NetBSD/sys/ufs/lfs/lfs_segment.c

2408 lines
66 KiB
C

/* $NetBSD: lfs_segment.c,v 1.100 2003/02/05 21:38:45 pk Exp $ */
/*-
* Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.100 2003/02/05 21:38:45 pk Exp $");
#define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
#if defined(_KERNEL_OPT)
#include "opt_ddb.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/kernel.h>
#include <sys/resourcevar.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <miscfs/specfs/specdev.h>
#include <miscfs/fifofs/fifo.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_extern.h>
#include <uvm/uvm.h>
#include <uvm/uvm_extern.h>
MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
extern int count_lock_queue(void);
extern struct simplelock vnode_free_list_slock; /* XXX */
static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
static void lfs_super_aiodone(struct buf *);
static void lfs_cluster_aiodone(struct buf *);
static void lfs_cluster_callback(struct buf *);
static struct buf **lookahead_pagemove(struct buf **, int, size_t *);
/*
* Determine if it's OK to start a partial in this segment, or if we need
* to go on to a new segment.
*/
#define LFS_PARTIAL_FITS(fs) \
((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
fragstofsb((fs), (fs)->lfs_frag))
void lfs_callback(struct buf *);
int lfs_gather(struct lfs *, struct segment *,
struct vnode *, int (*)(struct lfs *, struct buf *));
int lfs_gatherblock(struct segment *, struct buf *, int *);
void lfs_iset(struct inode *, daddr_t, time_t);
int lfs_match_fake(struct lfs *, struct buf *);
int lfs_match_data(struct lfs *, struct buf *);
int lfs_match_dindir(struct lfs *, struct buf *);
int lfs_match_indir(struct lfs *, struct buf *);
int lfs_match_tindir(struct lfs *, struct buf *);
void lfs_newseg(struct lfs *);
/* XXX ondisk32 */
void lfs_shellsort(struct buf **, int32_t *, int);
void lfs_supercallback(struct buf *);
void lfs_updatemeta(struct segment *);
int lfs_vref(struct vnode *);
void lfs_vunref(struct vnode *);
void lfs_writefile(struct lfs *, struct segment *, struct vnode *);
int lfs_writeinode(struct lfs *, struct segment *, struct inode *);
int lfs_writeseg(struct lfs *, struct segment *);
void lfs_writesuper(struct lfs *, daddr_t);
int lfs_writevnodes(struct lfs *fs, struct mount *mp,
struct segment *sp, int dirops);
int lfs_allclean_wakeup; /* Cleaner wakeup address. */
int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
int lfs_dirvcount = 0; /* # active dirops */
/* Statistics Counters */
int lfs_dostats = 1;
struct lfs_stats lfs_stats;
extern int locked_queue_count;
extern long locked_queue_bytes;
/* op values to lfs_writevnodes */
#define VN_REG 0
#define VN_DIROP 1
#define VN_EMPTY 2
#define VN_CLEAN 3
#define LFS_MAX_ACTIVE 10
/*
* XXX KS - Set modification time on the Ifile, so the cleaner can
* read the fs mod time off of it. We don't set IN_UPDATE here,
* since we don't really need this to be flushed to disk (and in any
* case that wouldn't happen to the Ifile until we checkpoint).
*/
void
lfs_imtime(struct lfs *fs)
{
struct timespec ts;
struct inode *ip;
TIMEVAL_TO_TIMESPEC(&time, &ts);
ip = VTOI(fs->lfs_ivnode);
ip->i_ffs_mtime = ts.tv_sec;
ip->i_ffs_mtimensec = ts.tv_nsec;
}
/*
* Ifile and meta data blocks are not marked busy, so segment writes MUST be
* single threaded. Currently, there are two paths into lfs_segwrite, sync()
* and getnewbuf(). They both mark the file system busy. Lfs_vflush()
* explicitly marks the file system busy. So lfs_segwrite is safe. I think.
*/
#define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
#define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
#define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
int
lfs_vflush(struct vnode *vp)
{
struct inode *ip;
struct lfs *fs;
struct segment *sp;
struct buf *bp, *nbp, *tbp, *tnbp;
int error, s;
ip = VTOI(vp);
fs = VFSTOUFS(vp->v_mount)->um_lfs;
if (ip->i_flag & IN_CLEANING) {
#ifdef DEBUG_LFS
ivndebug(vp,"vflush/in_cleaning");
#endif
LFS_CLR_UINO(ip, IN_CLEANING);
LFS_SET_UINO(ip, IN_MODIFIED);
/*
* Toss any cleaning buffers that have real counterparts
* to avoid losing new data
*/
s = splbio();
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
if (bp->b_flags & B_CALL) {
for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
tbp = tnbp)
{
tnbp = LIST_NEXT(tbp, b_vnbufs);
if (tbp->b_vp == bp->b_vp
&& tbp->b_lblkno == bp->b_lblkno
&& tbp != bp)
{
fs->lfs_avail += btofsb(fs, bp->b_bcount);
wakeup(&fs->lfs_avail);
lfs_freebuf(bp);
bp = NULL;
break;
}
}
}
}
splx(s);
}
/* If the node is being written, wait until that is done */
s = splbio();
if (WRITEINPROG(vp)) {
#ifdef DEBUG_LFS
ivndebug(vp,"vflush/writeinprog");
#endif
tsleep(vp, PRIBIO+1, "lfs_vw", 0);
}
splx(s);
/* Protect against VXLOCK deadlock in vinvalbuf() */
lfs_seglock(fs, SEGM_SYNC);
/* If we're supposed to flush a freed inode, just toss it */
/* XXX - seglock, so these buffers can't be gathered, right? */
if (ip->i_ffs_mode == 0) {
printf("lfs_vflush: ino %d is freed, not flushing\n",
ip->i_number);
s = splbio();
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
if (bp->b_flags & B_DELWRI) { /* XXX always true? */
fs->lfs_avail += btofsb(fs, bp->b_bcount);
wakeup(&fs->lfs_avail);
}
/* Copied from lfs_writeseg */
if (bp->b_flags & B_CALL) {
/* if B_CALL, it was created with newbuf */
lfs_freebuf(bp);
bp = NULL;
} else {
bremfree(bp);
LFS_UNLOCK_BUF(bp);
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
B_GATHERED);
bp->b_flags |= B_DONE;
reassignbuf(bp, vp);
brelse(bp);
}
}
splx(s);
LFS_CLR_UINO(ip, IN_CLEANING);
LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
ip->i_flag &= ~IN_ALLMOD;
printf("lfs_vflush: done not flushing ino %d\n",
ip->i_number);
lfs_segunlock(fs);
return 0;
}
SET_FLUSHING(fs,vp);
if (fs->lfs_nactive > LFS_MAX_ACTIVE ||
(fs->lfs_sp->seg_flags & SEGM_CKP)) {
error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
CLR_FLUSHING(fs,vp);
lfs_segunlock(fs);
return error;
}
sp = fs->lfs_sp;
if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
} else if ((ip->i_flag & IN_CLEANING) &&
(fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
#ifdef DEBUG_LFS
ivndebug(vp,"vflush/clean");
#endif
lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
} else if (lfs_dostats) {
if (LIST_FIRST(&vp->v_dirtyblkhd) || (VTOI(vp)->i_flag & IN_ALLMOD))
++lfs_stats.vflush_invoked;
#ifdef DEBUG_LFS
ivndebug(vp,"vflush");
#endif
}
#ifdef DIAGNOSTIC
/* XXX KS This actually can happen right now, though it shouldn't(?) */
if (vp->v_flag & VDIROP) {
printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
/* panic("VDIROP being flushed...this can\'t happen"); */
}
if (vp->v_usecount < 0) {
printf("usecount=%ld\n", (long)vp->v_usecount);
panic("lfs_vflush: usecount<0");
}
#endif
do {
do {
if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
lfs_writefile(fs, sp, vp);
} while (lfs_writeinode(fs, sp, ip));
} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
if (lfs_dostats) {
++lfs_stats.nwrites;
if (sp->seg_flags & SEGM_SYNC)
++lfs_stats.nsync_writes;
if (sp->seg_flags & SEGM_CKP)
++lfs_stats.ncheckpoints;
}
/*
* If we were called from somewhere that has already held the seglock
* (e.g., lfs_markv()), the lfs_segunlock will not wait for
* the write to complete because we are still locked.
* Since lfs_vflush() must return the vnode with no dirty buffers,
* we must explicitly wait, if that is the case.
*
* We compare the iocount against 1, not 0, because it is
* artificially incremented by lfs_seglock().
*/
if (fs->lfs_seglock > 1) {
while (fs->lfs_iocount > 1)
(void)tsleep(&fs->lfs_iocount, PRIBIO + 1,
"lfs_vflush", 0);
}
lfs_segunlock(fs);
CLR_FLUSHING(fs,vp);
return (0);
}
#ifdef DEBUG_LFS_VERBOSE
# define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
#else
# define vndebug(vp,str)
#endif
int
lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
{
struct inode *ip;
struct vnode *vp, *nvp;
int inodes_written = 0, only_cleaning;
#ifndef LFS_NO_BACKVP_HACK
/* BEGIN HACK */
#define VN_OFFSET (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp)
#define BACK_VP(VP) ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET))
#define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&(LIST_FIRST(&mp->mnt_vnodelist))) - VN_OFFSET))
/* Find last vnode. */
loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist);
vp && LIST_NEXT(vp, v_mntvnodes) != NULL;
vp = LIST_NEXT(vp, v_mntvnodes));
for (; vp && vp != BEG_OF_VLIST; vp = nvp) {
nvp = BACK_VP(vp);
#else
loop:
for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
nvp = LIST_NEXT(vp, v_mntvnodes);
#endif
/*
* If the vnode that we are about to sync is no longer
* associated with this mount point, start over.
*/
if (vp->v_mount != mp) {
printf("lfs_writevnodes: starting over\n");
goto loop;
}
if (vp->v_type == VNON) {
continue;
}
ip = VTOI(vp);
if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
(op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
vndebug(vp,"dirop");
continue;
}
if (op == VN_EMPTY && LIST_FIRST(&vp->v_dirtyblkhd)) {
vndebug(vp,"empty");
continue;
}
if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
&& vp != fs->lfs_flushvp
&& !(ip->i_flag & IN_CLEANING)) {
vndebug(vp,"cleaning");
continue;
}
if (lfs_vref(vp)) {
vndebug(vp,"vref");
continue;
}
only_cleaning = 0;
/*
* Write the inode/file if dirty and it's not the IFILE.
*/
if ((ip->i_flag & IN_ALLMOD) ||
(LIST_FIRST(&vp->v_dirtyblkhd) != NULL))
{
only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
if (ip->i_number != LFS_IFILE_INUM
&& LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
{
lfs_writefile(fs, sp, vp);
}
if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
if (WRITEINPROG(vp)) {
#ifdef DEBUG_LFS
ivndebug(vp,"writevnodes/write2");
#endif
} else if (!(ip->i_flag & IN_ALLMOD)) {
#ifdef DEBUG_LFS
printf("<%d>",ip->i_number);
#endif
LFS_SET_UINO(ip, IN_MODIFIED);
}
}
(void) lfs_writeinode(fs, sp, ip);
inodes_written++;
}
if (lfs_clean_vnhead && only_cleaning)
lfs_vunref_head(vp);
else
lfs_vunref(vp);
}
return inodes_written;
}
/*
* Do a checkpoint.
*/
int
lfs_segwrite(struct mount *mp, int flags)
{
struct buf *bp;
struct inode *ip;
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
SEGUSE *segusep;
daddr_t ibno;
int do_ckp, did_ckp, error, i;
int writer_set = 0;
int dirty;
int redo;
fs = VFSTOUFS(mp)->um_lfs;
if (fs->lfs_ronly)
return EROFS;
lfs_imtime(fs);
/* printf("lfs_segwrite: ifile flags are 0x%lx\n",
(long)(VTOI(fs->lfs_ivnode)->i_flag)); */
#if 0
/*
* If we are not the cleaner, and there is no space available,
* wait until cleaner writes.
*/
if (!(flags & SEGM_CLEAN) && !(fs->lfs_seglock && fs->lfs_sp &&
(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
{
while (fs->lfs_avail <= 0) {
LFS_CLEANERINFO(cip, fs, bp);
LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
wakeup(&lfs_allclean_wakeup);
wakeup(&fs->lfs_nextseg);
error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
0);
if (error) {
return (error);
}
}
}
#endif
/*
* Allocate a segment structure and enough space to hold pointers to
* the maximum possible number of buffers which can be described in a
* single summary block.
*/
do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
sp = fs->lfs_sp;
/*
* If lfs_flushvp is non-NULL, we are called from lfs_vflush,
* in which case we have to flush *all* buffers off of this vnode.
* We don't care about other nodes, but write any non-dirop nodes
* anyway in anticipation of another getnewvnode().
*
* If we're cleaning we only write cleaning and ifile blocks, and
* no dirops, since otherwise we'd risk corruption in a crash.
*/
if (sp->seg_flags & SEGM_CLEAN)
lfs_writevnodes(fs, mp, sp, VN_CLEAN);
else {
lfs_writevnodes(fs, mp, sp, VN_REG);
if (!fs->lfs_dirops || !fs->lfs_flushvp) {
while (fs->lfs_dirops)
if ((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
"lfs writer", 0)))
{
/* XXX why not segunlock? */
free(sp->bpp, M_SEGMENT);
sp->bpp = NULL;
free(sp, M_SEGMENT);
fs->lfs_sp = NULL;
return (error);
}
fs->lfs_writer++;
writer_set = 1;
lfs_writevnodes(fs, mp, sp, VN_DIROP);
((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
}
}
/*
* If we are doing a checkpoint, mark everything since the
* last checkpoint as no longer ACTIVE.
*/
if (do_ckp) {
for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
--ibno >= fs->lfs_cleansz; ) {
dirty = 0;
if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
panic("lfs_segwrite: ifile read");
segusep = (SEGUSE *)bp->b_data;
for (i = fs->lfs_sepb; i--;) {
if (segusep->su_flags & SEGUSE_ACTIVE) {
segusep->su_flags &= ~SEGUSE_ACTIVE;
++dirty;
}
if (fs->lfs_version > 1)
++segusep;
else
segusep = (SEGUSE *)
((SEGUSE_V1 *)segusep + 1);
}
/* But the current segment is still ACTIVE */
segusep = (SEGUSE *)bp->b_data;
if (dtosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
(ibno-fs->lfs_cleansz)) {
if (fs->lfs_version > 1)
segusep[dtosn(fs, fs->lfs_curseg) %
fs->lfs_sepb].su_flags |=
SEGUSE_ACTIVE;
else
((SEGUSE *)
((SEGUSE_V1 *)(bp->b_data) +
(dtosn(fs, fs->lfs_curseg) %
fs->lfs_sepb)))->su_flags
|= SEGUSE_ACTIVE;
--dirty;
}
if (dirty)
error = LFS_BWRITE_LOG(bp); /* Ifile */
else
brelse(bp);
}
}
did_ckp = 0;
if (do_ckp || fs->lfs_doifile) {
do {
vp = fs->lfs_ivnode;
vget(vp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
#ifdef DEBUG
LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0);
#endif
fs->lfs_flags &= ~LFS_IFDIRTY;
ip = VTOI(vp);
if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
lfs_writefile(fs, sp, vp);
if (ip->i_flag & IN_ALLMOD)
++did_ckp;
redo = lfs_writeinode(fs, sp, ip);
vput(vp);
/*
* if we know we'll redo, no need to writeseg here.
*/
if (!(redo && do_ckp)) {
redo += lfs_writeseg(fs, sp);
}
redo += (fs->lfs_flags & LFS_IFDIRTY);
} while (redo && do_ckp);
/* The ifile should now be all clear */
if (do_ckp && LIST_FIRST(&vp->v_dirtyblkhd)) {
struct buf *bp;
int s, warned = 0, dopanic = 0;
s = splbio();
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = LIST_NEXT(bp, b_vnbufs)) {
if (!(bp->b_flags & B_GATHERED)) {
if (!warned)
printf("lfs_segwrite: ifile still has dirty blocks?!\n");
++dopanic;
++warned;
printf("bp=%p, lbn %" PRId64 ", "
"flags 0x%lx\n",
bp, bp->b_lblkno,
bp->b_flags);
}
}
if (dopanic)
panic("dirty blocks");
splx(s);
}
LFS_CLR_UINO(ip, IN_ALLMOD);
} else {
(void) lfs_writeseg(fs, sp);
}
/*
* If the I/O count is non-zero, sleep until it reaches zero.
* At the moment, the user's process hangs around so we can
* sleep.
*/
fs->lfs_doifile = 0;
if (writer_set && --fs->lfs_writer == 0)
wakeup(&fs->lfs_dirops);
/*
* If we didn't write the Ifile, we didn't really do anything.
* That means that (1) there is a checkpoint on disk and (2)
* nothing has changed since it was written.
*
* Take the flags off of the segment so that lfs_segunlock
* doesn't have to write the superblock either.
*/
if (do_ckp && !did_ckp) {
sp->seg_flags &= ~SEGM_CKP;
/* if (do_ckp) printf("lfs_segwrite: no checkpoint\n"); */
}
if (lfs_dostats) {
++lfs_stats.nwrites;
if (sp->seg_flags & SEGM_SYNC)
++lfs_stats.nsync_writes;
if (sp->seg_flags & SEGM_CKP)
++lfs_stats.ncheckpoints;
}
lfs_segunlock(fs);
return (0);
}
/*
* Write the dirty blocks associated with a vnode.
*/
void
lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
{
struct buf *bp;
struct finfo *fip;
struct inode *ip;
IFILE *ifp;
int i, frag;
ip = VTOI(vp);
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(struct finfo))
(void) lfs_writeseg(fs, sp);
sp->sum_bytes_left -= FINFOSIZE;
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
if (vp->v_flag & VDIROP)
((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
fip = sp->fip;
fip->fi_nblocks = 0;
fip->fi_ino = ip->i_number;
LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
fip->fi_version = ifp->if_version;
brelse(bp);
if (sp->seg_flags & SEGM_CLEAN) {
lfs_gather(fs, sp, vp, lfs_match_fake);
/*
* For a file being flushed, we need to write *all* blocks.
* This means writing the cleaning blocks first, and then
* immediately following with any non-cleaning blocks.
* The same is true of the Ifile since checkpoints assume
* that all valid Ifile blocks are written.
*/
if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode)
lfs_gather(fs, sp, vp, lfs_match_data);
} else
lfs_gather(fs, sp, vp, lfs_match_data);
/*
* It may not be necessary to write the meta-data blocks at this point,
* as the roll-forward recovery code should be able to reconstruct the
* list.
*
* We have to write them anyway, though, under two conditions: (1) the
* vnode is being flushed (for reuse by vinvalbuf); or (2) we are
* checkpointing.
*
* BUT if we are cleaning, we might have indirect blocks that refer to
* new blocks not being written yet, in addition to fragments being
* moved out of a cleaned segment. If that is the case, don't
* write the indirect blocks, or the finfo will have a small block
* in the middle of it!
* XXX in this case isn't the inode size wrong too?
*/
frag = 0;
if (sp->seg_flags & SEGM_CLEAN) {
for (i = 0; i < NDADDR; i++)
if (ip->i_lfs_fragsize[i] > 0 &&
ip->i_lfs_fragsize[i] < fs->lfs_bsize)
++frag;
}
#ifdef DIAGNOSTIC
if (frag > 1)
panic("lfs_writefile: more than one fragment!");
#endif
if (IS_FLUSHING(fs, vp) ||
(frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
lfs_gather(fs, sp, vp, lfs_match_indir);
lfs_gather(fs, sp, vp, lfs_match_dindir);
lfs_gather(fs, sp, vp, lfs_match_tindir);
}
fip = sp->fip;
if (fip->fi_nblocks != 0) {
sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE +
sizeof(int32_t) * (fip->fi_nblocks));
sp->start_lbp = &sp->fip->fi_blocks[0];
} else {
sp->sum_bytes_left += FINFOSIZE;
--((SEGSUM *)(sp->segsum))->ss_nfinfo;
}
}
int
lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
{
struct buf *bp, *ibp;
struct dinode *cdp;
IFILE *ifp;
SEGUSE *sup;
daddr_t daddr;
int32_t *daddrp; /* XXX ondisk32 */
ino_t ino;
int error, i, ndx, fsb = 0;
int redo_ifile = 0;
struct timespec ts;
int gotblk = 0;
if (!(ip->i_flag & IN_ALLMOD))
return (0);
/* Allocate a new inode block if necessary. */
if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) {
/* Allocate a new segment if necessary. */
if (sp->seg_bytes_left < fs->lfs_ibsize ||
sp->sum_bytes_left < sizeof(int32_t))
(void) lfs_writeseg(fs, sp);
/* Get next inode block. */
daddr = fs->lfs_offset;
fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
sp->ibp = *sp->cbpp++ =
getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr),
fs->lfs_ibsize, 0, 0);
gotblk++;
/* Zero out inode numbers */
for (i = 0; i < INOPB(fs); ++i)
((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
++sp->start_bpp;
fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
/* Set remaining space counters. */
sp->seg_bytes_left -= fs->lfs_ibsize;
sp->sum_bytes_left -= sizeof(int32_t);
ndx = fs->lfs_sumsize / sizeof(int32_t) -
sp->ninodes / INOPB(fs) - 1;
((int32_t *)(sp->segsum))[ndx] = daddr;
}
/* Update the inode times and copy the inode onto the inode page. */
TIMEVAL_TO_TIMESPEC(&time, &ts);
/* XXX kludge --- don't redirty the ifile just to put times on it */
if (ip->i_number != LFS_IFILE_INUM)
LFS_ITIMES(ip, &ts, &ts, &ts);
/*
* If this is the Ifile, and we've already written the Ifile in this
* partial segment, just overwrite it (it's not on disk yet) and
* continue.
*
* XXX we know that the bp that we get the second time around has
* already been gathered.
*/
if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
*(sp->idp) = ip->i_din.ffs_din;
ip->i_lfs_osize = ip->i_ffs_size;
return 0;
}
bp = sp->ibp;
cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
*cdp = ip->i_din.ffs_din;
#ifdef LFS_IFILE_FRAG_ADDRESSING
if (fs->lfs_version > 1)
fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs);
#endif
/*
* If we are cleaning, ensure that we don't write UNWRITTEN disk
* addresses to disk; possibly revert the inode size.
*/
if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
cdp->di_size = ip->i_lfs_osize;
#ifdef DEBUG_LFS
printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
#endif
for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
daddrp++) {
if (*daddrp == UNWRITTEN) {
#ifdef DEBUG_LFS
printf("lfs_writeinode: wiping UNWRITTEN\n");
#endif
*daddrp = 0;
}
}
} else {
/* If all blocks are goig to disk, update the "size on disk" */
ip->i_lfs_osize = ip->i_ffs_size;
}
if (ip->i_flag & IN_CLEANING)
LFS_CLR_UINO(ip, IN_CLEANING);
else {
/* XXX IN_ALLMOD */
LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
IN_UPDATE);
if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
LFS_CLR_UINO(ip, IN_MODIFIED);
#ifdef DEBUG_LFS
else
printf("lfs_writeinode: ino %d: real blks=%d, "
"eff=%d\n", ip->i_number, ip->i_ffs_blocks,
ip->i_lfs_effnblks);
#endif
}
if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
sp->idp = ((struct dinode *)bp->b_data) +
(sp->ninodes % INOPB(fs));
if (gotblk) {
LFS_LOCK_BUF(bp);
brelse(bp);
}
/* Increment inode count in segment summary block. */
++((SEGSUM *)(sp->segsum))->ss_ninos;
/* If this page is full, set flag to allocate a new page. */
if (++sp->ninodes % INOPB(fs) == 0)
sp->ibp = NULL;
/*
* If updating the ifile, update the super-block. Update the disk
* address and access times for this inode in the ifile.
*/
ino = ip->i_number;
if (ino == LFS_IFILE_INUM) {
daddr = fs->lfs_idaddr;
fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
} else {
LFS_IENTRY(ifp, fs, ino, ibp);
daddr = ifp->if_daddr;
ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
#ifdef LFS_DEBUG_NEXTFREE
if (ino > 3 && ifp->if_nextfree) {
vprint("lfs_writeinode",ITOV(ip));
printf("lfs_writeinode: updating free ino %d\n",
ip->i_number);
}
#endif
error = LFS_BWRITE_LOG(ibp); /* Ifile */
}
/*
* The inode's last address should not be in the current partial
* segment, except under exceptional circumstances (lfs_writevnodes
* had to start over, and in the meantime more blocks were written
* to a vnode). Both inodes will be accounted to this segment
* in lfs_writeseg so we need to subtract the earlier version
* here anyway. The segment count can temporarily dip below
* zero here; keep track of how many duplicates we have in
* "dupino" so we don't panic below.
*/
if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) {
++sp->ndupino;
printf("lfs_writeinode: last inode addr in current pseg "
"(ino %d daddr 0x%llx) ndupino=%d\n", ino,
(long long)daddr, sp->ndupino);
}
/*
* Account the inode: it no longer belongs to its former segment,
* though it will not belong to the new segment until that segment
* is actually written.
*/
if (daddr != LFS_UNUSED_DADDR) {
u_int32_t oldsn = dtosn(fs, daddr);
#ifdef DIAGNOSTIC
int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
#endif
LFS_SEGENTRY(sup, fs, oldsn, bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes + DINODE_SIZE * ndupino < DINODE_SIZE) {
printf("lfs_writeinode: negative bytes "
"(segment %" PRIu32 " short by %d, "
"oldsn=%" PRIu32 ", cursn=%" PRIu32
", daddr=%" PRId64 ", su_nbytes=%u, "
"ndupino=%d)\n",
dtosn(fs, daddr),
(int)DINODE_SIZE * (1 - sp->ndupino)
- sup->su_nbytes,
oldsn, sp->seg_number, daddr,
(unsigned int)sup->su_nbytes,
sp->ndupino);
panic("lfs_writeinode: negative bytes");
sup->su_nbytes = DINODE_SIZE;
}
#endif
#ifdef DEBUG_SU_NBYTES
printf("seg %d -= %d for ino %d inode\n",
dtosn(fs, daddr), DINODE_SIZE, ino);
#endif
sup->su_nbytes -= DINODE_SIZE;
redo_ifile =
(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
if (redo_ifile)
fs->lfs_flags |= LFS_IFDIRTY;
error = LFS_BWRITE_LOG(bp); /* Ifile */
}
return (redo_ifile);
}
int
lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr)
{
struct lfs *fs;
int version;
/*
* If full, finish this segment. We may be doing I/O, so
* release and reacquire the splbio().
*/
#ifdef DIAGNOSTIC
if (sp->vp == NULL)
panic ("lfs_gatherblock: Null vp in segment");
#endif
fs = sp->fs;
if (sp->sum_bytes_left < sizeof(int32_t) ||
sp->seg_bytes_left < bp->b_bcount) {
if (sptr)
splx(*sptr);
lfs_updatemeta(sp);
version = sp->fip->fi_version;
(void) lfs_writeseg(fs, sp);
sp->fip->fi_version = version;
sp->fip->fi_ino = VTOI(sp->vp)->i_number;
/* Add the current file to the segment summary. */
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
sp->sum_bytes_left -= FINFOSIZE;
if (sptr)
*sptr = splbio();
return (1);
}
#ifdef DEBUG
if (bp->b_flags & B_GATHERED) {
printf("lfs_gatherblock: already gathered! Ino %d,"
" lbn %" PRId64 "\n",
sp->fip->fi_ino, bp->b_lblkno);
return (0);
}
#endif
/* Insert into the buffer list, update the FINFO block. */
bp->b_flags |= B_GATHERED;
bp->b_flags &= ~B_DONE;
*sp->cbpp++ = bp;
sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
sp->sum_bytes_left -= sizeof(int32_t);
sp->seg_bytes_left -= bp->b_bcount;
return (0);
}
int
lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *))
{
struct buf *bp, *nbp;
int s, count = 0;
sp->vp = vp;
s = splbio();
#ifndef LFS_NO_BACKBUF_HACK
/* This is a hack to see if ordering the blocks in LFS makes a difference. */
# define BUF_OFFSET (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp)
# define BACK_BUF(BP) ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
# define BEG_OF_LIST ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
/* Find last buffer. */
loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL;
bp = LIST_NEXT(bp, b_vnbufs));
for (; bp && bp != BEG_OF_LIST; bp = nbp) {
nbp = BACK_BUF(bp);
#else /* LFS_NO_BACKBUF_HACK */
loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
#endif /* LFS_NO_BACKBUF_HACK */
if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) {
#ifdef DEBUG_LFS
if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY)
printf("(%" PRId64 ":%lx)", bp->b_lblkno, bp->b_flags);
#endif
continue;
}
if (vp->v_type == VBLK) {
/* For block devices, just write the blocks. */
/* XXX Do we really need to even do this? */
#ifdef DEBUG_LFS
if (count == 0)
printf("BLK(");
printf(".");
#endif
/* Get the block before bwrite, so we don't corrupt the free list */
bp->b_flags |= B_BUSY;
bremfree(bp);
bwrite(bp);
} else {
#ifdef DIAGNOSTIC
if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) {
printf("lfs_gather: lbn %" PRId64 " is "
"B_INVAL\n", bp->b_lblkno);
VOP_PRINT(bp->b_vp);
}
if (!(bp->b_flags & B_DELWRI))
panic("lfs_gather: bp not B_DELWRI");
if (!(bp->b_flags & B_LOCKED)) {
printf("lfs_gather: lbn %" PRId64 " blk "
"%" PRId64 " not B_LOCKED\n",
bp->b_lblkno,
dbtofsb(fs, bp->b_blkno));
VOP_PRINT(bp->b_vp);
panic("lfs_gather: bp not B_LOCKED");
}
#endif
if (lfs_gatherblock(sp, bp, &s)) {
goto loop;
}
}
count++;
}
splx(s);
#ifdef DEBUG_LFS
if (vp->v_type == VBLK && count)
printf(")\n");
#endif
lfs_updatemeta(sp);
sp->vp = NULL;
return count;
}
/*
* Update the metadata that points to the blocks listed in the FINFO
* array.
*/
void
lfs_updatemeta(struct segment *sp)
{
SEGUSE *sup;
struct buf *bp, *sbp;
struct lfs *fs;
struct vnode *vp;
struct indir a[NIADDR + 2], *ap;
struct inode *ip;
daddr_t daddr, lbn, off;
daddr_t ooff;
int error, i, nblocks, num;
int bb, osize, obb;
vp = sp->vp;
nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
if (nblocks < 0)
panic("This is a bad thing");
if (vp == NULL || nblocks == 0)
return;
/* Sort the blocks. */
/*
* XXX KS - We have to sort even if the blocks come from the
* cleaner, because there might be other pending blocks on the
* same inode...and if we don't sort, and there are fragments
* present, blocks may be written in the wrong place.
*/
/* if (!(sp->seg_flags & SEGM_CLEAN)) */
lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
/*
* Record the length of the last block in case it's a fragment.
* If there are indirect blocks present, they sort last. An
* indirect block will be lfs_bsize and its presence indicates
* that you cannot have fragments.
*
* XXX This last is a lie. A cleaned fragment can coexist with
* XXX a later indirect block. This will continue to be
* XXX true until lfs_markv is fixed to do everything with
* XXX fake blocks (including fake inodes and fake indirect blocks).
*/
sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
/*
* Assign disk addresses, and update references to the logical
* block and the segment usage information.
*/
fs = sp->fs;
for (i = nblocks; i--; ++sp->start_bpp) {
lbn = *sp->start_lbp++;
sbp = *sp->start_bpp;
sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
off = fs->lfs_offset;
if (sbp->b_blkno == sbp->b_lblkno) {
printf("lfs_updatemeta: ino %d blk %" PRId64
" has same lbn and daddr\n",
VTOI(vp)->i_number, off);
}
/*
* If we write a frag in the wrong place, the cleaner won't
* be able to correctly identify its size later, and the
* segment will be uncleanable. (Even worse, it will assume
* that the indirect block that actually ends the list
* is of a smaller size!)
*/
if (sbp->b_bcount < fs->lfs_bsize && i != 0)
panic("lfs_updatemeta: fragment is not last block");
bb = fragstofsb(fs, numfrags(fs, sbp->b_bcount));
fs->lfs_offset += bb;
error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
if (daddr > 0)
daddr = dbtofsb(fs, daddr);
if (error)
panic("lfs_updatemeta: ufs_bmaparray %d", error);
ip = VTOI(vp);
switch (num) {
case 0:
ooff = ip->i_ffs_db[lbn];
#ifdef DEBUG
if (ooff == 0) {
printf("lfs_updatemeta[1]: warning: writing "
"ino %d lbn %" PRId64 " at 0x%" PRIx64
", was 0x0\n", ip->i_number, lbn, off);
}
#endif
if (ooff == UNWRITTEN)
ip->i_ffs_blocks += bb;
else {
/* possible fragment truncation or extension */
obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
ip->i_ffs_blocks += (bb - obb);
}
ip->i_ffs_db[lbn] = off;
break;
case 1:
ooff = ip->i_ffs_ib[a[0].in_off];
#ifdef DEBUG
if (ooff == 0) {
printf("lfs_updatemeta[2]: warning: writing "
"ino %d lbn %" PRId64 " at 0x%" PRIx64
", was 0x0\n", ip->i_number, lbn, off);
}
#endif
if (ooff == UNWRITTEN)
ip->i_ffs_blocks += bb;
ip->i_ffs_ib[a[0].in_off] = off;
break;
default:
ap = &a[num - 1];
if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
panic("lfs_updatemeta: bread bno %" PRId64,
ap->in_lbn);
/* XXX ondisk32 */
ooff = ((int32_t *)bp->b_data)[ap->in_off];
#if DEBUG
if (ooff == 0) {
printf("lfs_updatemeta[3]: warning: writing "
"ino %d lbn %" PRId64 " at 0x%" PRIx64
", was 0x0\n", ip->i_number, lbn, off);
}
#endif
if (ooff == UNWRITTEN)
ip->i_ffs_blocks += bb;
/* XXX ondisk32 */
((int32_t *)bp->b_data)[ap->in_off] = off;
(void) VOP_BWRITE(bp);
}
#ifdef DEBUG
if (daddr >= fs->lfs_lastpseg && daddr <= off) {
printf("lfs_updatemeta: ino %d, lbn %" PRId64 ", "
"addr = %" PRIx64 " in same pseg\n",
VTOI(sp->vp)->i_number, sbp->b_lblkno, daddr);
}
#endif
/*
* Update segment usage information, based on old size
* and location.
*/
if (daddr > 0) {
u_int32_t oldsn = dtosn(fs, daddr);
#ifdef DIAGNOSTIC
int ndupino = (sp->seg_number == oldsn) ?
sp->ndupino : 0;
#endif
if (lbn >= 0 && lbn < NDADDR)
osize = ip->i_lfs_fragsize[lbn];
else
osize = fs->lfs_bsize;
LFS_SEGENTRY(sup, fs, oldsn, bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes + DINODE_SIZE * ndupino < osize) {
printf("lfs_updatemeta: negative bytes "
"(segment %" PRIu32 " short by %d)\n",
dtosn(fs, daddr),
osize - sup->su_nbytes);
printf("lfs_updatemeta: ino %d, lbn %" PRId64
", addr = 0x%" PRIx64 "\n",
VTOI(sp->vp)->i_number, lbn, daddr);
printf("lfs_updatemeta: ndupino=%d\n", ndupino);
panic("lfs_updatemeta: negative bytes");
sup->su_nbytes = osize;
}
#endif
#ifdef DEBUG_SU_NBYTES
printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
" db 0x%" PRIx64 "\n",
dtosn(fs, daddr), osize,
VTOI(sp->vp)->i_number, lbn, daddr);
#endif
sup->su_nbytes -= osize;
if (!(bp->b_flags & B_GATHERED))
fs->lfs_flags |= LFS_IFDIRTY;
error = LFS_BWRITE_LOG(bp); /* Ifile */
}
/*
* Now that this block has a new address, and its old
* segment no longer owns it, we can forget about its
* old size.
*/
if (lbn >= 0 && lbn < NDADDR)
ip->i_lfs_fragsize[lbn] = sbp->b_bcount;
}
}
/*
* Start a new segment.
*/
int
lfs_initseg(struct lfs *fs)
{
struct segment *sp;
SEGUSE *sup;
SEGSUM *ssp;
struct buf *bp, *sbp;
int repeat;
sp = fs->lfs_sp;
repeat = 0;
/* Advance to the next segment. */
if (!LFS_PARTIAL_FITS(fs)) {
/* lfs_avail eats the remaining space */
fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
fs->lfs_curseg);
/* Wake up any cleaning procs waiting on this file system. */
wakeup(&lfs_allclean_wakeup);
wakeup(&fs->lfs_nextseg);
lfs_newseg(fs);
repeat = 1;
fs->lfs_offset = fs->lfs_curseg;
sp->seg_number = dtosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
/*
* If the segment contains a superblock, update the offset
* and summary address to skip over it.
*/
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
if (sup->su_flags & SEGUSE_SUPERBLOCK) {
fs->lfs_offset += btofsb(fs, LFS_SBPAD);
sp->seg_bytes_left -= LFS_SBPAD;
}
brelse(bp);
/* Segment zero could also contain the labelpad */
if (fs->lfs_version > 1 && sp->seg_number == 0 &&
fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
}
} else {
sp->seg_number = dtosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
(fs->lfs_offset - fs->lfs_curseg));
}
fs->lfs_lastpseg = fs->lfs_offset;
sp->fs = fs;
sp->ibp = NULL;
sp->idp = NULL;
sp->ninodes = 0;
sp->ndupino = 0;
/* Get a new buffer for SEGSUM and enter it into the buffer list. */
sp->cbpp = sp->bpp;
#ifdef LFS_MALLOC_SUMMARY
sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
sp->segsum = (*sp->cbpp)->b_data;
#else
sbp = *sp->cbpp = getblk(VTOI(fs->lfs_ivnode)->i_devvp,
fsbtodb(fs, fs->lfs_offset), NBPG, 0, 0);
memset(sbp->b_data, 0x5a, NBPG);
sp->segsum = (*sp->cbpp)->b_data + NBPG - fs->lfs_sumsize;
#endif
bzero(sp->segsum, fs->lfs_sumsize);
sp->start_bpp = ++sp->cbpp;
fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
/* Set point to SEGSUM, initialize it. */
ssp = sp->segsum;
ssp->ss_next = fs->lfs_nextseg;
ssp->ss_nfinfo = ssp->ss_ninos = 0;
ssp->ss_magic = SS_MAGIC;
/* Set pointer to first FINFO, initialize it. */
sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs));
sp->fip->fi_nblocks = 0;
sp->start_lbp = &sp->fip->fi_blocks[0];
sp->fip->fi_lastlength = 0;
sp->seg_bytes_left -= fs->lfs_sumsize;
sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
#ifndef LFS_MALLOC_SUMMARY
LFS_LOCK_BUF(sbp);
brelse(sbp);
#endif
return (repeat);
}
/*
* Return the next segment to write.
*/
void
lfs_newseg(struct lfs *fs)
{
CLEANERINFO *cip;
SEGUSE *sup;
struct buf *bp;
int curseg, isdirty, sn;
LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
#ifdef DEBUG_SU_NBYTES
printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */
dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */
#endif
sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
sup->su_nbytes = 0;
sup->su_nsums = 0;
sup->su_ninos = 0;
(void) LFS_BWRITE_LOG(bp); /* Ifile */
LFS_CLEANERINFO(cip, fs, bp);
--cip->clean;
++cip->dirty;
fs->lfs_nclean = cip->clean;
LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
fs->lfs_lastseg = fs->lfs_curseg;
fs->lfs_curseg = fs->lfs_nextseg;
for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
sn = (sn + 1) % fs->lfs_nseg;
if (sn == curseg)
panic("lfs_nextseg: no clean segments");
LFS_SEGENTRY(sup, fs, sn, bp);
isdirty = sup->su_flags & SEGUSE_DIRTY;
brelse(bp);
if (!isdirty)
break;
}
++fs->lfs_nactive;
fs->lfs_nextseg = sntod(fs, sn);
if (lfs_dostats) {
++lfs_stats.segsused;
}
}
static struct buf **
lookahead_pagemove(struct buf **bpp, int nblocks, size_t *size)
{
size_t maxsize;
#ifndef LFS_NO_PAGEMOVE
struct buf *bp;
#endif
maxsize = *size;
*size = 0;
#ifdef LFS_NO_PAGEMOVE
return bpp;
#else
while((bp = *bpp) != NULL && *size < maxsize && nblocks--) {
if(bp->b_flags & B_CALL)
return bpp;
if(bp->b_bcount % NBPG)
return bpp;
*size += bp->b_bcount;
++bpp;
}
return NULL;
#endif
}
#define BQUEUES 4 /* XXX */
#define BQ_EMPTY 3 /* XXX */
extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
extern struct simplelock bqueue_slock;
#define BUFHASH(dvp, lbn) \
(&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
extern LIST_HEAD(bufhashhdr, buf) invalhash;
/*
* Insq/Remq for the buffer hash lists.
*/
#define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
#define bremhash(bp) LIST_REMOVE(bp, b_hash)
static struct buf *
lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n)
{
struct lfs_cluster *cl;
struct buf **bpp, *bp;
int s;
cl = (struct lfs_cluster *)malloc(sizeof(*cl), M_SEGMENT, M_WAITOK);
bpp = (struct buf **)malloc(n*sizeof(*bpp), M_SEGMENT, M_WAITOK);
memset(cl, 0, sizeof(*cl));
cl->fs = fs;
cl->bpp = bpp;
cl->bufcount = 0;
cl->bufsize = 0;
/* If this segment is being written synchronously, note that */
if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
cl->flags |= LFS_CL_SYNC;
cl->seg = fs->lfs_sp;
++cl->seg->seg_iocount;
/* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */
}
/* Get an empty buffer header, or maybe one with something on it */
s = splbio();
simple_lock(&bqueue_slock);
if((bp = bufqueues[BQ_EMPTY].tqh_first) != NULL) {
simple_lock(&bp->b_interlock);
bremfree(bp);
/* clear out various other fields */
bp->b_flags = B_BUSY;
bp->b_dev = NODEV;
bp->b_blkno = bp->b_lblkno = 0;
bp->b_error = 0;
bp->b_resid = 0;
bp->b_bcount = 0;
/* nuke any credentials we were holding */
/* XXXXXX */
bremhash(bp);
/* disassociate us from our vnode, if we had one... */
if (bp->b_vp)
brelvp(bp);
}
while (!bp)
bp = getnewbuf(0, 0);
bgetvp(vp, bp);
binshash(bp,&invalhash);
simple_unlock(&bp->b_interlock);
simple_unlock(&bqueue_slock);
splx(s);
bp->b_bcount = 0;
bp->b_blkno = bp->b_lblkno = addr;
bp->b_flags |= B_CALL;
bp->b_iodone = lfs_cluster_callback;
cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */
bp->b_saveaddr = (caddr_t)cl;
return bp;
}
int
lfs_writeseg(struct lfs *fs, struct segment *sp)
{
struct buf **bpp, *bp, *cbp, *newbp, **pmlastbpp;
SEGUSE *sup;
SEGSUM *ssp;
dev_t i_dev;
char *datap, *dp;
int do_again, i, nblocks, s;
size_t el_size;
struct lfs_cluster *cl;
int (*strategy)(void *);
struct vop_strategy_args vop_strategy_a;
u_short ninos;
struct vnode *devvp;
char *p;
struct vnode *vp;
struct inode *ip;
size_t pmsize;
int use_pagemove;
int32_t *daddrp; /* XXX ondisk32 */
int changed;
#if defined(DEBUG) && defined(LFS_PROPELLER)
static int propeller;
char propstring[4] = "-\\|/";
printf("%c\b",propstring[propeller++]);
if (propeller == 4)
propeller = 0;
#endif
/*
* If there are no buffers other than the segment summary to write
* and it is not a checkpoint, don't do anything. On a checkpoint,
* even if there aren't any buffers, you need to write the superblock.
*/
if ((nblocks = sp->cbpp - sp->bpp) == 1)
return (0);
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
devvp = VTOI(fs->lfs_ivnode)->i_devvp;
/* Update the segment usage information. */
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
/* Loop through all blocks, except the segment summary. */
for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
if ((*bpp)->b_vp != devvp) {
sup->su_nbytes += (*bpp)->b_bcount;
#ifdef DEBUG_SU_NBYTES
printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64
" db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount,
VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
(*bpp)->b_blkno);
#endif
}
}
ssp = (SEGSUM *)sp->segsum;
ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
#ifdef DEBUG_SU_NBYTES
printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */
sp->seg_number, ssp->ss_ninos * DINODE_SIZE,
ssp->ss_ninos);
#endif
sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
/* sup->su_nbytes += fs->lfs_sumsize; */
if (fs->lfs_version == 1)
sup->su_olastmod = time.tv_sec;
else
sup->su_lastmod = time.tv_sec;
sup->su_ninos += ninos;
++sup->su_nsums;
fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
fs->lfs_ibsize));
fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
do_again = !(bp->b_flags & B_GATHERED);
(void)LFS_BWRITE_LOG(bp); /* Ifile */
/*
* Mark blocks B_BUSY, to prevent then from being changed between
* the checksum computation and the actual write.
*
* If we are cleaning, check indirect blocks for UNWRITTEN, and if
* there are any, replace them with copies that have UNASSIGNED
* instead.
*/
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
++bpp;
if ((*bpp)->b_flags & B_CALL)
continue;
bp = *bpp;
again:
s = splbio();
if (bp->b_flags & B_BUSY) {
#ifdef DEBUG
printf("lfs_writeseg: avoiding potential data summary "
"corruption for ino %d, lbn %" PRId64 "\n",
VTOI(bp->b_vp)->i_number, bp->b_lblkno);
#endif
bp->b_flags |= B_WANTED;
tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
splx(s);
goto again;
}
bp->b_flags |= B_BUSY;
splx(s);
/* Check and replace indirect block UNWRITTEN bogosity */
if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
VTOI(bp->b_vp)->i_ffs_blocks !=
VTOI(bp->b_vp)->i_lfs_effnblks) {
#ifdef DEBUG_LFS
printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
VTOI(bp->b_vp)->i_number,
VTOI(bp->b_vp)->i_lfs_effnblks,
VTOI(bp->b_vp)->i_ffs_blocks);
#endif
/* Make a copy we'll make changes to */
newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
bp->b_bcount);
newbp->b_blkno = bp->b_blkno;
memcpy(newbp->b_data, bp->b_data,
newbp->b_bcount);
*bpp = newbp;
changed = 0;
/* XXX ondisk32 */
for (daddrp = (int32_t *)(newbp->b_data);
daddrp < (int32_t *)(newbp->b_data +
newbp->b_bcount); daddrp++) {
if (*daddrp == UNWRITTEN) {
++changed;
#ifdef DEBUG_LFS
printf("lfs_writeseg: replacing UNWRITTEN\n");
#endif
*daddrp = 0;
}
}
/*
* Get rid of the old buffer. Don't mark it clean,
* though, if it still has dirty data on it.
*/
if (changed) {
bp->b_flags &= ~(B_ERROR | B_GATHERED);
if (bp->b_flags & B_CALL) {
lfs_freebuf(bp);
bp = NULL;
} else {
/* Still on free list, leave it there */
s = splbio();
bp->b_flags &= ~B_BUSY;
if (bp->b_flags & B_WANTED)
wakeup(bp);
splx(s);
/*
* We have to re-decrement lfs_avail
* since this block is going to come
* back around to us in the next
* segment.
*/
fs->lfs_avail -= btofsb(fs, bp->b_bcount);
}
} else {
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
B_GATHERED);
if (bp->b_flags & B_CALL) {
lfs_freebuf(bp);
bp = NULL;
} else {
bremfree(bp);
bp->b_flags |= B_DONE;
s = splbio();
reassignbuf(bp, bp->b_vp);
splx(s);
LFS_UNLOCK_BUF(bp);
brelse(bp);
}
}
}
}
/*
* Compute checksum across data and then across summary; the first
* block (the summary block) is skipped. Set the create time here
* so that it's guaranteed to be later than the inode mod times.
*
* XXX
* Fix this to do it inline, instead of malloc/copy.
*/
if (fs->lfs_version == 1)
el_size = sizeof(u_long);
else
el_size = sizeof(u_int32_t);
datap = dp = malloc(nblocks * el_size, M_SEGMENT, M_WAITOK);
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
if (copyin((*bpp)->b_saveaddr, dp, el_size))
panic("lfs_writeseg: copyin failed [1]: "
"ino %d blk %" PRId64,
VTOI((*bpp)->b_vp)->i_number,
(*bpp)->b_lblkno);
} else
memcpy(dp, (*bpp)->b_data, el_size);
dp += el_size;
}
if (fs->lfs_version == 1)
ssp->ss_ocreate = time.tv_sec;
else {
ssp->ss_create = time.tv_sec;
ssp->ss_serial = ++fs->lfs_serial;
ssp->ss_ident = fs->lfs_ident;
}
#ifndef LFS_MALLOC_SUMMARY
/* Set the summary block busy too */
(*(sp->bpp))->b_flags |= B_BUSY;
#endif
ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
ssp->ss_sumsum =
cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
free(datap, M_SEGMENT);
datap = dp = NULL;
#ifdef DIAGNOSTIC
if (fs->lfs_bfree < btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize))
panic("lfs_writeseg: No diskspace for summary");
#endif
fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
btofsb(fs, fs->lfs_sumsize));
strategy = devvp->v_op[VOFFSET(vop_strategy)];
/*
* When we simply write the blocks we lose a rotation for every block
* written. To avoid this problem, we use pagemove to cluster
* the buffers into a chunk and write the chunk. CHUNKSIZE is the
* largest size I/O devices can handle.
*
* XXX - right now MAXPHYS is only 64k; could it be larger?
*/
#define CHUNKSIZE MAXPHYS
if (devvp == NULL)
panic("devvp is NULL");
for (bpp = sp->bpp, i = nblocks; i;) {
cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
cl = (struct lfs_cluster *)cbp->b_saveaddr;
cbp->b_dev = i_dev;
cbp->b_flags |= B_ASYNC | B_BUSY;
cbp->b_bcount = 0;
/*
* Find out if we can use pagemove to build the cluster,
* or if we are stuck using malloc/copy. If this is the
* first cluster, set the shift flag (see below).
*/
pmsize = CHUNKSIZE;
use_pagemove = 0;
if(bpp == sp->bpp) {
/* Summary blocks have to get special treatment */
pmlastbpp = lookahead_pagemove(bpp + 1, i - 1, &pmsize);
if(pmsize >= CHUNKSIZE - fs->lfs_sumsize ||
pmlastbpp == NULL) {
use_pagemove = 1;
cl->flags |= LFS_CL_SHIFT;
} else {
/*
* If we're not using pagemove, we have
* to copy the summary down to the bottom
* end of the block.
*/
#ifndef LFS_MALLOC_SUMMARY
memcpy((*bpp)->b_data, (*bpp)->b_data +
NBPG - fs->lfs_sumsize,
fs->lfs_sumsize);
#endif /* LFS_MALLOC_SUMMARY */
}
} else {
pmlastbpp = lookahead_pagemove(bpp, i, &pmsize);
if(pmsize >= CHUNKSIZE || pmlastbpp == NULL) {
use_pagemove = 1;
}
}
if(use_pagemove == 0) {
cl->flags |= LFS_CL_MALLOC;
cl->olddata = cbp->b_data;
cbp->b_data = malloc(CHUNKSIZE, M_SEGMENT, M_WAITOK);
}
#if defined(DEBUG) && defined(DIAGNOSTIC)
if(dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno + btodb((*bpp)->b_bcount - 1))) !=
dtosn(fs, dbtofsb(fs, cbp->b_blkno))) {
printf("block at %" PRId64 " (%" PRIu32 "), "
"cbp at %" PRId64 " (%" PRIu32 ")\n",
(*bpp)->b_blkno, dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno)),
cbp->b_blkno, dtosn(fs, dbtofsb(fs, cbp->b_blkno)));
panic("lfs_writeseg: Segment overwrite");
}
#endif
/*
* Construct the cluster.
*/
while (fs->lfs_iocount >= LFS_THROTTLE) {
#ifdef DEBUG_LFS
printf("[%d]", fs->lfs_iocount);
#endif
tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs_throttle", 0);
}
++fs->lfs_iocount;
for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
bp = *bpp;
if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
break;
/*
* Fake buffers from the cleaner are marked as B_INVAL.
* We need to copy the data from user space rather than
* from the buffer indicated.
* XXX == what do I do on an error?
*/
if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
if (copyin(bp->b_saveaddr, p, bp->b_bcount))
panic("lfs_writeseg: copyin failed [2]");
} else if (use_pagemove) {
pagemove(bp->b_data, p, bp->b_bcount);
cbp->b_bufsize += bp->b_bcount;
bp->b_bufsize -= bp->b_bcount;
} else {
bcopy(bp->b_data, p, bp->b_bcount);
/* printf("copy in %p\n", bp->b_data); */
}
/*
* XXX If we are *not* shifting, the summary
* block is only fs->lfs_sumsize. Otherwise,
* it is NBPG but shifted.
*/
if(bpp == sp->bpp && !(cl->flags & LFS_CL_SHIFT)) {
p += fs->lfs_sumsize;
cbp->b_bcount += fs->lfs_sumsize;
cl->bufsize += fs->lfs_sumsize;
} else {
p += bp->b_bcount;
cbp->b_bcount += bp->b_bcount;
cl->bufsize += bp->b_bcount;
}
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE);
cl->bpp[cl->bufcount++] = bp;
vp = bp->b_vp;
s = splbio();
V_INCR_NUMOUTPUT(vp);
splx(s);
/*
* Although it cannot be freed for reuse before the
* cluster is written to disk, this buffer does not
* need to be held busy. Therefore we unbusy it,
* while leaving it on the locked list. It will
* be freed or requeued by the callback depending
* on whether it has had B_DELWRI set again in the
* meantime.
*
* If we are using pagemove, we have to hold the block
* busy to prevent its contents from changing before
* it hits the disk, and invalidating the checksum.
*/
bp->b_flags &= ~(B_DELWRI | B_READ | B_ERROR);
#ifdef LFS_MNOBUSY
if (cl->flags & LFS_CL_MALLOC) {
if (!(bp->b_flags & B_CALL))
brelse(bp); /* Still B_LOCKED */
}
#endif
bpp++;
/*
* If this is the last block for this vnode, but
* there are other blocks on its dirty list,
* set IN_MODIFIED/IN_CLEANING depending on what
* sort of block. Only do this for our mount point,
* not for, e.g., inode blocks that are attached to
* the devvp.
* XXX KS - Shouldn't we set *both* if both types
* of blocks are present (traverse the dirty list?)
*/
s = splbio();
if ((i == 1 ||
(i > 1 && vp && *bpp && (*bpp)->b_vp != vp)) &&
(bp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL &&
vp->v_mount == fs->lfs_ivnode->v_mount)
{
ip = VTOI(vp);
#ifdef DEBUG_LFS
printf("lfs_writeseg: marking ino %d\n",
ip->i_number);
#endif
if (bp->b_flags & B_CALL)
LFS_SET_UINO(ip, IN_CLEANING);
else
LFS_SET_UINO(ip, IN_MODIFIED);
}
splx(s);
wakeup(vp);
}
s = splbio();
V_INCR_NUMOUTPUT(cbp->b_vp);
splx(s);
/*
* In order to include the summary in a clustered block,
* it may be necessary to shift the block forward (since
* summary blocks are in generay smaller than can be
* addressed by pagemove(). After the write, the block
* will be corrected before disassembly.
*/
if(cl->flags & LFS_CL_SHIFT) {
cbp->b_data += (NBPG - fs->lfs_sumsize);
cbp->b_bcount -= (NBPG - fs->lfs_sumsize);
}
vop_strategy_a.a_desc = VDESC(vop_strategy);
vop_strategy_a.a_bp = cbp;
(strategy)(&vop_strategy_a);
}
if (lfs_dostats) {
++lfs_stats.psegwrites;
lfs_stats.blocktot += nblocks - 1;
if (fs->lfs_sp->seg_flags & SEGM_SYNC)
++lfs_stats.psyncwrites;
if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
++lfs_stats.pcleanwrites;
lfs_stats.cleanblocks += nblocks - 1;
}
}
return (lfs_initseg(fs) || do_again);
}
void
lfs_writesuper(struct lfs *fs, daddr_t daddr)
{
struct buf *bp;
dev_t i_dev;
int (*strategy)(void *);
int s;
struct vop_strategy_args vop_strategy_a;
/*
* If we can write one superblock while another is in
* progress, we risk not having a complete checkpoint if we crash.
* So, block here if a superblock write is in progress.
*/
s = splbio();
while (fs->lfs_sbactive) {
tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
}
fs->lfs_sbactive = daddr;
splx(s);
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
/* Set timestamp of this version of the superblock */
if (fs->lfs_version == 1)
fs->lfs_otstamp = time.tv_sec;
fs->lfs_tstamp = time.tv_sec;
/* Checksum the superblock and copy it into a buffer. */
fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
bp->b_dev = i_dev;
bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
bp->b_iodone = lfs_supercallback;
/* XXX KS - same nasty hack as above */
bp->b_saveaddr = (caddr_t)fs;
vop_strategy_a.a_desc = VDESC(vop_strategy);
vop_strategy_a.a_bp = bp;
s = splbio();
V_INCR_NUMOUTPUT(bp->b_vp);
splx(s);
++fs->lfs_iocount;
(strategy)(&vop_strategy_a);
}
/*
* Logical block number match routines used when traversing the dirty block
* chain.
*/
int
lfs_match_fake(struct lfs *fs, struct buf *bp)
{
return (bp->b_flags & B_CALL);
}
int
lfs_match_data(struct lfs *fs, struct buf *bp)
{
return (bp->b_lblkno >= 0);
}
int
lfs_match_indir(struct lfs *fs, struct buf *bp)
{
daddr_t lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
}
int
lfs_match_dindir(struct lfs *fs, struct buf *bp)
{
daddr_t lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
}
int
lfs_match_tindir(struct lfs *fs, struct buf *bp)
{
daddr_t lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
}
/*
* XXX - The only buffers that are going to hit these functions are the
* segment write blocks, or the segment summaries, or the superblocks.
*
* All of the above are created by lfs_newbuf, and so do not need to be
* released via brelse.
*/
void
lfs_callback(struct buf *bp)
{
/* struct lfs *fs; */
/* fs = (struct lfs *)bp->b_saveaddr; */
lfs_freebuf(bp);
}
static void
lfs_super_aiodone(struct buf *bp)
{
struct lfs *fs;
fs = (struct lfs *)bp->b_saveaddr;
fs->lfs_sbactive = 0;
wakeup(&fs->lfs_sbactive);
if (--fs->lfs_iocount < LFS_THROTTLE)
wakeup(&fs->lfs_iocount);
lfs_freebuf(bp);
}
static void
lfs_cluster_aiodone(struct buf *bp)
{
struct lfs_cluster *cl;
struct lfs *fs;
struct buf *tbp;
struct vnode *vp;
int s, error=0;
char *cp;
extern int locked_queue_count;
extern long locked_queue_bytes;
if(bp->b_flags & B_ERROR)
error = bp->b_error;
cl = (struct lfs_cluster *)bp->b_saveaddr;
fs = cl->fs;
bp->b_saveaddr = cl->saveaddr;
/* If shifted, shift back now */
if(cl->flags & LFS_CL_SHIFT) {
bp->b_data -= (NBPG - fs->lfs_sumsize);
bp->b_bcount += (NBPG - fs->lfs_sumsize);
}
cp = (char *)bp->b_data + cl->bufsize;
/* Put the pages back, and release the buffer */
while(cl->bufcount--) {
tbp = cl->bpp[cl->bufcount];
if(!(cl->flags & LFS_CL_MALLOC)) {
cp -= tbp->b_bcount;
printf("pm(%p,%p,%lx)",cp,tbp->b_data,tbp->b_bcount);
pagemove(cp, tbp->b_data, tbp->b_bcount);
bp->b_bufsize -= tbp->b_bcount;
tbp->b_bufsize += tbp->b_bcount;
}
if(error) {
tbp->b_flags |= B_ERROR;
tbp->b_error = error;
}
/*
* We're done with tbp. If it has not been re-dirtied since
* the cluster was written, free it. Otherwise, keep it on
* the locked list to be written again.
*/
if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED)
LFS_UNLOCK_BUF(tbp);
tbp->b_flags &= ~B_GATHERED;
LFS_BCLEAN_LOG(fs, tbp);
vp = tbp->b_vp;
/* Segment summary for a shifted cluster */
if(!cl->bufcount && (cl->flags & LFS_CL_SHIFT))
tbp->b_flags |= B_INVAL;
if(!(tbp->b_flags & B_CALL)) {
bremfree(tbp);
s = splbio();
if(vp)
reassignbuf(tbp, vp);
splx(s);
tbp->b_flags |= B_ASYNC; /* for biodone */
}
#ifdef DIAGNOSTIC
if (tbp->b_flags & B_DONE) {
printf("blk %d biodone already (flags %lx)\n",
cl->bufcount, (long)tbp->b_flags);
}
#endif
if (tbp->b_flags & (B_BUSY | B_CALL)) {
biodone(tbp);
}
}
/* Fix up the cluster buffer, and release it */
if(!(cl->flags & LFS_CL_MALLOC) && bp->b_bufsize) {
printf("PM(%p,%p,%lx)", (char *)bp->b_data + bp->b_bcount,
(char *)bp->b_data, bp->b_bufsize);
pagemove((char *)bp->b_data + bp->b_bcount,
(char *)bp->b_data, bp->b_bufsize);
}
if(cl->flags & LFS_CL_MALLOC) {
free(bp->b_data, M_SEGMENT);
bp->b_data = cl->olddata;
}
bp->b_bcount = 0;
bp->b_iodone = NULL;
bp->b_flags &= ~B_DELWRI;
bp->b_flags |= B_DONE;
s = splbio();
reassignbuf(bp, bp->b_vp);
splx(s);
brelse(bp);
/* Note i/o done */
if (cl->flags & LFS_CL_SYNC) {
if (--cl->seg->seg_iocount == 0)
wakeup(&cl->seg->seg_iocount);
/* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */
}
#ifdef DIAGNOSTIC
if (fs->lfs_iocount == 0)
panic("lfs_cluster_aiodone: zero iocount");
#endif
if (--fs->lfs_iocount < LFS_THROTTLE)
wakeup(&fs->lfs_iocount);
#if 0
if (fs->lfs_iocount == 0) {
/*
* Vinvalbuf can move locked buffers off the locked queue
* and we have no way of knowing about this. So, after
* doing a big write, we recalculate how many buffers are
* really still left on the locked queue.
*/
lfs_countlocked(&locked_queue_count, &locked_queue_bytes, "lfs_cluster_callback");
wakeup(&locked_queue_count);
}
#endif
free(cl->bpp, M_SEGMENT);
free(cl, M_SEGMENT);
}
static void
lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
{
/* reset b_iodone for when this is a single-buf i/o. */
bp->b_iodone = aiodone;
simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */
TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
wakeup(&uvm.aiodoned);
simple_unlock(&uvm.aiodoned_lock);
}
static void
lfs_cluster_callback(struct buf *bp)
{
lfs_generic_callback(bp, lfs_cluster_aiodone);
}
void
lfs_supercallback(struct buf *bp)
{
lfs_generic_callback(bp, lfs_super_aiodone);
}
/*
* Shellsort (diminishing increment sort) from Data Structures and
* Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
* see also Knuth Vol. 3, page 84. The increments are selected from
* formula (8), page 95. Roughly O(N^3/2).
*/
/*
* This is our own private copy of shellsort because we want to sort
* two parallel arrays (the array of buffer pointers and the array of
* logical block numbers) simultaneously. Note that we cast the array
* of logical block numbers to a unsigned in this routine so that the
* negative block numbers (meta data blocks) sort AFTER the data blocks.
*/
void
lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb)
{
static int __rsshell_increments[] = { 4, 1, 0 };
int incr, *incrp, t1, t2;
struct buf *bp_temp;
u_long lb_temp;
for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
for (t1 = incr; t1 < nmemb; ++t1)
for (t2 = t1 - incr; t2 >= 0;)
if (lb_array[t2] > lb_array[t2 + incr]) {
lb_temp = lb_array[t2];
lb_array[t2] = lb_array[t2 + incr];
lb_array[t2 + incr] = lb_temp;
bp_temp = bp_array[t2];
bp_array[t2] = bp_array[t2 + incr];
bp_array[t2 + incr] = bp_temp;
t2 -= incr;
} else
break;
}
/*
* Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
*/
int
lfs_vref(struct vnode *vp)
{
/*
* If we return 1 here during a flush, we risk vinvalbuf() not
* being able to flush all of the pages from this vnode, which
* will cause it to panic. So, return 0 if a flush is in progress.
*/
if (vp->v_flag & VXLOCK) {
if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
return 0;
}
return (1);
}
return (vget(vp, 0));
}
/*
* This is vrele except that we do not want to VOP_INACTIVE this vnode. We
* inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
*/
void
lfs_vunref(struct vnode *vp)
{
/*
* Analogous to lfs_vref, if the node is flushing, fake it.
*/
if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
return;
}
simple_lock(&vp->v_interlock);
#ifdef DIAGNOSTIC
if (vp->v_usecount <= 0) {
printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag);
printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount);
panic("lfs_vunref: v_usecount<0");
}
#endif
vp->v_usecount--;
if (vp->v_usecount > 0) {
simple_unlock(&vp->v_interlock);
return;
}
/*
* insert at tail of LRU list
*/
simple_lock(&vnode_free_list_slock);
if (vp->v_holdcnt > 0)
TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
else
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
simple_unlock(&vp->v_interlock);
}
/*
* We use this when we have vnodes that were loaded in solely for cleaning.
* There is no reason to believe that these vnodes will be referenced again
* soon, since the cleaning process is unrelated to normal filesystem
* activity. Putting cleaned vnodes at the tail of the list has the effect
* of flushing the vnode LRU. So, put vnodes that were loaded only for
* cleaning at the head of the list, instead.
*/
void
lfs_vunref_head(struct vnode *vp)
{
simple_lock(&vp->v_interlock);
#ifdef DIAGNOSTIC
if (vp->v_usecount == 0) {
panic("lfs_vunref: v_usecount<0");
}
#endif
vp->v_usecount--;
if (vp->v_usecount > 0) {
simple_unlock(&vp->v_interlock);
return;
}
/*
* insert at head of LRU list
*/
simple_lock(&vnode_free_list_slock);
if (vp->v_holdcnt > 0)
TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
else
TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
simple_unlock(&vp->v_interlock);
}