960 lines
23 KiB
C
960 lines
23 KiB
C
/* $NetBSD: uvm_glue.c,v 1.114 2008/01/02 11:49:16 ad Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1997 Charles D. Cranor and Washington University.
|
|
* Copyright (c) 1991, 1993, The Regents of the University of California.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Charles D. Cranor,
|
|
* Washington University, the University of California, Berkeley and
|
|
* its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
|
|
* from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.114 2008/01/02 11:49:16 ad Exp $");
|
|
|
|
#include "opt_coredump.h"
|
|
#include "opt_kgdb.h"
|
|
#include "opt_kstack.h"
|
|
#include "opt_uvmhist.h"
|
|
|
|
/*
|
|
* uvm_glue.c: glue functions
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/user.h>
|
|
#include <sys/syncobj.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/atomic.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
/*
|
|
* local prototypes
|
|
*/
|
|
|
|
static void uvm_swapout(struct lwp *);
|
|
|
|
#define UVM_NUAREA_HIWAT 20
|
|
#define UVM_NUAREA_LOWAT 16
|
|
|
|
#define UAREA_NEXTFREE(uarea) (*(vaddr_t *)(UAREA_TO_USER(uarea)))
|
|
|
|
/*
|
|
* XXXCDC: do these really belong here?
|
|
*/
|
|
|
|
/*
|
|
* uvm_kernacc: can the kernel access a region of memory
|
|
*
|
|
* - used only by /dev/kmem driver (mem.c)
|
|
*/
|
|
|
|
bool
|
|
uvm_kernacc(void *addr, size_t len, int rw)
|
|
{
|
|
bool rv;
|
|
vaddr_t saddr, eaddr;
|
|
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
|
|
|
|
saddr = trunc_page((vaddr_t)addr);
|
|
eaddr = round_page((vaddr_t)addr + len);
|
|
vm_map_lock_read(kernel_map);
|
|
rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
|
|
vm_map_unlock_read(kernel_map);
|
|
|
|
return(rv);
|
|
}
|
|
|
|
#ifdef KGDB
|
|
/*
|
|
* Change protections on kernel pages from addr to addr+len
|
|
* (presumably so debugger can plant a breakpoint).
|
|
*
|
|
* We force the protection change at the pmap level. If we were
|
|
* to use vm_map_protect a change to allow writing would be lazily-
|
|
* applied meaning we would still take a protection fault, something
|
|
* we really don't want to do. It would also fragment the kernel
|
|
* map unnecessarily. We cannot use pmap_protect since it also won't
|
|
* enforce a write-enable request. Using pmap_enter is the only way
|
|
* we can ensure the change takes place properly.
|
|
*/
|
|
void
|
|
uvm_chgkprot(void *addr, size_t len, int rw)
|
|
{
|
|
vm_prot_t prot;
|
|
paddr_t pa;
|
|
vaddr_t sva, eva;
|
|
|
|
prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
|
|
eva = round_page((vaddr_t)addr + len);
|
|
for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
|
|
/*
|
|
* Extract physical address for the page.
|
|
*/
|
|
if (pmap_extract(pmap_kernel(), sva, &pa) == false)
|
|
panic("chgkprot: invalid page");
|
|
pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
|
|
}
|
|
pmap_update(pmap_kernel());
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* uvm_vslock: wire user memory for I/O
|
|
*
|
|
* - called from physio and sys___sysctl
|
|
* - XXXCDC: consider nuking this (or making it a macro?)
|
|
*/
|
|
|
|
int
|
|
uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
|
|
{
|
|
struct vm_map *map;
|
|
vaddr_t start, end;
|
|
int error;
|
|
|
|
map = &vs->vm_map;
|
|
start = trunc_page((vaddr_t)addr);
|
|
end = round_page((vaddr_t)addr + len);
|
|
error = uvm_fault_wire(map, start, end, access_type, 0);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* uvm_vsunlock: unwire user memory wired by uvm_vslock()
|
|
*
|
|
* - called from physio and sys___sysctl
|
|
* - XXXCDC: consider nuking this (or making it a macro?)
|
|
*/
|
|
|
|
void
|
|
uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
|
|
{
|
|
uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
|
|
round_page((vaddr_t)addr + len));
|
|
}
|
|
|
|
/*
|
|
* uvm_proc_fork: fork a virtual address space
|
|
*
|
|
* - the address space is copied as per parent map's inherit values
|
|
*/
|
|
void
|
|
uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
|
|
{
|
|
|
|
if (shared == true) {
|
|
p2->p_vmspace = NULL;
|
|
uvmspace_share(p1, p2);
|
|
} else {
|
|
p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
|
|
}
|
|
|
|
cpu_proc_fork(p1, p2);
|
|
}
|
|
|
|
|
|
/*
|
|
* uvm_lwp_fork: fork a thread
|
|
*
|
|
* - a new "user" structure is allocated for the child process
|
|
* [filled in by MD layer...]
|
|
* - if specified, the child gets a new user stack described by
|
|
* stack and stacksize
|
|
* - NOTE: the kernel stack may be at a different location in the child
|
|
* process, and thus addresses of automatic variables may be invalid
|
|
* after cpu_lwp_fork returns in the child process. We do nothing here
|
|
* after cpu_lwp_fork returns.
|
|
* - XXXCDC: we need a way for this to return a failure value rather
|
|
* than just hang
|
|
*/
|
|
void
|
|
uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
|
|
void (*func)(void *), void *arg)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* Wire down the U-area for the process, which contains the PCB
|
|
* and the kernel stack. Wired state is stored in l->l_flag's
|
|
* L_INMEM bit rather than in the vm_map_entry's wired count
|
|
* to prevent kernel_map fragmentation. If we reused a cached U-area,
|
|
* L_INMEM will already be set and we don't need to do anything.
|
|
*
|
|
* Note the kernel stack gets read/write accesses right off the bat.
|
|
*/
|
|
|
|
if ((l2->l_flag & LW_INMEM) == 0) {
|
|
vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
|
|
|
|
error = uvm_fault_wire(kernel_map, uarea,
|
|
uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
|
|
if (error)
|
|
panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
|
|
#ifdef PMAP_UAREA
|
|
/* Tell the pmap this is a u-area mapping */
|
|
PMAP_UAREA(uarea);
|
|
#endif
|
|
l2->l_flag |= LW_INMEM;
|
|
}
|
|
|
|
#ifdef KSTACK_CHECK_MAGIC
|
|
/*
|
|
* fill stack with magic number
|
|
*/
|
|
kstack_setup_magic(l2);
|
|
#endif
|
|
|
|
/*
|
|
* cpu_lwp_fork() copy and update the pcb, and make the child ready
|
|
* to run. If this is a normal user fork, the child will exit
|
|
* directly to user mode via child_return() on its first time
|
|
* slice and will not return here. If this is a kernel thread,
|
|
* the specified entry point will be executed.
|
|
*/
|
|
cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
|
|
}
|
|
|
|
/*
|
|
* uvm_cpu_attach: initialize per-CPU data structures.
|
|
*/
|
|
|
|
void
|
|
uvm_cpu_attach(struct cpu_info *ci)
|
|
{
|
|
|
|
mutex_init(&ci->ci_data.cpu_uarea_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
ci->ci_data.cpu_uarea_cnt = 0;
|
|
ci->ci_data.cpu_uarea_list = 0;
|
|
}
|
|
|
|
/*
|
|
* uvm_uarea_alloc: allocate a u-area
|
|
*/
|
|
|
|
bool
|
|
uvm_uarea_alloc(vaddr_t *uaddrp)
|
|
{
|
|
struct cpu_info *ci;
|
|
vaddr_t uaddr;
|
|
|
|
#ifndef USPACE_ALIGN
|
|
#define USPACE_ALIGN 0
|
|
#endif
|
|
|
|
ci = curcpu();
|
|
|
|
if (ci->ci_data.cpu_uarea_cnt > 0) {
|
|
mutex_enter(&ci->ci_data.cpu_uarea_lock);
|
|
if (ci->ci_data.cpu_uarea_cnt == 0) {
|
|
mutex_exit(&ci->ci_data.cpu_uarea_lock);
|
|
} else {
|
|
uaddr = ci->ci_data.cpu_uarea_list;
|
|
ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
|
|
ci->ci_data.cpu_uarea_cnt--;
|
|
mutex_exit(&ci->ci_data.cpu_uarea_lock);
|
|
*uaddrp = uaddr;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
*uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
|
|
UVM_KMF_PAGEABLE);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* uvm_uarea_free: free a u-area
|
|
*/
|
|
|
|
void
|
|
uvm_uarea_free(vaddr_t uaddr, struct cpu_info *ci)
|
|
{
|
|
|
|
mutex_enter(&ci->ci_data.cpu_uarea_lock);
|
|
UAREA_NEXTFREE(uaddr) = ci->ci_data.cpu_uarea_list;
|
|
ci->ci_data.cpu_uarea_list = uaddr;
|
|
ci->ci_data.cpu_uarea_cnt++;
|
|
mutex_exit(&ci->ci_data.cpu_uarea_lock);
|
|
}
|
|
|
|
/*
|
|
* uvm_uarea_drain: return memory of u-areas over limit
|
|
* back to system
|
|
*
|
|
* => if asked to drain as much as possible, drain all cpus.
|
|
* => if asked to drain to low water mark, drain local cpu only.
|
|
*/
|
|
|
|
void
|
|
uvm_uarea_drain(bool empty)
|
|
{
|
|
CPU_INFO_ITERATOR cii;
|
|
struct cpu_info *ci;
|
|
vaddr_t uaddr, nuaddr;
|
|
int count;
|
|
|
|
if (empty) {
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
mutex_enter(&ci->ci_data.cpu_uarea_lock);
|
|
count = ci->ci_data.cpu_uarea_cnt;
|
|
uaddr = ci->ci_data.cpu_uarea_list;
|
|
ci->ci_data.cpu_uarea_cnt = 0;
|
|
ci->ci_data.cpu_uarea_list = 0;
|
|
mutex_exit(&ci->ci_data.cpu_uarea_lock);
|
|
|
|
while (count != 0) {
|
|
nuaddr = UAREA_NEXTFREE(uaddr);
|
|
uvm_km_free(kernel_map, uaddr, USPACE,
|
|
UVM_KMF_PAGEABLE);
|
|
uaddr = nuaddr;
|
|
count--;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
ci = curcpu();
|
|
if (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_HIWAT) {
|
|
mutex_enter(&ci->ci_data.cpu_uarea_lock);
|
|
while (ci->ci_data.cpu_uarea_cnt > UVM_NUAREA_LOWAT) {
|
|
uaddr = ci->ci_data.cpu_uarea_list;
|
|
ci->ci_data.cpu_uarea_list = UAREA_NEXTFREE(uaddr);
|
|
ci->ci_data.cpu_uarea_cnt--;
|
|
mutex_exit(&ci->ci_data.cpu_uarea_lock);
|
|
uvm_km_free(kernel_map, uaddr, USPACE,
|
|
UVM_KMF_PAGEABLE);
|
|
mutex_enter(&ci->ci_data.cpu_uarea_lock);
|
|
}
|
|
mutex_exit(&ci->ci_data.cpu_uarea_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* uvm_exit: exit a virtual address space
|
|
*
|
|
* - the process passed to us is a dead (pre-zombie) process; we
|
|
* are running on a different context now (the reaper).
|
|
* - borrow proc0's address space because freeing the vmspace
|
|
* of the dead process may block.
|
|
*/
|
|
|
|
void
|
|
uvm_proc_exit(struct proc *p)
|
|
{
|
|
struct lwp *l = curlwp; /* XXX */
|
|
struct vmspace *ovm;
|
|
|
|
KASSERT(p == l->l_proc);
|
|
ovm = p->p_vmspace;
|
|
|
|
/*
|
|
* borrow proc0's address space.
|
|
*/
|
|
pmap_deactivate(l);
|
|
p->p_vmspace = proc0.p_vmspace;
|
|
pmap_activate(l);
|
|
|
|
uvmspace_free(ovm);
|
|
}
|
|
|
|
void
|
|
uvm_lwp_exit(struct lwp *l)
|
|
{
|
|
vaddr_t va = USER_TO_UAREA(l->l_addr);
|
|
|
|
l->l_flag &= ~LW_INMEM;
|
|
uvm_uarea_free(va, l->l_cpu);
|
|
l->l_addr = NULL;
|
|
}
|
|
|
|
/*
|
|
* uvm_init_limit: init per-process VM limits
|
|
*
|
|
* - called for process 0 and then inherited by all others.
|
|
*/
|
|
|
|
void
|
|
uvm_init_limits(struct proc *p)
|
|
{
|
|
|
|
/*
|
|
* Set up the initial limits on process VM. Set the maximum
|
|
* resident set size to be all of (reasonably) available memory.
|
|
* This causes any single, large process to start random page
|
|
* replacement once it fills memory.
|
|
*/
|
|
|
|
p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
|
|
p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
|
|
p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
int enableswap = 1;
|
|
int swapdebug = 0;
|
|
#define SDB_FOLLOW 1
|
|
#define SDB_SWAPIN 2
|
|
#define SDB_SWAPOUT 4
|
|
#endif
|
|
|
|
/*
|
|
* uvm_swapin: swap in an lwp's u-area.
|
|
*
|
|
* - must be called with the LWP's swap lock held.
|
|
* - naturally, must not be called with l == curlwp
|
|
*/
|
|
|
|
void
|
|
uvm_swapin(struct lwp *l)
|
|
{
|
|
vaddr_t addr;
|
|
int error;
|
|
|
|
/* XXXSMP notyet KASSERT(mutex_owned(&l->l_swaplock)); */
|
|
KASSERT(l != curlwp);
|
|
|
|
addr = USER_TO_UAREA(l->l_addr);
|
|
/* make L_INMEM true */
|
|
error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
|
|
VM_PROT_READ | VM_PROT_WRITE, 0);
|
|
if (error) {
|
|
panic("uvm_swapin: rewiring stack failed: %d", error);
|
|
}
|
|
|
|
/*
|
|
* Some architectures need to be notified when the user area has
|
|
* moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
|
|
*/
|
|
cpu_swapin(l);
|
|
lwp_lock(l);
|
|
if (l->l_stat == LSRUN)
|
|
sched_enqueue(l, false);
|
|
l->l_flag |= LW_INMEM;
|
|
l->l_swtime = 0;
|
|
lwp_unlock(l);
|
|
++uvmexp.swapins;
|
|
}
|
|
|
|
/*
|
|
* uvm_kick_scheduler: kick the scheduler into action if not running.
|
|
*
|
|
* - called when swapped out processes have been awoken.
|
|
*/
|
|
|
|
void
|
|
uvm_kick_scheduler(void)
|
|
{
|
|
|
|
if (uvm.swap_running == false)
|
|
return;
|
|
|
|
mutex_enter(&uvm_scheduler_mutex);
|
|
uvm.scheduler_kicked = true;
|
|
cv_signal(&uvm.scheduler_cv);
|
|
mutex_exit(&uvm_scheduler_mutex);
|
|
}
|
|
|
|
/*
|
|
* uvm_scheduler: process zero main loop
|
|
*
|
|
* - attempt to swapin every swaped-out, runnable process in order of
|
|
* priority.
|
|
* - if not enough memory, wake the pagedaemon and let it clear space.
|
|
*/
|
|
|
|
void
|
|
uvm_scheduler(void)
|
|
{
|
|
struct lwp *l, *ll;
|
|
int pri;
|
|
int ppri;
|
|
|
|
l = curlwp;
|
|
lwp_lock(l);
|
|
l->l_priority = PRI_VM;
|
|
l->l_class = SCHED_FIFO;
|
|
lwp_unlock(l);
|
|
|
|
for (;;) {
|
|
#ifdef DEBUG
|
|
mutex_enter(&uvm_scheduler_mutex);
|
|
while (!enableswap)
|
|
cv_wait(&uvm.scheduler_cv, &uvm_scheduler_mutex);
|
|
mutex_exit(&uvm_scheduler_mutex);
|
|
#endif
|
|
ll = NULL; /* process to choose */
|
|
ppri = INT_MIN; /* its priority */
|
|
|
|
mutex_enter(&proclist_lock);
|
|
LIST_FOREACH(l, &alllwp, l_list) {
|
|
/* is it a runnable swapped out process? */
|
|
if (l->l_stat == LSRUN && !(l->l_flag & LW_INMEM)) {
|
|
pri = l->l_swtime + l->l_slptime -
|
|
(l->l_proc->p_nice - NZERO) * 8;
|
|
if (pri > ppri) { /* higher priority? */
|
|
ll = l;
|
|
ppri = pri;
|
|
}
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_FOLLOW)
|
|
printf("scheduler: running, procp %p pri %d\n", ll,
|
|
ppri);
|
|
#endif
|
|
/*
|
|
* Nothing to do, back to sleep
|
|
*/
|
|
if ((l = ll) == NULL) {
|
|
mutex_exit(&proclist_lock);
|
|
mutex_enter(&uvm_scheduler_mutex);
|
|
if (uvm.scheduler_kicked == false)
|
|
cv_wait(&uvm.scheduler_cv,
|
|
&uvm_scheduler_mutex);
|
|
uvm.scheduler_kicked = false;
|
|
mutex_exit(&uvm_scheduler_mutex);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* we have found swapped out process which we would like
|
|
* to bring back in.
|
|
*
|
|
* XXX: this part is really bogus cuz we could deadlock
|
|
* on memory despite our feeble check
|
|
*/
|
|
if (uvmexp.free > atop(USPACE)) {
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_SWAPIN)
|
|
printf("swapin: pid %d(%s)@%p, pri %d "
|
|
"free %d\n", l->l_proc->p_pid,
|
|
l->l_proc->p_comm, l->l_addr, ppri,
|
|
uvmexp.free);
|
|
#endif
|
|
mutex_enter(&l->l_swaplock);
|
|
mutex_exit(&proclist_lock);
|
|
uvm_swapin(l);
|
|
mutex_exit(&l->l_swaplock);
|
|
continue;
|
|
} else {
|
|
/*
|
|
* not enough memory, jab the pageout daemon and
|
|
* wait til the coast is clear
|
|
*/
|
|
mutex_exit(&proclist_lock);
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_FOLLOW)
|
|
printf("scheduler: no room for pid %d(%s),"
|
|
" free %d\n", l->l_proc->p_pid,
|
|
l->l_proc->p_comm, uvmexp.free);
|
|
#endif
|
|
uvm_wait("schedpwait");
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_FOLLOW)
|
|
printf("scheduler: room again, free %d\n",
|
|
uvmexp.free);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* swappable: is LWP "l" swappable?
|
|
*/
|
|
|
|
static bool
|
|
swappable(struct lwp *l)
|
|
{
|
|
|
|
if ((l->l_flag & (LW_INMEM|LW_RUNNING|LW_SYSTEM|LW_WEXIT)) != LW_INMEM)
|
|
return false;
|
|
if (l->l_holdcnt != 0)
|
|
return false;
|
|
if (l->l_syncobj == &rw_syncobj || l->l_syncobj == &mutex_syncobj)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* swapout_threads: find threads that can be swapped and unwire their
|
|
* u-areas.
|
|
*
|
|
* - called by the pagedaemon
|
|
* - try and swap at least one processs
|
|
* - processes that are sleeping or stopped for maxslp or more seconds
|
|
* are swapped... otherwise the longest-sleeping or stopped process
|
|
* is swapped, otherwise the longest resident process...
|
|
*/
|
|
|
|
void
|
|
uvm_swapout_threads(void)
|
|
{
|
|
struct lwp *l;
|
|
struct lwp *outl, *outl2;
|
|
int outpri, outpri2;
|
|
int didswap = 0;
|
|
extern int maxslp;
|
|
bool gotit;
|
|
|
|
/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
|
|
|
|
#ifdef DEBUG
|
|
if (!enableswap)
|
|
return;
|
|
#endif
|
|
|
|
/*
|
|
* outl/outpri : stop/sleep thread with largest sleeptime < maxslp
|
|
* outl2/outpri2: the longest resident thread (its swap time)
|
|
*/
|
|
outl = outl2 = NULL;
|
|
outpri = outpri2 = 0;
|
|
|
|
restart:
|
|
mutex_enter(&proclist_lock);
|
|
LIST_FOREACH(l, &alllwp, l_list) {
|
|
KASSERT(l->l_proc != NULL);
|
|
if (!mutex_tryenter(&l->l_swaplock))
|
|
continue;
|
|
if (!swappable(l)) {
|
|
mutex_exit(&l->l_swaplock);
|
|
continue;
|
|
}
|
|
switch (l->l_stat) {
|
|
case LSONPROC:
|
|
break;
|
|
|
|
case LSRUN:
|
|
if (l->l_swtime > outpri2) {
|
|
outl2 = l;
|
|
outpri2 = l->l_swtime;
|
|
}
|
|
break;
|
|
|
|
case LSSLEEP:
|
|
case LSSTOP:
|
|
if (l->l_slptime >= maxslp) {
|
|
mutex_exit(&proclist_lock);
|
|
uvm_swapout(l);
|
|
/*
|
|
* Locking in the wrong direction -
|
|
* try to prevent the LWP from exiting.
|
|
*/
|
|
gotit = mutex_tryenter(&proclist_lock);
|
|
mutex_exit(&l->l_swaplock);
|
|
didswap++;
|
|
if (!gotit)
|
|
goto restart;
|
|
continue;
|
|
} else if (l->l_slptime > outpri) {
|
|
outl = l;
|
|
outpri = l->l_slptime;
|
|
}
|
|
break;
|
|
}
|
|
mutex_exit(&l->l_swaplock);
|
|
}
|
|
|
|
/*
|
|
* If we didn't get rid of any real duds, toss out the next most
|
|
* likely sleeping/stopped or running candidate. We only do this
|
|
* if we are real low on memory since we don't gain much by doing
|
|
* it (USPACE bytes).
|
|
*/
|
|
if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
|
|
if ((l = outl) == NULL)
|
|
l = outl2;
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_SWAPOUT)
|
|
printf("swapout_threads: no duds, try procp %p\n", l);
|
|
#endif
|
|
if (l) {
|
|
mutex_enter(&l->l_swaplock);
|
|
mutex_exit(&proclist_lock);
|
|
if (swappable(l))
|
|
uvm_swapout(l);
|
|
mutex_exit(&l->l_swaplock);
|
|
return;
|
|
}
|
|
}
|
|
|
|
mutex_exit(&proclist_lock);
|
|
}
|
|
|
|
/*
|
|
* uvm_swapout: swap out lwp "l"
|
|
*
|
|
* - currently "swapout" means "unwire U-area" and "pmap_collect()"
|
|
* the pmap.
|
|
* - must be called with l->l_swaplock held.
|
|
* - XXXCDC: should deactivate all process' private anonymous memory
|
|
*/
|
|
|
|
static void
|
|
uvm_swapout(struct lwp *l)
|
|
{
|
|
vaddr_t addr;
|
|
struct proc *p = l->l_proc;
|
|
|
|
KASSERT(mutex_owned(&l->l_swaplock));
|
|
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_SWAPOUT)
|
|
printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
|
|
p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
|
|
l->l_slptime, uvmexp.free);
|
|
#endif
|
|
|
|
/*
|
|
* Mark it as (potentially) swapped out.
|
|
*/
|
|
lwp_lock(l);
|
|
if (!swappable(l)) {
|
|
KDASSERT(l->l_cpu != curcpu());
|
|
lwp_unlock(l);
|
|
return;
|
|
}
|
|
l->l_flag &= ~LW_INMEM;
|
|
l->l_swtime = 0;
|
|
if (l->l_stat == LSRUN)
|
|
sched_dequeue(l);
|
|
lwp_unlock(l);
|
|
p->p_stats->p_ru.ru_nswap++; /* XXXSMP */
|
|
++uvmexp.swapouts;
|
|
|
|
/*
|
|
* Do any machine-specific actions necessary before swapout.
|
|
* This can include saving floating point state, etc.
|
|
*/
|
|
cpu_swapout(l);
|
|
|
|
/*
|
|
* Unwire the to-be-swapped process's user struct and kernel stack.
|
|
*/
|
|
addr = USER_TO_UAREA(l->l_addr);
|
|
uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
|
|
pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
|
|
}
|
|
|
|
/*
|
|
* uvm_lwp_hold: prevent lwp "l" from being swapped out, and bring
|
|
* back into memory if it is currently swapped.
|
|
*/
|
|
|
|
void
|
|
uvm_lwp_hold(struct lwp *l)
|
|
{
|
|
|
|
if (l == curlwp) {
|
|
atomic_inc_uint(&l->l_holdcnt);
|
|
} else {
|
|
mutex_enter(&l->l_swaplock);
|
|
if (atomic_inc_uint_nv(&l->l_holdcnt) == 1 &&
|
|
(l->l_flag & LW_INMEM) == 0)
|
|
uvm_swapin(l);
|
|
mutex_exit(&l->l_swaplock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* uvm_lwp_rele: release a hold on lwp "l". when the holdcount
|
|
* drops to zero, it's eligable to be swapped.
|
|
*/
|
|
|
|
void
|
|
uvm_lwp_rele(struct lwp *l)
|
|
{
|
|
|
|
KASSERT(l->l_holdcnt != 0);
|
|
|
|
atomic_dec_uint(&l->l_holdcnt);
|
|
}
|
|
|
|
#ifdef COREDUMP
|
|
/*
|
|
* uvm_coredump_walkmap: walk a process's map for the purpose of dumping
|
|
* a core file.
|
|
*/
|
|
|
|
int
|
|
uvm_coredump_walkmap(struct proc *p, void *iocookie,
|
|
int (*func)(struct proc *, void *, struct uvm_coredump_state *),
|
|
void *cookie)
|
|
{
|
|
struct uvm_coredump_state state;
|
|
struct vmspace *vm = p->p_vmspace;
|
|
struct vm_map *map = &vm->vm_map;
|
|
struct vm_map_entry *entry;
|
|
int error;
|
|
|
|
entry = NULL;
|
|
vm_map_lock_read(map);
|
|
state.end = 0;
|
|
for (;;) {
|
|
if (entry == NULL)
|
|
entry = map->header.next;
|
|
else if (!uvm_map_lookup_entry(map, state.end, &entry))
|
|
entry = entry->next;
|
|
if (entry == &map->header)
|
|
break;
|
|
|
|
state.cookie = cookie;
|
|
if (state.end > entry->start) {
|
|
state.start = state.end;
|
|
} else {
|
|
state.start = entry->start;
|
|
}
|
|
state.realend = entry->end;
|
|
state.end = entry->end;
|
|
state.prot = entry->protection;
|
|
state.flags = 0;
|
|
|
|
/*
|
|
* Dump the region unless one of the following is true:
|
|
*
|
|
* (1) the region has neither object nor amap behind it
|
|
* (ie. it has never been accessed).
|
|
*
|
|
* (2) the region has no amap and is read-only
|
|
* (eg. an executable text section).
|
|
*
|
|
* (3) the region's object is a device.
|
|
*
|
|
* (4) the region is unreadable by the process.
|
|
*/
|
|
|
|
KASSERT(!UVM_ET_ISSUBMAP(entry));
|
|
KASSERT(state.start < VM_MAXUSER_ADDRESS);
|
|
KASSERT(state.end <= VM_MAXUSER_ADDRESS);
|
|
if (entry->object.uvm_obj == NULL &&
|
|
entry->aref.ar_amap == NULL) {
|
|
state.realend = state.start;
|
|
} else if ((entry->protection & VM_PROT_WRITE) == 0 &&
|
|
entry->aref.ar_amap == NULL) {
|
|
state.realend = state.start;
|
|
} else if (entry->object.uvm_obj != NULL &&
|
|
UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
|
|
state.realend = state.start;
|
|
} else if ((entry->protection & VM_PROT_READ) == 0) {
|
|
state.realend = state.start;
|
|
} else {
|
|
if (state.start >= (vaddr_t)vm->vm_maxsaddr)
|
|
state.flags |= UVM_COREDUMP_STACK;
|
|
|
|
/*
|
|
* If this an anonymous entry, only dump instantiated
|
|
* pages.
|
|
*/
|
|
if (entry->object.uvm_obj == NULL) {
|
|
vaddr_t end;
|
|
|
|
amap_lock(entry->aref.ar_amap);
|
|
for (end = state.start;
|
|
end < state.end; end += PAGE_SIZE) {
|
|
struct vm_anon *anon;
|
|
anon = amap_lookup(&entry->aref,
|
|
end - entry->start);
|
|
/*
|
|
* If we have already encountered an
|
|
* uninstantiated page, stop at the
|
|
* first instantied page.
|
|
*/
|
|
if (anon != NULL &&
|
|
state.realend != state.end) {
|
|
state.end = end;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If this page is the first
|
|
* uninstantiated page, mark this as
|
|
* the real ending point. Continue to
|
|
* counting uninstantiated pages.
|
|
*/
|
|
if (anon == NULL &&
|
|
state.realend == state.end) {
|
|
state.realend = end;
|
|
}
|
|
}
|
|
amap_unlock(entry->aref.ar_amap);
|
|
}
|
|
}
|
|
|
|
|
|
vm_map_unlock_read(map);
|
|
error = (*func)(p, iocookie, &state);
|
|
if (error)
|
|
return (error);
|
|
vm_map_lock_read(map);
|
|
}
|
|
vm_map_unlock_read(map);
|
|
|
|
return (0);
|
|
}
|
|
#endif /* COREDUMP */
|