6469 lines
169 KiB
C
6469 lines
169 KiB
C
/* $NetBSD: udf_subr.c,v 1.67 2008/07/22 21:39:08 reinoud Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2006, 2008 Reinoud Zandijk
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
#ifndef lint
|
|
__KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.67 2008/07/22 21:39:08 reinoud Exp $");
|
|
#endif /* not lint */
|
|
|
|
|
|
#if defined(_KERNEL_OPT)
|
|
#include "opt_quota.h"
|
|
#include "opt_compat_netbsd.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/vnode.h>
|
|
#include <miscfs/genfs/genfs_node.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/file.h>
|
|
#include <sys/device.h>
|
|
#include <sys/disklabel.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/dirent.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/kauth.h>
|
|
#include <fs/unicode.h>
|
|
#include <dev/clock_subr.h>
|
|
|
|
#include <fs/udf/ecma167-udf.h>
|
|
#include <fs/udf/udf_mount.h>
|
|
|
|
#if defined(_KERNEL_OPT)
|
|
#include "opt_udf.h"
|
|
#endif
|
|
|
|
#include "udf.h"
|
|
#include "udf_subr.h"
|
|
#include "udf_bswap.h"
|
|
|
|
|
|
#define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
|
|
|
|
#define UDF_SET_SYSTEMFILE(vp) \
|
|
/* XXXAD Is the vnode locked? */ \
|
|
(vp)->v_vflag |= VV_SYSTEM; \
|
|
vref(vp); \
|
|
vput(vp); \
|
|
|
|
extern int syncer_maxdelay; /* maximum delay time */
|
|
extern int (**udf_vnodeop_p)(void *);
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
//#ifdef DEBUG
|
|
#if 1
|
|
|
|
#if 0
|
|
static void
|
|
udf_dumpblob(boid *blob, uint32_t dlen)
|
|
{
|
|
int i, j;
|
|
|
|
printf("blob = %p\n", blob);
|
|
printf("dump of %d bytes\n", dlen);
|
|
|
|
for (i = 0; i < dlen; i+ = 16) {
|
|
printf("%04x ", i);
|
|
for (j = 0; j < 16; j++) {
|
|
if (i+j < dlen) {
|
|
printf("%02x ", blob[i+j]);
|
|
} else {
|
|
printf(" ");
|
|
}
|
|
}
|
|
for (j = 0; j < 16; j++) {
|
|
if (i+j < dlen) {
|
|
if (blob[i+j]>32 && blob[i+j]! = 127) {
|
|
printf("%c", blob[i+j]);
|
|
} else {
|
|
printf(".");
|
|
}
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
Debugger();
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
udf_dump_discinfo(struct udf_mount *ump)
|
|
{
|
|
char bits[128];
|
|
struct mmc_discinfo *di = &ump->discinfo;
|
|
|
|
if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
|
|
return;
|
|
|
|
printf("Device/media info :\n");
|
|
printf("\tMMC profile 0x%02x\n", di->mmc_profile);
|
|
printf("\tderived class %d\n", di->mmc_class);
|
|
printf("\tsector size %d\n", di->sector_size);
|
|
printf("\tdisc state %d\n", di->disc_state);
|
|
printf("\tlast ses state %d\n", di->last_session_state);
|
|
printf("\tbg format state %d\n", di->bg_format_state);
|
|
printf("\tfrst track %d\n", di->first_track);
|
|
printf("\tfst on last ses %d\n", di->first_track_last_session);
|
|
printf("\tlst on last ses %d\n", di->last_track_last_session);
|
|
printf("\tlink block penalty %d\n", di->link_block_penalty);
|
|
bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
|
|
sizeof(bits));
|
|
printf("\tdisc flags %s\n", bits);
|
|
printf("\tdisc id %x\n", di->disc_id);
|
|
printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
|
|
|
|
printf("\tnum sessions %d\n", di->num_sessions);
|
|
printf("\tnum tracks %d\n", di->num_tracks);
|
|
|
|
bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
|
|
printf("\tcapabilities cur %s\n", bits);
|
|
bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
|
|
printf("\tcapabilities cap %s\n", bits);
|
|
}
|
|
#else
|
|
#define udf_dump_discinfo(a);
|
|
#endif
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* not called often */
|
|
int
|
|
udf_update_discinfo(struct udf_mount *ump)
|
|
{
|
|
struct vnode *devvp = ump->devvp;
|
|
struct partinfo dpart;
|
|
struct mmc_discinfo *di;
|
|
int error;
|
|
|
|
DPRINTF(VOLUMES, ("read/update disc info\n"));
|
|
di = &ump->discinfo;
|
|
memset(di, 0, sizeof(struct mmc_discinfo));
|
|
|
|
/* check if we're on a MMC capable device, i.e. CD/DVD */
|
|
error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
|
|
if (error == 0) {
|
|
udf_dump_discinfo(ump);
|
|
return 0;
|
|
}
|
|
|
|
/* disc partition support */
|
|
error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
|
|
if (error)
|
|
return ENODEV;
|
|
|
|
/* set up a disc info profile for partitions */
|
|
di->mmc_profile = 0x01; /* disc type */
|
|
di->mmc_class = MMC_CLASS_DISC;
|
|
di->disc_state = MMC_STATE_CLOSED;
|
|
di->last_session_state = MMC_STATE_CLOSED;
|
|
di->bg_format_state = MMC_BGFSTATE_COMPLETED;
|
|
di->link_block_penalty = 0;
|
|
|
|
di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
|
|
MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
|
|
di->mmc_cap = di->mmc_cur;
|
|
di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
|
|
|
|
/* TODO problem with last_possible_lba on resizable VND; request */
|
|
di->last_possible_lba = dpart.part->p_size;
|
|
di->sector_size = dpart.disklab->d_secsize;
|
|
|
|
di->num_sessions = 1;
|
|
di->num_tracks = 1;
|
|
|
|
di->first_track = 1;
|
|
di->first_track_last_session = di->last_track_last_session = 1;
|
|
|
|
udf_dump_discinfo(ump);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
|
|
{
|
|
struct vnode *devvp = ump->devvp;
|
|
struct mmc_discinfo *di = &ump->discinfo;
|
|
int error, class;
|
|
|
|
DPRINTF(VOLUMES, ("read track info\n"));
|
|
|
|
class = di->mmc_class;
|
|
if (class != MMC_CLASS_DISC) {
|
|
/* tracknr specified in struct ti */
|
|
error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
|
|
return error;
|
|
}
|
|
|
|
/* disc partition support */
|
|
if (ti->tracknr != 1)
|
|
return EIO;
|
|
|
|
/* create fake ti (TODO check for resized vnds) */
|
|
ti->sessionnr = 1;
|
|
|
|
ti->track_mode = 0; /* XXX */
|
|
ti->data_mode = 0; /* XXX */
|
|
ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
|
|
|
|
ti->track_start = 0;
|
|
ti->packet_size = 1;
|
|
|
|
/* TODO support for resizable vnd */
|
|
ti->track_size = di->last_possible_lba;
|
|
ti->next_writable = di->last_possible_lba;
|
|
ti->last_recorded = ti->next_writable;
|
|
ti->free_blocks = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
udf_setup_writeparams(struct udf_mount *ump)
|
|
{
|
|
struct mmc_writeparams mmc_writeparams;
|
|
int error;
|
|
|
|
if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
|
|
return 0;
|
|
|
|
/*
|
|
* only CD burning normally needs setting up, but other disc types
|
|
* might need other settings to be made. The MMC framework will set up
|
|
* the nessisary recording parameters according to the disc
|
|
* characteristics read in. Modifications can be made in the discinfo
|
|
* structure passed to change the nature of the disc.
|
|
*/
|
|
|
|
memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
|
|
mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
|
|
mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
|
|
|
|
/*
|
|
* UDF dictates first track to determine track mode for the whole
|
|
* disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
|
|
* To prevent problems with a `reserved' track in front we start with
|
|
* the 2nd track and if that is not valid, go for the 1st.
|
|
*/
|
|
mmc_writeparams.tracknr = 2;
|
|
mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
|
|
mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
|
|
|
|
error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
|
|
FKIOCTL, NOCRED);
|
|
if (error) {
|
|
mmc_writeparams.tracknr = 1;
|
|
error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
|
|
&mmc_writeparams, FKIOCTL, NOCRED);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
|
|
int
|
|
udf_synchronise_caches(struct udf_mount *ump)
|
|
{
|
|
struct mmc_op mmc_op;
|
|
|
|
DPRINTF(CALL, ("udf_synchronise_caches()\n"));
|
|
|
|
if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
|
|
return 0;
|
|
|
|
/* discs are done now */
|
|
if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
|
|
return 0;
|
|
|
|
bzero(&mmc_op, sizeof(struct mmc_op));
|
|
mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
|
|
|
|
/* ignore return code */
|
|
(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* track/session searching for mounting */
|
|
int
|
|
udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
|
|
int *first_tracknr, int *last_tracknr)
|
|
{
|
|
struct mmc_trackinfo trackinfo;
|
|
uint32_t tracknr, start_track, num_tracks;
|
|
int error;
|
|
|
|
/* if negative, sessionnr is relative to last session */
|
|
if (args->sessionnr < 0) {
|
|
args->sessionnr += ump->discinfo.num_sessions;
|
|
}
|
|
|
|
/* sanity */
|
|
if (args->sessionnr < 0)
|
|
args->sessionnr = 0;
|
|
if (args->sessionnr > ump->discinfo.num_sessions)
|
|
args->sessionnr = ump->discinfo.num_sessions;
|
|
|
|
/* search the tracks for this session, zero session nr indicates last */
|
|
if (args->sessionnr == 0)
|
|
args->sessionnr = ump->discinfo.num_sessions;
|
|
if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
|
|
args->sessionnr--;
|
|
|
|
/* sanity again */
|
|
if (args->sessionnr < 0)
|
|
args->sessionnr = 0;
|
|
|
|
/* search the first and last track of the specified session */
|
|
num_tracks = ump->discinfo.num_tracks;
|
|
start_track = ump->discinfo.first_track;
|
|
|
|
/* search for first track of this session */
|
|
for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
|
|
/* get track info */
|
|
trackinfo.tracknr = tracknr;
|
|
error = udf_update_trackinfo(ump, &trackinfo);
|
|
if (error)
|
|
return error;
|
|
|
|
if (trackinfo.sessionnr == args->sessionnr)
|
|
break;
|
|
}
|
|
*first_tracknr = tracknr;
|
|
|
|
/* search for last track of this session */
|
|
for (;tracknr <= num_tracks; tracknr++) {
|
|
/* get track info */
|
|
trackinfo.tracknr = tracknr;
|
|
error = udf_update_trackinfo(ump, &trackinfo);
|
|
if (error || (trackinfo.sessionnr != args->sessionnr)) {
|
|
tracknr--;
|
|
break;
|
|
}
|
|
}
|
|
if (tracknr > num_tracks)
|
|
tracknr--;
|
|
|
|
*last_tracknr = tracknr;
|
|
|
|
if (*last_tracknr < *first_tracknr) {
|
|
printf( "udf_search_tracks: sanity check on drive+disc failed, "
|
|
"drive returned garbage\n");
|
|
return EINVAL;
|
|
}
|
|
|
|
assert(*last_tracknr >= *first_tracknr);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* NOTE: this is the only routine in this file that directly peeks into the
|
|
* metadata file but since its at a larval state of the mount it can't hurt.
|
|
*
|
|
* XXX candidate for udf_allocation.c
|
|
* XXX clean me up!, change to new node reading code.
|
|
*/
|
|
|
|
static void
|
|
udf_check_track_metadata_overlap(struct udf_mount *ump,
|
|
struct mmc_trackinfo *trackinfo)
|
|
{
|
|
struct part_desc *part;
|
|
struct file_entry *fe;
|
|
struct extfile_entry *efe;
|
|
struct short_ad *s_ad;
|
|
struct long_ad *l_ad;
|
|
uint32_t track_start, track_end;
|
|
uint32_t phys_part_start, phys_part_end, part_start, part_end;
|
|
uint32_t sector_size, len, alloclen, plb_num;
|
|
uint8_t *pos;
|
|
int addr_type, icblen, icbflags, flags;
|
|
|
|
/* get our track extents */
|
|
track_start = trackinfo->track_start;
|
|
track_end = track_start + trackinfo->track_size;
|
|
|
|
/* get our base partition extent */
|
|
part = ump->partitions[ump->metadata_part];
|
|
phys_part_start = udf_rw32(part->start_loc);
|
|
phys_part_end = phys_part_start + udf_rw32(part->part_len);
|
|
|
|
/* no use if its outside the physical partition */
|
|
if ((phys_part_start >= track_end) || (phys_part_end < track_start))
|
|
return;
|
|
|
|
/*
|
|
* now follow all extents in the fe/efe to see if they refer to this
|
|
* track
|
|
*/
|
|
|
|
sector_size = ump->discinfo.sector_size;
|
|
|
|
/* XXX should we claim exclusive access to the metafile ? */
|
|
/* TODO: move to new node read code */
|
|
fe = ump->metadata_node->fe;
|
|
efe = ump->metadata_node->efe;
|
|
if (fe) {
|
|
alloclen = udf_rw32(fe->l_ad);
|
|
pos = &fe->data[0] + udf_rw32(fe->l_ea);
|
|
icbflags = udf_rw16(fe->icbtag.flags);
|
|
} else {
|
|
assert(efe);
|
|
alloclen = udf_rw32(efe->l_ad);
|
|
pos = &efe->data[0] + udf_rw32(efe->l_ea);
|
|
icbflags = udf_rw16(efe->icbtag.flags);
|
|
}
|
|
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
|
|
|
|
while (alloclen) {
|
|
if (addr_type == UDF_ICB_SHORT_ALLOC) {
|
|
icblen = sizeof(struct short_ad);
|
|
s_ad = (struct short_ad *) pos;
|
|
len = udf_rw32(s_ad->len);
|
|
plb_num = udf_rw32(s_ad->lb_num);
|
|
} else {
|
|
/* should not be present, but why not */
|
|
icblen = sizeof(struct long_ad);
|
|
l_ad = (struct long_ad *) pos;
|
|
len = udf_rw32(l_ad->len);
|
|
plb_num = udf_rw32(l_ad->loc.lb_num);
|
|
/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
|
|
}
|
|
/* process extent */
|
|
flags = UDF_EXT_FLAGS(len);
|
|
len = UDF_EXT_LEN(len);
|
|
|
|
part_start = phys_part_start + plb_num;
|
|
part_end = part_start + (len / sector_size);
|
|
|
|
if ((part_start >= track_start) && (part_end <= track_end)) {
|
|
/* extent is enclosed within this track */
|
|
ump->metadata_track = *trackinfo;
|
|
return;
|
|
}
|
|
|
|
pos += icblen;
|
|
alloclen -= icblen;
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
udf_search_writing_tracks(struct udf_mount *ump)
|
|
{
|
|
struct mmc_trackinfo trackinfo;
|
|
struct part_desc *part;
|
|
uint32_t tracknr, start_track, num_tracks;
|
|
uint32_t track_start, track_end, part_start, part_end;
|
|
int error;
|
|
|
|
/*
|
|
* in the CD/(HD)DVD/BD recordable device model a few tracks within
|
|
* the last session might be open but in the UDF device model at most
|
|
* three tracks can be open: a reserved track for delayed ISO VRS
|
|
* writing, a data track and a metadata track. We search here for the
|
|
* data track and the metadata track. Note that the reserved track is
|
|
* troublesome but can be detected by its small size of < 512 sectors.
|
|
*/
|
|
|
|
num_tracks = ump->discinfo.num_tracks;
|
|
start_track = ump->discinfo.first_track;
|
|
|
|
/* fetch info on first and possibly only track */
|
|
trackinfo.tracknr = start_track;
|
|
error = udf_update_trackinfo(ump, &trackinfo);
|
|
if (error)
|
|
return error;
|
|
|
|
/* copy results to our mount point */
|
|
ump->data_track = trackinfo;
|
|
ump->metadata_track = trackinfo;
|
|
|
|
/* if not sequential, we're done */
|
|
if (num_tracks == 1)
|
|
return 0;
|
|
|
|
for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
|
|
/* get track info */
|
|
trackinfo.tracknr = tracknr;
|
|
error = udf_update_trackinfo(ump, &trackinfo);
|
|
if (error)
|
|
return error;
|
|
|
|
if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
|
|
continue;
|
|
|
|
track_start = trackinfo.track_start;
|
|
track_end = track_start + trackinfo.track_size;
|
|
|
|
/* check for overlap on data partition */
|
|
part = ump->partitions[ump->data_part];
|
|
part_start = udf_rw32(part->start_loc);
|
|
part_end = part_start + udf_rw32(part->part_len);
|
|
if ((part_start < track_end) && (part_end > track_start)) {
|
|
ump->data_track = trackinfo;
|
|
/* TODO check if UDF partition data_part is writable */
|
|
}
|
|
|
|
/* check for overlap on metadata partition */
|
|
if ((ump->meta_alloc == UDF_ALLOC_METASEQUENTIAL) ||
|
|
(ump->meta_alloc == UDF_ALLOC_METABITMAP)) {
|
|
udf_check_track_metadata_overlap(ump, &trackinfo);
|
|
} else {
|
|
ump->metadata_track = trackinfo;
|
|
}
|
|
}
|
|
|
|
if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
|
|
return EROFS;
|
|
|
|
if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
|
|
return EROFS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Check if the blob starts with a good UDF tag. Tags are protected by a
|
|
* checksum over the reader except one byte at position 4 that is the checksum
|
|
* itself.
|
|
*/
|
|
|
|
int
|
|
udf_check_tag(void *blob)
|
|
{
|
|
struct desc_tag *tag = blob;
|
|
uint8_t *pos, sum, cnt;
|
|
|
|
/* check TAG header checksum */
|
|
pos = (uint8_t *) tag;
|
|
sum = 0;
|
|
|
|
for(cnt = 0; cnt < 16; cnt++) {
|
|
if (cnt != 4)
|
|
sum += *pos;
|
|
pos++;
|
|
}
|
|
if (sum != tag->cksum) {
|
|
/* bad tag header checksum; this is not a valid tag */
|
|
return EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* check tag payload will check descriptor CRC as specified.
|
|
* If the descriptor is too long, it will return EIO otherwise EINVAL.
|
|
*/
|
|
|
|
int
|
|
udf_check_tag_payload(void *blob, uint32_t max_length)
|
|
{
|
|
struct desc_tag *tag = blob;
|
|
uint16_t crc, crc_len;
|
|
|
|
crc_len = udf_rw16(tag->desc_crc_len);
|
|
|
|
/* check payload CRC if applicable */
|
|
if (crc_len == 0)
|
|
return 0;
|
|
|
|
if (crc_len > max_length)
|
|
return EIO;
|
|
|
|
crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
|
|
if (crc != udf_rw16(tag->desc_crc)) {
|
|
/* bad payload CRC; this is a broken tag */
|
|
return EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
udf_validate_tag_sum(void *blob)
|
|
{
|
|
struct desc_tag *tag = blob;
|
|
uint8_t *pos, sum, cnt;
|
|
|
|
/* calculate TAG header checksum */
|
|
pos = (uint8_t *) tag;
|
|
sum = 0;
|
|
|
|
for(cnt = 0; cnt < 16; cnt++) {
|
|
if (cnt != 4) sum += *pos;
|
|
pos++;
|
|
}
|
|
tag->cksum = sum; /* 8 bit */
|
|
}
|
|
|
|
|
|
/* assumes sector number of descriptor to be saved already present */
|
|
void
|
|
udf_validate_tag_and_crc_sums(void *blob)
|
|
{
|
|
struct desc_tag *tag = blob;
|
|
uint8_t *btag = (uint8_t *) tag;
|
|
uint16_t crc, crc_len;
|
|
|
|
crc_len = udf_rw16(tag->desc_crc_len);
|
|
|
|
/* check payload CRC if applicable */
|
|
if (crc_len > 0) {
|
|
crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
|
|
tag->desc_crc = udf_rw16(crc);
|
|
}
|
|
|
|
/* calculate TAG header checksum */
|
|
udf_validate_tag_sum(blob);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* XXX note the different semantics from udfclient: for FIDs it still rounds
|
|
* up to sectors. Use udf_fidsize() for a correct length.
|
|
*/
|
|
|
|
int
|
|
udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
|
|
{
|
|
uint32_t size, tag_id, num_lb, elmsz;
|
|
|
|
tag_id = udf_rw16(dscr->tag.id);
|
|
|
|
switch (tag_id) {
|
|
case TAGID_LOGVOL :
|
|
size = sizeof(struct logvol_desc) - 1;
|
|
size += udf_rw32(dscr->lvd.mt_l);
|
|
break;
|
|
case TAGID_UNALLOC_SPACE :
|
|
elmsz = sizeof(struct extent_ad);
|
|
size = sizeof(struct unalloc_sp_desc) - elmsz;
|
|
size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
|
|
break;
|
|
case TAGID_FID :
|
|
size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
|
|
size = (size + 3) & ~3;
|
|
break;
|
|
case TAGID_LOGVOL_INTEGRITY :
|
|
size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
|
|
size += udf_rw32(dscr->lvid.l_iu);
|
|
size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
|
|
break;
|
|
case TAGID_SPACE_BITMAP :
|
|
size = sizeof(struct space_bitmap_desc) - 1;
|
|
size += udf_rw32(dscr->sbd.num_bytes);
|
|
break;
|
|
case TAGID_SPARING_TABLE :
|
|
elmsz = sizeof(struct spare_map_entry);
|
|
size = sizeof(struct udf_sparing_table) - elmsz;
|
|
size += udf_rw16(dscr->spt.rt_l) * elmsz;
|
|
break;
|
|
case TAGID_FENTRY :
|
|
size = sizeof(struct file_entry);
|
|
size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
|
|
break;
|
|
case TAGID_EXTFENTRY :
|
|
size = sizeof(struct extfile_entry);
|
|
size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
|
|
break;
|
|
case TAGID_FSD :
|
|
size = sizeof(struct fileset_desc);
|
|
break;
|
|
default :
|
|
size = sizeof(union dscrptr);
|
|
break;
|
|
}
|
|
|
|
if ((size == 0) || (lb_size == 0)) return 0;
|
|
|
|
/* round up in sectors */
|
|
num_lb = (size + lb_size -1) / lb_size;
|
|
return num_lb * lb_size;
|
|
}
|
|
|
|
|
|
int
|
|
udf_fidsize(struct fileid_desc *fid)
|
|
{
|
|
uint32_t size;
|
|
|
|
if (udf_rw16(fid->tag.id) != TAGID_FID)
|
|
panic("got udf_fidsize on non FID\n");
|
|
|
|
size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
|
|
size = (size + 3) & ~3;
|
|
|
|
return size;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
void
|
|
udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
|
|
{
|
|
int ret;
|
|
|
|
mutex_enter(&udf_node->node_mutex);
|
|
/* wait until free */
|
|
while (udf_node->i_flags & IN_LOCKED) {
|
|
ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
|
|
/* TODO check if we should return error; abort */
|
|
if (ret == EWOULDBLOCK) {
|
|
DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
|
|
"wanted at %s:%d, previously locked at %s:%d\n",
|
|
udf_node, fname, lineno,
|
|
udf_node->lock_fname, udf_node->lock_lineno));
|
|
}
|
|
}
|
|
/* grab */
|
|
udf_node->i_flags |= IN_LOCKED | flag;
|
|
/* debug */
|
|
udf_node->lock_fname = fname;
|
|
udf_node->lock_lineno = lineno;
|
|
|
|
mutex_exit(&udf_node->node_mutex);
|
|
}
|
|
|
|
|
|
void
|
|
udf_unlock_node(struct udf_node *udf_node, int flag)
|
|
{
|
|
mutex_enter(&udf_node->node_mutex);
|
|
udf_node->i_flags &= ~(IN_LOCKED | flag);
|
|
cv_broadcast(&udf_node->node_lock);
|
|
mutex_exit(&udf_node->node_mutex);
|
|
}
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
|
|
{
|
|
int error;
|
|
|
|
error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
|
|
(union dscrptr **) dst);
|
|
if (!error) {
|
|
/* blank terminator blocks are not allowed here */
|
|
if (*dst == NULL)
|
|
return ENOENT;
|
|
if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
|
|
error = ENOENT;
|
|
free(*dst, M_UDFVOLD);
|
|
*dst = NULL;
|
|
DPRINTF(VOLUMES, ("Not an anchor\n"));
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
int
|
|
udf_read_anchors(struct udf_mount *ump)
|
|
{
|
|
struct udf_args *args = &ump->mount_args;
|
|
struct mmc_trackinfo first_track;
|
|
struct mmc_trackinfo second_track;
|
|
struct mmc_trackinfo last_track;
|
|
struct anchor_vdp **anchorsp;
|
|
uint32_t track_start;
|
|
uint32_t track_end;
|
|
uint32_t positions[4];
|
|
int first_tracknr, last_tracknr;
|
|
int error, anch, ok, first_anchor;
|
|
|
|
/* search the first and last track of the specified session */
|
|
error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
|
|
if (!error) {
|
|
first_track.tracknr = first_tracknr;
|
|
error = udf_update_trackinfo(ump, &first_track);
|
|
}
|
|
if (!error) {
|
|
last_track.tracknr = last_tracknr;
|
|
error = udf_update_trackinfo(ump, &last_track);
|
|
}
|
|
if ((!error) && (first_tracknr != last_tracknr)) {
|
|
second_track.tracknr = first_tracknr+1;
|
|
error = udf_update_trackinfo(ump, &second_track);
|
|
}
|
|
if (error) {
|
|
printf("UDF mount: reading disc geometry failed\n");
|
|
return 0;
|
|
}
|
|
|
|
track_start = first_track.track_start;
|
|
|
|
/* `end' is not as straitforward as start. */
|
|
track_end = last_track.track_start
|
|
+ last_track.track_size - last_track.free_blocks - 1;
|
|
|
|
if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
|
|
/* end of track is not straitforward here */
|
|
if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
|
|
track_end = last_track.last_recorded;
|
|
else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
|
|
track_end = last_track.next_writable
|
|
- ump->discinfo.link_block_penalty;
|
|
}
|
|
|
|
/* its no use reading a blank track */
|
|
first_anchor = 0;
|
|
if (first_track.flags & MMC_TRACKINFO_BLANK)
|
|
first_anchor = 1;
|
|
|
|
/* get our packet size */
|
|
ump->packet_size = first_track.packet_size;
|
|
if (first_track.flags & MMC_TRACKINFO_BLANK)
|
|
ump->packet_size = second_track.packet_size;
|
|
|
|
if (ump->packet_size <= 1) {
|
|
/* take max, but not bigger than 64 */
|
|
ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
|
|
ump->packet_size = MIN(ump->packet_size, 64);
|
|
}
|
|
KASSERT(ump->packet_size >= 1);
|
|
|
|
/* read anchors start+256, start+512, end-256, end */
|
|
positions[0] = track_start+256;
|
|
positions[1] = track_end-256;
|
|
positions[2] = track_end;
|
|
positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
|
|
/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
|
|
|
|
ok = 0;
|
|
anchorsp = ump->anchors;
|
|
for (anch = first_anchor; anch < 4; anch++) {
|
|
DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
|
|
positions[anch]));
|
|
error = udf_read_anchor(ump, positions[anch], anchorsp);
|
|
if (!error) {
|
|
anchorsp++;
|
|
ok++;
|
|
}
|
|
}
|
|
|
|
/* VATs are only recorded on sequential media, but initialise */
|
|
ump->first_possible_vat_location = track_start + 2;
|
|
ump->last_possible_vat_location = track_end + last_track.packet_size;
|
|
|
|
return ok;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* we dont try to be smart; we just record the parts */
|
|
#define UDF_UPDATE_DSCR(name, dscr) \
|
|
if (name) \
|
|
free(name, M_UDFVOLD); \
|
|
name = dscr;
|
|
|
|
static int
|
|
udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
|
|
{
|
|
struct part_desc *part;
|
|
uint16_t phys_part, raw_phys_part;
|
|
|
|
DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
|
|
udf_rw16(dscr->tag.id)));
|
|
switch (udf_rw16(dscr->tag.id)) {
|
|
case TAGID_PRI_VOL : /* primary partition */
|
|
UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
|
|
break;
|
|
case TAGID_LOGVOL : /* logical volume */
|
|
UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
|
|
break;
|
|
case TAGID_UNALLOC_SPACE : /* unallocated space */
|
|
UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
|
|
break;
|
|
case TAGID_IMP_VOL : /* implementation */
|
|
/* XXX do we care about multiple impl. descr ? */
|
|
UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
|
|
break;
|
|
case TAGID_PARTITION : /* physical partition */
|
|
/* not much use if its not allocated */
|
|
if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
|
|
free(dscr, M_UDFVOLD);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* BUGALERT: some rogue implementations use random physical
|
|
* partion numbers to break other implementations so lookup
|
|
* the number.
|
|
*/
|
|
raw_phys_part = udf_rw16(dscr->pd.part_num);
|
|
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
|
|
part = ump->partitions[phys_part];
|
|
if (part == NULL)
|
|
break;
|
|
if (udf_rw16(part->part_num) == raw_phys_part)
|
|
break;
|
|
}
|
|
if (phys_part == UDF_PARTITIONS) {
|
|
free(dscr, M_UDFVOLD);
|
|
return EINVAL;
|
|
}
|
|
|
|
UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
|
|
break;
|
|
case TAGID_VOL : /* volume space extender; rare */
|
|
DPRINTF(VOLUMES, ("VDS extender ignored\n"));
|
|
free(dscr, M_UDFVOLD);
|
|
break;
|
|
default :
|
|
DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
|
|
udf_rw16(dscr->tag.id)));
|
|
free(dscr, M_UDFVOLD);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#undef UDF_UPDATE_DSCR
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
|
|
{
|
|
union dscrptr *dscr;
|
|
uint32_t sector_size, dscr_size;
|
|
int error;
|
|
|
|
sector_size = ump->discinfo.sector_size;
|
|
|
|
/* loc is sectornr, len is in bytes */
|
|
error = EIO;
|
|
while (len) {
|
|
error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
|
|
if (error)
|
|
return error;
|
|
|
|
/* blank block is a terminator */
|
|
if (dscr == NULL)
|
|
return 0;
|
|
|
|
/* TERM descriptor is a terminator */
|
|
if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
|
|
free(dscr, M_UDFVOLD);
|
|
return 0;
|
|
}
|
|
|
|
/* process all others */
|
|
dscr_size = udf_tagsize(dscr, sector_size);
|
|
error = udf_process_vds_descriptor(ump, dscr);
|
|
if (error) {
|
|
free(dscr, M_UDFVOLD);
|
|
break;
|
|
}
|
|
assert((dscr_size % sector_size) == 0);
|
|
|
|
len -= dscr_size;
|
|
loc += dscr_size / sector_size;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
int
|
|
udf_read_vds_space(struct udf_mount *ump)
|
|
{
|
|
/* struct udf_args *args = &ump->mount_args; */
|
|
struct anchor_vdp *anchor, *anchor2;
|
|
size_t size;
|
|
uint32_t main_loc, main_len;
|
|
uint32_t reserve_loc, reserve_len;
|
|
int error;
|
|
|
|
/*
|
|
* read in VDS space provided by the anchors; if one descriptor read
|
|
* fails, try the mirror sector.
|
|
*
|
|
* check if 2nd anchor is different from 1st; if so, go for 2nd. This
|
|
* avoids the `compatibility features' of DirectCD that may confuse
|
|
* stuff completely.
|
|
*/
|
|
|
|
anchor = ump->anchors[0];
|
|
anchor2 = ump->anchors[1];
|
|
assert(anchor);
|
|
|
|
if (anchor2) {
|
|
size = sizeof(struct extent_ad);
|
|
if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
|
|
anchor = anchor2;
|
|
/* reserve is specified to be a literal copy of main */
|
|
}
|
|
|
|
main_loc = udf_rw32(anchor->main_vds_ex.loc);
|
|
main_len = udf_rw32(anchor->main_vds_ex.len);
|
|
|
|
reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
|
|
reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
|
|
|
|
error = udf_read_vds_extent(ump, main_loc, main_len);
|
|
if (error) {
|
|
printf("UDF mount: reading in reserve VDS extent\n");
|
|
error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Read in the logical volume integrity sequence pointed to by our logical
|
|
* volume descriptor. Its a sequence that can be extended using fields in the
|
|
* integrity descriptor itself. On sequential media only one is found, on
|
|
* rewritable media a sequence of descriptors can be found as a form of
|
|
* history keeping and on non sequential write-once media the chain is vital
|
|
* to allow more and more descriptors to be written. The last descriptor
|
|
* written in an extent needs to claim space for a new extent.
|
|
*/
|
|
|
|
static int
|
|
udf_retrieve_lvint(struct udf_mount *ump)
|
|
{
|
|
union dscrptr *dscr;
|
|
struct logvol_int_desc *lvint;
|
|
struct udf_lvintq *trace;
|
|
uint32_t lb_size, lbnum, len;
|
|
int dscr_type, error, trace_len;
|
|
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
|
|
lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
|
|
|
|
/* clean trace */
|
|
memset(ump->lvint_trace, 0,
|
|
UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
|
|
|
|
trace_len = 0;
|
|
trace = ump->lvint_trace;
|
|
trace->start = lbnum;
|
|
trace->end = lbnum + len/lb_size;
|
|
trace->pos = 0;
|
|
trace->wpos = 0;
|
|
|
|
lvint = NULL;
|
|
dscr = NULL;
|
|
error = 0;
|
|
while (len) {
|
|
trace->pos = lbnum - trace->start;
|
|
trace->wpos = trace->pos + 1;
|
|
|
|
/* read in our integrity descriptor */
|
|
error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
|
|
if (!error) {
|
|
if (dscr == NULL) {
|
|
trace->wpos = trace->pos;
|
|
break; /* empty terminates */
|
|
}
|
|
dscr_type = udf_rw16(dscr->tag.id);
|
|
if (dscr_type == TAGID_TERM) {
|
|
trace->wpos = trace->pos;
|
|
break; /* clean terminator */
|
|
}
|
|
if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
|
|
/* fatal... corrupt disc */
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
if (lvint)
|
|
free(lvint, M_UDFVOLD);
|
|
lvint = &dscr->lvid;
|
|
dscr = NULL;
|
|
} /* else hope for the best... maybe the next is ok */
|
|
|
|
DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
|
|
udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
|
|
|
|
/* proceed sequential */
|
|
lbnum += 1;
|
|
len -= lb_size;
|
|
|
|
/* are we linking to a new piece? */
|
|
if (dscr && lvint->next_extent.len) {
|
|
len = udf_rw32(lvint->next_extent.len);
|
|
lbnum = udf_rw32(lvint->next_extent.loc);
|
|
|
|
if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
|
|
/* IEK! segment link full... */
|
|
DPRINTF(VOLUMES, ("lvdint segments full\n"));
|
|
error = EINVAL;
|
|
} else {
|
|
trace++;
|
|
trace_len++;
|
|
|
|
trace->start = lbnum;
|
|
trace->end = lbnum + len/lb_size;
|
|
trace->pos = 0;
|
|
trace->wpos = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* clean up the mess, esp. when there is an error */
|
|
if (dscr)
|
|
free(dscr, M_UDFVOLD);
|
|
|
|
if (error && lvint) {
|
|
free(lvint, M_UDFVOLD);
|
|
lvint = NULL;
|
|
}
|
|
|
|
if (!lvint)
|
|
error = ENOENT;
|
|
|
|
ump->logvol_integrity = lvint;
|
|
return error;
|
|
}
|
|
|
|
|
|
static int
|
|
udf_loose_lvint_history(struct udf_mount *ump)
|
|
{
|
|
union dscrptr **bufs, *dscr, *last_dscr;
|
|
struct udf_lvintq *trace, *in_trace, *out_trace;
|
|
struct logvol_int_desc *lvint;
|
|
uint32_t in_ext, in_pos, in_len;
|
|
uint32_t out_ext, out_wpos, out_len;
|
|
uint32_t lb_size, packet_size, lb_num;
|
|
uint32_t len, start;
|
|
int ext, minext, extlen, cnt, cpy_len, dscr_type;
|
|
int losing;
|
|
int error;
|
|
|
|
DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
|
|
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
packet_size = ump->data_track.packet_size; /* XXX data track */
|
|
|
|
/* search smallest extent */
|
|
trace = &ump->lvint_trace[0];
|
|
minext = trace->end - trace->start;
|
|
for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
|
|
trace = &ump->lvint_trace[ext];
|
|
extlen = trace->end - trace->start;
|
|
if (extlen == 0)
|
|
break;
|
|
minext = MIN(minext, extlen);
|
|
}
|
|
losing = MIN(minext, UDF_LVINT_LOSSAGE);
|
|
/* no sense wiping all */
|
|
if (losing == minext)
|
|
losing--;
|
|
|
|
DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
|
|
|
|
/* get buffer for pieces */
|
|
bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
|
|
|
|
in_ext = 0;
|
|
in_pos = losing;
|
|
in_trace = &ump->lvint_trace[in_ext];
|
|
in_len = in_trace->end - in_trace->start;
|
|
out_ext = 0;
|
|
out_wpos = 0;
|
|
out_trace = &ump->lvint_trace[out_ext];
|
|
out_len = out_trace->end - out_trace->start;
|
|
|
|
last_dscr = NULL;
|
|
for(;;) {
|
|
out_trace->pos = out_wpos;
|
|
out_trace->wpos = out_trace->pos;
|
|
if (in_pos >= in_len) {
|
|
in_ext++;
|
|
in_pos = 0;
|
|
in_trace = &ump->lvint_trace[in_ext];
|
|
in_len = in_trace->end - in_trace->start;
|
|
}
|
|
if (out_wpos >= out_len) {
|
|
out_ext++;
|
|
out_wpos = 0;
|
|
out_trace = &ump->lvint_trace[out_ext];
|
|
out_len = out_trace->end - out_trace->start;
|
|
}
|
|
/* copy overlap contents */
|
|
cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
|
|
cpy_len = MIN(cpy_len, in_len - in_trace->pos);
|
|
if (cpy_len == 0)
|
|
break;
|
|
|
|
/* copy */
|
|
DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
|
|
for (cnt = 0; cnt < cpy_len; cnt++) {
|
|
/* read in our integrity descriptor */
|
|
lb_num = in_trace->start + in_pos + cnt;
|
|
error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
|
|
&dscr);
|
|
if (error) {
|
|
/* copy last one */
|
|
dscr = last_dscr;
|
|
}
|
|
bufs[cnt] = dscr;
|
|
if (!error) {
|
|
if (dscr == NULL) {
|
|
out_trace->pos = out_wpos + cnt;
|
|
out_trace->wpos = out_trace->pos;
|
|
break; /* empty terminates */
|
|
}
|
|
dscr_type = udf_rw16(dscr->tag.id);
|
|
if (dscr_type == TAGID_TERM) {
|
|
out_trace->pos = out_wpos + cnt;
|
|
out_trace->wpos = out_trace->pos;
|
|
break; /* clean terminator */
|
|
}
|
|
if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
|
|
panic( "UDF integrity sequence "
|
|
"corrupted while mounted!\n");
|
|
}
|
|
last_dscr = dscr;
|
|
}
|
|
}
|
|
|
|
/* patch up if first entry was on error */
|
|
if (bufs[0] == NULL) {
|
|
for (cnt = 0; cnt < cpy_len; cnt++)
|
|
if (bufs[cnt] != NULL)
|
|
break;
|
|
last_dscr = bufs[cnt];
|
|
for (; cnt > 0; cnt--) {
|
|
bufs[cnt] = last_dscr;
|
|
}
|
|
}
|
|
|
|
/* glue + write out */
|
|
DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
|
|
for (cnt = 0; cnt < cpy_len; cnt++) {
|
|
lb_num = out_trace->start + out_wpos + cnt;
|
|
lvint = &bufs[cnt]->lvid;
|
|
|
|
/* set continuation */
|
|
len = 0;
|
|
start = 0;
|
|
if (out_wpos + cnt == out_len) {
|
|
/* get continuation */
|
|
trace = &ump->lvint_trace[out_ext+1];
|
|
len = trace->end - trace->start;
|
|
start = trace->start;
|
|
}
|
|
lvint->next_extent.len = udf_rw32(len);
|
|
lvint->next_extent.loc = udf_rw32(start);
|
|
|
|
lb_num = trace->start + trace->wpos;
|
|
error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
|
|
bufs[cnt], lb_num, lb_num);
|
|
DPRINTFIF(VOLUMES, error,
|
|
("error writing lvint lb_num\n"));
|
|
}
|
|
|
|
/* free non repeating descriptors */
|
|
last_dscr = NULL;
|
|
for (cnt = 0; cnt < cpy_len; cnt++) {
|
|
if (bufs[cnt] != last_dscr)
|
|
free(bufs[cnt], M_UDFVOLD);
|
|
last_dscr = bufs[cnt];
|
|
}
|
|
|
|
/* advance */
|
|
in_pos += cpy_len;
|
|
out_wpos += cpy_len;
|
|
}
|
|
|
|
free(bufs, M_TEMP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
udf_writeout_lvint(struct udf_mount *ump, int lvflag)
|
|
{
|
|
struct udf_lvintq *trace;
|
|
struct timeval now_v;
|
|
struct timespec now_s;
|
|
uint32_t sector;
|
|
int logvol_integrity;
|
|
int space, error;
|
|
|
|
DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
|
|
|
|
again:
|
|
/* get free space in last chunk */
|
|
trace = ump->lvint_trace;
|
|
while (trace->wpos > (trace->end - trace->start)) {
|
|
DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
|
|
"wpos = %d\n", trace->start, trace->end,
|
|
trace->pos, trace->wpos));
|
|
trace++;
|
|
}
|
|
|
|
/* check if there is space to append */
|
|
space = (trace->end - trace->start) - trace->wpos;
|
|
DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
|
|
"space = %d\n", trace->start, trace->end, trace->pos,
|
|
trace->wpos, space));
|
|
|
|
/* get state */
|
|
logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
|
|
if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
|
|
if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
|
|
/* don't allow this logvol to be opened */
|
|
/* TODO extent LVINT space if possible */
|
|
return EROFS;
|
|
}
|
|
}
|
|
|
|
if (space < 1) {
|
|
if (lvflag & UDF_APPENDONLY_LVINT)
|
|
return EROFS;
|
|
/* loose history by re-writing extents */
|
|
error = udf_loose_lvint_history(ump);
|
|
if (error)
|
|
return error;
|
|
goto again;
|
|
}
|
|
|
|
/* update our integrity descriptor to identify us and timestamp it */
|
|
DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
|
|
microtime(&now_v);
|
|
TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
|
|
udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
|
|
udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
|
|
udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
|
|
|
|
/* writeout integrity descriptor */
|
|
sector = trace->start + trace->wpos;
|
|
error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
|
|
(union dscrptr *) ump->logvol_integrity,
|
|
sector, sector);
|
|
DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
|
|
if (error)
|
|
return error;
|
|
|
|
/* advance write position */
|
|
trace->wpos++; space--;
|
|
if (space >= 1) {
|
|
/* append terminator */
|
|
sector = trace->start + trace->wpos;
|
|
error = udf_write_terminator(ump, sector);
|
|
|
|
DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
|
|
}
|
|
|
|
space = (trace->end - trace->start) - trace->wpos;
|
|
DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
|
|
"space = %d\n", trace->start, trace->end, trace->pos,
|
|
trace->wpos, space));
|
|
DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
|
|
"successfull\n"));
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_read_partition_spacetables(struct udf_mount *ump)
|
|
{
|
|
union dscrptr *dscr;
|
|
/* struct udf_args *args = &ump->mount_args; */
|
|
struct part_desc *partd;
|
|
struct part_hdr_desc *parthdr;
|
|
struct udf_bitmap *bitmap;
|
|
uint32_t phys_part;
|
|
uint32_t lb_num, len;
|
|
int error, dscr_type;
|
|
|
|
/* unallocated space map */
|
|
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
|
|
partd = ump->partitions[phys_part];
|
|
if (partd == NULL)
|
|
continue;
|
|
parthdr = &partd->_impl_use.part_hdr;
|
|
|
|
lb_num = udf_rw32(partd->start_loc);
|
|
lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
|
|
len = udf_rw32(parthdr->unalloc_space_bitmap.len);
|
|
if (len == 0)
|
|
continue;
|
|
|
|
DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
|
|
error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
|
|
if (!error && dscr) {
|
|
/* analyse */
|
|
dscr_type = udf_rw16(dscr->tag.id);
|
|
if (dscr_type == TAGID_SPACE_BITMAP) {
|
|
DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
|
|
ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
|
|
|
|
/* fill in ump->part_unalloc_bits */
|
|
bitmap = &ump->part_unalloc_bits[phys_part];
|
|
bitmap->blob = (uint8_t *) dscr;
|
|
bitmap->bits = dscr->sbd.data;
|
|
bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
|
|
bitmap->pages = NULL; /* TODO */
|
|
bitmap->data_pos = 0;
|
|
bitmap->metadata_pos = 0;
|
|
} else {
|
|
free(dscr, M_UDFVOLD);
|
|
|
|
printf( "UDF mount: error reading unallocated "
|
|
"space bitmap\n");
|
|
return EROFS;
|
|
}
|
|
} else {
|
|
/* blank not allowed */
|
|
printf("UDF mount: blank unallocated space bitmap\n");
|
|
return EROFS;
|
|
}
|
|
}
|
|
|
|
/* unallocated space table (not supported) */
|
|
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
|
|
partd = ump->partitions[phys_part];
|
|
if (partd == NULL)
|
|
continue;
|
|
parthdr = &partd->_impl_use.part_hdr;
|
|
|
|
len = udf_rw32(parthdr->unalloc_space_table.len);
|
|
if (len) {
|
|
printf("UDF mount: space tables not supported\n");
|
|
return EROFS;
|
|
}
|
|
}
|
|
|
|
/* freed space map */
|
|
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
|
|
partd = ump->partitions[phys_part];
|
|
if (partd == NULL)
|
|
continue;
|
|
parthdr = &partd->_impl_use.part_hdr;
|
|
|
|
/* freed space map */
|
|
lb_num = udf_rw32(partd->start_loc);
|
|
lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
|
|
len = udf_rw32(parthdr->freed_space_bitmap.len);
|
|
if (len == 0)
|
|
continue;
|
|
|
|
DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
|
|
error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
|
|
if (!error && dscr) {
|
|
/* analyse */
|
|
dscr_type = udf_rw16(dscr->tag.id);
|
|
if (dscr_type == TAGID_SPACE_BITMAP) {
|
|
DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
|
|
ump->part_freed_dscr[phys_part] = &dscr->sbd;
|
|
|
|
/* fill in ump->part_freed_bits */
|
|
bitmap = &ump->part_unalloc_bits[phys_part];
|
|
bitmap->blob = (uint8_t *) dscr;
|
|
bitmap->bits = dscr->sbd.data;
|
|
bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
|
|
bitmap->pages = NULL; /* TODO */
|
|
bitmap->data_pos = 0;
|
|
bitmap->metadata_pos = 0;
|
|
} else {
|
|
free(dscr, M_UDFVOLD);
|
|
|
|
printf( "UDF mount: error reading freed "
|
|
"space bitmap\n");
|
|
return EROFS;
|
|
}
|
|
} else {
|
|
/* blank not allowed */
|
|
printf("UDF mount: blank freed space bitmap\n");
|
|
return EROFS;
|
|
}
|
|
}
|
|
|
|
/* freed space table (not supported) */
|
|
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
|
|
partd = ump->partitions[phys_part];
|
|
if (partd == NULL)
|
|
continue;
|
|
parthdr = &partd->_impl_use.part_hdr;
|
|
|
|
len = udf_rw32(parthdr->freed_space_table.len);
|
|
if (len) {
|
|
printf("UDF mount: space tables not supported\n");
|
|
return EROFS;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* TODO implement async writeout */
|
|
int
|
|
udf_write_partition_spacetables(struct udf_mount *ump, int waitfor)
|
|
{
|
|
union dscrptr *dscr;
|
|
/* struct udf_args *args = &ump->mount_args; */
|
|
struct part_desc *partd;
|
|
struct part_hdr_desc *parthdr;
|
|
uint32_t phys_part;
|
|
uint32_t lb_num, len, ptov;
|
|
int error_all, error;
|
|
|
|
error_all = 0;
|
|
/* unallocated space map */
|
|
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
|
|
partd = ump->partitions[phys_part];
|
|
if (partd == NULL)
|
|
continue;
|
|
parthdr = &partd->_impl_use.part_hdr;
|
|
|
|
ptov = udf_rw32(partd->start_loc);
|
|
lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
|
|
len = udf_rw32(parthdr->unalloc_space_bitmap.len);
|
|
if (len == 0)
|
|
continue;
|
|
|
|
DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
|
|
lb_num + ptov));
|
|
dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
|
|
error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
|
|
(union dscrptr *) dscr,
|
|
ptov + lb_num, lb_num);
|
|
if (error) {
|
|
DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
|
|
error_all = error;
|
|
}
|
|
}
|
|
|
|
/* freed space map */
|
|
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
|
|
partd = ump->partitions[phys_part];
|
|
if (partd == NULL)
|
|
continue;
|
|
parthdr = &partd->_impl_use.part_hdr;
|
|
|
|
/* freed space map */
|
|
ptov = udf_rw32(partd->start_loc);
|
|
lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
|
|
len = udf_rw32(parthdr->freed_space_bitmap.len);
|
|
if (len == 0)
|
|
continue;
|
|
|
|
DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
|
|
lb_num + ptov));
|
|
dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
|
|
error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
|
|
(union dscrptr *) dscr,
|
|
ptov + lb_num, lb_num);
|
|
if (error) {
|
|
DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
|
|
error_all = error;
|
|
}
|
|
}
|
|
|
|
return error_all;
|
|
}
|
|
|
|
/*
|
|
* Checks if ump's vds information is correct and complete
|
|
*/
|
|
|
|
int
|
|
udf_process_vds(struct udf_mount *ump) {
|
|
union udf_pmap *mapping;
|
|
/* struct udf_args *args = &ump->mount_args; */
|
|
struct logvol_int_desc *lvint;
|
|
struct udf_logvol_info *lvinfo;
|
|
struct part_desc *part;
|
|
uint32_t n_pm, mt_l;
|
|
uint8_t *pmap_pos;
|
|
char *domain_name, *map_name;
|
|
const char *check_name;
|
|
char bits[128];
|
|
int pmap_stype, pmap_size;
|
|
int pmap_type, log_part, phys_part, raw_phys_part;
|
|
int n_phys, n_virt, n_spar, n_meta;
|
|
int len, error;
|
|
|
|
if (ump == NULL)
|
|
return ENOENT;
|
|
|
|
/* we need at least an anchor (trivial, but for safety) */
|
|
if (ump->anchors[0] == NULL)
|
|
return EINVAL;
|
|
|
|
/* we need at least one primary and one logical volume descriptor */
|
|
if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
|
|
return EINVAL;
|
|
|
|
/* we need at least one partition descriptor */
|
|
if (ump->partitions[0] == NULL)
|
|
return EINVAL;
|
|
|
|
/* check logical volume sector size verses device sector size */
|
|
if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
|
|
printf("UDF mount: format violation, lb_size != sector size\n");
|
|
return EINVAL;
|
|
}
|
|
|
|
/* check domain name */
|
|
domain_name = ump->logical_vol->domain_id.id;
|
|
if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
|
|
printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
|
|
return EINVAL;
|
|
}
|
|
|
|
/* retrieve logical volume integrity sequence */
|
|
error = udf_retrieve_lvint(ump);
|
|
|
|
/*
|
|
* We need at least one logvol integrity descriptor recorded. Note
|
|
* that its OK to have an open logical volume integrity here. The VAT
|
|
* will close/update the integrity.
|
|
*/
|
|
if (ump->logvol_integrity == NULL)
|
|
return EINVAL;
|
|
|
|
/* read in and check unallocated and free space info if writing */
|
|
if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
|
|
error = udf_read_partition_spacetables(ump);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/* process derived structures */
|
|
n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
|
|
lvint = ump->logvol_integrity;
|
|
lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
|
|
ump->logvol_info = lvinfo;
|
|
|
|
/* TODO check udf versions? */
|
|
|
|
/*
|
|
* check logvol mappings: effective virt->log partmap translation
|
|
* check and recording of the mapping results. Saves expensive
|
|
* strncmp() in tight places.
|
|
*/
|
|
DPRINTF(VOLUMES, ("checking logvol mappings\n"));
|
|
n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
|
|
mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
|
|
pmap_pos = ump->logical_vol->maps;
|
|
|
|
if (n_pm > UDF_PMAPS) {
|
|
printf("UDF mount: too many mappings\n");
|
|
return EINVAL;
|
|
}
|
|
|
|
ump->data_part = ump->metadata_part = 0;
|
|
n_phys = n_virt = n_spar = n_meta = 0;
|
|
for (log_part = 0; log_part < n_pm; log_part++) {
|
|
mapping = (union udf_pmap *) pmap_pos;
|
|
pmap_stype = pmap_pos[0];
|
|
pmap_size = pmap_pos[1];
|
|
switch (pmap_stype) {
|
|
case 1: /* physical mapping */
|
|
/* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
|
|
raw_phys_part = udf_rw16(mapping->pm1.part_num);
|
|
pmap_type = UDF_VTOP_TYPE_PHYS;
|
|
n_phys++;
|
|
ump->data_part = log_part;
|
|
ump->metadata_part = log_part;
|
|
break;
|
|
case 2: /* virtual/sparable/meta mapping */
|
|
map_name = mapping->pm2.part_id.id;
|
|
/* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
|
|
raw_phys_part = udf_rw16(mapping->pm2.part_num);
|
|
pmap_type = UDF_VTOP_TYPE_UNKNOWN;
|
|
len = UDF_REGID_ID_SIZE;
|
|
|
|
check_name = "*UDF Virtual Partition";
|
|
if (strncmp(map_name, check_name, len) == 0) {
|
|
pmap_type = UDF_VTOP_TYPE_VIRT;
|
|
n_virt++;
|
|
ump->metadata_part = log_part;
|
|
break;
|
|
}
|
|
check_name = "*UDF Sparable Partition";
|
|
if (strncmp(map_name, check_name, len) == 0) {
|
|
pmap_type = UDF_VTOP_TYPE_SPARABLE;
|
|
n_spar++;
|
|
ump->data_part = log_part;
|
|
ump->metadata_part = log_part;
|
|
break;
|
|
}
|
|
check_name = "*UDF Metadata Partition";
|
|
if (strncmp(map_name, check_name, len) == 0) {
|
|
pmap_type = UDF_VTOP_TYPE_META;
|
|
n_meta++;
|
|
ump->metadata_part = log_part;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* BUGALERT: some rogue implementations use random physical
|
|
* partion numbers to break other implementations so lookup
|
|
* the number.
|
|
*/
|
|
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
|
|
part = ump->partitions[phys_part];
|
|
if (part == NULL)
|
|
continue;
|
|
if (udf_rw16(part->part_num) == raw_phys_part)
|
|
break;
|
|
}
|
|
|
|
DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
|
|
raw_phys_part, phys_part, pmap_type));
|
|
|
|
if (phys_part == UDF_PARTITIONS)
|
|
return EINVAL;
|
|
if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
|
|
return EINVAL;
|
|
|
|
ump->vtop [log_part] = phys_part;
|
|
ump->vtop_tp[log_part] = pmap_type;
|
|
|
|
pmap_pos += pmap_size;
|
|
}
|
|
/* not winning the beauty contest */
|
|
ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
|
|
|
|
/* test some basic UDF assertions/requirements */
|
|
if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
|
|
return EINVAL;
|
|
|
|
if (n_virt) {
|
|
if ((n_phys == 0) || n_spar || n_meta)
|
|
return EINVAL;
|
|
}
|
|
if (n_spar + n_phys == 0)
|
|
return EINVAL;
|
|
|
|
/* determine allocation scheme's based on disc format */
|
|
/* VAT's can only be on a sequential media */
|
|
ump->data_alloc = UDF_ALLOC_SPACEMAP;
|
|
if (n_virt)
|
|
ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
|
|
|
|
ump->meta_alloc = UDF_ALLOC_SPACEMAP;
|
|
if (n_virt)
|
|
ump->meta_alloc = UDF_ALLOC_VAT;
|
|
if (n_meta)
|
|
ump->meta_alloc = UDF_ALLOC_METABITMAP;
|
|
|
|
/* special cases for pseudo-overwrite */
|
|
if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
|
|
ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
|
|
if (n_meta) {
|
|
ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
|
|
} else {
|
|
ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
|
|
}
|
|
}
|
|
|
|
/* determine default allocation descriptors to use */
|
|
ump->data_allocdscr = UDF_ICB_SHORT_ALLOC;
|
|
ump->meta_allocdscr = UDF_ICB_SHORT_ALLOC;
|
|
if (n_pm > 1) {
|
|
ump->data_allocdscr = UDF_ICB_LONG_ALLOC;
|
|
ump->meta_allocdscr = UDF_ICB_LONG_ALLOC;
|
|
/* metadata partitions are forced to have short */
|
|
if (n_meta)
|
|
ump->meta_allocdscr = UDF_ICB_SHORT_ALLOC;
|
|
}
|
|
|
|
/* determine logical volume open/closure actions */
|
|
if (n_virt) {
|
|
ump->lvopen = 0;
|
|
if (ump->discinfo.last_session_state == MMC_STATE_CLOSED)
|
|
ump->lvopen |= UDF_OPEN_SESSION ;
|
|
ump->lvclose = UDF_WRITE_VAT;
|
|
if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
|
|
ump->lvclose |= UDF_CLOSE_SESSION;
|
|
} else {
|
|
/* `normal' rewritable or non sequential media */
|
|
ump->lvopen = UDF_WRITE_LVINT;
|
|
ump->lvclose = UDF_WRITE_LVINT;
|
|
if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
|
|
ump->lvopen |= UDF_APPENDONLY_LVINT;
|
|
}
|
|
|
|
/*
|
|
* Determine sheduler error behaviour. For virtual partions, update
|
|
* the trackinfo; for sparable partitions replace a whole block on the
|
|
* sparable table. Allways requeue.
|
|
*/
|
|
ump->lvreadwrite = 0;
|
|
if (n_virt)
|
|
ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
|
|
if (n_spar)
|
|
ump->lvreadwrite = UDF_REMAP_BLOCK;
|
|
|
|
/*
|
|
* Select our sheduler
|
|
*/
|
|
ump->strategy = &udf_strat_rmw;
|
|
if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
|
|
ump->strategy = &udf_strat_sequential;
|
|
if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
|
|
(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
|
|
ump->strategy = &udf_strat_direct;
|
|
if (n_spar)
|
|
ump->strategy = &udf_strat_rmw;
|
|
|
|
/* print results */
|
|
DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
|
|
ump->data_alloc, ump->meta_alloc));
|
|
DPRINTF(VOLUMES, ("\tdata partition %d, metadata partition %d\n",
|
|
ump->data_part, ump->metadata_part));
|
|
|
|
bitmask_snprintf(ump->lvopen, UDFLOGVOL_BITS, bits, sizeof(bits));
|
|
DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
|
|
bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits));
|
|
DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
|
|
bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits));
|
|
DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
|
|
|
|
DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
|
|
(ump->strategy == &udf_strat_direct) ? "Direct" :
|
|
(ump->strategy == &udf_strat_sequential) ? "Sequential" :
|
|
(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
|
|
|
|
/* signal its OK for now */
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Update logical volume name in all structures that keep a record of it. We
|
|
* use memmove since each of them might be specified as a source.
|
|
*
|
|
* Note that it doesn't update the VAT structure!
|
|
*/
|
|
|
|
static void
|
|
udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
|
|
{
|
|
struct logvol_desc *lvd = NULL;
|
|
struct fileset_desc *fsd = NULL;
|
|
struct udf_lv_info *lvi = NULL;
|
|
|
|
DPRINTF(VOLUMES, ("Updating logical volume name\n"));
|
|
lvd = ump->logical_vol;
|
|
fsd = ump->fileset_desc;
|
|
if (ump->implementation)
|
|
lvi = &ump->implementation->_impl_use.lv_info;
|
|
|
|
/* logvol's id might be specified as origional so use memmove here */
|
|
memmove(lvd->logvol_id, logvol_id, 128);
|
|
if (fsd)
|
|
memmove(fsd->logvol_id, logvol_id, 128);
|
|
if (lvi)
|
|
memmove(lvi->logvol_id, logvol_id, 128);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
void
|
|
udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
|
|
uint32_t sector)
|
|
{
|
|
assert(ump->logical_vol);
|
|
|
|
tag->id = udf_rw16(tagid);
|
|
tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
|
|
tag->cksum = 0;
|
|
tag->reserved = 0;
|
|
tag->serial_num = ump->logical_vol->tag.serial_num;
|
|
tag->tag_loc = udf_rw32(sector);
|
|
}
|
|
|
|
|
|
uint64_t
|
|
udf_advance_uniqueid(struct udf_mount *ump)
|
|
{
|
|
uint64_t unique_id;
|
|
|
|
mutex_enter(&ump->logvol_mutex);
|
|
unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
|
|
if (unique_id < 0x10)
|
|
unique_id = 0x10;
|
|
ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
|
|
mutex_exit(&ump->logvol_mutex);
|
|
|
|
return unique_id;
|
|
}
|
|
|
|
|
|
static void
|
|
udf_adjust_filecount(struct udf_node *udf_node, int sign)
|
|
{
|
|
struct udf_mount *ump = udf_node->ump;
|
|
uint32_t num_dirs, num_files;
|
|
int udf_file_type;
|
|
|
|
/* get file type */
|
|
if (udf_node->fe) {
|
|
udf_file_type = udf_node->fe->icbtag.file_type;
|
|
} else {
|
|
udf_file_type = udf_node->efe->icbtag.file_type;
|
|
}
|
|
|
|
/* adjust file count */
|
|
mutex_enter(&ump->allocate_mutex);
|
|
if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
|
|
num_dirs = udf_rw32(ump->logvol_info->num_directories);
|
|
ump->logvol_info->num_directories =
|
|
udf_rw32((num_dirs + sign));
|
|
} else {
|
|
num_files = udf_rw32(ump->logvol_info->num_files);
|
|
ump->logvol_info->num_files =
|
|
udf_rw32((num_files + sign));
|
|
}
|
|
mutex_exit(&ump->allocate_mutex);
|
|
}
|
|
|
|
|
|
void
|
|
udf_osta_charset(struct charspec *charspec)
|
|
{
|
|
bzero(charspec, sizeof(struct charspec));
|
|
charspec->type = 0;
|
|
strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
|
|
}
|
|
|
|
|
|
/* first call udf_set_regid and then the suffix */
|
|
void
|
|
udf_set_regid(struct regid *regid, char const *name)
|
|
{
|
|
bzero(regid, sizeof(struct regid));
|
|
regid->flags = 0; /* not dirty and not protected */
|
|
strcpy((char *) regid->id, name);
|
|
}
|
|
|
|
|
|
void
|
|
udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
|
|
{
|
|
uint16_t *ver;
|
|
|
|
ver = (uint16_t *) regid->id_suffix;
|
|
*ver = ump->logvol_info->min_udf_readver;
|
|
}
|
|
|
|
|
|
void
|
|
udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
|
|
{
|
|
uint16_t *ver;
|
|
|
|
ver = (uint16_t *) regid->id_suffix;
|
|
*ver = ump->logvol_info->min_udf_readver;
|
|
|
|
regid->id_suffix[2] = 4; /* unix */
|
|
regid->id_suffix[3] = 8; /* NetBSD */
|
|
}
|
|
|
|
|
|
void
|
|
udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
|
|
{
|
|
regid->id_suffix[0] = 4; /* unix */
|
|
regid->id_suffix[1] = 8; /* NetBSD */
|
|
}
|
|
|
|
|
|
void
|
|
udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
|
|
{
|
|
regid->id_suffix[0] = APP_VERSION_MAIN;
|
|
regid->id_suffix[1] = APP_VERSION_SUB;
|
|
}
|
|
|
|
static int
|
|
udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
|
|
struct long_ad *parent, uint64_t unique_id)
|
|
{
|
|
/* the size of an empty FID is 38 but needs to be a multiple of 4 */
|
|
int fidsize = 40;
|
|
|
|
udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
|
|
fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
|
|
fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
|
|
fid->icb = *parent;
|
|
fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
|
|
fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH;
|
|
(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
|
|
|
|
return fidsize;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Extended attribute support. UDF knows of 3 places for extended attributes:
|
|
*
|
|
* (a) inside the file's (e)fe in the length of the extended attribute area
|
|
* before the allocation descriptors/filedata
|
|
*
|
|
* (b) in a file referenced by (e)fe->ext_attr_icb and
|
|
*
|
|
* (c) in the e(fe)'s associated stream directory that can hold various
|
|
* sub-files. In the stream directory a few fixed named subfiles are reserved
|
|
* for NT/Unix ACL's and OS/2 attributes.
|
|
*
|
|
* NOTE: Extended attributes are read randomly but allways written
|
|
* *atomicaly*. For ACL's this interface is propably different but not known
|
|
* to me yet.
|
|
*
|
|
* Order of extended attributes in a space :
|
|
* ECMA 167 EAs
|
|
* Non block aligned Implementation Use EAs
|
|
* Block aligned Implementation Use EAs
|
|
* Application Use EAs
|
|
*/
|
|
|
|
static int
|
|
udf_impl_extattr_check(struct impl_extattr_entry *implext)
|
|
{
|
|
uint16_t *spos;
|
|
|
|
if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
|
|
/* checksum valid? */
|
|
DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
|
|
spos = (uint16_t *) implext->data;
|
|
if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
|
|
return EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
|
|
{
|
|
uint16_t *spos;
|
|
|
|
if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
|
|
/* set checksum */
|
|
spos = (uint16_t *) implext->data;
|
|
*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
udf_extattr_search_intern(struct udf_node *node,
|
|
uint32_t sattr, char const *sattrname,
|
|
uint32_t *offsetp, uint32_t *lengthp)
|
|
{
|
|
struct extattrhdr_desc *eahdr;
|
|
struct extattr_entry *attrhdr;
|
|
struct impl_extattr_entry *implext;
|
|
uint32_t offset, a_l, sector_size;
|
|
int32_t l_ea;
|
|
uint8_t *pos;
|
|
int error;
|
|
|
|
/* get mountpoint */
|
|
sector_size = node->ump->discinfo.sector_size;
|
|
|
|
/* get information from fe/efe */
|
|
if (node->fe) {
|
|
l_ea = udf_rw32(node->fe->l_ea);
|
|
eahdr = (struct extattrhdr_desc *) node->fe->data;
|
|
} else {
|
|
assert(node->efe);
|
|
l_ea = udf_rw32(node->efe->l_ea);
|
|
eahdr = (struct extattrhdr_desc *) node->efe->data;
|
|
}
|
|
|
|
/* something recorded here? */
|
|
if (l_ea == 0)
|
|
return ENOENT;
|
|
|
|
/* check extended attribute tag; what to do if it fails? */
|
|
error = udf_check_tag(eahdr);
|
|
if (error)
|
|
return EINVAL;
|
|
if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
|
|
return EINVAL;
|
|
error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
|
|
if (error)
|
|
return EINVAL;
|
|
|
|
DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
|
|
|
|
/* looking for Ecma-167 attributes? */
|
|
offset = sizeof(struct extattrhdr_desc);
|
|
|
|
/* looking for either implemenation use or application use */
|
|
if (sattr == 2048) { /* [4/48.10.8] */
|
|
offset = udf_rw32(eahdr->impl_attr_loc);
|
|
if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
|
|
return ENOENT;
|
|
}
|
|
if (sattr == 65536) { /* [4/48.10.9] */
|
|
offset = udf_rw32(eahdr->appl_attr_loc);
|
|
if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
|
|
return ENOENT;
|
|
}
|
|
|
|
/* paranoia check offset and l_ea */
|
|
if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
|
|
return EINVAL;
|
|
|
|
DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
|
|
|
|
/* find our extended attribute */
|
|
l_ea -= offset;
|
|
pos = (uint8_t *) eahdr + offset;
|
|
|
|
while (l_ea >= sizeof(struct extattr_entry)) {
|
|
DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
|
|
attrhdr = (struct extattr_entry *) pos;
|
|
implext = (struct impl_extattr_entry *) pos;
|
|
|
|
/* get complete attribute length and check for roque values */
|
|
a_l = udf_rw32(attrhdr->a_l);
|
|
DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
|
|
udf_rw32(attrhdr->type),
|
|
attrhdr->subtype, a_l, l_ea));
|
|
if ((a_l == 0) || (a_l > l_ea))
|
|
return EINVAL;
|
|
|
|
if (attrhdr->type != sattr)
|
|
goto next_attribute;
|
|
|
|
/* we might have found it! */
|
|
if (attrhdr->type < 2048) { /* Ecma-167 attribute */
|
|
*offsetp = offset;
|
|
*lengthp = a_l;
|
|
return 0; /* success */
|
|
}
|
|
|
|
/*
|
|
* Implementation use and application use extended attributes
|
|
* have a name to identify. They share the same structure only
|
|
* UDF implementation use extended attributes have a checksum
|
|
* we need to check
|
|
*/
|
|
|
|
DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
|
|
if (strcmp(implext->imp_id.id, sattrname) == 0) {
|
|
/* we have found our appl/implementation attribute */
|
|
*offsetp = offset;
|
|
*lengthp = a_l;
|
|
return 0; /* success */
|
|
}
|
|
|
|
next_attribute:
|
|
/* next attribute */
|
|
pos += a_l;
|
|
l_ea -= a_l;
|
|
offset += a_l;
|
|
}
|
|
/* not found */
|
|
return ENOENT;
|
|
}
|
|
|
|
|
|
static void
|
|
udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
|
|
struct extattr_entry *extattr)
|
|
{
|
|
struct file_entry *fe;
|
|
struct extfile_entry *efe;
|
|
struct extattrhdr_desc *extattrhdr;
|
|
struct impl_extattr_entry *implext;
|
|
uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
|
|
uint32_t *l_eap, l_ad;
|
|
uint16_t *spos;
|
|
uint8_t *bpos, *data;
|
|
|
|
if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
|
|
fe = &dscr->fe;
|
|
data = fe->data;
|
|
l_eap = &fe->l_ea;
|
|
l_ad = udf_rw32(fe->l_ad);
|
|
} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
|
|
efe = &dscr->efe;
|
|
data = efe->data;
|
|
l_eap = &efe->l_ea;
|
|
l_ad = udf_rw32(efe->l_ad);
|
|
} else {
|
|
panic("Bad tag passed to udf_extattr_insert_internal");
|
|
}
|
|
|
|
/* can't append already written to file descriptors yet */
|
|
assert(l_ad == 0);
|
|
|
|
/* should have a header! */
|
|
extattrhdr = (struct extattrhdr_desc *) data;
|
|
l_ea = udf_rw32(*l_eap);
|
|
if (l_ea == 0) {
|
|
/* create empty extended attribute header */
|
|
exthdr_len = sizeof(struct extattrhdr_desc);
|
|
|
|
udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
|
|
/* loc */ 0);
|
|
extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
|
|
extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
|
|
extattrhdr->tag.desc_crc_len = udf_rw16(8);
|
|
|
|
/* record extended attribute header length */
|
|
l_ea = exthdr_len;
|
|
*l_eap = udf_rw32(l_ea);
|
|
}
|
|
|
|
/* extract locations */
|
|
impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
|
|
appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
|
|
if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
|
|
impl_attr_loc = l_ea;
|
|
if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
|
|
appl_attr_loc = l_ea;
|
|
|
|
/* Ecma 167 EAs */
|
|
if (udf_rw32(extattr->type) < 2048) {
|
|
assert(impl_attr_loc == l_ea);
|
|
assert(appl_attr_loc == l_ea);
|
|
}
|
|
|
|
/* implementation use extended attributes */
|
|
if (udf_rw32(extattr->type) == 2048) {
|
|
assert(appl_attr_loc == l_ea);
|
|
|
|
/* calculate and write extended attribute header checksum */
|
|
implext = (struct impl_extattr_entry *) extattr;
|
|
assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
|
|
spos = (uint16_t *) implext->data;
|
|
*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
|
|
}
|
|
|
|
/* application use extended attributes */
|
|
assert(udf_rw32(extattr->type) != 65536);
|
|
assert(appl_attr_loc == l_ea);
|
|
|
|
/* append the attribute at the end of the current space */
|
|
bpos = data + udf_rw32(*l_eap);
|
|
a_l = udf_rw32(extattr->a_l);
|
|
|
|
/* update impl. attribute locations */
|
|
if (udf_rw32(extattr->type) < 2048) {
|
|
impl_attr_loc = l_ea + a_l;
|
|
appl_attr_loc = l_ea + a_l;
|
|
}
|
|
if (udf_rw32(extattr->type) == 2048) {
|
|
appl_attr_loc = l_ea + a_l;
|
|
}
|
|
|
|
/* copy and advance */
|
|
memcpy(bpos, extattr, a_l);
|
|
l_ea += a_l;
|
|
*l_eap = udf_rw32(l_ea);
|
|
|
|
/* do the `dance` again backwards */
|
|
if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
|
|
if (impl_attr_loc == l_ea)
|
|
impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
|
|
if (appl_attr_loc == l_ea)
|
|
appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
|
|
}
|
|
|
|
/* store offsets */
|
|
extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
|
|
extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
|
|
}
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
|
|
{
|
|
struct udf_mount *ump;
|
|
struct udf_logvol_info *lvinfo;
|
|
struct impl_extattr_entry *implext;
|
|
struct vatlvext_extattr_entry lvext;
|
|
const char *extstr = "*UDF VAT LVExtension";
|
|
uint64_t vat_uniqueid;
|
|
uint32_t offset, a_l;
|
|
uint8_t *ea_start, *lvextpos;
|
|
int error;
|
|
|
|
/* get mountpoint and lvinfo */
|
|
ump = vat_node->ump;
|
|
lvinfo = ump->logvol_info;
|
|
|
|
/* get information from fe/efe */
|
|
if (vat_node->fe) {
|
|
vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
|
|
ea_start = vat_node->fe->data;
|
|
} else {
|
|
vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
|
|
ea_start = vat_node->efe->data;
|
|
}
|
|
|
|
error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
|
|
if (error)
|
|
return error;
|
|
|
|
implext = (struct impl_extattr_entry *) (ea_start + offset);
|
|
error = udf_impl_extattr_check(implext);
|
|
if (error)
|
|
return error;
|
|
|
|
/* paranoia */
|
|
if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
|
|
DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* we have found our "VAT LVExtension attribute. BUT due to a
|
|
* bug in the specification it might not be word aligned so
|
|
* copy first to avoid panics on some machines (!!)
|
|
*/
|
|
DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
|
|
lvextpos = implext->data + udf_rw32(implext->iu_l);
|
|
memcpy(&lvext, lvextpos, sizeof(lvext));
|
|
|
|
/* check if it was updated the last time */
|
|
if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
|
|
lvinfo->num_files = lvext.num_files;
|
|
lvinfo->num_directories = lvext.num_directories;
|
|
udf_update_logvolname(ump, lvext.logvol_id);
|
|
} else {
|
|
DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
|
|
/* replace VAT LVExt by free space EA */
|
|
memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
|
|
strcpy(implext->imp_id.id, "*UDF FreeEASpace");
|
|
udf_calc_impl_extattr_checksum(implext);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
|
|
{
|
|
struct udf_mount *ump;
|
|
struct udf_logvol_info *lvinfo;
|
|
struct impl_extattr_entry *implext;
|
|
struct vatlvext_extattr_entry lvext;
|
|
const char *extstr = "*UDF VAT LVExtension";
|
|
uint64_t vat_uniqueid;
|
|
uint32_t offset, a_l;
|
|
uint8_t *ea_start, *lvextpos;
|
|
int error;
|
|
|
|
/* get mountpoint and lvinfo */
|
|
ump = vat_node->ump;
|
|
lvinfo = ump->logvol_info;
|
|
|
|
/* get information from fe/efe */
|
|
if (vat_node->fe) {
|
|
vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
|
|
ea_start = vat_node->fe->data;
|
|
} else {
|
|
vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
|
|
ea_start = vat_node->efe->data;
|
|
}
|
|
|
|
error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
|
|
if (error)
|
|
return error;
|
|
/* found, it existed */
|
|
|
|
/* paranoia */
|
|
implext = (struct impl_extattr_entry *) (ea_start + offset);
|
|
error = udf_impl_extattr_check(implext);
|
|
if (error) {
|
|
DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
|
|
return error;
|
|
}
|
|
/* it is correct */
|
|
|
|
/*
|
|
* we have found our "VAT LVExtension attribute. BUT due to a
|
|
* bug in the specification it might not be word aligned so
|
|
* copy first to avoid panics on some machines (!!)
|
|
*/
|
|
DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
|
|
lvextpos = implext->data + udf_rw32(implext->iu_l);
|
|
|
|
lvext.unique_id_chk = vat_uniqueid;
|
|
lvext.num_files = lvinfo->num_files;
|
|
lvext.num_directories = lvinfo->num_directories;
|
|
memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
|
|
|
|
memcpy(lvextpos, &lvext, sizeof(lvext));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
|
|
{
|
|
struct udf_mount *ump = vat_node->ump;
|
|
|
|
if (offset + size > ump->vat_offset + ump->vat_entries * 4)
|
|
return EINVAL;
|
|
|
|
memcpy(blob, ump->vat_table + offset, size);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
|
|
{
|
|
struct udf_mount *ump = vat_node->ump;
|
|
uint32_t offset_high;
|
|
uint8_t *new_vat_table;
|
|
|
|
/* extent VAT allocation if needed */
|
|
offset_high = offset + size;
|
|
if (offset_high >= ump->vat_table_alloc_len) {
|
|
/* realloc */
|
|
new_vat_table = realloc(ump->vat_table,
|
|
ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
|
|
M_UDFVOLD, M_WAITOK | M_CANFAIL);
|
|
if (!new_vat_table) {
|
|
printf("udf_vat_write: can't extent VAT, out of mem\n");
|
|
return ENOMEM;
|
|
}
|
|
ump->vat_table = new_vat_table;
|
|
ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
|
|
}
|
|
ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
|
|
|
|
memcpy(ump->vat_table + offset, blob, size);
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* TODO support previous VAT location writeout */
|
|
static int
|
|
udf_update_vat_descriptor(struct udf_mount *ump)
|
|
{
|
|
struct udf_node *vat_node = ump->vat_node;
|
|
struct udf_logvol_info *lvinfo = ump->logvol_info;
|
|
struct icb_tag *icbtag;
|
|
struct udf_oldvat_tail *oldvat_tl;
|
|
struct udf_vat *vat;
|
|
uint64_t unique_id;
|
|
uint32_t lb_size;
|
|
uint8_t *raw_vat;
|
|
int filetype, error;
|
|
|
|
KASSERT(vat_node);
|
|
KASSERT(lvinfo);
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
|
|
/* get our new unique_id */
|
|
unique_id = udf_advance_uniqueid(ump);
|
|
|
|
/* get information from fe/efe */
|
|
if (vat_node->fe) {
|
|
icbtag = &vat_node->fe->icbtag;
|
|
vat_node->fe->unique_id = udf_rw64(unique_id);
|
|
} else {
|
|
icbtag = &vat_node->efe->icbtag;
|
|
vat_node->efe->unique_id = udf_rw64(unique_id);
|
|
}
|
|
|
|
/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
|
|
filetype = icbtag->file_type;
|
|
KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
|
|
|
|
/* allocate piece to process head or tail of VAT file */
|
|
raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
|
|
|
|
if (filetype == 0) {
|
|
/*
|
|
* Update "*UDF VAT LVExtension" extended attribute from the
|
|
* lvint if present.
|
|
*/
|
|
udf_update_vat_extattr_from_lvid(vat_node);
|
|
|
|
/* setup identifying regid */
|
|
oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
|
|
memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
|
|
|
|
udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
|
|
udf_add_udf_regid(ump, &oldvat_tl->id);
|
|
oldvat_tl->prev_vat = udf_rw32(0xffffffff);
|
|
|
|
/* write out new tail of virtual allocation table file */
|
|
error = udf_vat_write(vat_node, raw_vat,
|
|
sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
|
|
} else {
|
|
/* compose the VAT2 header */
|
|
vat = (struct udf_vat *) raw_vat;
|
|
memset(vat, 0, sizeof(struct udf_vat));
|
|
|
|
vat->header_len = udf_rw16(152); /* as per spec */
|
|
vat->impl_use_len = udf_rw16(0);
|
|
memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
|
|
vat->prev_vat = udf_rw32(0xffffffff);
|
|
vat->num_files = lvinfo->num_files;
|
|
vat->num_directories = lvinfo->num_directories;
|
|
vat->min_udf_readver = lvinfo->min_udf_readver;
|
|
vat->min_udf_writever = lvinfo->min_udf_writever;
|
|
vat->max_udf_writever = lvinfo->max_udf_writever;
|
|
|
|
error = udf_vat_write(vat_node, raw_vat,
|
|
sizeof(struct udf_vat), 0);
|
|
}
|
|
free(raw_vat, M_TEMP);
|
|
|
|
return error; /* success! */
|
|
}
|
|
|
|
|
|
int
|
|
udf_writeout_vat(struct udf_mount *ump)
|
|
{
|
|
struct udf_node *vat_node = ump->vat_node;
|
|
uint32_t vat_length;
|
|
int error;
|
|
|
|
KASSERT(vat_node);
|
|
|
|
DPRINTF(CALL, ("udf_writeout_vat\n"));
|
|
|
|
mutex_enter(&ump->allocate_mutex);
|
|
udf_update_vat_descriptor(ump);
|
|
|
|
/* write out the VAT contents ; TODO intelligent writing */
|
|
vat_length = ump->vat_table_len;
|
|
error = vn_rdwr(UIO_WRITE, vat_node->vnode,
|
|
ump->vat_table, ump->vat_table_len, 0,
|
|
UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
|
|
if (error) {
|
|
printf("udf_writeout_vat: failed to write out VAT contents\n");
|
|
goto out;
|
|
}
|
|
|
|
mutex_exit(&ump->allocate_mutex);
|
|
|
|
vflushbuf(ump->vat_node->vnode, 1 /* sync */);
|
|
error = VOP_FSYNC(ump->vat_node->vnode,
|
|
FSCRED, FSYNC_WAIT, 0, 0);
|
|
if (error)
|
|
printf("udf_writeout_vat: error writing VAT node!\n");
|
|
out:
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Read in relevant pieces of VAT file and check if its indeed a VAT file
|
|
* descriptor. If OK, read in complete VAT file.
|
|
*/
|
|
|
|
static int
|
|
udf_check_for_vat(struct udf_node *vat_node)
|
|
{
|
|
struct udf_mount *ump;
|
|
struct icb_tag *icbtag;
|
|
struct timestamp *mtime;
|
|
struct udf_vat *vat;
|
|
struct udf_oldvat_tail *oldvat_tl;
|
|
struct udf_logvol_info *lvinfo;
|
|
uint64_t unique_id;
|
|
uint32_t vat_length;
|
|
uint32_t vat_offset, vat_entries, vat_table_alloc_len;
|
|
uint32_t sector_size;
|
|
uint32_t *raw_vat;
|
|
uint8_t *vat_table;
|
|
char *regid_name;
|
|
int filetype;
|
|
int error;
|
|
|
|
/* vat_length is really 64 bits though impossible */
|
|
|
|
DPRINTF(VOLUMES, ("Checking for VAT\n"));
|
|
if (!vat_node)
|
|
return ENOENT;
|
|
|
|
/* get mount info */
|
|
ump = vat_node->ump;
|
|
sector_size = udf_rw32(ump->logical_vol->lb_size);
|
|
|
|
/* check assertions */
|
|
assert(vat_node->fe || vat_node->efe);
|
|
assert(ump->logvol_integrity);
|
|
|
|
/* set vnode type to regular file or we can't read from it! */
|
|
vat_node->vnode->v_type = VREG;
|
|
|
|
/* get information from fe/efe */
|
|
if (vat_node->fe) {
|
|
vat_length = udf_rw64(vat_node->fe->inf_len);
|
|
icbtag = &vat_node->fe->icbtag;
|
|
mtime = &vat_node->fe->mtime;
|
|
unique_id = udf_rw64(vat_node->fe->unique_id);
|
|
} else {
|
|
vat_length = udf_rw64(vat_node->efe->inf_len);
|
|
icbtag = &vat_node->efe->icbtag;
|
|
mtime = &vat_node->efe->mtime;
|
|
unique_id = udf_rw64(vat_node->efe->unique_id);
|
|
}
|
|
|
|
/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
|
|
filetype = icbtag->file_type;
|
|
if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
|
|
return ENOENT;
|
|
|
|
DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
|
|
|
|
vat_table_alloc_len =
|
|
((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
|
|
* UDF_VAT_CHUNKSIZE;
|
|
|
|
vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
|
|
M_CANFAIL | M_WAITOK);
|
|
if (vat_table == NULL) {
|
|
printf("allocation of %d bytes failed for VAT\n",
|
|
vat_table_alloc_len);
|
|
return ENOMEM;
|
|
}
|
|
|
|
/* allocate piece to read in head or tail of VAT file */
|
|
raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
|
|
|
|
/*
|
|
* check contents of the file if its the old 1.50 VAT table format.
|
|
* Its notoriously broken and allthough some implementations support an
|
|
* extention as defined in the UDF 1.50 errata document, its doubtfull
|
|
* to be useable since a lot of implementations don't maintain it.
|
|
*/
|
|
lvinfo = ump->logvol_info;
|
|
|
|
if (filetype == 0) {
|
|
/* definition */
|
|
vat_offset = 0;
|
|
vat_entries = (vat_length-36)/4;
|
|
|
|
/* read in tail of virtual allocation table file */
|
|
error = vn_rdwr(UIO_READ, vat_node->vnode,
|
|
(uint8_t *) raw_vat,
|
|
sizeof(struct udf_oldvat_tail),
|
|
vat_entries * 4,
|
|
UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
|
|
NULL, NULL);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* check 1.50 VAT */
|
|
oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
|
|
regid_name = (char *) oldvat_tl->id.id;
|
|
error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
|
|
if (error) {
|
|
DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
|
|
error = ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* update LVID from "*UDF VAT LVExtension" extended attribute
|
|
* if present.
|
|
*/
|
|
udf_update_lvid_from_vat_extattr(vat_node);
|
|
} else {
|
|
/* read in head of virtual allocation table file */
|
|
error = vn_rdwr(UIO_READ, vat_node->vnode,
|
|
(uint8_t *) raw_vat,
|
|
sizeof(struct udf_vat), 0,
|
|
UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
|
|
NULL, NULL);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* definition */
|
|
vat = (struct udf_vat *) raw_vat;
|
|
vat_offset = vat->header_len;
|
|
vat_entries = (vat_length - vat_offset)/4;
|
|
|
|
assert(lvinfo);
|
|
lvinfo->num_files = vat->num_files;
|
|
lvinfo->num_directories = vat->num_directories;
|
|
lvinfo->min_udf_readver = vat->min_udf_readver;
|
|
lvinfo->min_udf_writever = vat->min_udf_writever;
|
|
lvinfo->max_udf_writever = vat->max_udf_writever;
|
|
|
|
udf_update_logvolname(ump, vat->logvol_id);
|
|
}
|
|
|
|
/* read in complete VAT file */
|
|
error = vn_rdwr(UIO_READ, vat_node->vnode,
|
|
vat_table,
|
|
vat_length, 0,
|
|
UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
|
|
NULL, NULL);
|
|
if (error)
|
|
printf("read in of complete VAT file failed (error %d)\n",
|
|
error);
|
|
if (error)
|
|
goto out;
|
|
|
|
DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
|
|
ump->logvol_integrity->lvint_next_unique_id = unique_id;
|
|
ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
|
|
ump->logvol_integrity->time = *mtime;
|
|
|
|
ump->vat_table_len = vat_length;
|
|
ump->vat_table_alloc_len = vat_table_alloc_len;
|
|
ump->vat_table = vat_table;
|
|
ump->vat_offset = vat_offset;
|
|
ump->vat_entries = vat_entries;
|
|
ump->vat_last_free_lb = 0; /* start at beginning */
|
|
|
|
out:
|
|
if (error) {
|
|
if (vat_table)
|
|
free(vat_table, M_UDFVOLD);
|
|
}
|
|
free(raw_vat, M_TEMP);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
|
|
{
|
|
struct udf_node *vat_node;
|
|
struct long_ad icb_loc;
|
|
uint32_t early_vat_loc, late_vat_loc, vat_loc;
|
|
int error;
|
|
|
|
/* mapping info not needed */
|
|
mapping = mapping;
|
|
|
|
vat_loc = ump->last_possible_vat_location;
|
|
early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
|
|
|
|
DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
|
|
vat_loc, early_vat_loc));
|
|
early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
|
|
late_vat_loc = vat_loc + 1024;
|
|
|
|
DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
|
|
vat_loc, early_vat_loc));
|
|
|
|
/* start looking from the end of the range */
|
|
do {
|
|
DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
|
|
icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
|
|
icb_loc.loc.lb_num = udf_rw32(vat_loc);
|
|
|
|
error = udf_get_node(ump, &icb_loc, &vat_node);
|
|
if (!error) {
|
|
error = udf_check_for_vat(vat_node);
|
|
DPRINTFIF(VOLUMES, !error,
|
|
("VAT accepted at %d\n", vat_loc));
|
|
if (!error)
|
|
break;
|
|
}
|
|
if (vat_node) {
|
|
vput(vat_node->vnode);
|
|
vat_node = NULL;
|
|
}
|
|
vat_loc--; /* walk backwards */
|
|
} while (vat_loc >= early_vat_loc);
|
|
|
|
/* keep our VAT node around */
|
|
if (vat_node) {
|
|
UDF_SET_SYSTEMFILE(vat_node->vnode);
|
|
ump->vat_node = vat_node;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
|
|
{
|
|
union dscrptr *dscr;
|
|
struct part_map_spare *pms = &mapping->pms;
|
|
uint32_t lb_num;
|
|
int spar, error;
|
|
|
|
/*
|
|
* The partition mapping passed on to us specifies the information we
|
|
* need to locate and initialise the sparable partition mapping
|
|
* information we need.
|
|
*/
|
|
|
|
DPRINTF(VOLUMES, ("Read sparable table\n"));
|
|
ump->sparable_packet_size = udf_rw16(pms->packet_len);
|
|
KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
|
|
|
|
for (spar = 0; spar < pms->n_st; spar++) {
|
|
lb_num = pms->st_loc[spar];
|
|
DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
|
|
error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
|
|
if (!error && dscr) {
|
|
if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
|
|
if (ump->sparing_table)
|
|
free(ump->sparing_table, M_UDFVOLD);
|
|
ump->sparing_table = &dscr->spt;
|
|
dscr = NULL;
|
|
DPRINTF(VOLUMES,
|
|
("Sparing table accepted (%d entries)\n",
|
|
udf_rw16(ump->sparing_table->rt_l)));
|
|
break; /* we're done */
|
|
}
|
|
}
|
|
if (dscr)
|
|
free(dscr, M_UDFVOLD);
|
|
}
|
|
|
|
if (ump->sparing_table)
|
|
return 0;
|
|
|
|
return ENOENT;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
|
|
{
|
|
struct part_map_meta *pmm = &mapping->pmm;
|
|
struct long_ad icb_loc;
|
|
struct vnode *vp;
|
|
int error;
|
|
|
|
DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
|
|
icb_loc.loc.part_num = pmm->part_num;
|
|
icb_loc.loc.lb_num = pmm->meta_file_lbn;
|
|
DPRINTF(VOLUMES, ("Metadata file\n"));
|
|
error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
|
|
if (ump->metadata_node) {
|
|
vp = ump->metadata_node->vnode;
|
|
UDF_SET_SYSTEMFILE(vp);
|
|
}
|
|
|
|
icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
|
|
if (icb_loc.loc.lb_num != -1) {
|
|
DPRINTF(VOLUMES, ("Metadata copy file\n"));
|
|
error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
|
|
if (ump->metadatamirror_node) {
|
|
vp = ump->metadatamirror_node->vnode;
|
|
UDF_SET_SYSTEMFILE(vp);
|
|
}
|
|
}
|
|
|
|
icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
|
|
if (icb_loc.loc.lb_num != -1) {
|
|
DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
|
|
error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
|
|
if (ump->metadatabitmap_node) {
|
|
vp = ump->metadatabitmap_node->vnode;
|
|
UDF_SET_SYSTEMFILE(vp);
|
|
}
|
|
}
|
|
|
|
/* if we're mounting read-only we relax the requirements */
|
|
if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
|
|
error = EFAULT;
|
|
if (ump->metadata_node)
|
|
error = 0;
|
|
if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
|
|
printf( "udf mount: Metadata file not readable, "
|
|
"substituting Metadata copy file\n");
|
|
ump->metadata_node = ump->metadatamirror_node;
|
|
ump->metadatamirror_node = NULL;
|
|
error = 0;
|
|
}
|
|
} else {
|
|
/* mounting read/write */
|
|
/* if (error) */
|
|
error = EROFS;
|
|
}
|
|
DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
|
|
"metadata files\n"));
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_read_vds_tables(struct udf_mount *ump)
|
|
{
|
|
union udf_pmap *mapping;
|
|
/* struct udf_args *args = &ump->mount_args; */
|
|
uint32_t n_pm, mt_l;
|
|
uint32_t log_part;
|
|
uint8_t *pmap_pos;
|
|
int pmap_size;
|
|
int error;
|
|
|
|
/* Iterate again over the part mappings for locations */
|
|
n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
|
|
mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
|
|
pmap_pos = ump->logical_vol->maps;
|
|
|
|
for (log_part = 0; log_part < n_pm; log_part++) {
|
|
mapping = (union udf_pmap *) pmap_pos;
|
|
switch (ump->vtop_tp[log_part]) {
|
|
case UDF_VTOP_TYPE_PHYS :
|
|
/* nothing */
|
|
break;
|
|
case UDF_VTOP_TYPE_VIRT :
|
|
/* search and load VAT */
|
|
error = udf_search_vat(ump, mapping);
|
|
if (error)
|
|
return ENOENT;
|
|
break;
|
|
case UDF_VTOP_TYPE_SPARABLE :
|
|
/* load one of the sparable tables */
|
|
error = udf_read_sparables(ump, mapping);
|
|
if (error)
|
|
return ENOENT;
|
|
break;
|
|
case UDF_VTOP_TYPE_META :
|
|
/* load the associated file descriptors */
|
|
error = udf_read_metadata_nodes(ump, mapping);
|
|
if (error)
|
|
return ENOENT;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
pmap_size = pmap_pos[1];
|
|
pmap_pos += pmap_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_read_rootdirs(struct udf_mount *ump)
|
|
{
|
|
union dscrptr *dscr;
|
|
/* struct udf_args *args = &ump->mount_args; */
|
|
struct udf_node *rootdir_node, *streamdir_node;
|
|
struct long_ad fsd_loc, *dir_loc;
|
|
uint32_t lb_num, dummy;
|
|
uint32_t fsd_len;
|
|
int dscr_type;
|
|
int error;
|
|
|
|
/* TODO implement FSD reading in separate function like integrity? */
|
|
/* get fileset descriptor sequence */
|
|
fsd_loc = ump->logical_vol->lv_fsd_loc;
|
|
fsd_len = udf_rw32(fsd_loc.len);
|
|
|
|
dscr = NULL;
|
|
error = 0;
|
|
while (fsd_len || error) {
|
|
DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
|
|
/* translate fsd_loc to lb_num */
|
|
error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
|
|
if (error)
|
|
break;
|
|
DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
|
|
error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
|
|
/* end markers */
|
|
if (error || (dscr == NULL))
|
|
break;
|
|
|
|
/* analyse */
|
|
dscr_type = udf_rw16(dscr->tag.id);
|
|
if (dscr_type == TAGID_TERM)
|
|
break;
|
|
if (dscr_type != TAGID_FSD) {
|
|
free(dscr, M_UDFVOLD);
|
|
return ENOENT;
|
|
}
|
|
|
|
/*
|
|
* TODO check for multiple fileset descriptors; its only
|
|
* picking the last now. Also check for FSD
|
|
* correctness/interpretability
|
|
*/
|
|
|
|
/* update */
|
|
if (ump->fileset_desc) {
|
|
free(ump->fileset_desc, M_UDFVOLD);
|
|
}
|
|
ump->fileset_desc = &dscr->fsd;
|
|
dscr = NULL;
|
|
|
|
/* continue to the next fsd */
|
|
fsd_len -= ump->discinfo.sector_size;
|
|
fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
|
|
|
|
/* follow up to fsd->next_ex (long_ad) if its not null */
|
|
if (udf_rw32(ump->fileset_desc->next_ex.len)) {
|
|
DPRINTF(VOLUMES, ("follow up FSD extent\n"));
|
|
fsd_loc = ump->fileset_desc->next_ex;
|
|
fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
|
|
}
|
|
}
|
|
if (dscr)
|
|
free(dscr, M_UDFVOLD);
|
|
|
|
/* there has to be one */
|
|
if (ump->fileset_desc == NULL)
|
|
return ENOENT;
|
|
|
|
DPRINTF(VOLUMES, ("FSD read in fine\n"));
|
|
DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
|
|
udf_update_logvolname(ump, ump->logical_vol->logvol_id);
|
|
|
|
/*
|
|
* Now the FSD is known, read in the rootdirectory and if one exists,
|
|
* the system stream dir. Some files in the system streamdir are not
|
|
* wanted in this implementation since they are not maintained. If
|
|
* writing is enabled we'll delete these files if they exist.
|
|
*/
|
|
|
|
rootdir_node = streamdir_node = NULL;
|
|
dir_loc = NULL;
|
|
|
|
/* try to read in the rootdir */
|
|
dir_loc = &ump->fileset_desc->rootdir_icb;
|
|
error = udf_get_node(ump, dir_loc, &rootdir_node);
|
|
if (error)
|
|
return ENOENT;
|
|
|
|
/* aparently it read in fine */
|
|
|
|
/*
|
|
* Try the system stream directory; not very likely in the ones we
|
|
* test, but for completeness.
|
|
*/
|
|
dir_loc = &ump->fileset_desc->streamdir_icb;
|
|
if (udf_rw32(dir_loc->len)) {
|
|
printf("udf_read_rootdirs: streamdir defined ");
|
|
error = udf_get_node(ump, dir_loc, &streamdir_node);
|
|
if (error) {
|
|
printf("but error in streamdir reading\n");
|
|
} else {
|
|
printf("but ignored\n");
|
|
/*
|
|
* TODO process streamdir `baddies' i.e. files we dont
|
|
* want if R/W
|
|
*/
|
|
}
|
|
}
|
|
|
|
DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
|
|
|
|
/* release the vnodes again; they'll be auto-recycled later */
|
|
if (streamdir_node) {
|
|
vput(streamdir_node->vnode);
|
|
}
|
|
if (rootdir_node) {
|
|
vput(rootdir_node->vnode);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* To make absolutely sure we are NOT returning zero, add one :) */
|
|
|
|
long
|
|
udf_calchash(struct long_ad *icbptr)
|
|
{
|
|
/* ought to be enough since each mountpoint has its own chain */
|
|
return udf_rw32(icbptr->loc.lb_num) + 1;
|
|
}
|
|
|
|
|
|
static struct udf_node *
|
|
udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
|
|
{
|
|
struct udf_node *node;
|
|
struct vnode *vp;
|
|
uint32_t hashline;
|
|
|
|
loop:
|
|
mutex_enter(&ump->ihash_lock);
|
|
|
|
hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
|
|
LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
|
|
assert(node);
|
|
if (node->loc.loc.lb_num == icbptr->loc.lb_num &&
|
|
node->loc.loc.part_num == icbptr->loc.part_num) {
|
|
vp = node->vnode;
|
|
assert(vp);
|
|
mutex_enter(&vp->v_interlock);
|
|
mutex_exit(&ump->ihash_lock);
|
|
if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
|
|
goto loop;
|
|
return node;
|
|
}
|
|
}
|
|
mutex_exit(&ump->ihash_lock);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static void
|
|
udf_sorted_list_insert(struct udf_node *node)
|
|
{
|
|
struct udf_mount *ump;
|
|
struct udf_node *s_node, *last_node;
|
|
uint32_t loc, s_loc;
|
|
|
|
ump = node->ump;
|
|
last_node = NULL; /* XXX gcc */
|
|
|
|
if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
|
|
LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We sort on logical block number here and not on physical block
|
|
* number here. Ideally we should go for the physical block nr to get
|
|
* better sync performance though this sort will ensure that packets
|
|
* won't get spit up unnessisarily.
|
|
*/
|
|
|
|
loc = udf_rw32(node->loc.loc.lb_num);
|
|
LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
|
|
s_loc = udf_rw32(s_node->loc.loc.lb_num);
|
|
if (s_loc > loc) {
|
|
LIST_INSERT_BEFORE(s_node, node, sortchain);
|
|
return;
|
|
}
|
|
last_node = s_node;
|
|
}
|
|
LIST_INSERT_AFTER(last_node, node, sortchain);
|
|
}
|
|
|
|
|
|
static void
|
|
udf_register_node(struct udf_node *node)
|
|
{
|
|
struct udf_mount *ump;
|
|
struct udf_node *chk;
|
|
uint32_t hashline;
|
|
|
|
ump = node->ump;
|
|
mutex_enter(&ump->ihash_lock);
|
|
|
|
/* add to our hash table */
|
|
hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
|
|
#ifdef DEBUG
|
|
LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
|
|
assert(chk);
|
|
if (chk->loc.loc.lb_num == node->loc.loc.lb_num &&
|
|
chk->loc.loc.part_num == node->loc.loc.part_num)
|
|
panic("Double node entered\n");
|
|
}
|
|
#else
|
|
chk = NULL;
|
|
#endif
|
|
LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
|
|
|
|
/* add to our sorted list */
|
|
udf_sorted_list_insert(node);
|
|
|
|
mutex_exit(&ump->ihash_lock);
|
|
}
|
|
|
|
|
|
static void
|
|
udf_deregister_node(struct udf_node *node)
|
|
{
|
|
struct udf_mount *ump;
|
|
|
|
ump = node->ump;
|
|
mutex_enter(&ump->ihash_lock);
|
|
|
|
/* from hash and sorted list */
|
|
LIST_REMOVE(node, hashchain);
|
|
LIST_REMOVE(node, sortchain);
|
|
|
|
mutex_exit(&ump->ihash_lock);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_open_logvol(struct udf_mount *ump)
|
|
{
|
|
int logvol_integrity;
|
|
int error;
|
|
|
|
/* already/still open? */
|
|
logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
|
|
if (logvol_integrity == UDF_INTEGRITY_OPEN)
|
|
return 0;
|
|
|
|
/* can we open it ? */
|
|
if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
|
|
return EROFS;
|
|
|
|
/* setup write parameters */
|
|
DPRINTF(VOLUMES, ("Setting up write parameters\n"));
|
|
if ((error = udf_setup_writeparams(ump)) != 0)
|
|
return error;
|
|
|
|
/* determine data and metadata tracks (most likely same) */
|
|
error = udf_search_writing_tracks(ump);
|
|
if (error) {
|
|
/* most likely lack of space */
|
|
printf("udf_open_logvol: error searching writing tracks\n");
|
|
return EROFS;
|
|
}
|
|
|
|
/* writeout/update lvint on disc or only in memory */
|
|
DPRINTF(VOLUMES, ("Opening logical volume\n"));
|
|
if (ump->lvopen & UDF_OPEN_SESSION) {
|
|
/* TODO implement writeout of VRS + VDS */
|
|
printf( "udf_open_logvol:Opening a closed session not yet "
|
|
"implemented\n");
|
|
return EROFS;
|
|
|
|
/* determine data and metadata tracks again */
|
|
error = udf_search_writing_tracks(ump);
|
|
}
|
|
|
|
/* mark it open */
|
|
ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
|
|
|
|
/* do we need to write it out? */
|
|
if (ump->lvopen & UDF_WRITE_LVINT) {
|
|
error = udf_writeout_lvint(ump, ump->lvopen);
|
|
/* if we couldn't write it mark it closed again */
|
|
if (error) {
|
|
ump->logvol_integrity->integrity_type =
|
|
udf_rw32(UDF_INTEGRITY_CLOSED);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
udf_close_logvol(struct udf_mount *ump, int mntflags)
|
|
{
|
|
int logvol_integrity;
|
|
int error = 0;
|
|
int n;
|
|
|
|
/* already/still closed? */
|
|
logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
|
|
if (logvol_integrity == UDF_INTEGRITY_CLOSED)
|
|
return 0;
|
|
|
|
/* writeout/update lvint or write out VAT */
|
|
DPRINTF(VOLUMES, ("Closing logical volume\n"));
|
|
if (ump->lvclose & UDF_WRITE_VAT) {
|
|
DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
|
|
|
|
/* preprocess the VAT node; its modified on every writeout */
|
|
DPRINTF(VOLUMES, ("writeout vat_node\n"));
|
|
udf_update_vat_descriptor(ump->vat_node->ump);
|
|
|
|
/* write out the VAT node */
|
|
vflushbuf(ump->vat_node->vnode, 1 /* sync */);
|
|
for (n = 0; n < 16; n++) {
|
|
ump->vat_node->i_flags |= IN_MODIFIED;
|
|
error = VOP_FSYNC(ump->vat_node->vnode,
|
|
FSCRED, FSYNC_WAIT, 0, 0);
|
|
}
|
|
if (error) {
|
|
printf("udf_close_logvol: writeout of VAT failed\n");
|
|
return error;
|
|
}
|
|
}
|
|
|
|
if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
|
|
error = udf_write_partition_spacetables(ump, 1 /* waitfor */);
|
|
if (error) {
|
|
printf( "udf_close_logvol: writeout of space tables "
|
|
"failed\n");
|
|
return error;
|
|
}
|
|
ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
|
|
}
|
|
|
|
if (ump->lvclose & UDF_CLOSE_SESSION) {
|
|
printf("TODO: Closing a session is not yet implemented\n");
|
|
return EROFS;
|
|
ump->lvopen |= UDF_OPEN_SESSION;
|
|
}
|
|
|
|
/* mark it closed */
|
|
ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
|
|
|
|
/* do we need to write out the logical volume integrity */
|
|
if (ump->lvclose & UDF_WRITE_LVINT)
|
|
error = udf_writeout_lvint(ump, ump->lvopen);
|
|
if (error) {
|
|
/* HELP now what? mark it open again for now */
|
|
ump->logvol_integrity->integrity_type =
|
|
udf_rw32(UDF_INTEGRITY_OPEN);
|
|
return error;
|
|
}
|
|
|
|
(void) udf_synchronise_caches(ump);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Genfs interfacing
|
|
*
|
|
* static const struct genfs_ops udf_genfsops = {
|
|
* .gop_size = genfs_size,
|
|
* size of transfers
|
|
* .gop_alloc = udf_gop_alloc,
|
|
* allocate len bytes at offset
|
|
* .gop_write = genfs_gop_write,
|
|
* putpages interface code
|
|
* .gop_markupdate = udf_gop_markupdate,
|
|
* set update/modify flags etc.
|
|
* }
|
|
*/
|
|
|
|
/*
|
|
* Genfs interface. These four functions are the only ones defined though not
|
|
* documented... great....
|
|
*/
|
|
|
|
/*
|
|
* Callback from genfs to allocate len bytes at offset off; only called when
|
|
* filling up gaps in the allocation.
|
|
*/
|
|
/* XXX should we check if there is space enough in udf_gop_alloc? */
|
|
static int
|
|
udf_gop_alloc(struct vnode *vp, off_t off,
|
|
off_t len, int flags, kauth_cred_t cred)
|
|
{
|
|
#if 0
|
|
struct udf_node *udf_node = VTOI(vp);
|
|
struct udf_mount *ump = udf_node->ump;
|
|
uint32_t lb_size, num_lb;
|
|
#endif
|
|
|
|
DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
|
|
DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* callback from genfs to update our flags
|
|
*/
|
|
static void
|
|
udf_gop_markupdate(struct vnode *vp, int flags)
|
|
{
|
|
struct udf_node *udf_node = VTOI(vp);
|
|
u_long mask = 0;
|
|
|
|
if ((flags & GOP_UPDATE_ACCESSED) != 0) {
|
|
mask = IN_ACCESS;
|
|
}
|
|
if ((flags & GOP_UPDATE_MODIFIED) != 0) {
|
|
if (vp->v_type == VREG) {
|
|
mask |= IN_CHANGE | IN_UPDATE;
|
|
} else {
|
|
mask |= IN_MODIFY;
|
|
}
|
|
}
|
|
if (mask) {
|
|
udf_node->i_flags |= mask;
|
|
}
|
|
}
|
|
|
|
|
|
static const struct genfs_ops udf_genfsops = {
|
|
.gop_size = genfs_size,
|
|
.gop_alloc = udf_gop_alloc,
|
|
.gop_write = genfs_gop_write_rwmap,
|
|
.gop_markupdate = udf_gop_markupdate,
|
|
};
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_write_terminator(struct udf_mount *ump, uint32_t sector)
|
|
{
|
|
union dscrptr *dscr;
|
|
int error;
|
|
|
|
dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK);
|
|
bzero(dscr, ump->discinfo.sector_size);
|
|
udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
|
|
|
|
/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
|
|
dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
|
|
(void) udf_validate_tag_and_crc_sums(dscr);
|
|
|
|
error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
|
|
dscr, sector, sector);
|
|
|
|
free(dscr, M_TEMP);
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* UDF<->unix converters */
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static mode_t
|
|
udf_perm_to_unix_mode(uint32_t perm)
|
|
{
|
|
mode_t mode;
|
|
|
|
mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
|
|
mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
|
|
mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
|
|
|
|
return mode;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static uint32_t
|
|
unix_mode_to_udf_perm(mode_t mode)
|
|
{
|
|
uint32_t perm;
|
|
|
|
perm = ((mode & S_IRWXO) );
|
|
perm |= ((mode & S_IRWXG) << 2);
|
|
perm |= ((mode & S_IRWXU) << 4);
|
|
perm |= ((mode & S_IWOTH) << 3);
|
|
perm |= ((mode & S_IWGRP) << 5);
|
|
perm |= ((mode & S_IWUSR) << 7);
|
|
|
|
return perm;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static uint32_t
|
|
udf_icb_to_unix_filetype(uint32_t icbftype)
|
|
{
|
|
switch (icbftype) {
|
|
case UDF_ICB_FILETYPE_DIRECTORY :
|
|
case UDF_ICB_FILETYPE_STREAMDIR :
|
|
return S_IFDIR;
|
|
case UDF_ICB_FILETYPE_FIFO :
|
|
return S_IFIFO;
|
|
case UDF_ICB_FILETYPE_CHARDEVICE :
|
|
return S_IFCHR;
|
|
case UDF_ICB_FILETYPE_BLOCKDEVICE :
|
|
return S_IFBLK;
|
|
case UDF_ICB_FILETYPE_RANDOMACCESS :
|
|
case UDF_ICB_FILETYPE_REALTIME :
|
|
return S_IFREG;
|
|
case UDF_ICB_FILETYPE_SYMLINK :
|
|
return S_IFLNK;
|
|
case UDF_ICB_FILETYPE_SOCKET :
|
|
return S_IFSOCK;
|
|
}
|
|
/* no idea what this is */
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
void
|
|
udf_to_unix_name(char *result, int result_len, char *id, int len,
|
|
struct charspec *chsp)
|
|
{
|
|
uint16_t *raw_name, *unix_name;
|
|
uint16_t *inchp, ch;
|
|
uint8_t *outchp;
|
|
const char *osta_id = "OSTA Compressed Unicode";
|
|
int ucode_chars, nice_uchars, is_osta_typ0, nout;
|
|
|
|
raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
|
|
unix_name = raw_name + 1024; /* split space in half */
|
|
assert(sizeof(char) == sizeof(uint8_t));
|
|
outchp = (uint8_t *) result;
|
|
|
|
is_osta_typ0 = (chsp->type == 0);
|
|
is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
|
|
if (is_osta_typ0) {
|
|
/* TODO clean up */
|
|
*raw_name = *unix_name = 0;
|
|
ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
|
|
ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
|
|
nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
|
|
/* output UTF8 */
|
|
for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
|
|
ch = *inchp;
|
|
nout = wput_utf8(outchp, result_len, ch);
|
|
outchp += nout; result_len -= nout;
|
|
if (!ch) break;
|
|
}
|
|
*outchp++ = 0;
|
|
} else {
|
|
/* assume 8bit char length byte latin-1 */
|
|
assert(*id == 8);
|
|
assert(strlen((char *) (id+1)) <= MAXNAMLEN);
|
|
strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
|
|
}
|
|
free(raw_name, M_UDFTEMP);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
void
|
|
unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
|
|
struct charspec *chsp)
|
|
{
|
|
uint16_t *raw_name;
|
|
uint16_t *outchp;
|
|
const char *inchp;
|
|
const char *osta_id = "OSTA Compressed Unicode";
|
|
int udf_chars, is_osta_typ0, bits;
|
|
size_t cnt;
|
|
|
|
/* allocate temporary unicode-16 buffer */
|
|
raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
|
|
|
|
/* convert utf8 to unicode-16 */
|
|
*raw_name = 0;
|
|
inchp = name;
|
|
outchp = raw_name;
|
|
bits = 8;
|
|
for (cnt = name_len, udf_chars = 0; cnt;) {
|
|
/*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
|
|
*outchp = wget_utf8(&inchp, &cnt);
|
|
if (*outchp > 0xff)
|
|
bits=16;
|
|
outchp++;
|
|
udf_chars++;
|
|
}
|
|
/* null terminate just in case */
|
|
*outchp++ = 0;
|
|
|
|
is_osta_typ0 = (chsp->type == 0);
|
|
is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
|
|
if (is_osta_typ0) {
|
|
udf_chars = udf_CompressUnicode(udf_chars, bits,
|
|
(unicode_t *) raw_name,
|
|
(byte *) result);
|
|
} else {
|
|
printf("unix to udf name: no CHSP0 ?\n");
|
|
/* XXX assume 8bit char length byte latin-1 */
|
|
*result++ = 8; udf_chars = 1;
|
|
strncpy(result, name + 1, name_len);
|
|
udf_chars += name_len;
|
|
}
|
|
*result_len = udf_chars;
|
|
free(raw_name, M_UDFTEMP);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
void
|
|
udf_timestamp_to_timespec(struct udf_mount *ump,
|
|
struct timestamp *timestamp,
|
|
struct timespec *timespec)
|
|
{
|
|
struct clock_ymdhms ymdhms;
|
|
uint32_t usecs, secs, nsecs;
|
|
uint16_t tz;
|
|
|
|
/* fill in ymdhms structure from timestamp */
|
|
memset(&ymdhms, 0, sizeof(ymdhms));
|
|
ymdhms.dt_year = udf_rw16(timestamp->year);
|
|
ymdhms.dt_mon = timestamp->month;
|
|
ymdhms.dt_day = timestamp->day;
|
|
ymdhms.dt_wday = 0; /* ? */
|
|
ymdhms.dt_hour = timestamp->hour;
|
|
ymdhms.dt_min = timestamp->minute;
|
|
ymdhms.dt_sec = timestamp->second;
|
|
|
|
secs = clock_ymdhms_to_secs(&ymdhms);
|
|
usecs = timestamp->usec +
|
|
100*timestamp->hund_usec + 10000*timestamp->centisec;
|
|
nsecs = usecs * 1000;
|
|
|
|
/*
|
|
* Calculate the time zone. The timezone is 12 bit signed 2's
|
|
* compliment, so we gotta do some extra magic to handle it right.
|
|
*/
|
|
tz = udf_rw16(timestamp->type_tz);
|
|
tz &= 0x0fff; /* only lower 12 bits are significant */
|
|
if (tz & 0x0800) /* sign extention */
|
|
tz |= 0xf000;
|
|
|
|
/* TODO check timezone conversion */
|
|
/* check if we are specified a timezone to convert */
|
|
if (udf_rw16(timestamp->type_tz) & 0x1000) {
|
|
if ((int16_t) tz != -2047)
|
|
secs -= (int16_t) tz * 60;
|
|
} else {
|
|
secs -= ump->mount_args.gmtoff;
|
|
}
|
|
|
|
timespec->tv_sec = secs;
|
|
timespec->tv_nsec = nsecs;
|
|
}
|
|
|
|
|
|
void
|
|
udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
|
|
{
|
|
struct clock_ymdhms ymdhms;
|
|
uint32_t husec, usec, csec;
|
|
|
|
(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
|
|
|
|
usec = timespec->tv_nsec / 1000;
|
|
husec = usec / 100;
|
|
usec -= husec * 100; /* only 0-99 in usec */
|
|
csec = husec / 100; /* only 0-99 in csec */
|
|
husec -= csec * 100; /* only 0-99 in husec */
|
|
|
|
/* set method 1 for CUT/GMT */
|
|
timestamp->type_tz = udf_rw16((1<<12) + 0);
|
|
timestamp->year = udf_rw16(ymdhms.dt_year);
|
|
timestamp->month = ymdhms.dt_mon;
|
|
timestamp->day = ymdhms.dt_day;
|
|
timestamp->hour = ymdhms.dt_hour;
|
|
timestamp->minute = ymdhms.dt_min;
|
|
timestamp->second = ymdhms.dt_sec;
|
|
timestamp->centisec = csec;
|
|
timestamp->hund_usec = husec;
|
|
timestamp->usec = usec;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Attribute and filetypes converters with get/set pairs
|
|
*/
|
|
|
|
uint32_t
|
|
udf_getaccessmode(struct udf_node *udf_node)
|
|
{
|
|
struct file_entry *fe = udf_node->fe;;
|
|
struct extfile_entry *efe = udf_node->efe;
|
|
uint32_t udf_perm, icbftype;
|
|
uint32_t mode, ftype;
|
|
uint16_t icbflags;
|
|
|
|
UDF_LOCK_NODE(udf_node, 0);
|
|
if (fe) {
|
|
udf_perm = udf_rw32(fe->perm);
|
|
icbftype = fe->icbtag.file_type;
|
|
icbflags = udf_rw16(fe->icbtag.flags);
|
|
} else {
|
|
assert(udf_node->efe);
|
|
udf_perm = udf_rw32(efe->perm);
|
|
icbftype = efe->icbtag.file_type;
|
|
icbflags = udf_rw16(efe->icbtag.flags);
|
|
}
|
|
|
|
mode = udf_perm_to_unix_mode(udf_perm);
|
|
ftype = udf_icb_to_unix_filetype(icbftype);
|
|
|
|
/* set suid, sgid, sticky from flags in fe/efe */
|
|
if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
|
|
mode |= S_ISUID;
|
|
if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
|
|
mode |= S_ISGID;
|
|
if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
|
|
mode |= S_ISVTX;
|
|
|
|
UDF_UNLOCK_NODE(udf_node, 0);
|
|
|
|
return mode | ftype;
|
|
}
|
|
|
|
|
|
void
|
|
udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
|
|
{
|
|
struct file_entry *fe = udf_node->fe;
|
|
struct extfile_entry *efe = udf_node->efe;
|
|
uint32_t udf_perm;
|
|
uint16_t icbflags;
|
|
|
|
UDF_LOCK_NODE(udf_node, 0);
|
|
udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
|
|
if (fe) {
|
|
icbflags = udf_rw16(fe->icbtag.flags);
|
|
} else {
|
|
icbflags = udf_rw16(efe->icbtag.flags);
|
|
}
|
|
|
|
icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
|
|
icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
|
|
icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
|
|
if (mode & S_ISUID)
|
|
icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
|
|
if (mode & S_ISGID)
|
|
icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
|
|
if (mode & S_ISVTX)
|
|
icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
|
|
|
|
if (fe) {
|
|
fe->perm = udf_rw32(udf_perm);
|
|
fe->icbtag.flags = udf_rw16(icbflags);
|
|
} else {
|
|
efe->perm = udf_rw32(udf_perm);
|
|
efe->icbtag.flags = udf_rw16(icbflags);
|
|
}
|
|
|
|
UDF_UNLOCK_NODE(udf_node, 0);
|
|
}
|
|
|
|
|
|
void
|
|
udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
|
|
{
|
|
struct udf_mount *ump = udf_node->ump;
|
|
struct file_entry *fe = udf_node->fe;
|
|
struct extfile_entry *efe = udf_node->efe;
|
|
uid_t uid;
|
|
gid_t gid;
|
|
|
|
UDF_LOCK_NODE(udf_node, 0);
|
|
if (fe) {
|
|
uid = (uid_t)udf_rw32(fe->uid);
|
|
gid = (gid_t)udf_rw32(fe->gid);
|
|
} else {
|
|
assert(udf_node->efe);
|
|
uid = (uid_t)udf_rw32(efe->uid);
|
|
gid = (gid_t)udf_rw32(efe->gid);
|
|
}
|
|
|
|
/* do the uid/gid translation game */
|
|
if ((uid == (uid_t) -1) && (gid == (gid_t) -1)) {
|
|
uid = ump->mount_args.anon_uid;
|
|
gid = ump->mount_args.anon_gid;
|
|
}
|
|
*uidp = uid;
|
|
*gidp = gid;
|
|
|
|
UDF_UNLOCK_NODE(udf_node, 0);
|
|
}
|
|
|
|
|
|
void
|
|
udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
|
|
{
|
|
struct udf_mount *ump = udf_node->ump;
|
|
struct file_entry *fe = udf_node->fe;
|
|
struct extfile_entry *efe = udf_node->efe;
|
|
uid_t nobody_uid;
|
|
gid_t nobody_gid;
|
|
|
|
UDF_LOCK_NODE(udf_node, 0);
|
|
|
|
/* do the uid/gid translation game */
|
|
nobody_uid = ump->mount_args.nobody_uid;
|
|
nobody_gid = ump->mount_args.nobody_gid;
|
|
if ((uid == nobody_uid) && (gid == nobody_gid)) {
|
|
uid = (uid_t) -1;
|
|
gid = (gid_t) -1;
|
|
}
|
|
|
|
if (fe) {
|
|
fe->uid = udf_rw32((uint32_t) uid);
|
|
fe->gid = udf_rw32((uint32_t) gid);
|
|
} else {
|
|
efe->uid = udf_rw32((uint32_t) uid);
|
|
efe->gid = udf_rw32((uint32_t) gid);
|
|
}
|
|
|
|
UDF_UNLOCK_NODE(udf_node, 0);
|
|
}
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* UDF dirhash implementation
|
|
*/
|
|
|
|
static uint32_t
|
|
udf_dirhash_hash(const char *str, int namelen)
|
|
{
|
|
uint32_t hash = 5381;
|
|
int i, c;
|
|
|
|
for (i = 0; i < namelen; i++) {
|
|
c = *str++;
|
|
hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
|
|
static void
|
|
udf_dirhash_purge(struct udf_dirhash *dirh)
|
|
{
|
|
struct udf_dirhash_entry *dirh_e;
|
|
uint32_t hashline;
|
|
|
|
if (dirh == NULL)
|
|
return;
|
|
|
|
if (dirh->size == 0)
|
|
return;
|
|
|
|
for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++) {
|
|
dirh_e = LIST_FIRST(&dirh->entries[hashline]);
|
|
while (dirh_e) {
|
|
LIST_REMOVE(dirh_e, next);
|
|
pool_put(&udf_dirhash_entry_pool, dirh_e);
|
|
dirh_e = LIST_FIRST(&dirh->entries[hashline]);
|
|
}
|
|
}
|
|
dirh_e = LIST_FIRST(&dirh->free_entries);
|
|
|
|
while (dirh_e) {
|
|
LIST_REMOVE(dirh_e, next);
|
|
pool_put(&udf_dirhash_entry_pool, dirh_e);
|
|
dirh_e = LIST_FIRST(&dirh->entries[hashline]);
|
|
}
|
|
|
|
dirh->flags &= ~UDF_DIRH_COMPLETE;
|
|
dirh->flags |= UDF_DIRH_PURGED;
|
|
|
|
udf_dirhashsize -= dirh->size;
|
|
dirh->size = 0;
|
|
}
|
|
|
|
|
|
static void
|
|
udf_dirhash_destroy(struct udf_dirhash **dirhp)
|
|
{
|
|
struct udf_dirhash *dirh = *dirhp;
|
|
|
|
if (dirh == NULL)
|
|
return;
|
|
|
|
mutex_enter(&udf_dirhashmutex);
|
|
|
|
udf_dirhash_purge(dirh);
|
|
TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
|
|
pool_put(&udf_dirhash_pool, dirh);
|
|
|
|
*dirhp = NULL;
|
|
|
|
mutex_exit(&udf_dirhashmutex);
|
|
}
|
|
|
|
|
|
static void
|
|
udf_dirhash_get(struct udf_dirhash **dirhp)
|
|
{
|
|
struct udf_dirhash *dirh;
|
|
uint32_t hashline;
|
|
|
|
mutex_enter(&udf_dirhashmutex);
|
|
|
|
dirh = *dirhp;
|
|
if (*dirhp == NULL) {
|
|
dirh = pool_get(&udf_dirhash_pool, PR_WAITOK);
|
|
*dirhp = dirh;
|
|
memset(dirh, 0, sizeof(struct udf_dirhash));
|
|
for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++)
|
|
LIST_INIT(&dirh->entries[hashline]);
|
|
dirh->size = 0;
|
|
dirh->refcnt = 0;
|
|
dirh->flags = 0;
|
|
} else {
|
|
TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
|
|
}
|
|
|
|
dirh->refcnt++;
|
|
TAILQ_INSERT_HEAD(&udf_dirhash_queue, dirh, next);
|
|
|
|
mutex_exit(&udf_dirhashmutex);
|
|
}
|
|
|
|
|
|
static void
|
|
udf_dirhash_put(struct udf_dirhash *dirh)
|
|
{
|
|
mutex_enter(&udf_dirhashmutex);
|
|
dirh->refcnt--;
|
|
mutex_exit(&udf_dirhashmutex);
|
|
}
|
|
|
|
|
|
static void
|
|
udf_dirhash_enter(struct udf_node *dir_node, struct fileid_desc *fid,
|
|
struct dirent *dirent, uint64_t offset, uint32_t fid_size, int new)
|
|
{
|
|
struct udf_dirhash *dirh, *del_dirh, *prev_dirh;
|
|
struct udf_dirhash_entry *dirh_e;
|
|
uint32_t hashvalue, hashline;
|
|
int entrysize;
|
|
|
|
/* make sure we have a dirhash to work on */
|
|
dirh = dir_node->dir_hash;
|
|
KASSERT(dirh);
|
|
KASSERT(dirh->refcnt > 0);
|
|
|
|
/* are we trying to re-enter an entry? */
|
|
if (!new && (dirh->flags & UDF_DIRH_COMPLETE))
|
|
return;
|
|
|
|
/* calculate our hash */
|
|
hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
|
|
hashline = hashvalue & UDF_DIRHASH_HASHMASK;
|
|
|
|
/* lookup and insert entry if not there yet */
|
|
LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
|
|
/* check for hash collision */
|
|
if (dirh_e->hashvalue != hashvalue)
|
|
continue;
|
|
if (dirh_e->offset != offset)
|
|
continue;
|
|
/* got it already */
|
|
KASSERT(dirh_e->d_namlen == dirent->d_namlen);
|
|
KASSERT(dirh_e->fid_size == fid_size);
|
|
return;
|
|
}
|
|
|
|
DPRINTF(DIRHASH, ("dirhash enter %"PRIu64", %d, %d for `%*.*s`\n",
|
|
offset, fid_size, dirent->d_namlen,
|
|
dirent->d_namlen, dirent->d_namlen, dirent->d_name));
|
|
|
|
/* check if entry is in free space list */
|
|
LIST_FOREACH(dirh_e, &dirh->free_entries, next) {
|
|
if (dirh_e->offset == offset) {
|
|
DPRINTF(DIRHASH, ("\tremoving free entry\n"));
|
|
LIST_REMOVE(dirh_e, next);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* ensure we are not passing the dirhash limit */
|
|
entrysize = sizeof(struct udf_dirhash_entry);
|
|
if (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
|
|
del_dirh = TAILQ_LAST(&udf_dirhash_queue, _udf_dirhash);
|
|
KASSERT(del_dirh);
|
|
while (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
|
|
/* no use trying to delete myself */
|
|
if (del_dirh == dirh)
|
|
break;
|
|
prev_dirh = TAILQ_PREV(del_dirh, _udf_dirhash, next);
|
|
if (del_dirh->refcnt == 0)
|
|
udf_dirhash_purge(del_dirh);
|
|
del_dirh = prev_dirh;
|
|
}
|
|
}
|
|
|
|
/* add to the hashline */
|
|
dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
|
|
memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
|
|
|
|
dirh_e->hashvalue = hashvalue;
|
|
dirh_e->offset = offset;
|
|
dirh_e->d_namlen = dirent->d_namlen;
|
|
dirh_e->fid_size = fid_size;
|
|
|
|
dirh->size += sizeof(struct udf_dirhash_entry);
|
|
udf_dirhashsize += sizeof(struct udf_dirhash_entry);
|
|
LIST_INSERT_HEAD(&dirh->entries[hashline], dirh_e, next);
|
|
}
|
|
|
|
|
|
static void
|
|
udf_dirhash_enter_freed(struct udf_node *dir_node, uint64_t offset,
|
|
uint32_t fid_size)
|
|
{
|
|
struct udf_dirhash *dirh;
|
|
struct udf_dirhash_entry *dirh_e;
|
|
|
|
/* make sure we have a dirhash to work on */
|
|
dirh = dir_node->dir_hash;
|
|
KASSERT(dirh);
|
|
KASSERT(dirh->refcnt > 0);
|
|
|
|
#ifdef DEBUG
|
|
/* check for double entry of free space */
|
|
LIST_FOREACH(dirh_e, &dirh->free_entries, next)
|
|
KASSERT(dirh_e->offset != offset);
|
|
#endif
|
|
|
|
DPRINTF(DIRHASH, ("dirhash enter FREED %"PRIu64", %d\n",
|
|
offset, fid_size));
|
|
dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
|
|
memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
|
|
|
|
dirh_e->hashvalue = 0; /* not relevant */
|
|
dirh_e->offset = offset;
|
|
dirh_e->d_namlen = 0; /* not relevant */
|
|
dirh_e->fid_size = fid_size;
|
|
|
|
/* XXX it might be preferable to append them at the tail */
|
|
LIST_INSERT_HEAD(&dirh->free_entries, dirh_e, next);
|
|
dirh->size += sizeof(struct udf_dirhash_entry);
|
|
udf_dirhashsize += sizeof(struct udf_dirhash_entry);
|
|
}
|
|
|
|
|
|
static void
|
|
udf_dirhash_remove(struct udf_node *dir_node, struct dirent *dirent,
|
|
uint64_t offset, uint32_t fid_size)
|
|
{
|
|
struct udf_dirhash *dirh;
|
|
struct udf_dirhash_entry *dirh_e;
|
|
uint32_t hashvalue, hashline;
|
|
|
|
DPRINTF(DIRHASH, ("dirhash remove %"PRIu64", %d for `%*.*s`\n",
|
|
offset, fid_size,
|
|
dirent->d_namlen, dirent->d_namlen, dirent->d_name));
|
|
|
|
/* make sure we have a dirhash to work on */
|
|
dirh = dir_node->dir_hash;
|
|
KASSERT(dirh);
|
|
KASSERT(dirh->refcnt > 0);
|
|
|
|
/* calculate our hash */
|
|
hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
|
|
hashline = hashvalue & UDF_DIRHASH_HASHMASK;
|
|
|
|
/* lookup entry */
|
|
LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
|
|
/* check for hash collision */
|
|
if (dirh_e->hashvalue != hashvalue)
|
|
continue;
|
|
if (dirh_e->offset != offset)
|
|
continue;
|
|
|
|
/* got it! */
|
|
KASSERT(dirh_e->d_namlen == dirent->d_namlen);
|
|
KASSERT(dirh_e->fid_size == fid_size);
|
|
LIST_REMOVE(dirh_e, next);
|
|
dirh->size -= sizeof(struct udf_dirhash_entry);
|
|
udf_dirhashsize -= sizeof(struct udf_dirhash_entry);
|
|
|
|
udf_dirhash_enter_freed(dir_node, offset, fid_size);
|
|
return;
|
|
}
|
|
|
|
/* not found! */
|
|
panic("dirhash_remove couldn't find entry in hash table\n");
|
|
}
|
|
|
|
|
|
/* BUGALERT: don't use result longer than needed, never past the node lock */
|
|
/* call with NULL *result initially and it will return nonzero if again */
|
|
static int
|
|
udf_dirhash_lookup(struct udf_node *dir_node, const char *d_name, int d_namlen,
|
|
struct udf_dirhash_entry **result)
|
|
{
|
|
struct udf_dirhash *dirh;
|
|
struct udf_dirhash_entry *dirh_e;
|
|
uint32_t hashvalue, hashline;
|
|
|
|
KASSERT(VOP_ISLOCKED(dir_node->vnode));
|
|
|
|
/* make sure we have a dirhash to work on */
|
|
dirh = dir_node->dir_hash;
|
|
KASSERT(dirh);
|
|
KASSERT(dirh->refcnt > 0);
|
|
|
|
/* start where we were */
|
|
if (*result) {
|
|
KASSERT(dir_node->dir_hash);
|
|
dirh_e = *result;
|
|
|
|
/* retrieve information to avoid recalculation and advance */
|
|
hashvalue = dirh_e->hashvalue;
|
|
dirh_e = LIST_NEXT(*result, next);
|
|
} else {
|
|
/* calculate our hash and lookup all entries in hashline */
|
|
hashvalue = udf_dirhash_hash(d_name, d_namlen);
|
|
hashline = hashvalue & UDF_DIRHASH_HASHMASK;
|
|
dirh_e = LIST_FIRST(&dirh->entries[hashline]);
|
|
}
|
|
|
|
for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
|
|
/* check for hash collision */
|
|
if (dirh_e->hashvalue != hashvalue)
|
|
continue;
|
|
if (dirh_e->d_namlen != d_namlen)
|
|
continue;
|
|
/* might have an entry in the cache */
|
|
*result = dirh_e;
|
|
return 1;
|
|
}
|
|
|
|
*result = NULL;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* BUGALERT: don't use result longer than needed, never past the node lock */
|
|
/* call with NULL *result initially and it will return nonzero if again */
|
|
static int
|
|
udf_dirhash_lookup_freed(struct udf_node *dir_node, uint32_t min_fidsize,
|
|
struct udf_dirhash_entry **result)
|
|
{
|
|
struct udf_dirhash *dirh;
|
|
struct udf_dirhash_entry *dirh_e;
|
|
|
|
KASSERT(VOP_ISLOCKED(dir_node->vnode));
|
|
|
|
/* make sure we have a dirhash to work on */
|
|
dirh = dir_node->dir_hash;
|
|
KASSERT(dirh);
|
|
KASSERT(dirh->refcnt > 0);
|
|
|
|
/* start where we were */
|
|
if (*result) {
|
|
KASSERT(dir_node->dir_hash);
|
|
dirh_e = LIST_NEXT(*result, next);
|
|
} else {
|
|
/* lookup all entries that match */
|
|
dirh_e = LIST_FIRST(&dirh->free_entries);
|
|
}
|
|
|
|
for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
|
|
/* check for minimum size */
|
|
if (dirh_e->fid_size < min_fidsize)
|
|
continue;
|
|
/* might be a candidate */
|
|
*result = dirh_e;
|
|
return 1;
|
|
}
|
|
|
|
*result = NULL;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
udf_dirhash_fill(struct udf_node *dir_node)
|
|
{
|
|
struct vnode *dvp = dir_node->vnode;
|
|
struct udf_dirhash *dirh;
|
|
struct file_entry *fe = dir_node->fe;
|
|
struct extfile_entry *efe = dir_node->efe;
|
|
struct fileid_desc *fid;
|
|
struct dirent *dirent;
|
|
uint64_t file_size, pre_diroffset, diroffset;
|
|
uint32_t lb_size;
|
|
int error;
|
|
|
|
/* make sure we have a dirhash to work on */
|
|
dirh = dir_node->dir_hash;
|
|
KASSERT(dirh);
|
|
KASSERT(dirh->refcnt > 0);
|
|
|
|
if (dirh->flags & UDF_DIRH_BROKEN)
|
|
return EIO;
|
|
if (dirh->flags & UDF_DIRH_COMPLETE)
|
|
return 0;
|
|
|
|
/* make sure we have a clean dirhash to add to */
|
|
udf_dirhash_purge(dirh);
|
|
|
|
/* get directory filesize */
|
|
if (fe) {
|
|
file_size = udf_rw64(fe->inf_len);
|
|
} else {
|
|
assert(efe);
|
|
file_size = udf_rw64(efe->inf_len);
|
|
}
|
|
|
|
/* allocate temporary space for fid */
|
|
lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
|
|
fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
|
|
|
|
/* allocate temporary space for dirent */
|
|
dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
|
|
|
|
error = 0;
|
|
diroffset = 0;
|
|
while (diroffset < file_size) {
|
|
/* transfer a new fid/dirent */
|
|
pre_diroffset = diroffset;
|
|
error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
|
|
if (error) {
|
|
/* TODO what to do? continue but not add? */
|
|
dirh->flags |= UDF_DIRH_BROKEN;
|
|
udf_dirhash_purge(dirh);
|
|
break;
|
|
}
|
|
|
|
if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
|
|
/* register deleted extent for reuse */
|
|
udf_dirhash_enter_freed(dir_node, pre_diroffset,
|
|
udf_fidsize(fid));
|
|
} else {
|
|
/* append to the dirhash */
|
|
udf_dirhash_enter(dir_node, fid, dirent, pre_diroffset,
|
|
udf_fidsize(fid), 0);
|
|
}
|
|
}
|
|
dirh->flags |= UDF_DIRH_COMPLETE;
|
|
|
|
free(fid, M_UDFTEMP);
|
|
free(dirent, M_UDFTEMP);
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Directory read and manipulation functions.
|
|
*
|
|
* Note that if the file is found, the cached diroffset position *before* the
|
|
* advance is remembered. Thus if the same filename is lookup again just after
|
|
* this lookup its immediately found.
|
|
*/
|
|
|
|
int
|
|
udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
|
|
struct long_ad *icb_loc, int *found)
|
|
{
|
|
struct udf_node *dir_node = VTOI(vp);
|
|
struct udf_dirhash_entry *dirh_ep;
|
|
struct fileid_desc *fid;
|
|
struct dirent *dirent;
|
|
uint64_t diroffset;
|
|
uint32_t lb_size;
|
|
int hit, error;
|
|
|
|
/* set default return */
|
|
*found = 0;
|
|
|
|
/* get our dirhash and make sure its read in */
|
|
udf_dirhash_get(&dir_node->dir_hash);
|
|
error = udf_dirhash_fill(dir_node);
|
|
if (error) {
|
|
udf_dirhash_put(dir_node->dir_hash);
|
|
return error;
|
|
}
|
|
|
|
/* allocate temporary space for fid */
|
|
lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
|
|
fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
|
|
dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
|
|
|
|
DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
|
|
namelen, namelen, name));
|
|
|
|
/* search our dirhash hits */
|
|
memset(icb_loc, 0, sizeof(*icb_loc));
|
|
dirh_ep = NULL;
|
|
for (;;) {
|
|
hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
|
|
/* if no hit, abort the search */
|
|
if (!hit)
|
|
break;
|
|
|
|
/* check this hit */
|
|
diroffset = dirh_ep->offset;
|
|
|
|
/* transfer a new fid/dirent */
|
|
error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
|
|
if (error)
|
|
break;
|
|
|
|
DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
|
|
dirent->d_namlen, dirent->d_namlen, dirent->d_name));
|
|
|
|
/* see if its our entry */
|
|
KASSERT(dirent->d_namlen == namelen);
|
|
if (strncmp(dirent->d_name, name, namelen) == 0) {
|
|
*found = 1;
|
|
*icb_loc = fid->icb;
|
|
break;
|
|
}
|
|
}
|
|
free(fid, M_UDFTEMP);
|
|
free(dirent, M_UDFTEMP);
|
|
|
|
udf_dirhash_put(dir_node->dir_hash);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
|
|
struct long_ad *node_icb, struct long_ad *parent_icb,
|
|
uint64_t parent_unique_id)
|
|
{
|
|
struct timespec now;
|
|
struct icb_tag *icb;
|
|
struct filetimes_extattr_entry *ft_extattr;
|
|
uint64_t unique_id;
|
|
uint32_t fidsize, lb_num;
|
|
uint8_t *bpos;
|
|
int crclen, attrlen;
|
|
|
|
lb_num = udf_rw32(node_icb->loc.lb_num);
|
|
udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
|
|
icb = &fe->icbtag;
|
|
|
|
/*
|
|
* Always use strategy type 4 unless on WORM wich we don't support
|
|
* (yet). Fill in defaults and set for internal allocation of data.
|
|
*/
|
|
icb->strat_type = udf_rw16(4);
|
|
icb->max_num_entries = udf_rw16(1);
|
|
icb->file_type = file_type; /* 8 bit */
|
|
icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
|
|
|
|
fe->perm = udf_rw32(0x7fff); /* all is allowed */
|
|
fe->link_cnt = udf_rw16(0); /* explicit setting */
|
|
|
|
fe->ckpoint = udf_rw32(1); /* user supplied file version */
|
|
|
|
vfs_timestamp(&now);
|
|
udf_timespec_to_timestamp(&now, &fe->atime);
|
|
udf_timespec_to_timestamp(&now, &fe->attrtime);
|
|
udf_timespec_to_timestamp(&now, &fe->mtime);
|
|
|
|
udf_set_regid(&fe->imp_id, IMPL_NAME);
|
|
udf_add_impl_regid(ump, &fe->imp_id);
|
|
|
|
unique_id = udf_advance_uniqueid(ump);
|
|
fe->unique_id = udf_rw64(unique_id);
|
|
fe->l_ea = udf_rw32(0);
|
|
|
|
/* create extended attribute to record our creation time */
|
|
attrlen = UDF_FILETIMES_ATTR_SIZE(1);
|
|
ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
|
|
memset(ft_extattr, 0, attrlen);
|
|
ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
|
|
ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
|
|
ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
|
|
ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
|
|
ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
|
|
udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
|
|
|
|
udf_extattr_insert_internal(ump, (union dscrptr *) fe,
|
|
(struct extattr_entry *) ft_extattr);
|
|
free(ft_extattr, M_UDFTEMP);
|
|
|
|
/* if its a directory, create '..' */
|
|
bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
|
|
fidsize = 0;
|
|
if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
|
|
fidsize = udf_create_parentfid(ump,
|
|
(struct fileid_desc *) bpos, parent_icb,
|
|
parent_unique_id);
|
|
}
|
|
|
|
/* record fidlength information */
|
|
fe->inf_len = udf_rw64(fidsize);
|
|
fe->l_ad = udf_rw32(fidsize);
|
|
fe->logblks_rec = udf_rw64(0); /* intern */
|
|
|
|
crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
|
|
crclen += udf_rw32(fe->l_ea) + fidsize;
|
|
fe->tag.desc_crc_len = udf_rw16(crclen);
|
|
|
|
(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
|
|
|
|
return fidsize;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
|
|
int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
|
|
uint64_t parent_unique_id)
|
|
{
|
|
struct timespec now;
|
|
struct icb_tag *icb;
|
|
uint64_t unique_id;
|
|
uint32_t fidsize, lb_num;
|
|
uint8_t *bpos;
|
|
int crclen;
|
|
|
|
lb_num = udf_rw32(node_icb->loc.lb_num);
|
|
udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
|
|
icb = &efe->icbtag;
|
|
|
|
/*
|
|
* Always use strategy type 4 unless on WORM wich we don't support
|
|
* (yet). Fill in defaults and set for internal allocation of data.
|
|
*/
|
|
icb->strat_type = udf_rw16(4);
|
|
icb->max_num_entries = udf_rw16(1);
|
|
icb->file_type = file_type; /* 8 bit */
|
|
icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
|
|
|
|
efe->perm = udf_rw32(0x7fff); /* all is allowed */
|
|
efe->link_cnt = udf_rw16(0); /* explicit setting */
|
|
|
|
efe->ckpoint = udf_rw32(1); /* user supplied file version */
|
|
|
|
vfs_timestamp(&now);
|
|
udf_timespec_to_timestamp(&now, &efe->ctime);
|
|
udf_timespec_to_timestamp(&now, &efe->atime);
|
|
udf_timespec_to_timestamp(&now, &efe->attrtime);
|
|
udf_timespec_to_timestamp(&now, &efe->mtime);
|
|
|
|
udf_set_regid(&efe->imp_id, IMPL_NAME);
|
|
udf_add_impl_regid(ump, &efe->imp_id);
|
|
|
|
unique_id = udf_advance_uniqueid(ump);
|
|
efe->unique_id = udf_rw64(unique_id);
|
|
efe->l_ea = udf_rw32(0);
|
|
|
|
/* if its a directory, create '..' */
|
|
bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
|
|
fidsize = 0;
|
|
if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
|
|
fidsize = udf_create_parentfid(ump,
|
|
(struct fileid_desc *) bpos, parent_icb,
|
|
parent_unique_id);
|
|
}
|
|
|
|
/* record fidlength information */
|
|
efe->obj_size = udf_rw64(fidsize);
|
|
efe->inf_len = udf_rw64(fidsize);
|
|
efe->l_ad = udf_rw32(fidsize);
|
|
efe->logblks_rec = udf_rw64(0); /* intern */
|
|
|
|
crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
|
|
crclen += udf_rw32(efe->l_ea) + fidsize;
|
|
efe->tag.desc_crc_len = udf_rw16(crclen);
|
|
|
|
(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
|
|
|
|
return fidsize;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
|
|
struct udf_node *udf_node, struct componentname *cnp)
|
|
{
|
|
struct vnode *dvp = dir_node->vnode;
|
|
struct udf_dirhash_entry *dirh_ep;
|
|
struct file_entry *fe = dir_node->fe;
|
|
struct extfile_entry *efe = dir_node->efe;
|
|
struct fileid_desc *fid;
|
|
struct dirent *dirent;
|
|
uint64_t file_size, diroffset;
|
|
uint32_t lb_size, fidsize;
|
|
int found, error;
|
|
char const *name = cnp->cn_nameptr;
|
|
int namelen = cnp->cn_namelen;
|
|
int hit, refcnt;
|
|
|
|
/* get our dirhash and make sure its read in */
|
|
udf_dirhash_get(&dir_node->dir_hash);
|
|
error = udf_dirhash_fill(dir_node);
|
|
if (error) {
|
|
udf_dirhash_put(dir_node->dir_hash);
|
|
return error;
|
|
}
|
|
|
|
/* get directory filesize */
|
|
if (fe) {
|
|
file_size = udf_rw64(fe->inf_len);
|
|
} else {
|
|
assert(efe);
|
|
file_size = udf_rw64(efe->inf_len);
|
|
}
|
|
|
|
/* allocate temporary space for fid */
|
|
lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
|
|
fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
|
|
dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
|
|
|
|
/* search our dirhash hits */
|
|
found = 0;
|
|
dirh_ep = NULL;
|
|
for (;;) {
|
|
hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
|
|
/* if no hit, abort the search */
|
|
if (!hit)
|
|
break;
|
|
|
|
/* check this hit */
|
|
diroffset = dirh_ep->offset;
|
|
|
|
/* transfer a new fid/dirent */
|
|
error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
|
|
if (error)
|
|
break;
|
|
|
|
/* see if its our entry */
|
|
KASSERT(dirent->d_namlen == namelen);
|
|
if (strncmp(dirent->d_name, name, namelen) == 0) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
error = ENOENT;
|
|
if (error)
|
|
goto error_out;
|
|
|
|
/* mark deleted */
|
|
fid->file_char |= UDF_FILE_CHAR_DEL;
|
|
#ifdef UDF_COMPLETE_DELETE
|
|
memset(&fid->icb, 0, sizeof(fid->icb));
|
|
#endif
|
|
(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
|
|
|
|
/* get size of fid and compensate for the read_fid_stream advance */
|
|
fidsize = udf_fidsize(fid);
|
|
diroffset -= fidsize;
|
|
|
|
/* write out */
|
|
error = vn_rdwr(UIO_WRITE, dir_node->vnode,
|
|
fid, fidsize, diroffset,
|
|
UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
|
|
FSCRED, NULL, NULL);
|
|
if (error)
|
|
goto error_out;
|
|
|
|
/* get reference count of attached node */
|
|
if (udf_node->fe) {
|
|
refcnt = udf_rw16(udf_node->fe->link_cnt);
|
|
} else {
|
|
KASSERT(udf_node->efe);
|
|
refcnt = udf_rw16(udf_node->efe->link_cnt);
|
|
}
|
|
#ifdef UDF_COMPLETE_DELETE
|
|
/* substract reference counter in attached node */
|
|
refcnt -= 1;
|
|
if (udf_node->fe) {
|
|
udf_node->fe->link_cnt = udf_rw16(refcnt);
|
|
} else {
|
|
udf_node->efe->link_cnt = udf_rw16(refcnt);
|
|
}
|
|
|
|
/* prevent writeout when refcnt == 0 */
|
|
if (refcnt == 0)
|
|
udf_node->i_flags |= IN_DELETED;
|
|
|
|
if (fid->file_char & UDF_FILE_CHAR_DIR) {
|
|
int drefcnt;
|
|
|
|
/* substract reference counter in directory node */
|
|
/* note subtract 2 (?) for its was also backreferenced */
|
|
if (dir_node->fe) {
|
|
drefcnt = udf_rw16(dir_node->fe->link_cnt);
|
|
drefcnt -= 1;
|
|
dir_node->fe->link_cnt = udf_rw16(drefcnt);
|
|
} else {
|
|
KASSERT(dir_node->efe);
|
|
drefcnt = udf_rw16(dir_node->efe->link_cnt);
|
|
drefcnt -= 1;
|
|
dir_node->efe->link_cnt = udf_rw16(drefcnt);
|
|
}
|
|
}
|
|
|
|
udf_node->i_flags |= IN_MODIFIED;
|
|
dir_node->i_flags |= IN_MODIFIED;
|
|
#endif
|
|
/* if it is/was a hardlink adjust the file count */
|
|
if (refcnt > 0)
|
|
udf_adjust_filecount(udf_node, -1);
|
|
|
|
/* remove from the dirhash */
|
|
udf_dirhash_remove(dir_node, dirent, diroffset,
|
|
udf_fidsize(fid));
|
|
|
|
error_out:
|
|
free(fid, M_UDFTEMP);
|
|
free(dirent, M_UDFTEMP);
|
|
|
|
udf_dirhash_put(dir_node->dir_hash);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* We are not allowed to split the fid tag itself over an logical block so
|
|
* check the space remaining in the logical block.
|
|
*
|
|
* We try to select the smallest candidate for recycling or when none is
|
|
* found, append a new one at the end of the directory.
|
|
*/
|
|
|
|
int
|
|
udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
|
|
struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
|
|
{
|
|
struct vnode *dvp = dir_node->vnode;
|
|
struct udf_dirhash_entry *dirh_ep;
|
|
struct fileid_desc *fid;
|
|
struct icb_tag *icbtag;
|
|
struct charspec osta_charspec;
|
|
struct dirent dirent;
|
|
uint64_t unique_id, dir_size, diroffset;
|
|
uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
|
|
uint32_t chosen_size, chosen_size_diff;
|
|
int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
|
|
int file_char, refcnt, icbflags, addr_type, hit, error;
|
|
|
|
/* get our dirhash and make sure its read in */
|
|
udf_dirhash_get(&dir_node->dir_hash);
|
|
error = udf_dirhash_fill(dir_node);
|
|
if (error) {
|
|
udf_dirhash_put(dir_node->dir_hash);
|
|
return error;
|
|
}
|
|
|
|
/* get info */
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
udf_osta_charset(&osta_charspec);
|
|
|
|
if (dir_node->fe) {
|
|
dir_size = udf_rw64(dir_node->fe->inf_len);
|
|
icbtag = &dir_node->fe->icbtag;
|
|
} else {
|
|
dir_size = udf_rw64(dir_node->efe->inf_len);
|
|
icbtag = &dir_node->efe->icbtag;
|
|
}
|
|
|
|
icbflags = udf_rw16(icbtag->flags);
|
|
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
|
|
|
|
if (udf_node->fe) {
|
|
unique_id = udf_rw64(udf_node->fe->unique_id);
|
|
refcnt = udf_rw16(udf_node->fe->link_cnt);
|
|
} else {
|
|
unique_id = udf_rw64(udf_node->efe->unique_id);
|
|
refcnt = udf_rw16(udf_node->efe->link_cnt);
|
|
}
|
|
|
|
if (refcnt > 0) {
|
|
unique_id = udf_advance_uniqueid(ump);
|
|
udf_adjust_filecount(udf_node, 1);
|
|
}
|
|
|
|
/* determine file characteristics */
|
|
file_char = 0; /* visible non deleted file and not stream metadata */
|
|
if (vap->va_type == VDIR)
|
|
file_char = UDF_FILE_CHAR_DIR;
|
|
|
|
/* malloc scrap buffer */
|
|
fid = malloc(lb_size, M_TEMP, M_WAITOK);
|
|
bzero(fid, lb_size);
|
|
|
|
/* calculate _minimum_ fid size */
|
|
unix_to_udf_name((char *) fid->data, &fid->l_fi,
|
|
cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
|
|
fidsize = UDF_FID_SIZE + fid->l_fi;
|
|
fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
|
|
|
|
/* find position that will fit the FID */
|
|
chosen_fid_pos = dir_size;
|
|
chosen_size = 0;
|
|
chosen_size_diff = UINT_MAX;
|
|
|
|
/* shut up gcc */
|
|
dirent.d_namlen = 0;
|
|
|
|
/* search our dirhash hits */
|
|
error = 0;
|
|
dirh_ep = NULL;
|
|
for (;;) {
|
|
hit = udf_dirhash_lookup_freed(dir_node, fidsize, &dirh_ep);
|
|
/* if no hit, abort the search */
|
|
if (!hit)
|
|
break;
|
|
|
|
/* check this hit for size */
|
|
this_fidsize = dirh_ep->fid_size;
|
|
|
|
/* check this hit */
|
|
fid_pos = dirh_ep->offset;
|
|
end_fid_pos = fid_pos + this_fidsize;
|
|
size_diff = this_fidsize - fidsize;
|
|
lb_rest = lb_size - (end_fid_pos % lb_size);
|
|
|
|
#ifndef UDF_COMPLETE_DELETE
|
|
/* transfer a new fid/dirent */
|
|
error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
|
|
if (error)
|
|
goto error_out;
|
|
|
|
/* only reuse entries that are wiped */
|
|
/* check if the len + loc are marked zero */
|
|
if (udf_rw32(fid->icb.len != 0))
|
|
continue;
|
|
if (udf_rw32(fid->icb.loc.lb_num) != 0)
|
|
continue;
|
|
if (udf_rw16(fid->icb.loc.part_num != 0))
|
|
continue;
|
|
#endif /* UDF_COMPLETE_DELETE */
|
|
|
|
/* select if not splitting the tag and its smaller */
|
|
if ((size_diff >= 0) &&
|
|
(size_diff < chosen_size_diff) &&
|
|
(lb_rest >= sizeof(struct desc_tag)))
|
|
{
|
|
/* UDF 2.3.4.2+3 specifies rules for iu size */
|
|
if ((size_diff == 0) || (size_diff >= 32)) {
|
|
chosen_fid_pos = fid_pos;
|
|
chosen_size = this_fidsize;
|
|
chosen_size_diff = size_diff;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* extend directory if no other candidate found */
|
|
if (chosen_size == 0) {
|
|
chosen_fid_pos = dir_size;
|
|
chosen_size = fidsize;
|
|
chosen_size_diff = 0;
|
|
|
|
/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
|
|
if (addr_type == UDF_ICB_INTERN_ALLOC) {
|
|
/* pre-grow directory to see if we're to switch */
|
|
udf_grow_node(dir_node, dir_size + chosen_size);
|
|
|
|
icbflags = udf_rw16(icbtag->flags);
|
|
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
|
|
}
|
|
|
|
/* make sure the next fid desc_tag won't be splitted */
|
|
if (addr_type != UDF_ICB_INTERN_ALLOC) {
|
|
end_fid_pos = chosen_fid_pos + chosen_size;
|
|
lb_rest = lb_size - (end_fid_pos % lb_size);
|
|
|
|
/* pad with implementation use regid if needed */
|
|
if (lb_rest < sizeof(struct desc_tag))
|
|
chosen_size += 32;
|
|
}
|
|
}
|
|
chosen_size_diff = chosen_size - fidsize;
|
|
diroffset = chosen_fid_pos + chosen_size;
|
|
|
|
/* populate the FID */
|
|
memset(fid, 0, lb_size);
|
|
udf_inittag(ump, &fid->tag, TAGID_FID, 0);
|
|
fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
|
|
fid->file_char = file_char;
|
|
fid->icb = udf_node->loc;
|
|
fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
|
|
fid->l_iu = udf_rw16(0);
|
|
|
|
if (chosen_size > fidsize) {
|
|
/* insert implementation-use regid to space it correctly */
|
|
fid->l_iu = udf_rw16(chosen_size_diff);
|
|
|
|
/* set implementation use */
|
|
udf_set_regid((struct regid *) fid->data, IMPL_NAME);
|
|
udf_add_impl_regid(ump, (struct regid *) fid->data);
|
|
}
|
|
|
|
/* fill in name */
|
|
unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
|
|
&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
|
|
|
|
fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH;
|
|
(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
|
|
|
|
/* writeout FID/update parent directory */
|
|
error = vn_rdwr(UIO_WRITE, dvp,
|
|
fid, chosen_size, chosen_fid_pos,
|
|
UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
|
|
FSCRED, NULL, NULL);
|
|
|
|
if (error)
|
|
goto error_out;
|
|
|
|
/* add reference counter in attached node */
|
|
if (udf_node->fe) {
|
|
refcnt = udf_rw16(udf_node->fe->link_cnt);
|
|
udf_node->fe->link_cnt = udf_rw16(refcnt+1);
|
|
} else {
|
|
KASSERT(udf_node->efe);
|
|
refcnt = udf_rw16(udf_node->efe->link_cnt);
|
|
udf_node->efe->link_cnt = udf_rw16(refcnt+1);
|
|
}
|
|
|
|
/* mark not deleted if it was... just in case, but do warn */
|
|
if (udf_node->i_flags & IN_DELETED) {
|
|
printf("udf: warning, marking a file undeleted\n");
|
|
udf_node->i_flags &= ~IN_DELETED;
|
|
}
|
|
|
|
if (file_char & UDF_FILE_CHAR_DIR) {
|
|
/* add reference counter in directory node for '..' */
|
|
if (dir_node->fe) {
|
|
refcnt = udf_rw16(dir_node->fe->link_cnt);
|
|
refcnt++;
|
|
dir_node->fe->link_cnt = udf_rw16(refcnt);
|
|
} else {
|
|
KASSERT(dir_node->efe);
|
|
refcnt = udf_rw16(dir_node->efe->link_cnt);
|
|
refcnt++;
|
|
dir_node->efe->link_cnt = udf_rw16(refcnt);
|
|
}
|
|
}
|
|
|
|
/* append to the dirhash */
|
|
dirent.d_namlen = cnp->cn_namelen;
|
|
memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
|
|
udf_dirhash_enter(dir_node, fid, &dirent, chosen_fid_pos,
|
|
udf_fidsize(fid), 1);
|
|
|
|
/* note updates */
|
|
udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
|
|
/* VN_KNOTE(udf_node, ...) */
|
|
udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
|
|
|
|
error_out:
|
|
free(fid, M_TEMP);
|
|
|
|
udf_dirhash_put(dir_node->dir_hash);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Each node can have an attached streamdir node though not recursively. These
|
|
* are otherwise known as named substreams/named extended attributes that have
|
|
* no size limitations.
|
|
*
|
|
* `Normal' extended attributes are indicated with a number and are recorded
|
|
* in either the fe/efe descriptor itself for small descriptors or recorded in
|
|
* the attached extended attribute file. Since these spaces can get
|
|
* fragmented, care ought to be taken.
|
|
*
|
|
* Since the size of the space reserved for allocation descriptors is limited,
|
|
* there is a mechanim provided for extending this space; this is done by a
|
|
* special extent to allow schrinking of the allocations without breaking the
|
|
* linkage to the allocation extent descriptor.
|
|
*/
|
|
|
|
int
|
|
udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
|
|
struct udf_node **udf_noderes)
|
|
{
|
|
union dscrptr *dscr;
|
|
struct udf_node *udf_node;
|
|
struct vnode *nvp;
|
|
struct long_ad icb_loc, last_fe_icb_loc;
|
|
uint64_t file_size;
|
|
uint32_t lb_size, sector, dummy;
|
|
uint8_t *file_data;
|
|
int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
|
|
int slot, eof, error;
|
|
|
|
DPRINTF(NODE, ("udf_get_node called\n"));
|
|
*udf_noderes = udf_node = NULL;
|
|
|
|
/* lock to disallow simultanious creation of same udf_node */
|
|
mutex_enter(&ump->get_node_lock);
|
|
|
|
DPRINTF(NODE, ("\tlookup in hash table\n"));
|
|
/* lookup in hash table */
|
|
assert(ump);
|
|
assert(node_icb_loc);
|
|
udf_node = udf_hash_lookup(ump, node_icb_loc);
|
|
if (udf_node) {
|
|
DPRINTF(NODE, ("\tgot it from the hash!\n"));
|
|
/* vnode is returned locked */
|
|
*udf_noderes = udf_node;
|
|
mutex_exit(&ump->get_node_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* garbage check: translate udf_node_icb_loc to sectornr */
|
|
error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
|
|
if (error) {
|
|
/* no use, this will fail anyway */
|
|
mutex_exit(&ump->get_node_lock);
|
|
return EINVAL;
|
|
}
|
|
|
|
/* build udf_node (do initialise!) */
|
|
udf_node = pool_get(&udf_node_pool, PR_WAITOK);
|
|
memset(udf_node, 0, sizeof(struct udf_node));
|
|
|
|
DPRINTF(NODE, ("\tget new vnode\n"));
|
|
/* give it a vnode */
|
|
error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
|
|
if (error) {
|
|
pool_put(&udf_node_pool, udf_node);
|
|
mutex_exit(&ump->get_node_lock);
|
|
return error;
|
|
}
|
|
|
|
/* always return locked vnode */
|
|
if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
|
|
/* recycle vnode and unlock; simultanious will fail too */
|
|
ungetnewvnode(nvp);
|
|
mutex_exit(&ump->get_node_lock);
|
|
return error;
|
|
}
|
|
|
|
/* initialise crosslinks, note location of fe/efe for hashing */
|
|
udf_node->ump = ump;
|
|
udf_node->vnode = nvp;
|
|
nvp->v_data = udf_node;
|
|
udf_node->loc = *node_icb_loc;
|
|
udf_node->lockf = 0;
|
|
mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
|
|
cv_init(&udf_node->node_lock, "udf_nlk");
|
|
genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */
|
|
udf_node->outstanding_bufs = 0;
|
|
udf_node->outstanding_nodedscr = 0;
|
|
|
|
/* insert into the hash lookup */
|
|
udf_register_node(udf_node);
|
|
|
|
/* safe to unlock, the entry is in the hash table, vnode is locked */
|
|
mutex_exit(&ump->get_node_lock);
|
|
|
|
icb_loc = *node_icb_loc;
|
|
needs_indirect = 0;
|
|
strat4096 = 0;
|
|
udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
|
|
file_size = 0;
|
|
file_data = NULL;
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
|
|
DPRINTF(NODE, ("\tstart reading descriptors\n"));
|
|
do {
|
|
/* try to read in fe/efe */
|
|
error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
|
|
|
|
/* blank sector marks end of sequence, check this */
|
|
if ((dscr == NULL) && (!strat4096))
|
|
error = ENOENT;
|
|
|
|
/* break if read error or blank sector */
|
|
if (error || (dscr == NULL))
|
|
break;
|
|
|
|
/* process descriptor based on the descriptor type */
|
|
dscr_type = udf_rw16(dscr->tag.id);
|
|
DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
|
|
|
|
/* if dealing with an indirect entry, follow the link */
|
|
if (dscr_type == TAGID_INDIRECTENTRY) {
|
|
needs_indirect = 0;
|
|
udf_free_logvol_dscr(ump, &icb_loc, dscr);
|
|
icb_loc = dscr->inde.indirect_icb;
|
|
continue;
|
|
}
|
|
|
|
/* only file entries and extended file entries allowed here */
|
|
if ((dscr_type != TAGID_FENTRY) &&
|
|
(dscr_type != TAGID_EXTFENTRY)) {
|
|
udf_free_logvol_dscr(ump, &icb_loc, dscr);
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
|
|
KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
|
|
|
|
/* choose this one */
|
|
last_fe_icb_loc = icb_loc;
|
|
|
|
/* record and process/update (ext)fentry */
|
|
file_data = NULL;
|
|
if (dscr_type == TAGID_FENTRY) {
|
|
if (udf_node->fe)
|
|
udf_free_logvol_dscr(ump, &last_fe_icb_loc,
|
|
udf_node->fe);
|
|
udf_node->fe = &dscr->fe;
|
|
strat = udf_rw16(udf_node->fe->icbtag.strat_type);
|
|
udf_file_type = udf_node->fe->icbtag.file_type;
|
|
file_size = udf_rw64(udf_node->fe->inf_len);
|
|
file_data = udf_node->fe->data;
|
|
} else {
|
|
if (udf_node->efe)
|
|
udf_free_logvol_dscr(ump, &last_fe_icb_loc,
|
|
udf_node->efe);
|
|
udf_node->efe = &dscr->efe;
|
|
strat = udf_rw16(udf_node->efe->icbtag.strat_type);
|
|
udf_file_type = udf_node->efe->icbtag.file_type;
|
|
file_size = udf_rw64(udf_node->efe->inf_len);
|
|
file_data = udf_node->efe->data;
|
|
}
|
|
|
|
/* check recording strategy (structure) */
|
|
|
|
/*
|
|
* Strategy 4096 is a daisy linked chain terminating with an
|
|
* unrecorded sector or a TERM descriptor. The next
|
|
* descriptor is to be found in the sector that follows the
|
|
* current sector.
|
|
*/
|
|
if (strat == 4096) {
|
|
strat4096 = 1;
|
|
needs_indirect = 1;
|
|
|
|
icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
|
|
}
|
|
|
|
/*
|
|
* Strategy 4 is the normal strategy and terminates, but if
|
|
* we're in strategy 4096, we can't have strategy 4 mixed in
|
|
*/
|
|
|
|
if (strat == 4) {
|
|
if (strat4096) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
break; /* done */
|
|
}
|
|
} while (!error);
|
|
|
|
/* first round of cleanup code */
|
|
if (error) {
|
|
DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
|
|
/* recycle udf_node */
|
|
udf_dispose_node(udf_node);
|
|
|
|
vlockmgr(nvp->v_vnlock, LK_RELEASE);
|
|
nvp->v_data = NULL;
|
|
ungetnewvnode(nvp);
|
|
|
|
return EINVAL; /* error code ok? */
|
|
}
|
|
DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
|
|
|
|
/* assert no references to dscr anymore beyong this point */
|
|
assert((udf_node->fe) || (udf_node->efe));
|
|
dscr = NULL;
|
|
|
|
/*
|
|
* Remember where to record an updated version of the descriptor. If
|
|
* there is a sequence of indirect entries, icb_loc will have been
|
|
* updated. Its the write disipline to allocate new space and to make
|
|
* sure the chain is maintained.
|
|
*
|
|
* `needs_indirect' flags if the next location is to be filled with
|
|
* with an indirect entry.
|
|
*/
|
|
udf_node->write_loc = icb_loc;
|
|
udf_node->needs_indirect = needs_indirect;
|
|
|
|
/*
|
|
* Go trough all allocations extents of this descriptor and when
|
|
* encountering a redirect read in the allocation extension. These are
|
|
* daisy-chained.
|
|
*/
|
|
UDF_LOCK_NODE(udf_node, 0);
|
|
udf_node->num_extensions = 0;
|
|
|
|
error = 0;
|
|
slot = 0;
|
|
for (;;) {
|
|
udf_get_adslot(udf_node, slot, &icb_loc, &eof);
|
|
DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
|
|
"lb_num = %d, part = %d\n", slot, eof,
|
|
UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
|
|
UDF_EXT_LEN(udf_rw32(icb_loc.len)),
|
|
udf_rw32(icb_loc.loc.lb_num),
|
|
udf_rw16(icb_loc.loc.part_num)));
|
|
if (eof)
|
|
break;
|
|
slot++;
|
|
|
|
if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
|
|
continue;
|
|
|
|
DPRINTF(NODE, ("\tgot redirect extent\n"));
|
|
if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
|
|
DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
|
|
"too many allocation extensions on "
|
|
"udf_node\n"));
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
|
|
if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
|
|
DPRINTF(ALLOC, ("udf_get_node: bad allocation "
|
|
"extension size in udf_node\n"));
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
|
|
UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
|
|
/* load in allocation extent */
|
|
error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
|
|
if (error || (dscr == NULL))
|
|
break;
|
|
|
|
/* process read-in descriptor */
|
|
dscr_type = udf_rw16(dscr->tag.id);
|
|
|
|
if (dscr_type != TAGID_ALLOCEXTENT) {
|
|
udf_free_logvol_dscr(ump, &icb_loc, dscr);
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
|
|
DPRINTF(NODE, ("\trecording redirect extent\n"));
|
|
udf_node->ext[udf_node->num_extensions] = &dscr->aee;
|
|
udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
|
|
|
|
udf_node->num_extensions++;
|
|
|
|
} /* while */
|
|
UDF_UNLOCK_NODE(udf_node, 0);
|
|
|
|
/* second round of cleanup code */
|
|
if (error) {
|
|
/* recycle udf_node */
|
|
udf_dispose_node(udf_node);
|
|
|
|
vlockmgr(nvp->v_vnlock, LK_RELEASE);
|
|
nvp->v_data = NULL;
|
|
ungetnewvnode(nvp);
|
|
|
|
return EINVAL; /* error code ok? */
|
|
}
|
|
|
|
DPRINTF(NODE, ("\tnode read in fine\n"));
|
|
|
|
/*
|
|
* Translate UDF filetypes into vnode types.
|
|
*
|
|
* Systemfiles like the meta main and mirror files are not treated as
|
|
* normal files, so we type them as having no type. UDF dictates that
|
|
* they are not allowed to be visible.
|
|
*/
|
|
|
|
switch (udf_file_type) {
|
|
case UDF_ICB_FILETYPE_DIRECTORY :
|
|
case UDF_ICB_FILETYPE_STREAMDIR :
|
|
nvp->v_type = VDIR;
|
|
break;
|
|
case UDF_ICB_FILETYPE_BLOCKDEVICE :
|
|
nvp->v_type = VBLK;
|
|
break;
|
|
case UDF_ICB_FILETYPE_CHARDEVICE :
|
|
nvp->v_type = VCHR;
|
|
break;
|
|
case UDF_ICB_FILETYPE_SOCKET :
|
|
nvp->v_type = VSOCK;
|
|
break;
|
|
case UDF_ICB_FILETYPE_FIFO :
|
|
nvp->v_type = VFIFO;
|
|
break;
|
|
case UDF_ICB_FILETYPE_SYMLINK :
|
|
nvp->v_type = VLNK;
|
|
break;
|
|
case UDF_ICB_FILETYPE_VAT :
|
|
case UDF_ICB_FILETYPE_META_MAIN :
|
|
case UDF_ICB_FILETYPE_META_MIRROR :
|
|
nvp->v_type = VNON;
|
|
break;
|
|
case UDF_ICB_FILETYPE_RANDOMACCESS :
|
|
case UDF_ICB_FILETYPE_REALTIME :
|
|
nvp->v_type = VREG;
|
|
break;
|
|
default:
|
|
/* YIKES, something else */
|
|
nvp->v_type = VNON;
|
|
}
|
|
|
|
/* TODO specfs, fifofs etc etc. vnops setting */
|
|
|
|
/* don't forget to set vnode's v_size */
|
|
uvm_vnp_setsize(nvp, file_size);
|
|
|
|
/* TODO ext attr and streamdir udf_nodes */
|
|
|
|
*udf_noderes = udf_node;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
int
|
|
udf_writeout_node(struct udf_node *udf_node, int waitfor)
|
|
{
|
|
union dscrptr *dscr;
|
|
struct long_ad *loc;
|
|
int extnr, flags, error;
|
|
|
|
DPRINTF(NODE, ("udf_writeout_node called\n"));
|
|
|
|
KASSERT(udf_node->outstanding_bufs == 0);
|
|
KASSERT(udf_node->outstanding_nodedscr == 0);
|
|
|
|
KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
|
|
|
|
if (udf_node->i_flags & IN_DELETED) {
|
|
DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
|
|
return 0;
|
|
}
|
|
|
|
/* lock node */
|
|
flags = waitfor ? 0 : IN_CALLBACK_ULK;
|
|
UDF_LOCK_NODE(udf_node, flags);
|
|
|
|
/* at least one descriptor writeout */
|
|
udf_node->outstanding_nodedscr = 1;
|
|
|
|
/* we're going to write out the descriptor so clear the flags */
|
|
udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
|
|
|
|
/* if we were rebuild, write out the allocation extents */
|
|
if (udf_node->i_flags & IN_NODE_REBUILD) {
|
|
/* mark outstanding node dscriptors and issue them */
|
|
udf_node->outstanding_nodedscr += udf_node->num_extensions;
|
|
for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
|
|
loc = &udf_node->ext_loc[extnr];
|
|
dscr = (union dscrptr *) udf_node->ext[extnr];
|
|
error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
|
|
if (error)
|
|
return error;
|
|
}
|
|
/* mark allocation extents written out */
|
|
udf_node->i_flags &= ~(IN_NODE_REBUILD);
|
|
}
|
|
|
|
if (udf_node->fe) {
|
|
dscr = (union dscrptr *) udf_node->fe;
|
|
} else {
|
|
KASSERT(udf_node->efe);
|
|
dscr = (union dscrptr *) udf_node->efe;
|
|
}
|
|
KASSERT(dscr);
|
|
|
|
loc = &udf_node->write_loc;
|
|
error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_dispose_node(struct udf_node *udf_node)
|
|
{
|
|
struct vnode *vp;
|
|
int extnr;
|
|
|
|
DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
|
|
if (!udf_node) {
|
|
DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
|
|
return 0;
|
|
}
|
|
|
|
vp = udf_node->vnode;
|
|
#ifdef DIAGNOSTIC
|
|
if (vp->v_numoutput)
|
|
panic("disposing UDF node with pending I/O's, udf_node = %p, "
|
|
"v_numoutput = %d", udf_node, vp->v_numoutput);
|
|
#endif
|
|
|
|
/* wait until out of sync (just in case we happen to stumble over one */
|
|
KASSERT(!mutex_owned(&mntvnode_lock));
|
|
mutex_enter(&mntvnode_lock);
|
|
while (udf_node->i_flags & IN_SYNCED) {
|
|
cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
|
|
hz/16);
|
|
}
|
|
mutex_exit(&mntvnode_lock);
|
|
|
|
/* TODO extended attributes and streamdir */
|
|
|
|
/* remove dirhash if present */
|
|
udf_dirhash_destroy(&udf_node->dir_hash);
|
|
|
|
/* remove from our hash lookup table */
|
|
udf_deregister_node(udf_node);
|
|
|
|
/* destroy our lock */
|
|
mutex_destroy(&udf_node->node_mutex);
|
|
cv_destroy(&udf_node->node_lock);
|
|
|
|
/* dissociate our udf_node from the vnode */
|
|
genfs_node_destroy(udf_node->vnode);
|
|
vp->v_data = NULL;
|
|
|
|
/* free associated memory and the node itself */
|
|
for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
|
|
udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
|
|
udf_node->ext[extnr]);
|
|
udf_node->ext[extnr] = (void *) 0xdeadcccc;
|
|
}
|
|
|
|
if (udf_node->fe)
|
|
udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
|
|
udf_node->fe);
|
|
if (udf_node->efe)
|
|
udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
|
|
udf_node->efe);
|
|
|
|
udf_node->fe = (void *) 0xdeadaaaa;
|
|
udf_node->efe = (void *) 0xdeadbbbb;
|
|
udf_node->ump = (void *) 0xdeadbeef;
|
|
pool_put(&udf_node_pool, udf_node);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* create a new node using the specified vnodeops, vap and cnp but with the
|
|
* udf_file_type. This allows special files to be created. Use with care.
|
|
*/
|
|
|
|
static int
|
|
udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
|
|
int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
|
|
{
|
|
union dscrptr *dscr;
|
|
struct udf_node *dir_node = VTOI(dvp);;
|
|
struct udf_node *udf_node;
|
|
struct udf_mount *ump = dir_node->ump;
|
|
struct vnode *nvp;
|
|
struct long_ad node_icb_loc;
|
|
uint64_t parent_unique_id;
|
|
uint64_t lmapping, pmapping;
|
|
uint32_t lb_size, lb_num;
|
|
uint16_t vpart_num;
|
|
uid_t uid;
|
|
gid_t gid, parent_gid;
|
|
int fid_size, error;
|
|
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
*vpp = NULL;
|
|
|
|
/* allocate vnode */
|
|
error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
|
|
if (error)
|
|
return error;
|
|
|
|
/* lock node */
|
|
error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
|
|
if (error) {
|
|
nvp->v_data = NULL;
|
|
ungetnewvnode(nvp);
|
|
return error;
|
|
}
|
|
|
|
/* get disc allocation for one logical block */
|
|
error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
|
|
&vpart_num, &lmapping, &pmapping);
|
|
lb_num = lmapping;
|
|
if (error) {
|
|
vlockmgr(nvp->v_vnlock, LK_RELEASE);
|
|
ungetnewvnode(nvp);
|
|
return error;
|
|
}
|
|
|
|
/* initialise pointer to location */
|
|
memset(&node_icb_loc, 0, sizeof(struct long_ad));
|
|
node_icb_loc.len = lb_size;
|
|
node_icb_loc.loc.lb_num = udf_rw32(lb_num);
|
|
node_icb_loc.loc.part_num = udf_rw16(vpart_num);
|
|
|
|
/* build udf_node (do initialise!) */
|
|
udf_node = pool_get(&udf_node_pool, PR_WAITOK);
|
|
memset(udf_node, 0, sizeof(struct udf_node));
|
|
|
|
/* initialise crosslinks, note location of fe/efe for hashing */
|
|
/* bugalert: synchronise with udf_get_node() */
|
|
udf_node->ump = ump;
|
|
udf_node->vnode = nvp;
|
|
nvp->v_data = udf_node;
|
|
udf_node->loc = node_icb_loc;
|
|
udf_node->write_loc = node_icb_loc;
|
|
udf_node->lockf = 0;
|
|
mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
|
|
cv_init(&udf_node->node_lock, "udf_nlk");
|
|
udf_node->outstanding_bufs = 0;
|
|
udf_node->outstanding_nodedscr = 0;
|
|
|
|
/* initialise genfs */
|
|
genfs_node_init(nvp, &udf_genfsops);
|
|
|
|
/* insert into the hash lookup */
|
|
udf_register_node(udf_node);
|
|
|
|
/* get parent's unique ID for refering '..' if its a directory */
|
|
if (dir_node->fe) {
|
|
parent_unique_id = udf_rw64(dir_node->fe->unique_id);
|
|
parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
|
|
} else {
|
|
parent_unique_id = udf_rw64(dir_node->efe->unique_id);
|
|
parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
|
|
}
|
|
|
|
/* get descriptor */
|
|
udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
|
|
|
|
/* choose a fe or an efe for it */
|
|
if (ump->logical_vol->tag.descriptor_ver == 2) {
|
|
udf_node->fe = &dscr->fe;
|
|
fid_size = udf_create_new_fe(ump, udf_node->fe,
|
|
udf_file_type, &udf_node->loc,
|
|
&dir_node->loc, parent_unique_id);
|
|
/* TODO add extended attribute for creation time */
|
|
} else {
|
|
udf_node->efe = &dscr->efe;
|
|
fid_size = udf_create_new_efe(ump, udf_node->efe,
|
|
udf_file_type, &udf_node->loc,
|
|
&dir_node->loc, parent_unique_id);
|
|
}
|
|
KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
|
|
|
|
/* update vnode's size and type */
|
|
nvp->v_type = vap->va_type;
|
|
uvm_vnp_setsize(nvp, fid_size);
|
|
|
|
/* set access mode */
|
|
udf_setaccessmode(udf_node, vap->va_mode);
|
|
|
|
/* set ownership */
|
|
uid = kauth_cred_geteuid(cnp->cn_cred);
|
|
gid = parent_gid;
|
|
udf_setownership(udf_node, uid, gid);
|
|
|
|
error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
|
|
if (error) {
|
|
/* free disc allocation for node */
|
|
udf_free_allocated_space(ump, lb_num, vpart_num, 1);
|
|
|
|
/* recycle udf_node */
|
|
udf_dispose_node(udf_node);
|
|
vput(nvp);
|
|
|
|
*vpp = NULL;
|
|
return error;
|
|
}
|
|
|
|
/* adjust file count */
|
|
udf_adjust_filecount(udf_node, 1);
|
|
|
|
/* return result */
|
|
*vpp = nvp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
|
|
struct componentname *cnp)
|
|
{
|
|
int (**vnodeops)(void *);
|
|
int udf_file_type;
|
|
|
|
DPRINTF(NODE, ("udf_create_node called\n"));
|
|
|
|
/* what type are we creating ? */
|
|
vnodeops = udf_vnodeop_p;
|
|
/* start with a default */
|
|
udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
|
|
|
|
*vpp = NULL;
|
|
|
|
switch (vap->va_type) {
|
|
case VREG :
|
|
udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
|
|
break;
|
|
case VDIR :
|
|
udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
|
|
break;
|
|
case VLNK :
|
|
udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
|
|
break;
|
|
case VBLK :
|
|
udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
|
|
/* specfs */
|
|
return ENOTSUP;
|
|
break;
|
|
case VCHR :
|
|
udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
|
|
/* specfs */
|
|
return ENOTSUP;
|
|
break;
|
|
case VFIFO :
|
|
udf_file_type = UDF_ICB_FILETYPE_FIFO;
|
|
/* specfs */
|
|
return ENOTSUP;
|
|
break;
|
|
case VSOCK :
|
|
udf_file_type = UDF_ICB_FILETYPE_SOCKET;
|
|
/* specfs */
|
|
return ENOTSUP;
|
|
break;
|
|
case VNON :
|
|
case VBAD :
|
|
default :
|
|
/* nothing; can we even create these? */
|
|
return EINVAL;
|
|
}
|
|
|
|
return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static void
|
|
udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
|
|
{
|
|
struct udf_mount *ump = udf_node->ump;
|
|
uint32_t lb_size, lb_num, len, num_lb;
|
|
uint16_t vpart_num;
|
|
|
|
/* is there really one? */
|
|
if (mem == NULL)
|
|
return;
|
|
|
|
/* got a descriptor here */
|
|
len = UDF_EXT_LEN(udf_rw32(loc->len));
|
|
lb_num = udf_rw32(loc->loc.lb_num);
|
|
vpart_num = udf_rw16(loc->loc.part_num);
|
|
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
num_lb = (len + lb_size -1) / lb_size;
|
|
|
|
udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
|
|
}
|
|
|
|
void
|
|
udf_delete_node(struct udf_node *udf_node)
|
|
{
|
|
void *dscr;
|
|
struct udf_mount *ump;
|
|
struct long_ad *loc;
|
|
int extnr, lvint, dummy;
|
|
|
|
ump = udf_node->ump;
|
|
|
|
/* paranoia check on integrity; should be open!; we could panic */
|
|
lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
|
|
if (lvint == UDF_INTEGRITY_CLOSED)
|
|
printf("\tIntegrity was CLOSED!\n");
|
|
|
|
/* whatever the node type, change its size to zero */
|
|
(void) udf_resize_node(udf_node, 0, &dummy);
|
|
|
|
/* force it to be `clean'; no use writing it out */
|
|
udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
|
|
IN_CHANGE | IN_UPDATE | IN_MODIFY);
|
|
|
|
/* adjust file count */
|
|
udf_adjust_filecount(udf_node, -1);
|
|
|
|
/*
|
|
* Free its allocated descriptors; memory will be released when
|
|
* vop_reclaim() is called.
|
|
*/
|
|
loc = &udf_node->loc;
|
|
|
|
dscr = udf_node->fe;
|
|
udf_free_descriptor_space(udf_node, loc, dscr);
|
|
dscr = udf_node->efe;
|
|
udf_free_descriptor_space(udf_node, loc, dscr);
|
|
|
|
for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
|
|
dscr = udf_node->ext[extnr];
|
|
loc = &udf_node->ext_loc[extnr];
|
|
udf_free_descriptor_space(udf_node, loc, dscr);
|
|
}
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* set new filesize; node but be LOCKED on entry and is locked on exit */
|
|
int
|
|
udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
|
|
{
|
|
struct file_entry *fe = udf_node->fe;
|
|
struct extfile_entry *efe = udf_node->efe;
|
|
uint64_t file_size;
|
|
int error;
|
|
|
|
if (fe) {
|
|
file_size = udf_rw64(fe->inf_len);
|
|
} else {
|
|
assert(udf_node->efe);
|
|
file_size = udf_rw64(efe->inf_len);
|
|
}
|
|
|
|
DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
|
|
file_size, new_size));
|
|
|
|
/* if not changing, we're done */
|
|
if (file_size == new_size)
|
|
return 0;
|
|
|
|
*extended = (new_size > file_size);
|
|
if (*extended) {
|
|
error = udf_grow_node(udf_node, new_size);
|
|
} else {
|
|
error = udf_shrink_node(udf_node, new_size);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
void
|
|
udf_itimes(struct udf_node *udf_node, struct timespec *acc,
|
|
struct timespec *mod, struct timespec *birth)
|
|
{
|
|
struct timespec now;
|
|
struct file_entry *fe;
|
|
struct extfile_entry *efe;
|
|
struct filetimes_extattr_entry *ft_extattr;
|
|
struct timestamp *atime, *mtime, *attrtime, *ctime;
|
|
struct timestamp fe_ctime;
|
|
struct timespec cur_birth;
|
|
uint32_t offset, a_l;
|
|
uint8_t *filedata;
|
|
int error;
|
|
|
|
/* protect against rogue values */
|
|
if (!udf_node)
|
|
return;
|
|
|
|
fe = udf_node->fe;
|
|
efe = udf_node->efe;
|
|
|
|
if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
|
|
return;
|
|
|
|
/* get descriptor information */
|
|
if (fe) {
|
|
atime = &fe->atime;
|
|
mtime = &fe->mtime;
|
|
attrtime = &fe->attrtime;
|
|
filedata = fe->data;
|
|
|
|
/* initial save dummy setting */
|
|
ctime = &fe_ctime;
|
|
|
|
/* check our extended attribute if present */
|
|
error = udf_extattr_search_intern(udf_node,
|
|
UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
|
|
if (!error) {
|
|
ft_extattr = (struct filetimes_extattr_entry *)
|
|
(filedata + offset);
|
|
if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
|
|
ctime = &ft_extattr->times[0];
|
|
}
|
|
/* TODO create the extended attribute if not found ? */
|
|
} else {
|
|
assert(udf_node->efe);
|
|
atime = &efe->atime;
|
|
mtime = &efe->mtime;
|
|
attrtime = &efe->attrtime;
|
|
ctime = &efe->ctime;
|
|
}
|
|
|
|
vfs_timestamp(&now);
|
|
|
|
/* set access time */
|
|
if (udf_node->i_flags & IN_ACCESS) {
|
|
if (acc == NULL)
|
|
acc = &now;
|
|
udf_timespec_to_timestamp(acc, atime);
|
|
}
|
|
|
|
/* set modification time */
|
|
if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
|
|
if (mod == NULL)
|
|
mod = &now;
|
|
udf_timespec_to_timestamp(mod, mtime);
|
|
|
|
/* ensure birthtime is older than set modification! */
|
|
udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
|
|
if ((cur_birth.tv_sec > mod->tv_sec) ||
|
|
((cur_birth.tv_sec == mod->tv_sec) &&
|
|
(cur_birth.tv_nsec > mod->tv_nsec))) {
|
|
udf_timespec_to_timestamp(mod, ctime);
|
|
}
|
|
}
|
|
|
|
/* update birthtime if specified */
|
|
/* XXX we asume here that given birthtime is older than mod */
|
|
if (birth && (birth->tv_sec != VNOVAL)) {
|
|
udf_timespec_to_timestamp(birth, ctime);
|
|
}
|
|
|
|
/* set change time */
|
|
if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
|
|
udf_timespec_to_timestamp(&now, attrtime);
|
|
|
|
/* notify updates to the node itself */
|
|
if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
|
|
udf_node->i_flags |= IN_ACCESSED;
|
|
if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
|
|
udf_node->i_flags |= IN_MODIFIED;
|
|
|
|
/* clear modification flags */
|
|
udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_update(struct vnode *vp, struct timespec *acc,
|
|
struct timespec *mod, struct timespec *birth, int updflags)
|
|
{
|
|
struct udf_node *udf_node = VTOI(vp);
|
|
struct udf_mount *ump = udf_node->ump;
|
|
struct regid *impl_id;
|
|
int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
|
|
int waitfor, flags;
|
|
|
|
#ifdef DEBUG
|
|
char bits[128];
|
|
DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
|
|
updflags));
|
|
bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits));
|
|
DPRINTF(CALL, ("\tnode flags %s\n", bits));
|
|
DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
|
|
#endif
|
|
|
|
/* set our times */
|
|
udf_itimes(udf_node, acc, mod, birth);
|
|
|
|
/* set our implementation id */
|
|
if (udf_node->fe) {
|
|
impl_id = &udf_node->fe->imp_id;
|
|
} else {
|
|
impl_id = &udf_node->efe->imp_id;
|
|
}
|
|
udf_set_regid(impl_id, IMPL_NAME);
|
|
udf_add_impl_regid(ump, impl_id);
|
|
|
|
/* if called when mounted readonly, never write back */
|
|
if (vp->v_mount->mnt_flag & MNT_RDONLY)
|
|
return 0;
|
|
|
|
/* check if the node is dirty 'enough'*/
|
|
if (updflags & UPDATE_CLOSE) {
|
|
flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
|
|
} else {
|
|
flags = udf_node->i_flags & IN_MODIFIED;
|
|
}
|
|
if (flags == 0)
|
|
return 0;
|
|
|
|
/* determine if we need to write sync or async */
|
|
waitfor = 0;
|
|
if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
|
|
/* sync mounted */
|
|
waitfor = updflags & UPDATE_WAIT;
|
|
if (updflags & UPDATE_DIROP)
|
|
waitfor |= UPDATE_WAIT;
|
|
}
|
|
if (waitfor)
|
|
return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
/*
|
|
* Read one fid and process it into a dirent and advance to the next (*fid)
|
|
* has to be allocated a logical block in size, (*dirent) struct dirent length
|
|
*/
|
|
|
|
int
|
|
udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
|
|
struct fileid_desc *fid, struct dirent *dirent)
|
|
{
|
|
struct udf_node *dir_node = VTOI(vp);
|
|
struct udf_mount *ump = dir_node->ump;
|
|
struct file_entry *fe = dir_node->fe;
|
|
struct extfile_entry *efe = dir_node->efe;
|
|
uint32_t fid_size, lb_size;
|
|
uint64_t file_size;
|
|
char *fid_name;
|
|
int enough, error;
|
|
|
|
assert(fid);
|
|
assert(dirent);
|
|
assert(dir_node);
|
|
assert(offset);
|
|
assert(*offset != 1);
|
|
|
|
DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
|
|
/* check if we're past the end of the directory */
|
|
if (fe) {
|
|
file_size = udf_rw64(fe->inf_len);
|
|
} else {
|
|
assert(dir_node->efe);
|
|
file_size = udf_rw64(efe->inf_len);
|
|
}
|
|
if (*offset >= file_size)
|
|
return EINVAL;
|
|
|
|
/* get maximum length of FID descriptor */
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
|
|
/* initialise return values */
|
|
fid_size = 0;
|
|
memset(dirent, 0, sizeof(struct dirent));
|
|
memset(fid, 0, lb_size);
|
|
|
|
enough = (file_size - (*offset) >= UDF_FID_SIZE);
|
|
if (!enough) {
|
|
/* short dir ... */
|
|
return EIO;
|
|
}
|
|
|
|
error = vn_rdwr(UIO_READ, vp,
|
|
fid, MIN(file_size - (*offset), lb_size), *offset,
|
|
UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
|
|
NULL, NULL);
|
|
if (error)
|
|
return error;
|
|
|
|
DPRINTF(FIDS, ("\tfid piece read in fine\n"));
|
|
/*
|
|
* Check if we got a whole descriptor.
|
|
* TODO Try to `resync' directory stream when something is very wrong.
|
|
*/
|
|
|
|
/* check if our FID header is OK */
|
|
error = udf_check_tag(fid);
|
|
if (error) {
|
|
goto brokendir;
|
|
}
|
|
DPRINTF(FIDS, ("\ttag check ok\n"));
|
|
|
|
if (udf_rw16(fid->tag.id) != TAGID_FID) {
|
|
error = EIO;
|
|
goto brokendir;
|
|
}
|
|
DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
|
|
|
|
/* check for length */
|
|
fid_size = udf_fidsize(fid);
|
|
enough = (file_size - (*offset) >= fid_size);
|
|
if (!enough) {
|
|
error = EIO;
|
|
goto brokendir;
|
|
}
|
|
DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
|
|
|
|
/* check FID contents */
|
|
error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
|
|
brokendir:
|
|
if (error) {
|
|
/* note that is sometimes a bit quick to report */
|
|
printf("BROKEN DIRECTORY ENTRY\n");
|
|
/* RESYNC? */
|
|
/* TODO: use udf_resync_fid_stream */
|
|
return EIO;
|
|
}
|
|
DPRINTF(FIDS, ("\tpayload checked ok\n"));
|
|
|
|
/* we got a whole and valid descriptor! */
|
|
DPRINTF(FIDS, ("\tinterpret FID\n"));
|
|
|
|
/* create resulting dirent structure */
|
|
fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
|
|
udf_to_unix_name(dirent->d_name, MAXNAMLEN,
|
|
fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
|
|
|
|
/* '..' has no name, so provide one */
|
|
if (fid->file_char & UDF_FILE_CHAR_PAR)
|
|
strcpy(dirent->d_name, "..");
|
|
|
|
dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
|
|
dirent->d_namlen = strlen(dirent->d_name);
|
|
dirent->d_reclen = _DIRENT_SIZE(dirent);
|
|
|
|
/*
|
|
* Note that its not worth trying to go for the filetypes now... its
|
|
* too expensive too
|
|
*/
|
|
dirent->d_type = DT_UNKNOWN;
|
|
|
|
/* initial guess for filetype we can make */
|
|
if (fid->file_char & UDF_FILE_CHAR_DIR)
|
|
dirent->d_type = DT_DIR;
|
|
|
|
/* advance */
|
|
*offset += fid_size;
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static void
|
|
udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
|
|
int pass, int *ndirty)
|
|
{
|
|
struct udf_node *udf_node, *n_udf_node;
|
|
struct vnode *vp;
|
|
int vdirty, error;
|
|
int on_type, on_flags, on_vnode;
|
|
|
|
derailed:
|
|
KASSERT(mutex_owned(&mntvnode_lock));
|
|
|
|
DPRINTF(SYNC, ("sync_pass %d\n", pass));
|
|
udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
|
|
for (;udf_node; udf_node = n_udf_node) {
|
|
DPRINTF(SYNC, ("."));
|
|
|
|
udf_node->i_flags &= ~IN_SYNCED;
|
|
vp = udf_node->vnode;
|
|
|
|
mutex_enter(&vp->v_interlock);
|
|
n_udf_node = LIST_NEXT(udf_node, sortchain);
|
|
if (n_udf_node)
|
|
n_udf_node->i_flags |= IN_SYNCED;
|
|
|
|
/* system nodes are not synced this way */
|
|
if (vp->v_vflag & VV_SYSTEM) {
|
|
mutex_exit(&vp->v_interlock);
|
|
continue;
|
|
}
|
|
|
|
/* check if its dirty enough to even try */
|
|
on_type = (waitfor == MNT_LAZY || vp->v_type == VNON);
|
|
on_flags = ((udf_node->i_flags &
|
|
(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
|
|
on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
|
|
&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
|
|
if (on_type || (on_flags || on_vnode)) { /* XXX */
|
|
/* not dirty (enough?) */
|
|
mutex_exit(&vp->v_interlock);
|
|
continue;
|
|
}
|
|
|
|
mutex_exit(&mntvnode_lock);
|
|
error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
|
|
if (error) {
|
|
mutex_enter(&mntvnode_lock);
|
|
if (error == ENOENT)
|
|
goto derailed;
|
|
*ndirty += 1;
|
|
continue;
|
|
}
|
|
|
|
switch (pass) {
|
|
case 1:
|
|
VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
|
|
break;
|
|
case 2:
|
|
vdirty = vp->v_numoutput;
|
|
if (vp->v_tag == VT_UDF)
|
|
vdirty += udf_node->outstanding_bufs +
|
|
udf_node->outstanding_nodedscr;
|
|
if (vdirty == 0)
|
|
VOP_FSYNC(vp, cred, 0,0,0);
|
|
*ndirty += vdirty;
|
|
break;
|
|
case 3:
|
|
vdirty = vp->v_numoutput;
|
|
if (vp->v_tag == VT_UDF)
|
|
vdirty += udf_node->outstanding_bufs +
|
|
udf_node->outstanding_nodedscr;
|
|
*ndirty += vdirty;
|
|
break;
|
|
}
|
|
|
|
vput(vp);
|
|
mutex_enter(&mntvnode_lock);
|
|
}
|
|
DPRINTF(SYNC, ("END sync_pass %d\n", pass));
|
|
}
|
|
|
|
|
|
void
|
|
udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
|
|
{
|
|
int dummy, ndirty;
|
|
|
|
mutex_enter(&mntvnode_lock);
|
|
recount:
|
|
dummy = 0;
|
|
DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
|
|
DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
|
|
udf_sync_pass(ump, cred, waitfor, 1, &dummy);
|
|
|
|
DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
|
|
DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
|
|
udf_sync_pass(ump, cred, waitfor, 2, &dummy);
|
|
|
|
if (waitfor == MNT_WAIT) {
|
|
ndirty = ump->devvp->v_numoutput;
|
|
DPRINTF(NODE, ("counting pending blocks: on devvp %d\n",
|
|
ndirty));
|
|
udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
|
|
DPRINTF(NODE, ("counted num dirty pending blocks %d\n",
|
|
ndirty));
|
|
|
|
if (ndirty) {
|
|
/* 1/4 second wait */
|
|
cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
|
|
hz/4);
|
|
goto recount;
|
|
}
|
|
}
|
|
|
|
mutex_exit(&mntvnode_lock);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Read and write file extent in/from the buffer.
|
|
*
|
|
* The splitup of the extent into seperate request-buffers is to minimise
|
|
* copying around as much as possible.
|
|
*
|
|
* block based file reading and writing
|
|
*/
|
|
|
|
static int
|
|
udf_read_internal(struct udf_node *node, uint8_t *blob)
|
|
{
|
|
struct udf_mount *ump;
|
|
struct file_entry *fe = node->fe;
|
|
struct extfile_entry *efe = node->efe;
|
|
uint64_t inflen;
|
|
uint32_t sector_size;
|
|
uint8_t *pos;
|
|
int icbflags, addr_type;
|
|
|
|
/* get extent and do some paranoia checks */
|
|
ump = node->ump;
|
|
sector_size = ump->discinfo.sector_size;
|
|
|
|
if (fe) {
|
|
inflen = udf_rw64(fe->inf_len);
|
|
pos = &fe->data[0] + udf_rw32(fe->l_ea);
|
|
icbflags = udf_rw16(fe->icbtag.flags);
|
|
} else {
|
|
assert(node->efe);
|
|
inflen = udf_rw64(efe->inf_len);
|
|
pos = &efe->data[0] + udf_rw32(efe->l_ea);
|
|
icbflags = udf_rw16(efe->icbtag.flags);
|
|
}
|
|
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
|
|
|
|
assert(addr_type == UDF_ICB_INTERN_ALLOC);
|
|
assert(inflen < sector_size);
|
|
|
|
/* copy out info */
|
|
memset(blob, 0, sector_size);
|
|
memcpy(blob, pos, inflen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
udf_write_internal(struct udf_node *node, uint8_t *blob)
|
|
{
|
|
struct udf_mount *ump;
|
|
struct file_entry *fe = node->fe;
|
|
struct extfile_entry *efe = node->efe;
|
|
uint64_t inflen;
|
|
uint32_t sector_size;
|
|
uint8_t *pos;
|
|
int icbflags, addr_type;
|
|
|
|
/* get extent and do some paranoia checks */
|
|
ump = node->ump;
|
|
sector_size = ump->discinfo.sector_size;
|
|
|
|
if (fe) {
|
|
inflen = udf_rw64(fe->inf_len);
|
|
pos = &fe->data[0] + udf_rw32(fe->l_ea);
|
|
icbflags = udf_rw16(fe->icbtag.flags);
|
|
} else {
|
|
assert(node->efe);
|
|
inflen = udf_rw64(efe->inf_len);
|
|
pos = &efe->data[0] + udf_rw32(efe->l_ea);
|
|
icbflags = udf_rw16(efe->icbtag.flags);
|
|
}
|
|
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
|
|
|
|
assert(addr_type == UDF_ICB_INTERN_ALLOC);
|
|
assert(inflen < sector_size);
|
|
|
|
/* copy in blob */
|
|
/* memset(pos, 0, inflen); */
|
|
memcpy(pos, blob, inflen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
|
|
{
|
|
struct buf *nestbuf;
|
|
struct udf_mount *ump = udf_node->ump;
|
|
uint64_t *mapping;
|
|
uint64_t run_start;
|
|
uint32_t sector_size;
|
|
uint32_t buf_offset, sector, rbuflen, rblk;
|
|
uint32_t from, lblkno;
|
|
uint32_t sectors;
|
|
uint8_t *buf_pos;
|
|
int error, run_length, isdir, what;
|
|
|
|
sector_size = udf_node->ump->discinfo.sector_size;
|
|
|
|
from = buf->b_blkno;
|
|
sectors = buf->b_bcount / sector_size;
|
|
|
|
isdir = (udf_node->vnode->v_type == VDIR);
|
|
what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
|
|
|
|
/* assure we have enough translation slots */
|
|
KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
|
|
KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
|
|
|
|
if (sectors > UDF_MAX_MAPPINGS) {
|
|
printf("udf_read_filebuf: implementation limit on bufsize\n");
|
|
buf->b_error = EIO;
|
|
biodone(buf);
|
|
return;
|
|
}
|
|
|
|
mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
|
|
|
|
error = 0;
|
|
DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
|
|
error = udf_translate_file_extent(udf_node, from, sectors, mapping);
|
|
if (error) {
|
|
buf->b_error = error;
|
|
biodone(buf);
|
|
goto out;
|
|
}
|
|
DPRINTF(READ, ("\ttranslate extent went OK\n"));
|
|
|
|
/* pre-check if its an internal */
|
|
if (*mapping == UDF_TRANS_INTERN) {
|
|
error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
|
|
if (error)
|
|
buf->b_error = error;
|
|
biodone(buf);
|
|
goto out;
|
|
}
|
|
DPRINTF(READ, ("\tnot intern\n"));
|
|
|
|
#ifdef DEBUG
|
|
if (udf_verbose & UDF_DEBUG_TRANSLATE) {
|
|
printf("Returned translation table:\n");
|
|
for (sector = 0; sector < sectors; sector++) {
|
|
printf("%d : %"PRIu64"\n", sector, mapping[sector]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* request read-in of data from disc sheduler */
|
|
buf->b_resid = buf->b_bcount;
|
|
for (sector = 0; sector < sectors; sector++) {
|
|
buf_offset = sector * sector_size;
|
|
buf_pos = (uint8_t *) buf->b_data + buf_offset;
|
|
DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
|
|
|
|
/* check if its zero or unmapped to stop reading */
|
|
switch (mapping[sector]) {
|
|
case UDF_TRANS_UNMAPPED:
|
|
case UDF_TRANS_ZERO:
|
|
/* copy zero sector TODO runlength like below */
|
|
memset(buf_pos, 0, sector_size);
|
|
DPRINTF(READ, ("\treturning zero sector\n"));
|
|
nestiobuf_done(buf, sector_size, 0);
|
|
break;
|
|
default :
|
|
DPRINTF(READ, ("\tread sector "
|
|
"%"PRIu64"\n", mapping[sector]));
|
|
|
|
lblkno = from + sector;
|
|
run_start = mapping[sector];
|
|
run_length = 1;
|
|
while (sector < sectors-1) {
|
|
if (mapping[sector+1] != mapping[sector]+1)
|
|
break;
|
|
run_length++;
|
|
sector++;
|
|
}
|
|
|
|
/*
|
|
* nest an iobuf and mark it for async reading. Since
|
|
* we're using nested buffers, they can't be cached by
|
|
* design.
|
|
*/
|
|
rbuflen = run_length * sector_size;
|
|
rblk = run_start * (sector_size/DEV_BSIZE);
|
|
|
|
nestbuf = getiobuf(NULL, true);
|
|
nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
|
|
/* nestbuf is B_ASYNC */
|
|
|
|
/* identify this nestbuf */
|
|
nestbuf->b_lblkno = lblkno;
|
|
assert(nestbuf->b_vp == udf_node->vnode);
|
|
|
|
/* CD shedules on raw blkno */
|
|
nestbuf->b_blkno = rblk;
|
|
nestbuf->b_proc = NULL;
|
|
nestbuf->b_rawblkno = rblk;
|
|
nestbuf->b_udf_c_type = what;
|
|
|
|
udf_discstrat_queuebuf(ump, nestbuf);
|
|
}
|
|
}
|
|
out:
|
|
/* if we're synchronously reading, wait for the completion */
|
|
if ((buf->b_flags & B_ASYNC) == 0)
|
|
biowait(buf);
|
|
|
|
DPRINTF(READ, ("\tend of read_filebuf\n"));
|
|
free(mapping, M_TEMP);
|
|
return;
|
|
}
|
|
|
|
|
|
void
|
|
udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
|
|
{
|
|
struct buf *nestbuf;
|
|
struct udf_mount *ump = udf_node->ump;
|
|
uint64_t *mapping;
|
|
uint64_t run_start;
|
|
uint32_t lb_size;
|
|
uint32_t buf_offset, lb_num, rbuflen, rblk;
|
|
uint32_t from, lblkno;
|
|
uint32_t num_lb;
|
|
uint8_t *buf_pos;
|
|
int error, run_length, isdir, what, s;
|
|
|
|
lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
|
|
|
|
from = buf->b_blkno;
|
|
num_lb = buf->b_bcount / lb_size;
|
|
|
|
isdir = (udf_node->vnode->v_type == VDIR);
|
|
what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
|
|
|
|
/* assure we have enough translation slots */
|
|
KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
|
|
KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
|
|
|
|
if (num_lb > UDF_MAX_MAPPINGS) {
|
|
printf("udf_write_filebuf: implementation limit on bufsize\n");
|
|
buf->b_error = EIO;
|
|
biodone(buf);
|
|
return;
|
|
}
|
|
|
|
mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
|
|
|
|
error = 0;
|
|
DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
|
|
error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
|
|
if (error) {
|
|
buf->b_error = error;
|
|
biodone(buf);
|
|
goto out;
|
|
}
|
|
DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
|
|
|
|
/* if its internally mapped, we can write it in the descriptor itself */
|
|
if (*mapping == UDF_TRANS_INTERN) {
|
|
/* TODO paranoia check if we ARE going to have enough space */
|
|
error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
|
|
if (error)
|
|
buf->b_error = error;
|
|
biodone(buf);
|
|
goto out;
|
|
}
|
|
DPRINTF(WRITE, ("\tnot intern\n"));
|
|
|
|
/* request write out of data to disc sheduler */
|
|
buf->b_resid = buf->b_bcount;
|
|
for (lb_num = 0; lb_num < num_lb; lb_num++) {
|
|
buf_offset = lb_num * lb_size;
|
|
buf_pos = (uint8_t *) buf->b_data + buf_offset;
|
|
DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
|
|
|
|
/*
|
|
* Mappings are not that important here. Just before we write
|
|
* the lb_num we late-allocate them when needed and update the
|
|
* mapping in the udf_node.
|
|
*/
|
|
|
|
/* XXX why not ignore the mapping altogether ? */
|
|
/* TODO estimate here how much will be late-allocated */
|
|
DPRINTF(WRITE, ("\twrite lb_num "
|
|
"%"PRIu64, mapping[lb_num]));
|
|
|
|
lblkno = from + lb_num;
|
|
run_start = mapping[lb_num];
|
|
run_length = 1;
|
|
while (lb_num < num_lb-1) {
|
|
if (mapping[lb_num+1] != mapping[lb_num]+1)
|
|
if (mapping[lb_num+1] != mapping[lb_num])
|
|
break;
|
|
run_length++;
|
|
lb_num++;
|
|
}
|
|
DPRINTF(WRITE, ("+ %d\n", run_length));
|
|
|
|
/* nest an iobuf on the master buffer for the extent */
|
|
rbuflen = run_length * lb_size;
|
|
rblk = run_start * (lb_size/DEV_BSIZE);
|
|
|
|
#if 0
|
|
/* if its zero or unmapped, our blknr gets -1 for unmapped */
|
|
switch (mapping[lb_num]) {
|
|
case UDF_TRANS_UNMAPPED:
|
|
case UDF_TRANS_ZERO:
|
|
rblk = -1;
|
|
break;
|
|
default:
|
|
rblk = run_start * (lb_size/DEV_BSIZE);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
nestbuf = getiobuf(NULL, true);
|
|
nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
|
|
/* nestbuf is B_ASYNC */
|
|
|
|
/* identify this nestbuf */
|
|
nestbuf->b_lblkno = lblkno;
|
|
KASSERT(nestbuf->b_vp == udf_node->vnode);
|
|
|
|
/* CD shedules on raw blkno */
|
|
nestbuf->b_blkno = rblk;
|
|
nestbuf->b_proc = NULL;
|
|
nestbuf->b_rawblkno = rblk;
|
|
nestbuf->b_udf_c_type = what;
|
|
|
|
/* increment our outstanding bufs counter */
|
|
s = splbio();
|
|
udf_node->outstanding_bufs++;
|
|
splx(s);
|
|
|
|
udf_discstrat_queuebuf(ump, nestbuf);
|
|
}
|
|
out:
|
|
/* if we're synchronously writing, wait for the completion */
|
|
if ((buf->b_flags & B_ASYNC) == 0)
|
|
biowait(buf);
|
|
|
|
DPRINTF(WRITE, ("\tend of write_filebuf\n"));
|
|
free(mapping, M_TEMP);
|
|
return;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|