;
struct iwn_cmd_txpower cmd;
struct iwn_eeprom_chan_samples *chans;
const uint8_t *rf_gain, *dsp_gain;
int32_t vdiff, tdiff;
int i, c, grp, maxpwr;
u_int chan;
/* get channel number */
chan = ieee80211_chan2ieee(ic, ch);
memset(&cmd, 0, sizeof cmd);
cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
cmd.chan = chan;
if (IEEE80211_IS_CHAN_5GHZ(ch)) {
maxpwr = sc->maxpwr5GHz;
rf_gain = iwn_rf_gain_5ghz;
dsp_gain = iwn_dsp_gain_5ghz;
} else {
maxpwr = sc->maxpwr2GHz;
rf_gain = iwn_rf_gain_2ghz;
dsp_gain = iwn_dsp_gain_2ghz;
}
/* compute voltage compensation */
vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
if (vdiff > 0)
vdiff *= 2;
if (abs(vdiff) > 2)
vdiff = 0;
DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
vdiff, le32toh(uc->volt), sc->eeprom_voltage));
/* get channel's attenuation group */
if (chan <= 20) /* 1-20 */
grp = 4;
else if (chan <= 43) /* 34-43 */
grp = 0;
else if (chan <= 70) /* 44-70 */
grp = 1;
else if (chan <= 124) /* 71-124 */
grp = 2;
else /* 125-200 */
grp = 3;
DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
/* get channel's sub-band */
for (i = 0; i < IWN_NBANDS; i++)
if (sc->bands[i].lo != 0 &&
sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
break;
chans = sc->bands[i].chans;
DPRINTF(("chan %d sub-band=%d\n", chan, i));
for (c = 0; c < IWN_NTXCHAINS; c++) {
uint8_t power, gain, temp;
int maxchpwr, pwr, ridx, idx;
power = interpolate(chan,
chans[0].num, chans[0].samples[c][1].power,
chans[1].num, chans[1].samples[c][1].power, 1);
gain = interpolate(chan,
chans[0].num, chans[0].samples[c][1].gain,
chans[1].num, chans[1].samples[c][1].gain, 1);
temp = interpolate(chan,
chans[0].num, chans[0].samples[c][1].temp,
chans[1].num, chans[1].samples[c][1].temp, 1);
DPRINTF(("Tx chain %d: power=%d gain=%d temp=%d\n",
c, power, gain, temp));
/* compute temperature compensation */
tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
DPRINTF(("temperature compensation=%d (current=%d, "
"EEPROM=%d)\n", tdiff, sc->temp, temp));
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
maxchpwr = sc->maxpwr[chan] * 2;
if ((ridx / 8) & 1) {
/* MIMO: decrease Tx power (-3dB) */
maxchpwr -= 6;
}
pwr = maxpwr - 10;
/* decrease power for highest OFDM rates */
if ((ridx % 8) == 5) /* 48Mbit/s */
pwr -= 5;
else if ((ridx % 8) == 6) /* 54Mbit/s */
pwr -= 7;
else if ((ridx % 8) == 7) /* 60Mbit/s */
pwr -= 10;
if (pwr > maxchpwr)
pwr = maxchpwr;
idx = gain - (pwr - power) - tdiff - vdiff;
if ((ridx / 8) & 1) /* MIMO */
idx += (int32_t)le32toh(uc->atten[grp][c]);
if (cmd.band == 0)
idx += 9; /* 5GHz */
if (ridx == IWN_RIDX_MAX)
idx += 5; /* CCK */
/* make sure idx stays in a valid range */
if (idx < 0)
idx = 0;
else if (idx > IWN_MAX_PWR_INDEX)
idx = IWN_MAX_PWR_INDEX;
DPRINTF(("Tx chain %d, rate idx %d: power=%d\n",
c, ridx, idx));
cmd.power[ridx].rf_gain[c] = rf_gain[idx];
cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
}
}
DPRINTF(("setting tx power for chan %d\n", chan));
return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
#undef interpolate
#undef fdivround
}
/*
* Get the best (maximum) RSSI among Rx antennas (in dBm).
*/
static int
iwn_get_rssi(const struct iwn_rx_stat *stat)
{
uint8_t mask, agc;
int rssi;
mask = (le16toh(stat->antenna) >> 4) & 0x7;
agc = (le16toh(stat->agc) >> 7) & 0x7f;
rssi = 0;
if (mask & (1 << 0)) /* Ant A */
rssi = max(rssi, stat->rssi[0]);
if (mask & (1 << 1)) /* Ant B */
rssi = max(rssi, stat->rssi[2]);
if (mask & (1 << 2)) /* Ant C */
rssi = max(rssi, stat->rssi[4]);
return rssi - agc - IWN_RSSI_TO_DBM;
}
/*
* Get the average noise among Rx antennas (in dBm).
*/
static int
iwn_get_noise(const struct iwn_rx_general_stats *stats)
{
int i, total, nbant, noise;
total = nbant = 0;
for (i = 0; i < 3; i++) {
if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
continue;
total += noise;
nbant++;
}
/* there should be at least one antenna but check anyway */
return (nbant == 0) ? -127 : (total / nbant) - 107;
}
/*
* Read temperature (in degC) from the on-board thermal sensor.
*/
static int
iwn_get_temperature(struct iwn_softc *sc)
{
struct iwn_ucode_info *uc = &sc->ucode_info;
int32_t r1, r2, r3, r4, temp;
r1 = le32toh(uc->temp[0].chan20MHz);
r2 = le32toh(uc->temp[1].chan20MHz);
r3 = le32toh(uc->temp[2].chan20MHz);
r4 = le32toh(sc->rawtemp);
if (r1 == r3) /* prevents division by 0 (should not happen) */
return 0;
/* sign-extend 23-bit R4 value to 32-bit */
r4 = (r4 << 8) >> 8;
/* compute temperature */
temp = (259 * (r4 - r2)) / (r3 - r1);
temp = (temp * 97) / 100 + 8;
DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
return IWN_KTOC(temp);
}
/*
* Initialize sensitivity calibration state machine.
*/
static int
iwn_init_sensitivity(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_phy_calib_cmd cmd;
int error;
/* reset calibration state */
memset(calib, 0, sizeof (*calib));
calib->state = IWN_CALIB_STATE_INIT;
calib->cck_state = IWN_CCK_STATE_HIFA;
/* initial values taken from the reference driver */
calib->corr_ofdm_x1 = 105;
calib->corr_ofdm_mrc_x1 = 220;
calib->corr_ofdm_x4 = 90;
calib->corr_ofdm_mrc_x4 = 170;
calib->corr_cck_x4 = 125;
calib->corr_cck_mrc_x4 = 200;
calib->energy_cck = 100;
/* write initial sensitivity values */
if ((error = iwn_send_sensitivity(sc)) != 0)
return error;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN_SET_DIFF_GAIN;
/* differential gains initially set to 0 for all 3 antennas */
DPRINTF(("setting differential gains\n"));
return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1);
}
/*
* Collect noise and RSSI statistics for the first 20 beacons received
* after association and use them to determine connected antennas and
* set differential gains.
*/
static void
iwn_compute_differential_gain(struct iwn_softc *sc,
const struct iwn_rx_general_stats *stats)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_phy_calib_cmd cmd;
int i, val;
/* accumulate RSSI and noise for all 3 antennas */
for (i = 0; i < 3; i++) {
calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
}
/* we update differential gain only once after 20 beacons */
if (++calib->nbeacons < 20)
return;
/* determine antenna with highest average RSSI */
val = max(calib->rssi[0], calib->rssi[1]);
val = max(calib->rssi[2], val);
/* determine which antennas are connected */
sc->antmsk = 0;
for (i = 0; i < 3; i++)
if (val - calib->rssi[i] <= 15 * 20)
sc->antmsk |= 1 << i;
/* if neither Ant A and Ant B are connected.. */
if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0)
sc->antmsk |= 1 << 1; /* ..mark Ant B as connected! */
/* get minimal noise among connected antennas */
val = INT_MAX; /* ok, there's at least one */
for (i = 0; i < 3; i++)
if (sc->antmsk & (1 << i))
val = min(calib->noise[i], val);
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN_SET_DIFF_GAIN;
/* set differential gains for connected antennas */
for (i = 0; i < 3; i++) {
if (sc->antmsk & (1 << i)) {
cmd.gain[i] = (calib->noise[i] - val) / 30;
/* limit differential gain to 3 */
cmd.gain[i] = min(cmd.gain[i], 3);
cmd.gain[i] |= IWN_GAIN_SET;
}
}
DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk));
if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0)
calib->state = IWN_CALIB_STATE_RUN;
}
/*
* Tune RF Rx sensitivity based on the number of false alarms detected
* during the last beacon period.
*/
static void
iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
{
#define inc_clip(val, inc, max) \
if ((val) < (max)) { \
if ((val) < (max) - (inc)) \
(val) += (inc); \
else \
(val) = (max); \
needs_update = 1; \
}
#define dec_clip(val, dec, min) \
if ((val) > (min)) { \
if ((val) > (min) + (dec)) \
(val) -= (dec); \
else \
(val) = (min); \
needs_update = 1; \
}
struct iwn_calib_state *calib = &sc->calib;
uint32_t val, rxena, fa;
uint32_t energy[3], energy_min;
uint8_t noise[3], noise_ref;
int i, needs_update = 0;
/* check that we've been enabled long enough */
if ((rxena = le32toh(stats->general.load)) == 0)
return;
/* compute number of false alarms since last call for OFDM */
fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
fa *= 200 * 1024; /* 200TU */
/* save counters values for next call */
calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
calib->fa_ofdm = le32toh(stats->ofdm.fa);
if (fa > 50 * rxena) {
/* high false alarm count, decrease sensitivity */
DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
inc_clip(calib->corr_ofdm_x1, 1, 140);
inc_clip(calib->corr_ofdm_mrc_x1, 1, 270);
inc_clip(calib->corr_ofdm_x4, 1, 120);
inc_clip(calib->corr_ofdm_mrc_x4, 1, 210);
} else if (fa < 5 * rxena) {
/* low false alarm count, increase sensitivity */
DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
dec_clip(calib->corr_ofdm_x1, 1, 105);
dec_clip(calib->corr_ofdm_mrc_x1, 1, 220);
dec_clip(calib->corr_ofdm_x4, 1, 85);
dec_clip(calib->corr_ofdm_mrc_x4, 1, 170);
}
/* compute maximum noise among 3 antennas */
for (i = 0; i < 3; i++)
noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
val = max(noise[0], noise[1]);
val = max(noise[2], val);
/* insert it into our samples table */
calib->noise_samples[calib->cur_noise_sample] = val;
calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
/* compute maximum noise among last 20 samples */
noise_ref = calib->noise_samples[0];
for (i = 1; i < 20; i++)
noise_ref = max(noise_ref, calib->noise_samples[i]);
/* compute maximum energy among 3 antennas */
for (i = 0; i < 3; i++)
energy[i] = le32toh(stats->general.energy[i]);
val = min(energy[0], energy[1]);
val = min(energy[2], val);
/* insert it into our samples table */
calib->energy_samples[calib->cur_energy_sample] = val;
calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
/* compute minimum energy among last 10 samples */
energy_min = calib->energy_samples[0];
for (i = 1; i < 10; i++)
energy_min = max(energy_min, calib->energy_samples[i]);
energy_min += 6;
/* compute number of false alarms since last call for CCK */
fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
fa += le32toh(stats->cck.fa) - calib->fa_cck;
fa *= 200 * 1024; /* 200TU */
/* save counters values for next call */
calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
calib->fa_cck = le32toh(stats->cck.fa);
if (fa > 50 * rxena) {
/* high false alarm count, decrease sensitivity */
DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
calib->cck_state = IWN_CCK_STATE_HIFA;
calib->low_fa = 0;
if (calib->corr_cck_x4 > 160) {
calib->noise_ref = noise_ref;
if (calib->energy_cck > 2)
dec_clip(calib->energy_cck, 2, energy_min);
}
if (calib->corr_cck_x4 < 160) {
calib->corr_cck_x4 = 161;
needs_update = 1;
} else
inc_clip(calib->corr_cck_x4, 3, 200);
inc_clip(calib->corr_cck_mrc_x4, 3, 400);
} else if (fa < 5 * rxena) {
/* low false alarm count, increase sensitivity */
DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
calib->cck_state = IWN_CCK_STATE_LOFA;
calib->low_fa++;
if (calib->cck_state != 0 &&
((calib->noise_ref - noise_ref) > 2 ||
calib->low_fa > 100)) {
inc_clip(calib->energy_cck, 2, 97);
dec_clip(calib->corr_cck_x4, 3, 125);
dec_clip(calib->corr_cck_mrc_x4, 3, 200);
}
} else {
/* not worth to increase or decrease sensitivity */
DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
calib->low_fa = 0;
calib->noise_ref = noise_ref;
if (calib->cck_state == IWN_CCK_STATE_HIFA) {
/* previous interval had many false alarms */
dec_clip(calib->energy_cck, 8, energy_min);
}
calib->cck_state = IWN_CCK_STATE_INIT;
}
if (needs_update)
(void)iwn_send_sensitivity(sc);
#undef dec_clip
#undef inc_clip
}
static int
iwn_send_sensitivity(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_sensitivity_cmd cmd;
memset(&cmd, 0, sizeof cmd);
cmd.which = IWN_SENSITIVITY_WORKTBL;
/* OFDM modulation */
cmd.corr_ofdm_x1 = le16toh(calib->corr_ofdm_x1);
cmd.corr_ofdm_mrc_x1 = le16toh(calib->corr_ofdm_mrc_x1);
cmd.corr_ofdm_x4 = le16toh(calib->corr_ofdm_x4);
cmd.corr_ofdm_mrc_x4 = le16toh(calib->corr_ofdm_mrc_x4);
cmd.energy_ofdm = le16toh(100);
cmd.energy_ofdm_th = le16toh(62);
/* CCK modulation */
cmd.corr_cck_x4 = le16toh(calib->corr_cck_x4);
cmd.corr_cck_mrc_x4 = le16toh(calib->corr_cck_mrc_x4);
cmd.energy_cck = le16toh(calib->energy_cck);
/* Barker modulation: use default values */
cmd.corr_barker = le16toh(190);
cmd.corr_barker_mrc = le16toh(390);
DPRINTFN(2, ("setting sensitivity\n"));
return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1);
}
static int
iwn_auth(struct iwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct iwn_node_info node;
int error;
/* update adapter's configuration */
IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
sc->config.flags = htole32(IWN_CONFIG_TSF);
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
sc->config.flags |= htole32(IWN_CONFIG_AUTO |
IWN_CONFIG_24GHZ);
}
switch (ic->ic_curmode) {
case IEEE80211_MODE_11A:
sc->config.cck_mask = 0;
sc->config.ofdm_mask = 0x15;
break;
case IEEE80211_MODE_11B:
sc->config.cck_mask = 0x03;
sc->config.ofdm_mask = 0;
break;
default: /* assume 802.11b/g */
sc->config.cck_mask = 0xf;
sc->config.ofdm_mask = 0x15;
}
DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
sizeof (struct iwn_config), 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not configure\n");
return error;
}
/* configuration has changed, set Tx power accordingly */
if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) {
aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
return error;
}
/*
* Reconfiguring clears the adapter's nodes table so we must
* add the broadcast node again.
*/
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
node.id = IWN_ID_BROADCAST;
DPRINTF(("adding broadcast node\n"));
error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
return error;
}
DPRINTF(("setting MRR for node %d\n", node.id));
if ((error = iwn_setup_node_mrr(sc, node.id, 1)) != 0) {
aprint_error_dev(sc->sc_dev, "could not setup MRR for broadcast node\n");
return error;
}
return 0;
}
/*
* Configure the adapter for associated state.
*/
static int
iwn_run(struct iwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct iwn_node_info node;
int error;
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* link LED blinks while monitoring */
iwn_set_led(sc, IWN_LED_LINK, 5, 5);
return 0;
}
iwn_enable_tsf(sc, ni);
/* update adapter's configuration */
sc->config.associd = htole16(ni->ni_associd & ~0xc000);
/* short preamble/slot time are negotiated when associating */
sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE |
IWN_CONFIG_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
sc->config.filter |= htole32(IWN_FILTER_BSS);
DPRINTF(("config chan %d flags %x\n", sc->config.chan,
sc->config.flags));
error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
sizeof (struct iwn_config), 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not update configuration\n");
return error;
}
/* configuration has changed, set Tx power accordingly */
if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) {
aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
return error;
}
/* add BSS node */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
node.id = IWN_ID_BSS;
node.htflags = htole32(3 << IWN_AMDPU_SIZE_FACTOR_SHIFT |
5 << IWN_AMDPU_DENSITY_SHIFT);
DPRINTF(("adding BSS node\n"));
error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
return error;
}
DPRINTF(("setting MRR for node %d\n", node.id));
if ((error = iwn_setup_node_mrr(sc, node.id, 1)) != 0) {
aprint_error_dev(sc->sc_dev, "could not setup MRR for node %d\n", node.id);
return error;
}
if (ic->ic_opmode == IEEE80211_M_STA) {
/* fake a join to init the tx rate */
iwn_newassoc(ni, 1);
}
if ((error = iwn_init_sensitivity(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
return error;
}
/* start periodic calibration timer */
sc->calib.state = IWN_CALIB_STATE_ASSOC;
sc->calib_cnt = 0;
callout_schedule(&sc->calib_to, hz / 2);
/* link LED always on while associated */
iwn_set_led(sc, IWN_LED_LINK, 0, 1);
return 0;
}
/*
* Send a scan request to the firmware. Since this command is huge, we map it
* into a mbuf instead of using the pre-allocated set of commands.
*/
static int
iwn_scan(struct iwn_softc *sc, uint16_t flags)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
struct iwn_cmd_data *tx;
struct iwn_scan_hdr *hdr;
struct iwn_scan_essid *essid;
struct iwn_scan_chan *chan;
struct ieee80211_frame *wh;
struct ieee80211_rateset *rs;
struct ieee80211_channel *c;
enum ieee80211_phymode mode;
uint8_t *frm;
int pktlen, error, nrates;
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
aprint_error_dev(sc->sc_dev, "could not allocate mbuf for scan command\n");
return ENOMEM;
}
MCLGET(data->m, M_DONTWAIT);
if (!(data->m->m_flags & M_EXT)) {
m_freem(data->m);
data->m = NULL;
aprint_error_dev(sc->sc_dev, "could not allocate mbuf for scan command\n");
return ENOMEM;
}
cmd = mtod(data->m, struct iwn_tx_cmd *);
cmd->code = IWN_CMD_SCAN;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
hdr = (struct iwn_scan_hdr *)cmd->data;
memset(hdr, 0, sizeof (struct iwn_scan_hdr));
/*
* Move to the next channel if no packets are received within 5 msecs
* after sending the probe request (this helps to reduce the duration
* of active scans).
*/
hdr->quiet = htole16(5); /* timeout in milliseconds */
hdr->plcp_threshold = htole16(1); /* min # of packets */
/* select Ant B and Ant C for scanning */
hdr->rxchain = htole16(0x3e1 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT);
tx = (struct iwn_cmd_data *)(hdr + 1);
memset(tx, 0, sizeof (struct iwn_cmd_data));
tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200); // XXX
tx->id = IWN_ID_BROADCAST;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
tx->rflags = IWN_RFLAG_ANT_B;
if (flags & IEEE80211_CHAN_A) {
hdr->crc_threshold = htole16(1);
/* send probe requests at 6Mbps */
tx->rate = iwn_ridx_to_plcp[IWN_OFDM6];
} else {
hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO);
/* send probe requests at 1Mbps */
tx->rate = iwn_ridx_to_plcp[IWN_CCK1];
tx->rflags |= IWN_RFLAG_CCK;
}
essid = (struct iwn_scan_essid *)(tx + 1);
memset(essid, 0, 4 * sizeof (struct iwn_scan_essid));
essid[0].id = IEEE80211_ELEMID_SSID;
essid[0].len = ic->ic_des_esslen;
memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
/*
* Build a probe request frame. Most of the following code is a
* copy & paste of what is done in net80211.
*/
wh = (struct ieee80211_frame *)&essid[4];
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
*(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
*(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
frm = (uint8_t *)(wh + 1);
/* add empty SSID IE (firmware generates it for directed scans) */
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = 0;
mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
rs = &ic->ic_sup_rates[mode];
/* add supported rates IE */
*frm++ = IEEE80211_ELEMID_RATES;
nrates = rs->rs_nrates;
if (nrates > IEEE80211_RATE_SIZE)
nrates = IEEE80211_RATE_SIZE;
*frm++ = nrates;
memcpy(frm, rs->rs_rates, nrates);
frm += nrates;
/* add supported xrates IE */
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
*frm++ = IEEE80211_ELEMID_XRATES;
*frm++ = nrates;
memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
frm += nrates;
}
/* setup length of probe request */
tx->len = htole16(frm - (uint8_t *)wh);
chan = (struct iwn_scan_chan *)frm;
for (c = &ic->ic_channels[1];
c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
if ((c->ic_flags & flags) != flags)
continue;
chan->chan = ieee80211_chan2ieee(ic, c);
chan->flags = 0;
if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
chan->flags |= IWN_CHAN_ACTIVE;
if (ic->ic_des_esslen != 0)
chan->flags |= IWN_CHAN_DIRECT;
}
chan->dsp_gain = 0x6e;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
chan->rf_gain = 0x3b;
chan->active = htole16(10);
chan->passive = htole16(110);
} else {
chan->rf_gain = 0x28;
chan->active = htole16(20);
chan->passive = htole16(120);
}
hdr->nchan++;
chan++;
frm += sizeof (struct iwn_scan_chan);
}
hdr->len = htole16(frm - (uint8_t *)hdr);
pktlen = frm - (uint8_t *)cmd;
error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev, "could not map scan command\n");
m_freem(data->m);
data->m = NULL;
return error;
}
IWN_SET_DESC_NSEGS(desc, 1);
IWN_SET_DESC_SEG(desc, 0, data->map->dm_segs[0].ds_addr,
data->map->dm_segs[0].ds_len);
sc->shared->len[ring->qid][ring->cur] = htole16(8);
if (ring->cur < IWN_TX_WINDOW) {
sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
htole16(8);
}
/* kick cmd ring */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
return 0; /* will be notified async. of failure/success */
}
static int
iwn_config(struct iwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwn_power power;
struct iwn_bluetooth bluetooth;
struct iwn_node_info node;
int error;
/* set power mode */
memset(&power, 0, sizeof power);
power.flags = htole16(IWN_POWER_CAM | 0x8);
DPRINTF(("setting power mode\n"));
error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not set power mode\n");
return error;
}
/* configure bluetooth coexistence */
memset(&bluetooth, 0, sizeof bluetooth);
bluetooth.flags = 3;
bluetooth.lead = 0xaa;
bluetooth.kill = 1;
DPRINTF(("configuring bluetooth coexistence\n"));
error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not configure bluetooth coexistence\n");
return error;
}
/* configure adapter */
memset(&sc->config, 0, sizeof (struct iwn_config));
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
IEEE80211_ADDR_COPY(sc->config.wlap, ic->ic_myaddr);
/* set default channel */
sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
sc->config.flags = htole32(IWN_CONFIG_TSF);
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
sc->config.flags |= htole32(IWN_CONFIG_AUTO |
IWN_CONFIG_24GHZ);
}
sc->config.filter = 0;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
sc->config.mode = IWN_MODE_STA;
sc->config.filter |= htole32(IWN_FILTER_MULTICAST);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
sc->config.mode = IWN_MODE_IBSS;
break;
case IEEE80211_M_HOSTAP:
sc->config.mode = IWN_MODE_HOSTAP;
break;
case IEEE80211_M_MONITOR:
sc->config.mode = IWN_MODE_MONITOR;
sc->config.filter |= htole32(IWN_FILTER_MULTICAST |
IWN_FILTER_CTL | IWN_FILTER_PROMISC);
break;
}
sc->config.cck_mask = 0x0f; /* not yet negotiated */
sc->config.ofdm_mask = 0xff; /* not yet negotiated */
sc->config.ht_single_mask = 0xff;
sc->config.ht_dual_mask = 0xff;
sc->config.rxchain = htole16(0x2800 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT);
DPRINTF(("setting configuration\n"));
error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
sizeof (struct iwn_config), 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "configure command failed\n");
return error;
}
/* configuration has changed, set Tx power accordingly */
if ((error = iwn_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
return error;
}
/* add broadcast node */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
node.id = IWN_ID_BROADCAST;
DPRINTF(("adding broadcast node\n"));
error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
return error;
}
DPRINTF(("setting MRR for node %d\n", node.id));
if ((error = iwn_setup_node_mrr(sc, node.id, 0)) != 0) {
aprint_error_dev(sc->sc_dev, "could not setup MRR for node %d\n", node.id);
return error;
}
if ((error = iwn_set_critical_temp(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not set critical temperature\n");
return error;
}
return 0;
}
/*
* Do post-alive initialization of the NIC (after firmware upload).
*/
static void
iwn_post_alive(struct iwn_softc *sc)
{
uint32_t base;
uint16_t offset;
int qid;
iwn_mem_lock(sc);
/* clear SRAM */
base = iwn_mem_read(sc, IWN_SRAM_BASE);
for (offset = 0x380; offset < 0x520; offset += 4) {
IWN_WRITE(sc, IWN_MEM_WADDR, base + offset);
IWN_WRITE(sc, IWN_MEM_WDATA, 0);
}
/* shared area is aligned on a 1K boundary */
iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10);
iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0);
for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0);
IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0);
/* set sched. window size */
IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid));
IWN_WRITE(sc, IWN_MEM_WDATA, 64);
/* set sched. frame limit */
IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4);
IWN_WRITE(sc, IWN_MEM_WDATA, 64 << 16);
}
/* enable interrupts for all 16 queues */
iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff);
/* identify active Tx rings (0-7) */
iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff);
/* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */
for (qid = 0; qid < 7; qid++) {
iwn_mem_write(sc, IWN_TXQ_STATUS(qid),
IWN_TXQ_STATUS_ACTIVE | qid << 1);
}
iwn_mem_unlock(sc);
}
static void
iwn_stop_master(struct iwn_softc *sc)
{
uint32_t tmp;
int ntries;
tmp = IWN_READ(sc, IWN_RESET);
IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER);
tmp = IWN_READ(sc, IWN_GPIO_CTL);
if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP)
return; /* already asleep */
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 100) {
aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
}
}
static int
iwn_reset(struct iwn_softc *sc)
{
uint32_t tmp;
int ntries;
/* clear any pending interrupts */
IWN_WRITE(sc, IWN_INTR, 0xffffffff);
tmp = IWN_READ(sc, IWN_CHICKEN);
IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS);
tmp = IWN_READ(sc, IWN_GPIO_CTL);
IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT);
/* wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK)
break;
DELAY(10);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev, "timeout waiting for clock stabilization\n");
return ETIMEDOUT;
}
return 0;
}
static void
iwn_hw_config(struct iwn_softc *sc)
{
uint32_t tmp, hw;
/* enable interrupts mitigation */
IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32);
/* voodoo from the reference driver */
tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
tmp = PCI_REVISION(tmp);
if ((tmp & 0x80) && (tmp & 0x7f) < 8) {
/* enable "no snoop" field */
tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xe8);
tmp &= ~IWN_DIS_NOSNOOP;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xe8, tmp);
}
/* disable L1 entry to work around a hardware bug */
tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xf0);
tmp &= ~IWN_ENA_L1;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xf0, tmp);
hw = IWN_READ(sc, IWN_HWCONFIG);
IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310);
iwn_mem_lock(sc);
tmp = iwn_mem_read(sc, IWN_MEM_POWER);
iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET);
DELAY(5);
tmp = iwn_mem_read(sc, IWN_MEM_POWER);
iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET);
iwn_mem_unlock(sc);
}
static int
iwn_init(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
int error, qid;
iwn_stop(ifp, 1);
if ((error = iwn_reset(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not reset adapter\n");
goto fail1;
}
iwn_mem_lock(sc);
iwn_mem_read(sc, IWN_CLOCK_CTL);
iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00);
iwn_mem_read(sc, IWN_CLOCK_CTL);
iwn_mem_unlock(sc);
DELAY(20);
iwn_mem_lock(sc);
tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV);
iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800);
iwn_mem_unlock(sc);
iwn_mem_lock(sc);
tmp = iwn_mem_read(sc, IWN_MEM_POWER);
iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000);
iwn_mem_unlock(sc);
iwn_hw_config(sc);
/* init Rx ring */
iwn_mem_lock(sc);
IWN_WRITE(sc, IWN_RX_CONFIG, 0);
IWN_WRITE(sc, IWN_RX_WIDX, 0);
/* Rx ring is aligned on a 256-byte boundary */
IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
/* shared area is aligned on a 16-byte boundary */
IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr +
offsetof(struct iwn_shared, closed_count)) >> 4);
IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000);
iwn_mem_unlock(sc);
IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7);
iwn_mem_lock(sc);
iwn_mem_write(sc, IWN_TX_ACTIVE, 0);
/* set physical address of "keep warm" page */
IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4);
/* init Tx rings */
for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
struct iwn_tx_ring *txq = &sc->txq[qid];
IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8);
IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008);
}
iwn_mem_unlock(sc);
/* clear "radio off" and "disable command" bits (reversed logic) */
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD);
/* clear any pending interrupts */
IWN_WRITE(sc, IWN_INTR, 0xffffffff);
/* enable interrupts */
IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
/* not sure why/if this is necessary... */
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
/* check that the radio is not disabled by RF switch */
if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) {
aprint_error_dev(sc->sc_dev, "radio is disabled by hardware switch\n");
error = EBUSY; /* XXX ;-) */
goto fail1;
}
if ((error = iwn_load_firmware(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not load firmware\n");
goto fail1;
}
/* firmware has notified us that it is alive.. */
iwn_post_alive(sc); /* ..do post alive initialization */
sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
sc->temp = iwn_get_temperature(sc);
DPRINTF(("temperature=%d\n", sc->temp));
if ((error = iwn_config(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not configure device\n");
goto fail1;
}
DPRINTF(("iwn_config end\n"));
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
if (ic->ic_opmode != IEEE80211_ROAMING_MANUAL)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
}
else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
DPRINTF(("iwn_init ok\n"));
return 0;
fail1:
DPRINTF(("iwn_init error\n"));
iwn_stop(ifp, 1);
return error;
}
static void
iwn_stop(struct ifnet *ifp, int disable)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
int i;
ifp->if_timer = sc->sc_tx_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET);
/* disable interrupts */
IWN_WRITE(sc, IWN_MASK, 0);
IWN_WRITE(sc, IWN_INTR, 0xffffffff);
IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff);
/* make sure we no longer hold the memory lock */
iwn_mem_unlock(sc);
/* reset all Tx rings */
for (i = 0; i < IWN_NTXQUEUES; i++)
iwn_reset_tx_ring(sc, &sc->txq[i]);
/* reset Rx ring */
iwn_reset_rx_ring(sc, &sc->rxq);
iwn_mem_lock(sc);
iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200);
iwn_mem_unlock(sc);
DELAY(5);
iwn_stop_master(sc);
tmp = IWN_READ(sc, IWN_RESET);
IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET);
}
static bool
iwn_resume(device_t dv)
{
struct iwn_softc *sc = device_private(dv);
pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
(void)iwn_reset(sc);
return true;
}