554 lines
14 KiB
C
554 lines
14 KiB
C
/* $NetBSD: isa_irqhandler.c,v 1.7 2000/06/29 08:53:01 mrg Exp $ */
|
|
|
|
/*
|
|
* Copyright 1997
|
|
* Digital Equipment Corporation. All rights reserved.
|
|
*
|
|
* This software is furnished under license and may be used and
|
|
* copied only in accordance with the following terms and conditions.
|
|
* Subject to these conditions, you may download, copy, install,
|
|
* use, modify and distribute this software in source and/or binary
|
|
* form. No title or ownership is transferred hereby.
|
|
*
|
|
* 1) Any source code used, modified or distributed must reproduce
|
|
* and retain this copyright notice and list of conditions as
|
|
* they appear in the source file.
|
|
*
|
|
* 2) No right is granted to use any trade name, trademark, or logo of
|
|
* Digital Equipment Corporation. Neither the "Digital Equipment
|
|
* Corporation" name nor any trademark or logo of Digital Equipment
|
|
* Corporation may be used to endorse or promote products derived
|
|
* from this software without the prior written permission of
|
|
* Digital Equipment Corporation.
|
|
*
|
|
* 3) This software is provided "AS-IS" and any express or implied
|
|
* warranties, including but not limited to, any implied warranties
|
|
* of merchantability, fitness for a particular purpose, or
|
|
* non-infringement are disclaimed. In no event shall DIGITAL be
|
|
* liable for any damages whatsoever, and in particular, DIGITAL
|
|
* shall not be liable for special, indirect, consequential, or
|
|
* incidental damages or damages for lost profits, loss of
|
|
* revenue or loss of use, whether such damages arise in contract,
|
|
* negligence, tort, under statute, in equity, at law or otherwise,
|
|
* even if advised of the possibility of such damage.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1994-1998 Mark Brinicombe.
|
|
* Copyright (c) 1994 Brini.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software written for Brini by Mark Brinicombe
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Mark Brinicombe
|
|
* for the NetBSD Project.
|
|
* 4. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* IRQ/FIQ initialisation, claim, release and handler routines
|
|
*
|
|
* from: irqhandler.c
|
|
*
|
|
* Created : 30/09/94
|
|
*/
|
|
|
|
#include "opt_irqstats.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/malloc.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <machine/irqhandler.h>
|
|
#include <machine/cpu.h>
|
|
|
|
irqhandler_t *irqhandlers[NIRQS];
|
|
fiqhandler_t *fiqhandlers;
|
|
|
|
int current_intr_depth;
|
|
u_int current_mask;
|
|
u_int actual_mask;
|
|
u_int disabled_mask;
|
|
u_int spl_mask;
|
|
u_int irqmasks[IPL_LEVELS];
|
|
u_int irqblock[NIRQS];
|
|
|
|
extern u_int soft_interrupts; /* Only so we can initialise it */
|
|
|
|
extern char *_intrnames;
|
|
|
|
/* Prototypes */
|
|
|
|
extern void zero_page_readonly __P((void));
|
|
extern void zero_page_readwrite __P((void));
|
|
extern int fiq_setregs __P((fiqhandler_t *));
|
|
extern int fiq_getregs __P((fiqhandler_t *));
|
|
extern void set_spl_masks __P((void));
|
|
|
|
void irq_calculatemasks __P((void));
|
|
|
|
#define WriteWord(a, b) *((volatile unsigned int *)(a)) = (b)
|
|
|
|
/*
|
|
* void irq_init(void)
|
|
*
|
|
* Initialise the IRQ/FIQ sub system
|
|
*/
|
|
|
|
void
|
|
irq_init()
|
|
{
|
|
int loop;
|
|
|
|
/* Clear all the IRQ handlers and the irq block masks */
|
|
for (loop = 0; loop < NIRQS; ++loop) {
|
|
irqhandlers[loop] = NULL;
|
|
irqblock[loop] = 0;
|
|
}
|
|
|
|
/* Clear the FIQ handler */
|
|
fiqhandlers = NULL;
|
|
|
|
/*
|
|
* Setup the irqmasks for the different Interrupt Priority Levels
|
|
* We will start with no bits set and these will be updated as handlers
|
|
* are installed at different IPL's.
|
|
*/
|
|
for (loop = 0; loop < IPL_LEVELS; ++loop)
|
|
irqmasks[loop] = 0;
|
|
|
|
current_intr_depth = 0;
|
|
current_mask = 0x00000000;
|
|
disabled_mask = 0x00000000;
|
|
actual_mask = 0x00000000;
|
|
spl_mask = 0x00000000;
|
|
soft_interrupts = 0x00000000;
|
|
|
|
set_spl_masks();
|
|
|
|
/* Enable IRQ's and FIQ's */
|
|
enable_interrupts(I32_bit | F32_bit);
|
|
}
|
|
|
|
|
|
/*
|
|
* int irq_claim(int irq, irqhandler_t *handler)
|
|
*
|
|
* Enable an IRQ and install a handler for it.
|
|
*/
|
|
|
|
int
|
|
irq_claim(irq, handler)
|
|
int irq;
|
|
irqhandler_t *handler;
|
|
{
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* Sanity check */
|
|
if (handler == NULL)
|
|
panic("NULL interrupt handler\n");
|
|
if (handler->ih_func == NULL)
|
|
panic("Interrupt handler does not have a function\n");
|
|
#endif /* DIAGNOSTIC */
|
|
|
|
/*
|
|
* IRQ_INSTRUCT indicates that we should get the irq number
|
|
* from the irq structure
|
|
*/
|
|
if (irq == IRQ_INSTRUCT)
|
|
irq = handler->ih_num;
|
|
|
|
/* Make sure the irq number is valid */
|
|
if (irq < 0 || irq >= NIRQS)
|
|
return(-1);
|
|
|
|
/* Make sure the level is valid */
|
|
if (handler->ih_level < 0 || handler->ih_level >= IPL_LEVELS)
|
|
return(-1);
|
|
|
|
/* Attach handler at top of chain */
|
|
handler->ih_next = irqhandlers[irq];
|
|
irqhandlers[irq] = handler;
|
|
|
|
/*
|
|
* Reset the flags for this handler.
|
|
* As the handler is now in the chain mark it as active.
|
|
*/
|
|
handler->ih_flags = 0 | IRQ_FLAG_ACTIVE;
|
|
|
|
/*
|
|
* Record the interrupt number for accounting.
|
|
* Done here as the accounting number may not be the same as the
|
|
* IRQ number though for the moment they are
|
|
*/
|
|
handler->ih_num = irq;
|
|
|
|
#ifdef IRQSTATS
|
|
/* Get the interrupt name from the head of the list */
|
|
if (handler->ih_name) {
|
|
char *ptr = _intrnames + (irq * 14);
|
|
strcpy(ptr, " ");
|
|
strncpy(ptr, handler->ih_name,
|
|
min(strlen(handler->ih_name), 13));
|
|
} else {
|
|
char *ptr = _intrnames + (irq * 14);
|
|
sprintf(ptr, "irq %2d ", irq);
|
|
}
|
|
#endif /* IRQSTATS */
|
|
|
|
irq_calculatemasks();
|
|
|
|
enable_irq(irq);
|
|
set_spl_masks();
|
|
return(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* int irq_release(int irq, irqhandler_t *handler)
|
|
*
|
|
* Disable an IRQ and remove a handler for it.
|
|
*/
|
|
|
|
int
|
|
irq_release(irq, handler)
|
|
int irq;
|
|
irqhandler_t *handler;
|
|
{
|
|
irqhandler_t *irqhand;
|
|
irqhandler_t **prehand;
|
|
#ifdef IRQSTATS
|
|
extern char *_intrnames;
|
|
#endif
|
|
|
|
/*
|
|
* IRQ_INSTRUCT indicates that we should get the irq number
|
|
* from the irq structure
|
|
*/
|
|
if (irq == IRQ_INSTRUCT)
|
|
irq = handler->ih_num;
|
|
|
|
/* Make sure the irq number is valid */
|
|
if (irq < 0 || irq >= NIRQS)
|
|
return(-1);
|
|
|
|
/* Locate the handler */
|
|
irqhand = irqhandlers[irq];
|
|
prehand = &irqhandlers[irq];
|
|
|
|
while (irqhand && handler != irqhand) {
|
|
prehand = &irqhand;
|
|
irqhand = irqhand->ih_next;
|
|
}
|
|
|
|
/* Remove the handler if located */
|
|
if (irqhand)
|
|
*prehand = irqhand->ih_next;
|
|
else
|
|
return(-1);
|
|
|
|
/* Now the handler has been removed from the chain mark is as inactive */
|
|
irqhand->ih_flags &= ~IRQ_FLAG_ACTIVE;
|
|
|
|
/* Make sure the head of the handler list is active */
|
|
if (irqhandlers[irq])
|
|
irqhandlers[irq]->ih_flags |= IRQ_FLAG_ACTIVE;
|
|
|
|
#ifdef IRQSTATS
|
|
/* Get the interrupt name from the head of the list */
|
|
if (irqhandlers[irq] && irqhandlers[irq]->ih_name) {
|
|
char *ptr = _intrnames + (irq * 14);
|
|
strcpy(ptr, " ");
|
|
strncpy(ptr, irqhandlers[irq]->ih_name,
|
|
min(strlen(irqhandlers[irq]->ih_name), 13));
|
|
} else {
|
|
char *ptr = _intrnames + (irq * 14);
|
|
sprintf(ptr, "irq %2d ", irq);
|
|
}
|
|
#endif /* IRQSTATS */
|
|
|
|
irq_calculatemasks();
|
|
|
|
/*
|
|
* Disable the appropriate mask bit if there are no handlers left for
|
|
* this IRQ.
|
|
*/
|
|
if (irqhandlers[irq] == NULL)
|
|
disable_irq(irq);
|
|
|
|
set_spl_masks();
|
|
|
|
return(0);
|
|
}
|
|
|
|
/* adapted from .../i386/isa/isa_machdep.c */
|
|
/*
|
|
* Recalculate the interrupt masks from scratch.
|
|
* We could code special registry and deregistry versions of this function that
|
|
* would be faster, but the code would be nastier, and we don't expect this to
|
|
* happen very much anyway.
|
|
*/
|
|
void
|
|
irq_calculatemasks()
|
|
{
|
|
int irq, level;
|
|
irqhandler_t *ptr;
|
|
int irqlevel[NIRQS];
|
|
|
|
/* First, figure out which levels each IRQ uses. */
|
|
for (irq = 0; irq < NIRQS; irq++) {
|
|
int levels = 0;
|
|
for (ptr = irqhandlers[irq]; ptr; ptr = ptr->ih_next)
|
|
levels |= 1 << ptr->ih_level;
|
|
irqlevel[irq] = levels;
|
|
}
|
|
|
|
/* Then figure out which IRQs use each level. */
|
|
for (level = 0; level < IPL_LEVELS; level++) {
|
|
int irqs = 0;
|
|
for (irq = 0; irq < NIRQS; irq++)
|
|
if (irqlevel[irq] & (1 << level))
|
|
irqs |= 1 << irq;
|
|
irqmasks[level] = ~irqs;
|
|
}
|
|
|
|
/*
|
|
* Enforce a hierarchy that gives slow devices a better chance at not
|
|
* dropping data.
|
|
*/
|
|
irqmasks[IPL_NET] &= irqmasks[IPL_BIO];
|
|
irqmasks[IPL_TTY] &= irqmasks[IPL_NET];
|
|
|
|
/*
|
|
* There are tty, network and disk drivers that use free() at interrupt
|
|
* time, so imp > (tty | net | bio).
|
|
*/
|
|
irqmasks[IPL_IMP] &= irqmasks[IPL_TTY];
|
|
|
|
irqmasks[IPL_AUDIO] &= irqmasks[IPL_IMP];
|
|
|
|
/*
|
|
* Since run queues may be manipulated by both the statclock and tty,
|
|
* network, and disk drivers, statclock > (tty | net | bio).
|
|
*/
|
|
irqmasks[IPL_CLOCK] &= irqmasks[IPL_AUDIO];
|
|
|
|
/*
|
|
* IPL_HIGH must block everything that can manipulate a run queue.
|
|
*/
|
|
irqmasks[IPL_HIGH] &= irqmasks[IPL_CLOCK];
|
|
|
|
/*
|
|
* We need serial drivers to run at the absolute highest priority to
|
|
* avoid overruns, so serial > high.
|
|
*/
|
|
irqmasks[IPL_SERIAL] &= irqmasks[IPL_HIGH];
|
|
|
|
/*
|
|
* We now need to update the irqblock array. This array indicates
|
|
* what other interrupts should be blocked when interrupt is asserted
|
|
* This basically emulates hardware interrupt priorities e.g. by
|
|
* blocking all other IPL_BIO interrupts with an IPL_BIO interrupt
|
|
* is asserted. For each interrupt we find the highest IPL and set
|
|
* the block mask to the interrupt mask for that level.
|
|
*/
|
|
|
|
/* And eventually calculate the complete masks. */
|
|
for (irq = 0; irq < NIRQS; irq++) {
|
|
int irqs = 1 << irq;
|
|
for (ptr = irqhandlers[irq]; ptr; ptr = ptr->ih_next)
|
|
irqs |= ~(irqmasks[ptr->ih_level]);
|
|
irqblock[irq] = irqs;
|
|
}
|
|
}
|
|
|
|
|
|
void *
|
|
intr_claim(irq, level, name, ih_func, ih_arg)
|
|
int irq;
|
|
int level;
|
|
const char *name;
|
|
int (*ih_func) __P((void *));
|
|
void *ih_arg;
|
|
{
|
|
irqhandler_t *ih;
|
|
|
|
ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
|
|
if (!ih)
|
|
panic("intr_claim(): Cannot malloc handler memory\n");
|
|
|
|
ih->ih_level = level;
|
|
ih->ih_name = name;
|
|
ih->ih_func = ih_func;
|
|
ih->ih_arg = ih_arg;
|
|
ih->ih_flags = 0;
|
|
|
|
if (irq_claim(irq, ih) != 0)
|
|
return(NULL);
|
|
return(ih);
|
|
}
|
|
|
|
int
|
|
intr_release(arg)
|
|
void *arg;
|
|
{
|
|
irqhandler_t *ih = (irqhandler_t *)arg;
|
|
|
|
if (irq_release(ih->ih_num, ih) == 0) {
|
|
free(ih, M_DEVBUF);
|
|
return(0);
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
|
|
/*
|
|
* void disable_irq(int irq)
|
|
*
|
|
* Disables a specific irq. The irq is removed from the master irq mask
|
|
*/
|
|
|
|
void
|
|
disable_irq(irq)
|
|
int irq;
|
|
{
|
|
u_int oldirqstate;
|
|
|
|
oldirqstate = disable_interrupts(I32_bit);
|
|
current_mask &= ~(1 << irq);
|
|
irq_setmasks();
|
|
restore_interrupts(oldirqstate);
|
|
}
|
|
|
|
|
|
/*
|
|
* void enable_irq(int irq)
|
|
*
|
|
* Enables a specific irq. The irq is added to the master irq mask
|
|
* This routine should be used with caution. A handler should already
|
|
* be installed.
|
|
*/
|
|
|
|
void
|
|
enable_irq(irq)
|
|
int irq;
|
|
{
|
|
u_int oldirqstate;
|
|
|
|
oldirqstate = disable_interrupts(I32_bit);
|
|
current_mask |= (1 << irq);
|
|
irq_setmasks();
|
|
restore_interrupts(oldirqstate);
|
|
}
|
|
|
|
|
|
/*
|
|
* void stray_irqhandler(u_int mask)
|
|
*
|
|
* Handler for stray interrupts. This gets called if a handler cannot be
|
|
* found for an interrupt.
|
|
*/
|
|
|
|
void
|
|
stray_irqhandler(mask)
|
|
u_int mask;
|
|
{
|
|
static u_int stray_irqs = 0;
|
|
|
|
if (++stray_irqs <= 8)
|
|
log(LOG_ERR, "Stray interrupt %08x%s\n", mask,
|
|
stray_irqs >= 8 ? ": stopped logging" : "");
|
|
}
|
|
|
|
|
|
/*
|
|
* int fiq_claim(fiqhandler_t *handler)
|
|
*
|
|
* Claim FIQ's and install a handler for them.
|
|
*/
|
|
|
|
int
|
|
fiq_claim(handler)
|
|
fiqhandler_t *handler;
|
|
{
|
|
/* Fail if the FIQ's are already claimed */
|
|
if (fiqhandlers)
|
|
return(-1);
|
|
|
|
if (handler->fh_size > 0xc0)
|
|
return(-1);
|
|
|
|
/* Install the handler */
|
|
fiqhandlers = handler;
|
|
|
|
/* Now we have to actually install the FIQ handler */
|
|
|
|
/* Eventually we will copy this down but for the moment ... */
|
|
zero_page_readwrite();
|
|
|
|
WriteWord(0x0000003c, (u_int) handler->fh_func);
|
|
|
|
zero_page_readonly();
|
|
cpu_cache_syncI_rng(0, 0x40); /* XXX 0x3c should never be in the ic*/
|
|
|
|
/* We must now set up the FIQ registers */
|
|
fiq_setregs(handler);
|
|
|
|
/* Make sure that the FIQ's are enabled */
|
|
enable_interrupts(F32_bit);
|
|
|
|
return(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* int fiq_release(fiqhandler_t *handler)
|
|
*
|
|
* Release FIQ's and remove a handler for them.
|
|
*/
|
|
|
|
int
|
|
fiq_release(handler)
|
|
fiqhandler_t *handler;
|
|
{
|
|
/* Fail if the handler is wrong */
|
|
if (fiqhandlers != handler)
|
|
return(-1);
|
|
|
|
/* Disable FIQ interrupts */
|
|
disable_interrupts(F32_bit);
|
|
|
|
/* Retrieve the FIQ registers */
|
|
fiq_getregs(handler);
|
|
|
|
/* Remove the handler */
|
|
fiqhandlers = NULL;
|
|
return(0);
|
|
}
|
|
|
|
/* End of irqhandler.c */
|