NetBSD/sys/ufs/lfs/lfs_syscalls.c

590 lines
15 KiB
C

/* $NetBSD: lfs_syscalls.c,v 1.18 1998/06/24 20:58:48 sommerfe Exp $ */
/*-
* Copyright (c) 1991, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
*/
#if defined(_KERNEL) && !defined(_LKM)
#include "fs_lfs.h" /* for prototypes in syscallargs.h */
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/syscallargs.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_extern.h>
#define BUMP_FIP(SP) \
(SP)->fip = (FINFO *) (&(SP)->fip->fi_blocks[(SP)->fip->fi_nblocks])
#define INC_FINFO(SP) ++((SEGSUM *)((SP)->segsum))->ss_nfinfo
#define DEC_FINFO(SP) --((SEGSUM *)((SP)->segsum))->ss_nfinfo
/*
* Before committing to add something to a segment summary, make sure there
* is enough room. S is the bytes added to the summary.
*/
#define CHECK_SEG(s) \
if (sp->sum_bytes_left < (s)) { \
(void) lfs_writeseg(fs, sp); \
}
struct buf *lfs_fakebuf __P((struct vnode *, int, size_t, caddr_t));
int debug_cleaner = 0;
int clean_vnlocked = 0;
int clean_inlocked = 0;
/*
* lfs_markv:
*
* This will mark inodes and blocks dirty, so they are written into the log.
* It will block until all the blocks have been written. The segment create
* time passed in the block_info and inode_info structures is used to decide
* if the data is valid for each block (in case some process dirtied a block
* or inode that is being cleaned between the determination that a block is
* live and the lfs_markv call).
*
* 0 on success
* -1/errno is return on error.
*/
int
lfs_markv(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct lfs_markv_args /* {
syscallarg(fsid_t *) fsidp;
syscallarg(struct block_info *) blkiov;
syscallarg(int) blkcnt;
} */ *uap = v;
struct segment *sp;
BLOCK_INFO *blkp;
IFILE *ifp;
struct buf *bp, **bpp;
struct inode *ip = NULL;
struct lfs *fs;
struct mount *mntp;
struct vnode *vp;
fsid_t fsid;
void *start;
ino_t lastino;
ufs_daddr_t b_daddr, v_daddr;
u_long bsize;
int cnt, error;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return (error);
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
return (error);
if ((mntp = vfs_getvfs(&fsid)) == NULL)
return (EINVAL);
cnt = SCARG(uap, blkcnt);
start = malloc(cnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
error = copyin(SCARG(uap, blkiov), start, cnt * sizeof(BLOCK_INFO));
if (error)
goto err1;
/* Mark blocks/inodes dirty. */
fs = VFSTOUFS(mntp)->um_lfs;
bsize = fs->lfs_bsize;
error = 0;
lfs_seglock(fs, SEGM_SYNC | SEGM_CLEAN);
sp = fs->lfs_sp;
for (v_daddr = LFS_UNUSED_DADDR, lastino = LFS_UNUSED_INUM,
blkp = start; cnt--; ++blkp) {
/*
* Get the IFILE entry (only once) and see if the file still
* exists.
*/
if (lastino != blkp->bi_inode) {
if (lastino != LFS_UNUSED_INUM) {
/* Finish up last file */
if (sp->fip->fi_nblocks == 0) {
DEC_FINFO(sp);
sp->sum_bytes_left +=
sizeof(FINFO) - sizeof(ufs_daddr_t);
} else {
lfs_updatemeta(sp);
BUMP_FIP(sp);
}
lfs_writeinode(fs, sp, ip);
lfs_vunref(vp);
}
/* Start a new file */
CHECK_SEG(sizeof(FINFO));
sp->sum_bytes_left -= sizeof(FINFO) - sizeof(ufs_daddr_t);
INC_FINFO(sp);
sp->start_lbp = &sp->fip->fi_blocks[0];
sp->vp = NULL;
sp->fip->fi_version = blkp->bi_version;
sp->fip->fi_nblocks = 0;
sp->fip->fi_ino = blkp->bi_inode;
lastino = blkp->bi_inode;
if (blkp->bi_inode == LFS_IFILE_INUM)
v_daddr = fs->lfs_idaddr;
else {
LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
v_daddr = ifp->if_daddr;
brelse(bp);
}
if (v_daddr == LFS_UNUSED_DADDR)
continue;
/* Get the vnode/inode. */
if (lfs_fastvget(mntp, blkp->bi_inode, v_daddr, &vp,
blkp->bi_lbn == LFS_UNUSED_LBN ?
blkp->bi_bp : NULL)) {
#ifdef DIAGNOSTIC
printf("lfs_markv: VFS_VGET failed (%d)\n",
blkp->bi_inode);
panic("lfs_markv VFS_VGET FAILED");
#endif
lastino = LFS_UNUSED_INUM;
v_daddr = LFS_UNUSED_DADDR;
continue;
}
sp->vp = vp;
ip = VTOI(vp);
} else if (v_daddr == LFS_UNUSED_DADDR)
continue;
/* If this BLOCK_INFO didn't contain a block, keep going. */
if (blkp->bi_lbn == LFS_UNUSED_LBN)
continue;
if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
b_daddr != blkp->bi_daddr)
continue;
/*
* If we got to here, then we are keeping the block. If it
* is an indirect block, we want to actually put it in the
* buffer cache so that it can be updated in the finish_meta
* section. If it's not, we need to allocate a fake buffer
* so that writeseg can perform the copyin and write the buffer.
*/
if (blkp->bi_lbn >= 0) /* Data Block */
bp = lfs_fakebuf(vp, blkp->bi_lbn, bsize,
blkp->bi_bp);
else {
bp = getblk(vp, blkp->bi_lbn, bsize, 0, 0);
if (!(bp->b_flags & (B_DELWRI | B_DONE | B_CACHE)) &&
(error = copyin(blkp->bi_bp, bp->b_data,
blkp->bi_size)))
goto err2;
if ((error = VOP_BWRITE(bp)) != 0)
goto err2;
}
while (lfs_gatherblock(sp, bp, NULL));
}
if (sp->vp) {
if (sp->fip->fi_nblocks == 0) {
DEC_FINFO(sp);
sp->sum_bytes_left +=
sizeof(FINFO) - sizeof(ufs_daddr_t);
} else
lfs_updatemeta(sp);
lfs_writeinode(fs, sp, ip);
lfs_vunref(vp);
}
(void) lfs_writeseg(fs, sp);
lfs_segunlock(fs);
free(start, M_SEGMENT);
return (error);
/*
* XXX
* If we come in to error 2, we might have indirect blocks that were
* updated and now have bad block pointers. I don't know what to do
* about this.
*/
err2: lfs_vunref(vp);
/* Free up fakebuffers */
for (bpp = --sp->cbpp; bpp >= sp->bpp; --bpp)
if ((*bpp)->b_flags & B_CALL) {
brelvp(*bpp);
free(*bpp, M_SEGMENT);
} else
brelse(*bpp);
lfs_segunlock(fs);
err1:
free(start, M_SEGMENT);
return (error);
}
/*
* lfs_bmapv:
*
* This will fill in the current disk address for arrays of blocks.
*
* 0 on success
* -1/errno is return on error.
*/
int
lfs_bmapv(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct lfs_bmapv_args /* {
syscallarg(fsid_t *) fsidp;
syscallarg(struct block_info *) blkiov;
syscallarg(int) blkcnt;
} */ *uap = v;
BLOCK_INFO *blkp;
struct mount *mntp;
struct ufsmount *ump;
struct vnode *vp;
fsid_t fsid;
void *start;
ufs_daddr_t daddr;
int cnt, error, step;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return (error);
error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t));
if (error)
return (error);
if ((mntp = vfs_getvfs(&fsid)) == NULL)
return (EINVAL);
cnt = SCARG(uap, blkcnt);
start = blkp = malloc(cnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
error = copyin(SCARG(uap, blkiov), blkp, cnt * sizeof(BLOCK_INFO));
if (error) {
free(blkp, M_SEGMENT);
return (error);
}
for (step = cnt; step--; ++blkp) {
if (blkp->bi_lbn == LFS_UNUSED_LBN)
continue;
/*
* A regular call to VFS_VGET could deadlock
* here. Instead, we try an unlocked access.
*/
ump = VFSTOUFS(mntp);
if ((vp =
ufs_ihashlookup(ump->um_dev, blkp->bi_inode)) != NULL) {
if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &daddr, NULL))
daddr = LFS_UNUSED_DADDR;
} else if (VFS_VGET(mntp, blkp->bi_inode, &vp))
daddr = LFS_UNUSED_DADDR;
else {
if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &daddr, NULL))
daddr = LFS_UNUSED_DADDR;
vput(vp);
}
blkp->bi_daddr = daddr;
}
copyout(start, SCARG(uap, blkiov), cnt * sizeof(BLOCK_INFO));
free(start, M_SEGMENT);
return (0);
}
/*
* lfs_segclean:
*
* Mark the segment clean.
*
* 0 on success
* -1/errno is return on error.
*/
int
lfs_segclean(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct lfs_segclean_args /* {
syscallarg(fsid_t *) fsidp;
syscallarg(u_long) segment;
} */ *uap = v;
CLEANERINFO *cip;
SEGUSE *sup;
struct buf *bp;
struct mount *mntp;
struct lfs *fs;
fsid_t fsid;
int error;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return (error);
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
return (error);
if ((mntp = vfs_getvfs(&fsid)) == NULL)
return (EINVAL);
fs = VFSTOUFS(mntp)->um_lfs;
if (datosn(fs, fs->lfs_curseg) == SCARG(uap, segment))
return (EBUSY);
LFS_SEGENTRY(sup, fs, SCARG(uap, segment), bp);
if (sup->su_flags & SEGUSE_ACTIVE) {
brelse(bp);
return (EBUSY);
}
fs->lfs_avail += fsbtodb(fs, fs->lfs_ssize) - 1;
fs->lfs_bfree += (sup->su_nsums * LFS_SUMMARY_SIZE / DEV_BSIZE) +
sup->su_ninos * btodb(fs->lfs_bsize);
sup->su_flags &= ~SEGUSE_DIRTY;
(void) VOP_BWRITE(bp);
LFS_CLEANERINFO(cip, fs, bp);
++cip->clean;
--cip->dirty;
(void) VOP_BWRITE(bp);
wakeup(&fs->lfs_avail);
return (0);
}
/*
* lfs_segwait:
*
* This will block until a segment in file system fsid is written. A timeout
* in milliseconds may be specified which will awake the cleaner automatically.
* An fsid of -1 means any file system, and a timeout of 0 means forever.
*
* 0 on success
* 1 on timeout
* -1/errno is return on error.
*/
int
lfs_segwait(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct lfs_segwait_args /* {
syscallarg(fsid_t *) fsidp;
syscallarg(struct timeval *) tv;
} */ *uap = v;
extern int lfs_allclean_wakeup;
struct mount *mntp;
struct timeval atv;
fsid_t fsid;
void *addr;
u_long timeout;
int error, s;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) {
return (error);
}
#ifdef WHEN_QUADS_WORK
if (error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t)))
return (error);
if (fsid == (fsid_t)-1)
addr = &lfs_allclean_wakeup;
else {
if ((mntp = vfs_getvfs(&fsid)) == NULL)
return (EINVAL);
addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
}
#else
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
return (error);
if ((mntp = vfs_getvfs(&fsid)) == NULL)
addr = &lfs_allclean_wakeup;
else
addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
#endif
if (SCARG(uap, tv)) {
error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
if (error)
return (error);
if (itimerfix(&atv))
return (EINVAL);
s = splclock();
timeradd(&atv, &time, &atv);
timeout = hzto(&atv);
splx(s);
} else
timeout = 0;
error = tsleep(addr, PCATCH | PUSER, "segment", timeout);
return (error == ERESTART ? EINTR : 0);
}
/*
* VFS_VGET call specialized for the cleaner. The cleaner already knows the
* daddr from the ifile, so don't look it up again. If the cleaner is
* processing IINFO structures, it may have the ondisk inode already, so
* don't go retrieving it again.
*/
int
lfs_fastvget(mp, ino, daddr, vpp, dinp)
struct mount *mp;
ino_t ino;
ufs_daddr_t daddr;
struct vnode **vpp;
struct dinode *dinp;
{
register struct inode *ip;
struct vnode *vp;
struct ufsmount *ump;
struct buf *bp;
dev_t dev;
int error;
ump = VFSTOUFS(mp);
dev = ump->um_dev;
/*
* This is playing fast and loose. Someone may have the inode
* locked, in which case they are going to be distinctly unhappy
* if we trash something.
*/
if ((*vpp = ufs_ihashlookup(dev, ino)) != NULL) {
lfs_vref(*vpp);
if ((*vpp)->v_flag & VXLOCK)
clean_vnlocked++;
ip = VTOI(*vpp);
if (lockstatus(&ip->i_lock))
clean_inlocked++;
if (!(ip->i_flag & IN_MODIFIED))
++ump->um_lfs->lfs_uinodes;
ip->i_flag |= IN_MODIFIED;
return (0);
}
/* Allocate new vnode/inode. */
if ((error = lfs_vcreate(mp, ino, &vp)) != 0) {
*vpp = NULL;
return (error);
}
/*
* Put it onto its hash chain and lock it so that other requests for
* this inode will block if they arrive while we are sleeping waiting
* for old data structures to be purged or for the contents of the
* disk portion of this inode to be read.
*/
ip = VTOI(vp);
ufs_ihashins(ip);
/*
* XXX
* This may not need to be here, logically it should go down with
* the i_devvp initialization.
* Ask Kirk.
*/
ip->i_lfs = ump->um_lfs;
/* Read in the disk contents for the inode, copy into the inode. */
if (dinp) {
error = copyin(dinp, &ip->i_din.ffs_din, sizeof(struct dinode));
if (error)
return (error);
}
else {
error = bread(ump->um_devvp, daddr,
(int)ump->um_lfs->lfs_bsize, NOCRED, &bp);
if (error) {
/*
* The inode does not contain anything useful, so it
* would be misleading to leave it on its hash chain.
* Iput() will return it to the free list.
*/
ufs_ihashrem(ip);
/* Unlock and discard unneeded inode. */
lfs_vunref(vp);
brelse(bp);
*vpp = NULL;
return (error);
}
ip->i_din.ffs_din =
*lfs_ifind(ump->um_lfs, ino, (struct dinode *)bp->b_data);
brelse(bp);
}
/*
* Initialize the vnode from the inode, check for aliases. In all
* cases re-init ip, the underlying vnode/inode may have changed.
*/
error = ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
if (error) {
lfs_vunref(vp);
*vpp = NULL;
return (error);
}
/*
* Finish inode initialization now that aliasing has been resolved.
*/
ip->i_devvp = ump->um_devvp;
ip->i_flag |= IN_MODIFIED;
++ump->um_lfs->lfs_uinodes;
VREF(ip->i_devvp);
*vpp = vp;
return (0);
}
struct buf *
lfs_fakebuf(vp, lbn, size, uaddr)
struct vnode *vp;
int lbn;
size_t size;
caddr_t uaddr;
{
struct buf *bp;
bp = lfs_newbuf(vp, lbn, 0);
bp->b_saveaddr = uaddr;
bp->b_bufsize = size;
bp->b_bcount = size;
bp->b_flags |= B_INVAL;
return (bp);
}