NetBSD/sys/arch/evbarm/ifpga/ifpga_clock.c
skrll 5c97965224 Add support for the ARM Integrator/CP from Sergio López.
The code hasn't been tested on real hardware, but INTEGRATOR_CP config
is useful for QEMU which supports it.
2013-02-19 10:57:09 +00:00

381 lines
9.8 KiB
C

/* $NetBSD: ifpga_clock.c,v 1.15 2013/02/19 10:57:10 skrll Exp $ */
/*
* Copyright (c) 2001 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The IFPGA has three timers. Timer 0 is clocked by the system bus clock,
* while timers 1 and 2 are clocked at 24MHz (1Mhz for Integrator CP). To
* keep things simple here, we use timers 1 and 2 only. All three timers
* are 16-bit counters that are programmable in either periodic mode or in
* one-shot mode.
*/
/* Include header files */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ifpga_clock.c,v 1.15 2013/02/19 10:57:10 skrll Exp $");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/atomic.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <sys/device.h>
#include <arm/cpufunc.h>
#include <machine/intr.h>
#include <evbarm/ifpga/ifpgavar.h>
#include <evbarm/ifpga/ifpgamem.h>
#include <evbarm/ifpga/ifpgareg.h>
/*
* Statistics clock interval and variance, in usec. Variance must be a
* power of two. Since this gives us an even number, not an odd number,
* we discard one case and compensate. That is, a variance of 1024 would
* give us offsets in [0..1023]. Instead, we take offsets in [1..1023].
* This is symmetric about the point 512, or statvar/2, and thus averages
* to that value (assuming uniform random numbers).
*/
static int statvar = 1024 / 4; /* {stat,prof}clock variance */
static int statmin; /* statclock interval - variance/2 */
static int profmin; /* profclock interval - variance/2 */
static int timer2min; /* current, from above choices */
static int statprev; /* previous value in stat timer */
#define TIMER_1_CLEAR (IFPGA_TIMER1_BASE + TIMERx_CLR)
#define TIMER_1_LOAD (IFPGA_TIMER1_BASE + TIMERx_LOAD)
#define TIMER_1_VALUE (IFPGA_TIMER1_BASE + TIMERx_VALUE)
#define TIMER_1_CTRL (IFPGA_TIMER1_BASE + TIMERx_CTRL)
#define TIMER_2_CLEAR (IFPGA_TIMER2_BASE + TIMERx_CLR)
#define TIMER_2_LOAD (IFPGA_TIMER2_BASE + TIMERx_LOAD)
#define TIMER_2_VALUE (IFPGA_TIMER2_BASE + TIMERx_VALUE)
#define TIMER_2_CTRL (IFPGA_TIMER2_BASE + TIMERx_CTRL)
#define COUNTS_PER_SEC (IFPGA_TIMER1_FREQ / 16)
static u_int ifpga_get_timecount(struct timecounter *);
static struct timecounter ifpga_timecounter = {
ifpga_get_timecount, /* get_timecount */
0, /* no poll_pps */
0xffffffff, /* counter_mask */
COUNTS_PER_SEC, /* frequency */
"ifpga", /* name */
100, /* quality */
NULL, /* prev */
NULL, /* next */
};
static volatile uint32_t ifpga_base;
extern struct ifpga_softc *ifpga_sc;
extern device_t ifpga_dev;
static int clock_started = 0;
static int load_timer(int, int);
static inline u_int
getclock(void)
{
return bus_space_read_4(ifpga_sc->sc_iot, ifpga_sc->sc_tmr_ioh,
TIMER_1_VALUE);
}
static inline u_int
getstatclock(void)
{
return bus_space_read_4(ifpga_sc->sc_iot, ifpga_sc->sc_tmr_ioh,
TIMER_2_VALUE);
}
/*
* int clockhandler(struct clockframe *frame)
*
* Function called by timer 1 interrupts.
* This just clears the interrupt condition and calls hardclock().
*/
static int
clockhandler(void *fr)
{
struct clockframe *frame = (struct clockframe *)fr;
bus_space_write_4(ifpga_sc->sc_iot, ifpga_sc->sc_tmr_ioh,
TIMER_1_CLEAR, 0);
atomic_add_32(&ifpga_base, ifpga_sc->sc_clock_count);
hardclock(frame);
return 0; /* Pass the interrupt on down the chain */
}
/*
* int statclockhandler(struct clockframe *frame)
*
* Function called by timer 2 interrupts.
* Add some random jitter to the clock, and then call statclock().
*/
static int
statclockhandler(void *fr)
{
struct clockframe *frame = (struct clockframe *) fr;
int newint, r, var;
var = statvar;
do {
r = random() & (var - 1);
} while (r == 0);
newint = timer2min + r;
if (newint & ~0x0000ffff)
panic("statclockhandler: statclock variance too large");
/*
* The timer was automatically reloaded with the previous latch
* value at the time of the interrupts. Compensate now for the
* amount of time that has run off since then, plus one tick
* roundoff. This should keep us closer to the mean.
*/
r = (statprev - getstatclock() + 1);
if (r < newint) {
newint -= r;
r = 0;
}
else
printf("statclockhandler: Statclock overrun\n");
statprev = load_timer(IFPGA_TIMER2_BASE, newint);
statclock(frame);
if (r)
/*
* We've completely overrun the previous interval,
* make sure we report the correct number of ticks.
*/
statclock(frame);
return 0; /* Pass the interrupt on down the chain */
}
static int
load_timer(int base, int intvl)
{
int control;
if (intvl & ~0x0000ffff)
panic("clock: Invalid interval");
#if defined(INTEGRATOR_CP)
control = (TIMERx_CTRL_ENABLE | TIMERx_CTRL_MODE_PERIODIC |
TIMERx_CTRL_PRESCALE_DIV16 | TIMERx_CTRL_RAISE_IRQ);
#else
control = (TIMERx_CTRL_ENABLE | TIMERx_CTRL_MODE_PERIODIC |
TIMERx_CTRL_PRESCALE_DIV16);
#endif
bus_space_write_4(ifpga_sc->sc_iot, ifpga_sc->sc_tmr_ioh,
base + TIMERx_LOAD, intvl);
bus_space_write_4(ifpga_sc->sc_iot, ifpga_sc->sc_tmr_ioh,
base + TIMERx_CTRL, control);
bus_space_write_4(ifpga_sc->sc_iot, ifpga_sc->sc_tmr_ioh,
base + TIMERx_CLR, 0);
return intvl;
}
/*
* void setstatclockrate(int hz)
*
* We assume that hz is either stathz or profhz, and that neither will
* change after being set by cpu_initclocks(). We could recalculate the
* intervals here, but that would be a pain.
*/
void
setstatclockrate(int new_hz)
{
if (new_hz == stathz)
timer2min = statmin;
else
timer2min = profmin;
}
/*
* void cpu_initclocks(void)
*
* Initialise the clocks.
*/
void
cpu_initclocks(void)
{
int intvl;
int statint;
int profint;
int minint;
if (hz < 50 || COUNTS_PER_SEC % hz) {
printf("cannot get %d Hz clock; using 100 Hz\n", hz);
hz = 100;
tick = 1000000 / hz;
}
if (stathz == 0)
stathz = hz;
else if (stathz < 50 || COUNTS_PER_SEC % stathz) {
printf("cannot get %d Hz statclock; using 100 Hz\n", stathz);
stathz = 100;
}
if (profhz == 0)
profhz = stathz * 5;
else if (profhz < stathz || COUNTS_PER_SEC % profhz) {
printf("cannot get %d Hz profclock; using %d Hz\n", profhz,
stathz);
profhz = stathz;
}
intvl = COUNTS_PER_SEC / hz;
statint = COUNTS_PER_SEC / stathz;
profint = COUNTS_PER_SEC / profhz;
minint = statint / 2 + 100;
while (statvar > minint)
statvar >>= 1;
/* Adjust interval counts, per note above. */
intvl--;
statint--;
profint--;
/* Calculate the base reload values. */
statmin = statint - (statvar >> 1);
profmin = profint - (statvar >> 1);
timer2min = statmin;
statprev = statint;
/* Report the clock frequencies */
printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
/* Setup timer 1 and claim interrupt */
ifpga_sc->sc_clockintr = ifpga_intr_establish(IFPGA_TIMER1_IRQ,
IPL_CLOCK, clockhandler, 0);
if (ifpga_sc->sc_clockintr == NULL)
panic("%s: Cannot install timer 1 interrupt handler",
device_xname(ifpga_dev));
ifpga_sc->sc_clock_count
= load_timer(IFPGA_TIMER1_BASE, intvl);
/*
* Use ticks per 256us for accuracy since ticks per us is often
* fractional e.g. @ 66MHz
*/
ifpga_sc->sc_clock_ticks_per_256us =
((((ifpga_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
clock_started = 1;
/* Set up timer 2 as statclk/profclk. */
ifpga_sc->sc_statclockintr = ifpga_intr_establish(IFPGA_TIMER2_IRQ,
IPL_HIGH, statclockhandler, 0);
if (ifpga_sc->sc_statclockintr == NULL)
panic("%s: Cannot install timer 2 interrupt handler",
device_xname(ifpga_dev));
load_timer(IFPGA_TIMER2_BASE, statint);
tc_init(&ifpga_timecounter);
}
static u_int
ifpga_get_timecount(struct timecounter *tc)
{
u_int base, counter;
do {
base = ifpga_base;
counter = getclock();
} while (base != ifpga_base);
return base - counter;
}
/*
* Estimated loop for n microseconds
*/
/* Need to re-write this to use the timers */
/* One day soon I will actually do this */
int delaycount = 50;
void
delay(u_int n)
{
if (clock_started) {
u_int starttime;
u_int curtime;
u_int delta = 0;
u_int count_max = ifpga_sc->sc_clock_count;
starttime = getclock();
n *= IFPGA_TIMER1_FREQ / 1000000;
do {
n -= delta;
curtime = getclock();
delta = curtime - starttime;
if (curtime < starttime)
delta += count_max;
starttime = curtime;
} while (n > delta);
} else {
volatile u_int i;
if (n == 0) return;
while (n-- > 0) {
/* XXX - Seriously gross hack */
if (cputype == CPU_ID_SA110)
for (i = delaycount; --i;)
;
else
for (i = 8; --i;)
;
}
}
}