NetBSD/sbin/ifconfig/ieee80211.c
2015-04-28 15:14:57 +00:00

1376 lines
39 KiB
C

/* $NetBSD: ieee80211.c,v 1.28 2015/04/28 15:14:57 christos Exp $ */
/*
* Copyright (c) 1983, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifndef lint
__RCSID("$NetBSD: ieee80211.c,v 1.28 2015/04/28 15:14:57 christos Exp $");
#endif /* not lint */
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/route.h>
#include <net80211/ieee80211.h>
#include <net80211/ieee80211_ioctl.h>
#include <net80211/ieee80211_netbsd.h>
#include <assert.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <netdb.h>
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <util.h>
#include "extern.h"
#include "parse.h"
#include "env.h"
#include "util.h"
#include "prog_ops.h"
static void ieee80211_statistics(prop_dictionary_t);
static void ieee80211_status(prop_dictionary_t, prop_dictionary_t);
static void ieee80211_constructor(void) __attribute__((constructor));
static int set80211(prop_dictionary_t env, uint16_t, int16_t, int16_t,
u_int8_t *);
static u_int ieee80211_mhz2ieee(u_int, u_int);
static int getmaxrate(const uint8_t [15], u_int8_t);
static const char * getcaps(int);
static void printie(const char*, const uint8_t *, size_t, int);
static int copy_essid(char [], size_t, const u_int8_t *, size_t);
static void scan_and_wait(prop_dictionary_t);
static void list_scan(prop_dictionary_t);
static int mappsb(u_int , u_int);
static int mapgsm(u_int , u_int);
static int sethidessid(prop_dictionary_t, prop_dictionary_t);
static int setapbridge(prop_dictionary_t, prop_dictionary_t);
static int setifssid(prop_dictionary_t, prop_dictionary_t);
static int setifnwkey(prop_dictionary_t, prop_dictionary_t);
static int unsetifnwkey(prop_dictionary_t, prop_dictionary_t);
static int unsetifbssid(prop_dictionary_t, prop_dictionary_t);
static int setifbssid(prop_dictionary_t, prop_dictionary_t);
static int setifchan(prop_dictionary_t, prop_dictionary_t);
static int setiffrag(prop_dictionary_t, prop_dictionary_t);
static int setifpowersave(prop_dictionary_t, prop_dictionary_t);
static int setifpowersavesleep(prop_dictionary_t, prop_dictionary_t);
static int setifrts(prop_dictionary_t, prop_dictionary_t);
static int scan_exec(prop_dictionary_t, prop_dictionary_t);
static void printies(const u_int8_t *, int, int);
static void printwmeparam(const char *, const u_int8_t *, size_t , int);
static void printwmeinfo(const char *, const u_int8_t *, size_t , int);
static const char * wpa_cipher(const u_int8_t *);
static const char * wpa_keymgmt(const u_int8_t *);
static void printwpaie(const char *, const u_int8_t *, size_t , int);
static const char * rsn_cipher(const u_int8_t *);
static const char * rsn_keymgmt(const u_int8_t *);
static void printrsnie(const char *, const u_int8_t *, size_t , int);
static void printssid(const char *, const u_int8_t *, size_t , int);
static void printrates(const char *, const u_int8_t *, size_t , int);
static void printcountry(const char *, const u_int8_t *, size_t , int);
static int iswpaoui(const u_int8_t *);
static int iswmeinfo(const u_int8_t *);
static int iswmeparam(const u_int8_t *);
static const char * iename(int);
extern struct pinteger parse_chan, parse_frag, parse_rts;
extern struct pstr parse_bssid, parse_ssid, parse_nwkey;
extern struct pinteger parse_powersavesleep;
static const struct kwinst ieee80211boolkw[] = {
{.k_word = "hidessid", .k_key = "hidessid", .k_neg = true,
.k_type = KW_T_BOOL, .k_bool = true, .k_negbool = false,
.k_exec = sethidessid}
, {.k_word = "apbridge", .k_key = "apbridge", .k_neg = true,
.k_type = KW_T_BOOL, .k_bool = true, .k_negbool = false,
.k_exec = setapbridge}
, {.k_word = "powersave", .k_key = "powersave", .k_neg = true,
.k_type = KW_T_BOOL, .k_bool = true, .k_negbool = false,
.k_exec = setifpowersave}
};
static const struct kwinst listskw[] = {
{.k_word = "scan", .k_exec = scan_exec}
};
static struct pkw lists = PKW_INITIALIZER(&lists, "ieee80211 lists", NULL,
"list", listskw, __arraycount(listskw), &command_root.pb_parser);
static const struct kwinst kw80211kw[] = {
{.k_word = "bssid", .k_nextparser = &parse_bssid.ps_parser}
, {.k_word = "-bssid", .k_exec = unsetifbssid,
.k_nextparser = &command_root.pb_parser}
, {.k_word = "chan", .k_nextparser = &parse_chan.pi_parser}
, {.k_word = "-chan", .k_key = "chan", .k_type = KW_T_UINT,
.k_uint = IEEE80211_CHAN_ANY, .k_exec = setifchan,
.k_nextparser = &command_root.pb_parser}
, {.k_word = "frag", .k_nextparser = &parse_frag.pi_parser}
, {.k_word = "-frag", .k_key = "frag", .k_type = KW_T_INT,
.k_int = IEEE80211_FRAG_MAX, .k_exec = setiffrag,
.k_nextparser = &command_root.pb_parser}
, {.k_word = "list", .k_nextparser = &lists.pk_parser}
, {.k_word = "nwid", .k_nextparser = &parse_ssid.ps_parser}
, {.k_word = "nwkey", .k_nextparser = &parse_nwkey.ps_parser}
, {.k_word = "-nwkey", .k_exec = unsetifnwkey,
.k_nextparser = &command_root.pb_parser}
, {.k_word = "rts", .k_nextparser = &parse_rts.pi_parser}
, {.k_word = "-rts", .k_key = "rts", .k_type = KW_T_INT,
.k_int = IEEE80211_RTS_MAX, .k_exec = setifrts,
.k_nextparser = &command_root.pb_parser}
, {.k_word = "ssid", .k_nextparser = &parse_ssid.ps_parser}
, {.k_word = "powersavesleep",
.k_nextparser = &parse_powersavesleep.pi_parser}
};
struct pkw kw80211 = PKW_INITIALIZER(&kw80211, "802.11 keywords", NULL, NULL,
kw80211kw, __arraycount(kw80211kw), NULL);
struct pkw ieee80211bool = PKW_INITIALIZER(&ieee80211bool, "ieee80211 boolean",
NULL, NULL, ieee80211boolkw, __arraycount(ieee80211boolkw),
&command_root.pb_parser);
struct pinteger parse_chan = PINTEGER_INITIALIZER1(&parse_chan, "chan",
0, UINT16_MAX, 10, setifchan, "chan", &command_root.pb_parser);
struct pinteger parse_rts = PINTEGER_INITIALIZER1(&parse_rts, "rts",
IEEE80211_RTS_MIN, IEEE80211_RTS_MAX, 10,
setifrts, "rts", &command_root.pb_parser);
struct pinteger parse_frag = PINTEGER_INITIALIZER1(&parse_frag, "frag",
IEEE80211_FRAG_MIN, IEEE80211_FRAG_MAX, 10,
setiffrag, "frag", &command_root.pb_parser);
struct pstr parse_ssid = PSTR_INITIALIZER(&parse_pass, "ssid", setifssid,
"ssid", &command_root.pb_parser);
struct pinteger parse_powersavesleep =
PINTEGER_INITIALIZER1(&parse_powersavesleep, "powersavesleep",
0, INT_MAX, 10, setifpowersavesleep, "powersavesleep",
&command_root.pb_parser);
struct pstr parse_nwkey = PSTR_INITIALIZER1(&parse_nwkey, "nwkey", setifnwkey,
"nwkey", false, &command_root.pb_parser);
struct pstr parse_bssid = PSTR_INITIALIZER1(&parse_bssid, "bssid", setifbssid,
"bssid", false, &command_root.pb_parser);
static int
set80211(prop_dictionary_t env, uint16_t type, int16_t val, int16_t len,
u_int8_t *data)
{
struct ieee80211req ireq;
memset(&ireq, 0, sizeof(ireq));
ireq.i_type = type;
ireq.i_val = val;
ireq.i_len = len;
ireq.i_data = data;
if (direct_ioctl(env, SIOCS80211, &ireq) == -1) {
warn("SIOCS80211");
return -1;
}
return 0;
}
static int
sethidessid(prop_dictionary_t env, prop_dictionary_t oenv)
{
bool on, rc;
rc = prop_dictionary_get_bool(env, "hidessid", &on);
assert(rc);
return set80211(env, IEEE80211_IOC_HIDESSID, on ? 1 : 0, 0, NULL);
}
static int
setapbridge(prop_dictionary_t env, prop_dictionary_t oenv)
{
bool on, rc;
rc = prop_dictionary_get_bool(env, "apbridge", &on);
assert(rc);
return set80211(env, IEEE80211_IOC_APBRIDGE, on ? 1 : 0, 0, NULL);
}
static enum ieee80211_opmode
get80211opmode(prop_dictionary_t env)
{
struct ifmediareq ifmr;
memset(&ifmr, 0, sizeof(ifmr));
if (direct_ioctl(env, SIOCGIFMEDIA, &ifmr) == -1)
;
else if (ifmr.ifm_current & IFM_IEEE80211_ADHOC)
return IEEE80211_M_IBSS; /* XXX ahdemo */
else if (ifmr.ifm_current & IFM_IEEE80211_HOSTAP)
return IEEE80211_M_HOSTAP;
else if (ifmr.ifm_current & IFM_IEEE80211_MONITOR)
return IEEE80211_M_MONITOR;
return IEEE80211_M_STA;
}
static int
setifssid(prop_dictionary_t env, prop_dictionary_t oenv)
{
struct ieee80211_nwid nwid;
ssize_t len;
memset(&nwid, 0, sizeof(nwid));
if ((len = getargdata(env, "ssid", nwid.i_nwid,
sizeof(nwid.i_nwid))) == -1)
errx(EXIT_FAILURE, "%s: SSID too long", __func__);
nwid.i_len = (uint8_t)len;
if (indirect_ioctl(env, SIOCS80211NWID, &nwid) == -1)
err(EXIT_FAILURE, "SIOCS80211NWID");
return 0;
}
static int
unsetifbssid(prop_dictionary_t env, prop_dictionary_t oenv)
{
struct ieee80211_bssid bssid;
memset(&bssid, 0, sizeof(bssid));
if (direct_ioctl(env, SIOCS80211BSSID, &bssid) == -1)
err(EXIT_FAILURE, "SIOCS80211BSSID");
return 0;
}
static int
setifbssid(prop_dictionary_t env, prop_dictionary_t oenv)
{
char buf[24];
struct ieee80211_bssid bssid;
struct ether_addr *ea;
if (getargstr(env, "bssid", buf, sizeof(buf)) == -1)
errx(EXIT_FAILURE, "%s: BSSID too long", __func__);
ea = ether_aton(buf);
if (ea == NULL) {
errx(EXIT_FAILURE, "malformed BSSID: %s", buf);
return -1;
}
memcpy(&bssid.i_bssid, ea->ether_addr_octet,
sizeof(bssid.i_bssid));
if (direct_ioctl(env, SIOCS80211BSSID, &bssid) == -1)
err(EXIT_FAILURE, "SIOCS80211BSSID");
return 0;
}
static int
setifrts(prop_dictionary_t env, prop_dictionary_t oenv)
{
bool rc;
int16_t val;
rc = prop_dictionary_get_int16(env, "rts", &val);
assert(rc);
if (set80211(env, IEEE80211_IOC_RTSTHRESHOLD, val, 0, NULL) == -1)
err(EXIT_FAILURE, "IEEE80211_IOC_RTSTHRESHOLD");
return 0;
}
static int
setiffrag(prop_dictionary_t env, prop_dictionary_t oenv)
{
bool rc;
int16_t val;
rc = prop_dictionary_get_int16(env, "frag", &val);
assert(rc);
if (set80211(env, IEEE80211_IOC_FRAGTHRESHOLD, val, 0, NULL) == -1)
err(EXIT_FAILURE, "IEEE80211_IOC_FRAGTHRESHOLD");
return 0;
}
static int
setifchan(prop_dictionary_t env, prop_dictionary_t oenv)
{
bool rc;
struct ieee80211chanreq channel;
rc = prop_dictionary_get_uint16(env, "chan", &channel.i_channel);
assert(rc);
if (direct_ioctl(env, SIOCS80211CHANNEL, &channel) == -1)
err(EXIT_FAILURE, "SIOCS80211CHANNEL");
return 0;
}
static int
setifnwkey(prop_dictionary_t env, prop_dictionary_t oenv)
{
const char *val;
char buf[256];
struct ieee80211_nwkey nwkey;
int i;
u_int8_t keybuf[IEEE80211_WEP_NKID][16];
if (getargstr(env, "nwkey", buf, sizeof(buf)) == -1)
errx(EXIT_FAILURE, "%s: nwkey too long", __func__);
val = buf;
nwkey.i_wepon = IEEE80211_NWKEY_WEP;
nwkey.i_defkid = 1;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
nwkey.i_key[i].i_keylen = sizeof(keybuf[i]);
nwkey.i_key[i].i_keydat = keybuf[i];
}
if (strcasecmp("persist", val) == 0) {
/* use all values from persistent memory */
nwkey.i_wepon |= IEEE80211_NWKEY_PERSIST;
nwkey.i_defkid = 0;
for (i = 0; i < IEEE80211_WEP_NKID; i++)
nwkey.i_key[i].i_keylen = -1;
} else if (strncasecmp("persist:", val, 8) == 0) {
val += 8;
/* program keys in persistent memory */
nwkey.i_wepon |= IEEE80211_NWKEY_PERSIST;
goto set_nwkey;
} else {
set_nwkey:
if (isdigit((unsigned char)val[0]) && val[1] == ':') {
/* specifying a full set of four keys */
nwkey.i_defkid = val[0] - '0';
val += 2;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
val = get_string(val, ",", keybuf[i],
&nwkey.i_key[i].i_keylen, true);
if (val == NULL) {
errno = EINVAL;
return -1;
}
}
if (*val != '\0') {
errx(EXIT_FAILURE, "SIOCS80211NWKEY: too many keys.");
}
} else {
val = get_string(val, NULL, keybuf[0],
&nwkey.i_key[0].i_keylen, true);
if (val == NULL) {
errno = EINVAL;
return -1;
}
i = 1;
}
}
for (; i < IEEE80211_WEP_NKID; i++)
nwkey.i_key[i].i_keylen = 0;
if (direct_ioctl(env, SIOCS80211NWKEY, &nwkey) == -1)
err(EXIT_FAILURE, "SIOCS80211NWKEY");
return 0;
}
static int
unsetifnwkey(prop_dictionary_t env, prop_dictionary_t oenv)
{
struct ieee80211_nwkey nwkey;
int i;
nwkey.i_wepon = 0;
nwkey.i_defkid = 1;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
nwkey.i_key[i].i_keylen = 0;
nwkey.i_key[i].i_keydat = NULL;
}
if (direct_ioctl(env, SIOCS80211NWKEY, &nwkey) == -1)
err(EXIT_FAILURE, "SIOCS80211NWKEY");
return 0;
}
static int
setifpowersave(prop_dictionary_t env, prop_dictionary_t oenv)
{
struct ieee80211_power power;
bool on, rc;
if (direct_ioctl(env, SIOCG80211POWER, &power) == -1)
err(EXIT_FAILURE, "SIOCG80211POWER");
rc = prop_dictionary_get_bool(env, "powersave", &on);
assert(rc);
power.i_enabled = on ? 1 : 0;
if (direct_ioctl(env, SIOCS80211POWER, &power) == -1) {
warn("SIOCS80211POWER");
return -1;
}
return 0;
}
static int
setifpowersavesleep(prop_dictionary_t env, prop_dictionary_t oenv)
{
struct ieee80211_power power;
int64_t maxsleep;
bool rc;
rc = prop_dictionary_get_int64(env, "powersavesleep", &maxsleep);
assert(rc);
if (direct_ioctl(env, SIOCG80211POWER, &power) == -1)
err(EXIT_FAILURE, "SIOCG80211POWER");
power.i_maxsleep = maxsleep;
if (direct_ioctl(env, SIOCS80211POWER, &power) == -1)
err(EXIT_FAILURE, "SIOCS80211POWER");
return 0;
}
static int
scan_exec(prop_dictionary_t env, prop_dictionary_t oenv)
{
struct ifreq ifr;
if (direct_ioctl(env, SIOCGIFFLAGS, &ifr) == -1) {
warn("ioctl(SIOCGIFFLAGS)");
return -1;
}
if ((ifr.ifr_flags & IFF_UP) == 0)
errx(EXIT_FAILURE, "The interface must be up before scanning.");
scan_and_wait(env);
list_scan(env);
return 0;
}
static void
ieee80211_statistics(prop_dictionary_t env)
{
#ifndef SMALL
struct ieee80211_stats stats;
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_buflen = sizeof(stats);
ifr.ifr_buf = (caddr_t)&stats;
if (direct_ioctl(env, (zflag) ? SIOCG80211ZSTATS : SIOCG80211STATS,
&ifr) == -1)
return;
#define STAT_PRINT(_member, _desc) \
printf("\t" _desc ": %" PRIu32 "\n", stats._member)
STAT_PRINT(is_rx_badversion, "rx frame with bad version");
STAT_PRINT(is_rx_tooshort, "rx frame too short");
STAT_PRINT(is_rx_wrongbss, "rx from wrong bssid");
STAT_PRINT(is_rx_dup, "rx discard 'cuz dup");
STAT_PRINT(is_rx_wrongdir, "rx w/ wrong direction");
STAT_PRINT(is_rx_mcastecho, "rx discard 'cuz mcast echo");
STAT_PRINT(is_rx_notassoc, "rx discard 'cuz sta !assoc");
STAT_PRINT(is_rx_noprivacy, "rx w/ wep but privacy off");
STAT_PRINT(is_rx_unencrypted, "rx w/o wep and privacy on");
STAT_PRINT(is_rx_wepfail, "rx wep processing failed");
STAT_PRINT(is_rx_decap, "rx decapsulation failed");
STAT_PRINT(is_rx_mgtdiscard, "rx discard mgt frames");
STAT_PRINT(is_rx_ctl, "rx discard ctrl frames");
STAT_PRINT(is_rx_beacon, "rx beacon frames");
STAT_PRINT(is_rx_rstoobig, "rx rate set truncated");
STAT_PRINT(is_rx_elem_missing, "rx required element missing");
STAT_PRINT(is_rx_elem_toobig, "rx element too big");
STAT_PRINT(is_rx_elem_toosmall, "rx element too small");
STAT_PRINT(is_rx_elem_unknown, "rx element unknown");
STAT_PRINT(is_rx_badchan, "rx frame w/ invalid chan");
STAT_PRINT(is_rx_chanmismatch, "rx frame chan mismatch");
STAT_PRINT(is_rx_nodealloc, "rx frame dropped");
STAT_PRINT(is_rx_ssidmismatch, "rx frame ssid mismatch ");
STAT_PRINT(is_rx_auth_unsupported, "rx w/ unsupported auth alg");
STAT_PRINT(is_rx_auth_fail, "rx sta auth failure");
STAT_PRINT(is_rx_auth_countermeasures, "rx auth discard 'cuz CM");
STAT_PRINT(is_rx_assoc_bss, "rx assoc from wrong bssid");
STAT_PRINT(is_rx_assoc_notauth, "rx assoc w/o auth");
STAT_PRINT(is_rx_assoc_capmismatch, "rx assoc w/ cap mismatch");
STAT_PRINT(is_rx_assoc_norate, "rx assoc w/ no rate match");
STAT_PRINT(is_rx_assoc_badwpaie, "rx assoc w/ bad WPA IE");
STAT_PRINT(is_rx_deauth, "rx deauthentication");
STAT_PRINT(is_rx_disassoc, "rx disassociation");
STAT_PRINT(is_rx_badsubtype, "rx frame w/ unknown subtyp");
STAT_PRINT(is_rx_nobuf, "rx failed for lack of buf");
STAT_PRINT(is_rx_decryptcrc, "rx decrypt failed on crc");
STAT_PRINT(is_rx_ahdemo_mgt, "rx discard ahdemo mgt fram");
STAT_PRINT(is_rx_bad_auth, "rx bad auth request");
STAT_PRINT(is_rx_unauth, "rx on unauthorized port");
STAT_PRINT(is_rx_badkeyid, "rx w/ incorrect keyid");
STAT_PRINT(is_rx_ccmpreplay, "rx seq# violation (CCMP)");
STAT_PRINT(is_rx_ccmpformat, "rx format bad (CCMP)");
STAT_PRINT(is_rx_ccmpmic, "rx MIC check failed (CCMP)");
STAT_PRINT(is_rx_tkipreplay, "rx seq# violation (TKIP)");
STAT_PRINT(is_rx_tkipformat, "rx format bad (TKIP)");
STAT_PRINT(is_rx_tkipmic, "rx MIC check failed (TKIP)");
STAT_PRINT(is_rx_tkipicv, "rx ICV check failed (TKIP)");
STAT_PRINT(is_rx_badcipher, "rx failed 'cuz key type");
STAT_PRINT(is_rx_nocipherctx, "rx failed 'cuz key !setup");
STAT_PRINT(is_rx_acl, "rx discard 'cuz acl policy");
STAT_PRINT(is_tx_nobuf, "tx failed for lack of buf");
STAT_PRINT(is_tx_nonode, "tx failed for no node");
STAT_PRINT(is_tx_unknownmgt, "tx of unknown mgt frame");
STAT_PRINT(is_tx_badcipher, "tx failed 'cuz key type");
STAT_PRINT(is_tx_nodefkey, "tx failed 'cuz no defkey");
STAT_PRINT(is_tx_noheadroom, "tx failed 'cuz no space");
STAT_PRINT(is_tx_fragframes, "tx frames fragmented");
STAT_PRINT(is_tx_frags, "tx fragments created");
STAT_PRINT(is_scan_active, "active scans started");
STAT_PRINT(is_scan_passive, "passive scans started");
STAT_PRINT(is_node_timeout, "nodes timed out inactivity");
STAT_PRINT(is_crypto_nomem, "no memory for crypto ctx");
STAT_PRINT(is_crypto_tkip, "tkip crypto done in s/w");
STAT_PRINT(is_crypto_tkipenmic, "tkip en-MIC done in s/w");
STAT_PRINT(is_crypto_tkipdemic, "tkip de-MIC done in s/w");
STAT_PRINT(is_crypto_tkipcm, "tkip counter measures");
STAT_PRINT(is_crypto_ccmp, "ccmp crypto done in s/w");
STAT_PRINT(is_crypto_wep, "wep crypto done in s/w");
STAT_PRINT(is_crypto_setkey_cipher, "cipher rejected key");
STAT_PRINT(is_crypto_setkey_nokey, "no key index for setkey");
STAT_PRINT(is_crypto_delkey, "driver key delete failed");
STAT_PRINT(is_crypto_badcipher, "unknown cipher");
STAT_PRINT(is_crypto_nocipher, "cipher not available");
STAT_PRINT(is_crypto_attachfail, "cipher attach failed");
STAT_PRINT(is_crypto_swfallback, "cipher fallback to s/w");
STAT_PRINT(is_crypto_keyfail, "driver key alloc failed");
STAT_PRINT(is_crypto_enmicfail, "en-MIC failed");
STAT_PRINT(is_ibss_capmismatch, "merge failed-cap mismatch");
STAT_PRINT(is_ibss_norate, "merge failed-rate mismatch");
STAT_PRINT(is_ps_unassoc, "ps-poll for unassoc. sta");
STAT_PRINT(is_ps_badaid, "ps-poll w/ incorrect aid");
STAT_PRINT(is_ps_qempty, "ps-poll w/ nothing to send");
STAT_PRINT(is_ff_badhdr, "fast frame rx'd w/ bad hdr");
STAT_PRINT(is_ff_tooshort, "fast frame rx decap error");
STAT_PRINT(is_ff_split, "fast frame rx split error");
STAT_PRINT(is_ff_decap, "fast frames decap'd");
STAT_PRINT(is_ff_encap, "fast frames encap'd for tx");
STAT_PRINT(is_rx_badbintval, "rx frame w/ bogus bintval");
#endif
}
static void
ieee80211_status(prop_dictionary_t env, prop_dictionary_t oenv)
{
int i, nwkey_verbose;
struct ieee80211_nwid nwid;
struct ieee80211_nwkey nwkey;
struct ieee80211_power power;
u_int8_t keybuf[IEEE80211_WEP_NKID][16];
struct ieee80211_bssid bssid;
struct ieee80211chanreq channel;
struct ieee80211req ireq;
struct ether_addr ea;
static const u_int8_t zero_macaddr[IEEE80211_ADDR_LEN];
enum ieee80211_opmode opmode = get80211opmode(env);
memset(&bssid, 0, sizeof(bssid));
memset(&nwkey, 0, sizeof(nwkey));
memset(&nwid, 0, sizeof(nwid));
memset(&nwid, 0, sizeof(nwid));
if (indirect_ioctl(env, SIOCG80211NWID, &nwid) == -1)
return;
if (nwid.i_len > IEEE80211_NWID_LEN) {
errx(EXIT_FAILURE, "SIOCG80211NWID: wrong length of nwid (%d)", nwid.i_len);
}
printf("\tssid ");
print_string(nwid.i_nwid, nwid.i_len);
if (opmode == IEEE80211_M_HOSTAP) {
ireq.i_type = IEEE80211_IOC_HIDESSID;
if (direct_ioctl(env, SIOCG80211, &ireq) != -1) {
if (ireq.i_val)
printf(" [hidden]");
else if (vflag)
printf(" [shown]");
}
ireq.i_type = IEEE80211_IOC_APBRIDGE;
if (direct_ioctl(env, SIOCG80211, &ireq) != -1) {
if (ireq.i_val)
printf(" apbridge");
else if (vflag)
printf(" -apbridge");
}
}
ireq.i_type = IEEE80211_IOC_RTSTHRESHOLD;
if (direct_ioctl(env, SIOCG80211, &ireq) == -1)
;
else if (ireq.i_val < IEEE80211_RTS_MAX)
printf(" rts %d", ireq.i_val);
else if (vflag)
printf(" -rts");
ireq.i_type = IEEE80211_IOC_FRAGTHRESHOLD;
if (direct_ioctl(env, SIOCG80211, &ireq) == -1)
;
else if (ireq.i_val < IEEE80211_FRAG_MAX)
printf(" frag %d", ireq.i_val);
else if (vflag)
printf(" -frag");
memset(&nwkey, 0, sizeof(nwkey));
/* show nwkey only when WEP is enabled */
if (direct_ioctl(env, SIOCG80211NWKEY, &nwkey) == -1 ||
nwkey.i_wepon == 0) {
printf("\n");
goto skip_wep;
}
printf(" nwkey ");
/* try to retrieve WEP keys */
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
nwkey.i_key[i].i_keydat = keybuf[i];
nwkey.i_key[i].i_keylen = sizeof(keybuf[i]);
}
if (direct_ioctl(env, SIOCG80211NWKEY, &nwkey) == -1) {
printf("*****");
} else {
nwkey_verbose = 0;
/* check to see non default key or multiple keys defined */
if (nwkey.i_defkid != 1) {
nwkey_verbose = 1;
} else {
for (i = 1; i < IEEE80211_WEP_NKID; i++) {
if (nwkey.i_key[i].i_keylen != 0) {
nwkey_verbose = 1;
break;
}
}
}
/* check extra ambiguity with keywords */
if (!nwkey_verbose) {
if (nwkey.i_key[0].i_keylen >= 2 &&
isdigit(nwkey.i_key[0].i_keydat[0]) &&
nwkey.i_key[0].i_keydat[1] == ':')
nwkey_verbose = 1;
else if (nwkey.i_key[0].i_keylen >= 7 &&
strncasecmp("persist",
(const char *)nwkey.i_key[0].i_keydat, 7) == 0)
nwkey_verbose = 1;
}
if (nwkey_verbose)
printf("%d:", nwkey.i_defkid);
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (i > 0)
printf(",");
if (nwkey.i_key[i].i_keylen < 0)
printf("persist");
else
print_string(nwkey.i_key[i].i_keydat,
nwkey.i_key[i].i_keylen);
if (!nwkey_verbose)
break;
}
}
printf("\n");
skip_wep:
if (direct_ioctl(env, SIOCG80211POWER, &power) == -1)
goto skip_power;
printf("\tpowersave ");
if (power.i_enabled)
printf("on (%dms sleep)", power.i_maxsleep);
else
printf("off");
printf("\n");
skip_power:
if (direct_ioctl(env, SIOCG80211BSSID, &bssid) == -1)
return;
if (direct_ioctl(env, SIOCG80211CHANNEL, &channel) == -1)
return;
if (memcmp(bssid.i_bssid, zero_macaddr, IEEE80211_ADDR_LEN) == 0) {
if (channel.i_channel != (u_int16_t)-1)
printf("\tchan %d\n", channel.i_channel);
} else {
memcpy(ea.ether_addr_octet, bssid.i_bssid,
sizeof(ea.ether_addr_octet));
printf("\tbssid %s", ether_ntoa(&ea));
if (channel.i_channel != IEEE80211_CHAN_ANY)
printf(" chan %d", channel.i_channel);
printf("\n");
}
}
static void
scan_and_wait(prop_dictionary_t env)
{
int sroute;
sroute = prog_socket(PF_ROUTE, SOCK_RAW, 0);
if (sroute < 0) {
warn("socket(PF_ROUTE,SOCK_RAW)");
return;
}
/* NB: only root can trigger a scan so ignore errors */
if (set80211(env, IEEE80211_IOC_SCAN_REQ, 0, 0, NULL) >= 0) {
char buf[2048];
struct if_announcemsghdr *ifan;
struct rt_msghdr *rtm;
do {
if (prog_read(sroute, buf, sizeof(buf)) < 0) {
warn("read(PF_ROUTE)");
break;
}
rtm = (struct rt_msghdr *) buf;
if (rtm->rtm_version != RTM_VERSION)
break;
ifan = (struct if_announcemsghdr *) rtm;
} while (rtm->rtm_type != RTM_IEEE80211 ||
ifan->ifan_what != RTM_IEEE80211_SCAN);
}
prog_close(sroute);
}
static void
list_scan(prop_dictionary_t env)
{
u_int8_t buf[24*1024];
struct ieee80211req ireq;
char ssid[IEEE80211_NWID_LEN+1];
const u_int8_t *cp;
int len, ssidmax;
memset(&ireq, 0, sizeof(ireq));
ireq.i_type = IEEE80211_IOC_SCAN_RESULTS;
ireq.i_data = buf;
ireq.i_len = sizeof(buf);
if (direct_ioctl(env, SIOCG80211, &ireq) < 0)
errx(EXIT_FAILURE, "unable to get scan results");
len = ireq.i_len;
if (len < (int)sizeof(struct ieee80211req_scan_result))
return;
ssidmax = IEEE80211_NWID_LEN;
printf("%-*.*s %-17.17s %4s %4s %-7s %3s %4s\n"
, ssidmax, ssidmax, "SSID"
, "BSSID"
, "CHAN"
, "RATE"
, "S:N"
, "INT"
, "CAPS"
);
cp = buf;
do {
const struct ieee80211req_scan_result *sr;
const uint8_t *vp;
sr = (const struct ieee80211req_scan_result *) cp;
vp = (const u_int8_t *)(sr+1);
printf("%-*.*s %s %3d %3dM %3d:%-3d %3d %-4.4s"
, ssidmax
, copy_essid(ssid, ssidmax, vp, sr->isr_ssid_len)
, ssid
, ether_ntoa((const struct ether_addr *) sr->isr_bssid)
, ieee80211_mhz2ieee(sr->isr_freq, sr->isr_flags)
, getmaxrate(sr->isr_rates, sr->isr_nrates)
, sr->isr_rssi, sr->isr_noise
, sr->isr_intval
, getcaps(sr->isr_capinfo)
);
printies(vp + sr->isr_ssid_len, sr->isr_ie_len, 24);
printf("\n");
cp += sr->isr_len, len -= sr->isr_len;
} while (len >= (int)sizeof(struct ieee80211req_scan_result));
}
/*
* Convert MHz frequency to IEEE channel number.
*/
static u_int
ieee80211_mhz2ieee(u_int isrfreq, u_int isrflags)
{
if ((isrflags & IEEE80211_CHAN_GSM) || (907 <= isrfreq && isrfreq <= 922))
return mapgsm(isrfreq, isrflags);
if (isrfreq == 2484)
return 14;
if (isrfreq < 2484)
return (isrfreq - 2407) / 5;
if (isrfreq < 5000) {
if (isrflags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER))
return mappsb(isrfreq, isrflags);
else if (isrfreq > 4900)
return (isrfreq - 4000) / 5;
else
return 15 + ((isrfreq - 2512) / 20);
}
return (isrfreq - 5000) / 5;
}
static int
getmaxrate(const u_int8_t rates[15], u_int8_t nrates)
{
int i, maxrate = -1;
for (i = 0; i < nrates; i++) {
int rate = rates[i] & IEEE80211_RATE_VAL;
if (rate > maxrate)
maxrate = rate;
}
return maxrate / 2;
}
static const char *
getcaps(int capinfo)
{
static char capstring[32];
char *cp = capstring;
if (capinfo & IEEE80211_CAPINFO_ESS)
*cp++ = 'E';
if (capinfo & IEEE80211_CAPINFO_IBSS)
*cp++ = 'I';
if (capinfo & IEEE80211_CAPINFO_CF_POLLABLE)
*cp++ = 'c';
if (capinfo & IEEE80211_CAPINFO_CF_POLLREQ)
*cp++ = 'C';
if (capinfo & IEEE80211_CAPINFO_PRIVACY)
*cp++ = 'P';
if (capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)
*cp++ = 'S';
if (capinfo & IEEE80211_CAPINFO_PBCC)
*cp++ = 'B';
if (capinfo & IEEE80211_CAPINFO_CHNL_AGILITY)
*cp++ = 'A';
if (capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
*cp++ = 's';
if (capinfo & IEEE80211_CAPINFO_RSN)
*cp++ = 'R';
if (capinfo & IEEE80211_CAPINFO_DSSSOFDM)
*cp++ = 'D';
*cp = '\0';
return capstring;
}
static void
printie(const char* tag, const uint8_t *ie, size_t ielen, int maxlen)
{
printf("%s", tag);
maxlen -= strlen(tag)+2;
if ((int)(2*ielen) > maxlen)
maxlen--;
printf("<");
for (; ielen > 0; ie++, ielen--) {
if (maxlen-- <= 0)
break;
printf("%02x", *ie);
}
if (ielen != 0)
printf("-");
printf(">");
}
#define LE_READ_2(p) \
((u_int16_t) \
((((const u_int8_t *)(p))[0] ) | \
(((const u_int8_t *)(p))[1] << 8)))
#define LE_READ_4(p) \
((u_int32_t) \
((((const u_int8_t *)(p))[0] ) | \
(((const u_int8_t *)(p))[1] << 8) | \
(((const u_int8_t *)(p))[2] << 16) | \
(((const u_int8_t *)(p))[3] << 24)))
/*
* NB: The decoding routines assume a properly formatted ie
* which should be safe as the kernel only retains them
* if they parse ok.
*/
static void
printwmeparam(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
{
#define MS(_v, _f) (((_v) & _f) >> _f##_S)
static const char *acnames[] = { "BE", "BK", "VO", "VI" };
const struct ieee80211_wme_param *wme =
(const struct ieee80211_wme_param *) ie;
int i;
printf("%s", tag);
if (!vflag)
return;
printf("<qosinfo 0x%x", wme->param_qosInfo);
ie += offsetof(struct ieee80211_wme_param, params_acParams);
for (i = 0; i < WME_NUM_AC; i++) {
const struct ieee80211_wme_acparams *ac =
&wme->params_acParams[i];
printf(" %s[%saifsn %u cwmin %u cwmax %u txop %u]"
, acnames[i]
, MS(ac->acp_aci_aifsn, WME_PARAM_ACM) ? "acm " : ""
, MS(ac->acp_aci_aifsn, WME_PARAM_AIFSN)
, MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMIN)
, MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMAX)
, LE_READ_2(&ac->acp_txop)
);
}
printf(">");
#undef MS
}
static void
printwmeinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
{
printf("%s", tag);
if (vflag) {
const struct ieee80211_wme_info *wme =
(const struct ieee80211_wme_info *) ie;
printf("<version 0x%x info 0x%x>",
wme->wme_version, wme->wme_info);
}
}
static const char *
wpa_cipher(const u_int8_t *sel)
{
#define WPA_SEL(x) (((x)<<24)|WPA_OUI)
u_int32_t w = LE_READ_4(sel);
switch (w) {
case WPA_SEL(WPA_CSE_NULL):
return "NONE";
case WPA_SEL(WPA_CSE_WEP40):
return "WEP40";
case WPA_SEL(WPA_CSE_WEP104):
return "WEP104";
case WPA_SEL(WPA_CSE_TKIP):
return "TKIP";
case WPA_SEL(WPA_CSE_CCMP):
return "AES-CCMP";
}
return "?"; /* NB: so 1<< is discarded */
#undef WPA_SEL
}
static const char *
wpa_keymgmt(const u_int8_t *sel)
{
#define WPA_SEL(x) (((x)<<24)|WPA_OUI)
u_int32_t w = LE_READ_4(sel);
switch (w) {
case WPA_SEL(WPA_ASE_8021X_UNSPEC):
return "8021X-UNSPEC";
case WPA_SEL(WPA_ASE_8021X_PSK):
return "8021X-PSK";
case WPA_SEL(WPA_ASE_NONE):
return "NONE";
}
return "?";
#undef WPA_SEL
}
static void
printwpaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
{
u_int8_t len = ie[1];
printf("%s", tag);
if (vflag) {
const char *sep;
int n;
ie += 6, len -= 4; /* NB: len is payload only */
printf("<v%u", LE_READ_2(ie));
ie += 2, len -= 2;
printf(" mc:%s", wpa_cipher(ie));
ie += 4, len -= 4;
/* unicast ciphers */
n = LE_READ_2(ie);
ie += 2, len -= 2;
sep = " uc:";
for (; n > 0; n--) {
printf("%s%s", sep, wpa_cipher(ie));
ie += 4, len -= 4;
sep = "+";
}
/* key management algorithms */
n = LE_READ_2(ie);
ie += 2, len -= 2;
sep = " km:";
for (; n > 0; n--) {
printf("%s%s", sep, wpa_keymgmt(ie));
ie += 4, len -= 4;
sep = "+";
}
if (len > 2) /* optional capabilities */
printf(", caps 0x%x", LE_READ_2(ie));
printf(">");
}
}
static const char *
rsn_cipher(const u_int8_t *sel)
{
#define RSN_SEL(x) (((x)<<24)|RSN_OUI)
u_int32_t w = LE_READ_4(sel);
switch (w) {
case RSN_SEL(RSN_CSE_NULL):
return "NONE";
case RSN_SEL(RSN_CSE_WEP40):
return "WEP40";
case RSN_SEL(RSN_CSE_WEP104):
return "WEP104";
case RSN_SEL(RSN_CSE_TKIP):
return "TKIP";
case RSN_SEL(RSN_CSE_CCMP):
return "AES-CCMP";
case RSN_SEL(RSN_CSE_WRAP):
return "AES-OCB";
}
return "?";
#undef WPA_SEL
}
static const char *
rsn_keymgmt(const u_int8_t *sel)
{
#define RSN_SEL(x) (((x)<<24)|RSN_OUI)
u_int32_t w = LE_READ_4(sel);
switch (w) {
case RSN_SEL(RSN_ASE_8021X_UNSPEC):
return "8021X-UNSPEC";
case RSN_SEL(RSN_ASE_8021X_PSK):
return "8021X-PSK";
case RSN_SEL(RSN_ASE_NONE):
return "NONE";
}
return "?";
#undef RSN_SEL
}
static void
printrsnie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
{
const char *sep;
int n;
printf("%s", tag);
if (!vflag)
return;
ie += 2, ielen -= 2;
printf("<v%u", LE_READ_2(ie));
ie += 2, ielen -= 2;
printf(" mc:%s", rsn_cipher(ie));
ie += 4, ielen -= 4;
/* unicast ciphers */
n = LE_READ_2(ie);
ie += 2, ielen -= 2;
sep = " uc:";
for (; n > 0; n--) {
printf("%s%s", sep, rsn_cipher(ie));
ie += 4, ielen -= 4;
sep = "+";
}
/* key management algorithms */
n = LE_READ_2(ie);
ie += 2, ielen -= 2;
sep = " km:";
for (; n > 0; n--) {
printf("%s%s", sep, rsn_keymgmt(ie));
ie += 4, ielen -= 4;
sep = "+";
}
if (ielen > 2) /* optional capabilities */
printf(", caps 0x%x", LE_READ_2(ie));
/* XXXPMKID */
printf(">");
}
/*
* Copy the ssid string contents into buf, truncating to fit. If the
* ssid is entirely printable then just copy intact. Otherwise convert
* to hexadecimal. If the result is truncated then replace the last
* three characters with "...".
*/
static int
copy_essid(char buf[], size_t bufsize, const u_int8_t *essid, size_t essid_len)
{
const u_int8_t *p;
size_t maxlen, i;
if (essid_len > bufsize)
maxlen = bufsize;
else
maxlen = essid_len;
/* determine printable or not */
for (i = 0, p = essid; i < maxlen; i++, p++) {
if (*p < ' ' || *p > 0x7e)
break;
}
if (i != maxlen) { /* not printable, print as hex */
if (bufsize < 3)
return 0;
strlcpy(buf, "0x", bufsize);
bufsize -= 2;
p = essid;
for (i = 0; i < maxlen && bufsize >= 2; i++) {
sprintf(&buf[2+2*i], "%02x", p[i]);
bufsize -= 2;
}
if (i != essid_len)
memcpy(&buf[2+2*i-3], "...", 3);
} else { /* printable, truncate as needed */
memcpy(buf, essid, maxlen);
if (maxlen != essid_len)
memcpy(&buf[maxlen-3], "...", 3);
}
return maxlen;
}
static void
printssid(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
{
char ssid[2*IEEE80211_NWID_LEN+1];
printf("%s<%.*s>", tag, copy_essid(ssid, maxlen, ie+2, ie[1]), ssid);
}
static void
printrates(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
{
const char *sep;
size_t i;
printf("%s", tag);
sep = "<";
for (i = 2; i < ielen; i++) {
printf("%s%s%d", sep,
ie[i] & IEEE80211_RATE_BASIC ? "B" : "",
ie[i] & IEEE80211_RATE_VAL);
sep = ",";
}
printf(">");
}
static void
printcountry(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
{
const struct ieee80211_country_ie *cie =
(const struct ieee80211_country_ie *) ie;
int i, nbands, schan, nchan;
printf("%s<%c%c%c", tag, cie->cc[0], cie->cc[1], cie->cc[2]);
nbands = (cie->len - 3) / sizeof(cie->band[0]);
for (i = 0; i < nbands; i++) {
schan = cie->band[i].schan;
nchan = cie->band[i].nchan;
if (nchan != 1)
printf(" %u-%u,%u", schan, schan + nchan-1,
cie->band[i].maxtxpwr);
else
printf(" %u,%u", schan, cie->band[i].maxtxpwr);
}
printf(">");
}
/* unaligned little endian access */
#define LE_READ_4(p) \
((u_int32_t) \
((((const u_int8_t *)(p))[0] ) | \
(((const u_int8_t *)(p))[1] << 8) | \
(((const u_int8_t *)(p))[2] << 16) | \
(((const u_int8_t *)(p))[3] << 24)))
static int
iswpaoui(const u_int8_t *frm)
{
return frm[1] > 3 && LE_READ_4(frm+2) == ((WPA_OUI_TYPE<<24)|WPA_OUI);
}
static int
iswmeinfo(const u_int8_t *frm)
{
return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) &&
frm[6] == WME_INFO_OUI_SUBTYPE;
}
static int
iswmeparam(const u_int8_t *frm)
{
return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) &&
frm[6] == WME_PARAM_OUI_SUBTYPE;
}
static const char *
iename(int elemid)
{
switch (elemid) {
case IEEE80211_ELEMID_FHPARMS: return " FHPARMS";
case IEEE80211_ELEMID_CFPARMS: return " CFPARMS";
case IEEE80211_ELEMID_TIM: return " TIM";
case IEEE80211_ELEMID_IBSSPARMS:return " IBSSPARMS";
case IEEE80211_ELEMID_CHALLENGE:return " CHALLENGE";
case IEEE80211_ELEMID_PWRCNSTR: return " PWRCNSTR";
case IEEE80211_ELEMID_PWRCAP: return " PWRCAP";
case IEEE80211_ELEMID_TPCREQ: return " TPCREQ";
case IEEE80211_ELEMID_TPCREP: return " TPCREP";
case IEEE80211_ELEMID_SUPPCHAN: return " SUPPCHAN";
case IEEE80211_ELEMID_CHANSWITCHANN:return " CSA";
case IEEE80211_ELEMID_MEASREQ: return " MEASREQ";
case IEEE80211_ELEMID_MEASREP: return " MEASREP";
case IEEE80211_ELEMID_QUIET: return " QUIET";
case IEEE80211_ELEMID_IBSSDFS: return " IBSSDFS";
case IEEE80211_ELEMID_TPC: return " TPC";
case IEEE80211_ELEMID_CCKM: return " CCKM";
}
return " ???";
}
static void
printies(const u_int8_t *vp, int ielen, int maxcols)
{
while (ielen > 0) {
switch (vp[0]) {
case IEEE80211_ELEMID_SSID:
if (vflag)
printssid(" SSID", vp, 2+vp[1], maxcols);
break;
case IEEE80211_ELEMID_RATES:
case IEEE80211_ELEMID_XRATES:
if (vflag)
printrates(vp[0] == IEEE80211_ELEMID_RATES ?
" RATES" : " XRATES", vp, 2+vp[1], maxcols);
break;
case IEEE80211_ELEMID_DSPARMS:
if (vflag)
printf(" DSPARMS<%u>", vp[2]);
break;
case IEEE80211_ELEMID_COUNTRY:
if (vflag)
printcountry(" COUNTRY", vp, 2+vp[1], maxcols);
break;
case IEEE80211_ELEMID_ERP:
if (vflag)
printf(" ERP<0x%x>", vp[2]);
break;
case IEEE80211_ELEMID_VENDOR:
if (iswpaoui(vp))
printwpaie(" WPA", vp, 2+vp[1], maxcols);
else if (iswmeinfo(vp))
printwmeinfo(" WME", vp, 2+vp[1], maxcols);
else if (iswmeparam(vp))
printwmeparam(" WME", vp, 2+vp[1], maxcols);
else if (vflag)
printie(" VEN", vp, 2+vp[1], maxcols);
break;
case IEEE80211_ELEMID_RSN:
printrsnie(" RSN", vp, 2+vp[1], maxcols);
break;
default:
if (vflag)
printie(iename(vp[0]), vp, 2+vp[1], maxcols);
break;
}
ielen -= 2+vp[1];
vp += 2+vp[1];
}
}
static int
mapgsm(u_int isrfreq, u_int isrflags)
{
isrfreq *= 10;
if (isrflags & IEEE80211_CHAN_QUARTER)
isrfreq += 5;
else if (isrflags & IEEE80211_CHAN_HALF)
isrfreq += 10;
else
isrfreq += 20;
/* NB: there is no 907/20 wide but leave room */
return (isrfreq - 906*10) / 5;
}
static int
mappsb(u_int isrfreq, u_int isrflags)
{
return 37 + ((isrfreq * 10) + ((isrfreq % 5) == 2 ? 5 : 0) - 49400) / 5;
}
static status_func_t status;
static usage_func_t usage;
static statistics_func_t statistics;
static cmdloop_branch_t branch[2];
static void
ieee80211_usage(prop_dictionary_t env)
{
fprintf(stderr,
"\t[ nwid network_id ] [ nwkey network_key | -nwkey ]\n"
"\t[ list scan ]\n"
"\t[ powersave | -powersave ] [ powersavesleep duration ]\n"
"\t[ hidessid | -hidessid ] [ apbridge | -apbridge ]\n");
}
static void
ieee80211_constructor(void)
{
cmdloop_branch_init(&branch[0], &ieee80211bool.pk_parser);
cmdloop_branch_init(&branch[1], &kw80211.pk_parser);
register_cmdloop_branch(&branch[0]);
register_cmdloop_branch(&branch[1]);
status_func_init(&status, ieee80211_status);
statistics_func_init(&statistics, ieee80211_statistics);
usage_func_init(&usage, ieee80211_usage);
register_status(&status);
register_statistics(&statistics);
register_usage(&usage);
}