NetBSD/sys/dev/usb/ohci.c

2412 lines
58 KiB
C

/* $NetBSD: ohci.c,v 1.37 1999/08/17 20:59:04 augustss Exp $ */
/*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (augustss@carlstedt.se) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB Open Host Controller driver.
*
* OHCI spec: ftp://ftp.compaq.com/pub/supportinformation/papers/hcir1_0a.exe
* USB spec: http://www.usb.org/developers/data/usb11.pdf
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#if defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/device.h>
#elif defined(__FreeBSD__)
#include <sys/module.h>
#include <sys/bus.h>
#endif
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/select.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/ohcireg.h>
#include <dev/usb/ohcivar.h>
#if defined(__FreeBSD__)
#include <machine/clock.h>
#define delay(d) DELAY(d)
#endif
#if defined(__OpenBSD__)
struct cfdriver ohci_cd = {
NULL, "ohci", DV_DULL
};
#endif
/*
* The OHCI controller is little endian, so on big endian machines
* the data strored in memory needs to be swapped.
*/
#if BYTE_ORDER == BIG_ENDIAN
#define LE(x) (bswap32(x))
#else
#define LE(x) (x)
#endif
struct ohci_pipe;
ohci_soft_ed_t *ohci_alloc_sed __P((ohci_softc_t *));
void ohci_free_sed __P((ohci_softc_t *, ohci_soft_ed_t *));
ohci_soft_td_t *ohci_alloc_std __P((ohci_softc_t *));
void ohci_free_std __P((ohci_softc_t *, ohci_soft_td_t *));
void ohci_power __P((int, void *));
usbd_status ohci_open __P((usbd_pipe_handle));
void ohci_poll __P((struct usbd_bus *));
void ohci_waitintr __P((ohci_softc_t *, usbd_request_handle));
void ohci_rhsc __P((ohci_softc_t *, usbd_request_handle));
void ohci_process_done __P((ohci_softc_t *, ohci_physaddr_t));
void ohci_idone __P((ohci_softc_t *, usbd_request_handle));
void ohci_done __P((ohci_softc_t *, usbd_request_handle));
void ohci_ctrl_done __P((ohci_softc_t *, usbd_request_handle));
void ohci_intr_done __P((ohci_softc_t *, usbd_request_handle));
void ohci_bulk_done __P((ohci_softc_t *, usbd_request_handle));
usbd_status ohci_device_request __P((usbd_request_handle reqh));
void ohci_add_ed __P((ohci_soft_ed_t *, ohci_soft_ed_t *));
void ohci_rem_ed __P((ohci_soft_ed_t *, ohci_soft_ed_t *));
void ohci_hash_add_td __P((ohci_softc_t *, ohci_soft_td_t *));
void ohci_hash_rem_td __P((ohci_softc_t *, ohci_soft_td_t *));
ohci_soft_td_t *ohci_hash_find_td __P((ohci_softc_t *, ohci_physaddr_t));
usbd_status ohci_root_ctrl_transfer __P((usbd_request_handle));
usbd_status ohci_root_ctrl_start __P((usbd_request_handle));
void ohci_root_ctrl_abort __P((usbd_request_handle));
void ohci_root_ctrl_close __P((usbd_pipe_handle));
usbd_status ohci_root_intr_transfer __P((usbd_request_handle));
usbd_status ohci_root_intr_start __P((usbd_request_handle));
void ohci_root_intr_abort __P((usbd_request_handle));
void ohci_root_intr_close __P((usbd_pipe_handle));
usbd_status ohci_device_ctrl_transfer __P((usbd_request_handle));
usbd_status ohci_device_ctrl_start __P((usbd_request_handle));
void ohci_device_ctrl_abort __P((usbd_request_handle));
void ohci_device_ctrl_close __P((usbd_pipe_handle));
usbd_status ohci_device_bulk_transfer __P((usbd_request_handle));
usbd_status ohci_device_bulk_start __P((usbd_request_handle));
void ohci_device_bulk_abort __P((usbd_request_handle));
void ohci_device_bulk_close __P((usbd_pipe_handle));
usbd_status ohci_device_intr_transfer __P((usbd_request_handle));
usbd_status ohci_device_intr_start __P((usbd_request_handle));
void ohci_device_intr_abort __P((usbd_request_handle));
void ohci_device_intr_close __P((usbd_pipe_handle));
usbd_status ohci_device_setintr __P((ohci_softc_t *sc,
struct ohci_pipe *pipe, int ival));
int ohci_str __P((usb_string_descriptor_t *, int, char *));
void ohci_timeout __P((void *));
void ohci_rhsc_able __P((ohci_softc_t *, int));
void ohci_close_pipe __P((usbd_pipe_handle pipe,
ohci_soft_ed_t *head));
void ohci_abort_request __P((usbd_request_handle reqh));
void ohci_device_clear_toggle __P((usbd_pipe_handle pipe));
void ohci_noop __P((usbd_pipe_handle pipe));
#ifdef USB_DEBUG
ohci_softc_t *thesc;
void ohci_dumpregs __P((ohci_softc_t *));
void ohci_dump_tds __P((ohci_soft_td_t *));
void ohci_dump_td __P((ohci_soft_td_t *));
void ohci_dump_ed __P((ohci_soft_ed_t *));
#endif
#define OWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
#define OREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
#define OREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
/* Reverse the bits in a value 0 .. 31 */
static u_int8_t revbits[OHCI_NO_INTRS] =
{ 0x00, 0x10, 0x08, 0x18, 0x04, 0x14, 0x0c, 0x1c,
0x02, 0x12, 0x0a, 0x1a, 0x06, 0x16, 0x0e, 0x1e,
0x01, 0x11, 0x09, 0x19, 0x05, 0x15, 0x0d, 0x1d,
0x03, 0x13, 0x0b, 0x1b, 0x07, 0x17, 0x0f, 0x1f };
struct ohci_pipe {
struct usbd_pipe pipe;
ohci_soft_ed_t *sed;
ohci_soft_td_t *tail;
/* Info needed for different pipe kinds. */
union {
/* Control pipe */
struct {
usb_dma_t datadma;
usb_dma_t reqdma;
u_int length;
ohci_soft_td_t *setup, *xfer, *stat;
} ctl;
/* Interrupt pipe */
struct {
usb_dma_t datadma;
int nslots;
int pos;
} intr;
/* Bulk pipe */
struct {
usb_dma_t datadma;
u_int length;
int isread;
} bulk;
} u;
};
#define OHCI_INTR_ENDPT 1
struct usbd_methods ohci_root_ctrl_methods = {
ohci_root_ctrl_transfer,
ohci_root_ctrl_start,
ohci_root_ctrl_abort,
ohci_root_ctrl_close,
ohci_noop,
0,
};
struct usbd_methods ohci_root_intr_methods = {
ohci_root_intr_transfer,
ohci_root_intr_start,
ohci_root_intr_abort,
ohci_root_intr_close,
ohci_noop,
0,
};
struct usbd_methods ohci_device_ctrl_methods = {
ohci_device_ctrl_transfer,
ohci_device_ctrl_start,
ohci_device_ctrl_abort,
ohci_device_ctrl_close,
ohci_noop,
0,
};
struct usbd_methods ohci_device_intr_methods = {
ohci_device_intr_transfer,
ohci_device_intr_start,
ohci_device_intr_abort,
ohci_device_intr_close,
ohci_device_clear_toggle,
0,
};
struct usbd_methods ohci_device_bulk_methods = {
ohci_device_bulk_transfer,
ohci_device_bulk_start,
ohci_device_bulk_abort,
ohci_device_bulk_close,
ohci_device_clear_toggle,
0,
};
ohci_soft_ed_t *
ohci_alloc_sed(sc)
ohci_softc_t *sc;
{
ohci_soft_ed_t *sed;
usbd_status r;
int i, offs;
usb_dma_t dma;
if (!sc->sc_freeeds) {
DPRINTFN(2, ("ohci_alloc_sed: allocating chunk\n"));
sed = malloc(sizeof(ohci_soft_ed_t) * OHCI_ED_CHUNK,
M_USBHC, M_NOWAIT);
if (!sed)
return 0;
r = usb_allocmem(sc->sc_dmatag, OHCI_ED_SIZE * OHCI_ED_CHUNK,
OHCI_ED_ALIGN, &dma);
if (r != USBD_NORMAL_COMPLETION) {
free(sed, M_USBHC);
return 0;
}
for(i = 0; i < OHCI_ED_CHUNK; i++, sed++) {
offs = i * OHCI_ED_SIZE;
sed->physaddr = DMAADDR(&dma) + offs;
sed->ed = (ohci_ed_t *)
((char *)KERNADDR(&dma) + offs);
sed->next = sc->sc_freeeds;
sc->sc_freeeds = sed;
}
}
sed = sc->sc_freeeds;
sc->sc_freeeds = sed->next;
memset(sed->ed, 0, OHCI_ED_SIZE);
sed->next = 0;
return sed;
}
void
ohci_free_sed(sc, sed)
ohci_softc_t *sc;
ohci_soft_ed_t *sed;
{
sed->next = sc->sc_freeeds;
sc->sc_freeeds = sed;
}
ohci_soft_td_t *
ohci_alloc_std(sc)
ohci_softc_t *sc;
{
ohci_soft_td_t *std;
usbd_status r;
int i, offs;
usb_dma_t dma;
if (!sc->sc_freetds) {
DPRINTFN(2, ("ohci_alloc_std: allocating chunk\n"));
std = malloc(sizeof(ohci_soft_td_t) * OHCI_TD_CHUNK,
M_USBHC, M_NOWAIT);
if (!std)
return 0;
r = usb_allocmem(sc->sc_dmatag, OHCI_TD_SIZE * OHCI_TD_CHUNK,
OHCI_TD_ALIGN, &dma);
if (r != USBD_NORMAL_COMPLETION) {
free(std, M_USBHC);
return 0;
}
for(i = 0; i < OHCI_TD_CHUNK; i++, std++) {
offs = i * OHCI_TD_SIZE;
std->physaddr = DMAADDR(&dma) + offs;
std->td = (ohci_td_t *)
((char *)KERNADDR(&dma) + offs);
std->nexttd = sc->sc_freetds;
sc->sc_freetds = std;
}
}
std = sc->sc_freetds;
sc->sc_freetds = std->nexttd;
memset(std->td, 0, OHCI_TD_SIZE);
std->nexttd = 0;
return (std);
}
void
ohci_free_std(sc, std)
ohci_softc_t *sc;
ohci_soft_td_t *std;
{
std->nexttd = sc->sc_freetds;
sc->sc_freetds = std;
}
usbd_status
ohci_init(sc)
ohci_softc_t *sc;
{
ohci_soft_ed_t *sed, *psed;
usbd_status r;
int rev;
int i;
u_int32_t s, ctl, ival, hcr, fm, per;
DPRINTF(("ohci_init: start\n"));
rev = OREAD4(sc, OHCI_REVISION);
#if defined(__OpenBSD__)
printf(", OHCI version %d.%d%s\n",
#else
printf("%s: OHCI version %d.%d%s\n", USBDEVNAME(sc->sc_bus.bdev),
#endif
OHCI_REV_HI(rev), OHCI_REV_LO(rev),
OHCI_REV_LEGACY(rev) ? ", legacy support" : "");
if (OHCI_REV_HI(rev) != 1 || OHCI_REV_LO(rev) != 0) {
printf("%s: unsupported OHCI revision\n",
USBDEVNAME(sc->sc_bus.bdev));
return (USBD_INVAL);
}
for (i = 0; i < OHCI_HASH_SIZE; i++)
LIST_INIT(&sc->sc_hash_tds[i]);
/* Allocate the HCCA area. */
r = usb_allocmem(sc->sc_dmatag, OHCI_HCCA_SIZE,
OHCI_HCCA_ALIGN, &sc->sc_hccadma);
if (r != USBD_NORMAL_COMPLETION)
return (r);
sc->sc_hcca = (struct ohci_hcca *)KERNADDR(&sc->sc_hccadma);
memset(sc->sc_hcca, 0, OHCI_HCCA_SIZE);
sc->sc_eintrs = OHCI_NORMAL_INTRS;
sc->sc_ctrl_head = ohci_alloc_sed(sc);
if (!sc->sc_ctrl_head) {
r = USBD_NOMEM;
goto bad1;
}
sc->sc_ctrl_head->ed->ed_flags |= LE(OHCI_ED_SKIP);
sc->sc_bulk_head = ohci_alloc_sed(sc);
if (!sc->sc_bulk_head) {
r = USBD_NOMEM;
goto bad2;
}
sc->sc_bulk_head->ed->ed_flags |= LE(OHCI_ED_SKIP);
/* Allocate all the dummy EDs that make up the interrupt tree. */
for (i = 0; i < OHCI_NO_EDS; i++) {
sed = ohci_alloc_sed(sc);
if (!sed) {
while (--i >= 0)
ohci_free_sed(sc, sc->sc_eds[i]);
r = USBD_NOMEM;
goto bad3;
}
/* All ED fields are set to 0. */
sc->sc_eds[i] = sed;
sed->ed->ed_flags |= LE(OHCI_ED_SKIP);
if (i != 0) {
psed = sc->sc_eds[(i-1) / 2];
sed->next = psed;
sed->ed->ed_nexted = LE(psed->physaddr);
}
}
/*
* Fill HCCA interrupt table. The bit reversal is to get
* the tree set up properly to spread the interrupts.
*/
for (i = 0; i < OHCI_NO_INTRS; i++)
sc->sc_hcca->hcca_interrupt_table[revbits[i]] =
LE(sc->sc_eds[OHCI_NO_EDS-OHCI_NO_INTRS+i]->physaddr);
/* Determine in what context we are running. */
ctl = OREAD4(sc, OHCI_CONTROL);
if (ctl & OHCI_IR) {
/* SMM active, request change */
DPRINTF(("ohci_init: SMM active, request owner change\n"));
s = OREAD4(sc, OHCI_COMMAND_STATUS);
OWRITE4(sc, OHCI_COMMAND_STATUS, s | OHCI_OCR);
for (i = 0; i < 100 && (ctl & OHCI_IR); i++) {
delay(1000);
ctl = OREAD4(sc, OHCI_CONTROL);
}
if ((ctl & OHCI_IR) == 0) {
printf("%s: SMM does not respond, resetting\n",
USBDEVNAME(sc->sc_bus.bdev));
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET);
goto reset;
}
} else if ((ctl & OHCI_HCFS_MASK) != OHCI_HCFS_RESET) {
/* BIOS started controller. */
DPRINTF(("ohci_init: BIOS active\n"));
if ((ctl & OHCI_HCFS_MASK) != OHCI_HCFS_OPERATIONAL) {
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_OPERATIONAL);
delay(USB_RESUME_DELAY * 1000);
}
} else {
DPRINTF(("ohci_init: cold started\n"));
reset:
/* Controller was cold started. */
delay(USB_BUS_RESET_DELAY * 1000);
}
/*
* This reset should not be necessary according to the OHCI spec, but
* without it some controllers do not start.
*/
DPRINTF(("%s: resetting\n", USBDEVNAME(sc->sc_bus.bdev)));
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET);
delay(USB_BUS_RESET_DELAY * 1000);
/* We now own the host controller and the bus has been reset. */
ival = OHCI_GET_IVAL(OREAD4(sc, OHCI_FM_INTERVAL));
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_HCR); /* Reset HC */
/* Nominal time for a reset is 10 us. */
for (i = 0; i < 10; i++) {
delay(10);
hcr = OREAD4(sc, OHCI_COMMAND_STATUS) & OHCI_HCR;
if (!hcr)
break;
}
if (hcr) {
printf("%s: reset timeout\n", USBDEVNAME(sc->sc_bus.bdev));
r = USBD_IOERROR;
goto bad3;
}
#ifdef USB_DEBUG
thesc = sc;
if (ohcidebug > 15)
ohci_dumpregs(sc);
#endif
/* The controller is now in suspend state, we have 2ms to finish. */
/* Set up HC registers. */
OWRITE4(sc, OHCI_HCCA, DMAADDR(&sc->sc_hccadma));
OWRITE4(sc, OHCI_CONTROL_HEAD_ED, sc->sc_ctrl_head->physaddr);
OWRITE4(sc, OHCI_BULK_HEAD_ED, sc->sc_bulk_head->physaddr);
OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, sc->sc_eintrs | OHCI_MIE);
ctl = OREAD4(sc, OHCI_CONTROL);
ctl &= ~(OHCI_CBSR_MASK | OHCI_LES | OHCI_HCFS_MASK | OHCI_IR);
ctl |= OHCI_PLE | OHCI_IE | OHCI_CLE | OHCI_BLE |
OHCI_RATIO_1_4 | OHCI_HCFS_OPERATIONAL;
/* And finally start it! */
OWRITE4(sc, OHCI_CONTROL, ctl);
/*
* The controller is now OPERATIONAL. Set a some final
* registers that should be set earlier, but that the
* controller ignores when in the SUSPEND state.
*/
fm = (OREAD4(sc, OHCI_FM_INTERVAL) & OHCI_FIT) ^ OHCI_FIT;
fm |= OHCI_FSMPS(ival) | ival;
OWRITE4(sc, OHCI_FM_INTERVAL, fm);
per = OHCI_PERIODIC(ival); /* 90% periodic */
OWRITE4(sc, OHCI_PERIODIC_START, per);
OWRITE4(sc, OHCI_RH_STATUS, OHCI_LPSC); /* Enable port power */
sc->sc_noport = OHCI_GET_NDP(OREAD4(sc, OHCI_RH_DESCRIPTOR_A));
#ifdef USB_DEBUG
if (ohcidebug > 5)
ohci_dumpregs(sc);
#endif
/* Set up the bus struct. */
sc->sc_bus.open_pipe = ohci_open;
sc->sc_bus.pipe_size = sizeof(struct ohci_pipe);
sc->sc_bus.do_poll = ohci_poll;
powerhook_establish(ohci_power, sc);
return (USBD_NORMAL_COMPLETION);
bad3:
ohci_free_sed(sc, sc->sc_ctrl_head);
bad2:
ohci_free_sed(sc, sc->sc_bulk_head);
bad1:
usb_freemem(sc->sc_dmatag, &sc->sc_hccadma);
return (r);
}
#if !defined(__OpenBSD__)
void
ohci_power(why, v)
int why;
void *v;
{
#ifdef USB_DEBUG
ohci_softc_t *sc = v;
printf("ohci_power: sc=%p, why=%d\n", sc, why);
/* XXX should suspend/resume */
ohci_dumpregs(sc);
#endif
}
#endif /* !defined(__OpenBSD__) */
#ifdef USB_DEBUG
void ohcidump(void);
void ohcidump(void) { ohci_dumpregs(thesc); }
void
ohci_dumpregs(sc)
ohci_softc_t *sc;
{
printf("ohci_dumpregs: rev=0x%08x control=0x%08x command=0x%08x\n",
OREAD4(sc, OHCI_REVISION),
OREAD4(sc, OHCI_CONTROL),
OREAD4(sc, OHCI_COMMAND_STATUS));
printf(" intrstat=0x%08x intre=0x%08x intrd=0x%08x\n",
OREAD4(sc, OHCI_INTERRUPT_STATUS),
OREAD4(sc, OHCI_INTERRUPT_ENABLE),
OREAD4(sc, OHCI_INTERRUPT_DISABLE));
printf(" hcca=0x%08x percur=0x%08x ctrlhd=0x%08x\n",
OREAD4(sc, OHCI_HCCA),
OREAD4(sc, OHCI_PERIOD_CURRENT_ED),
OREAD4(sc, OHCI_CONTROL_HEAD_ED));
printf(" ctrlcur=0x%08x bulkhd=0x%08x bulkcur=0x%08x\n",
OREAD4(sc, OHCI_CONTROL_CURRENT_ED),
OREAD4(sc, OHCI_BULK_HEAD_ED),
OREAD4(sc, OHCI_BULK_CURRENT_ED));
printf(" done=0x%08x fmival=0x%08x fmrem=0x%08x\n",
OREAD4(sc, OHCI_DONE_HEAD),
OREAD4(sc, OHCI_FM_INTERVAL),
OREAD4(sc, OHCI_FM_REMAINING));
printf(" fmnum=0x%08x perst=0x%08x lsthrs=0x%08x\n",
OREAD4(sc, OHCI_FM_NUMBER),
OREAD4(sc, OHCI_PERIODIC_START),
OREAD4(sc, OHCI_LS_THRESHOLD));
printf(" desca=0x%08x descb=0x%08x stat=0x%08x\n",
OREAD4(sc, OHCI_RH_DESCRIPTOR_A),
OREAD4(sc, OHCI_RH_DESCRIPTOR_B),
OREAD4(sc, OHCI_RH_STATUS));
printf(" port1=0x%08x port2=0x%08x\n",
OREAD4(sc, OHCI_RH_PORT_STATUS(1)),
OREAD4(sc, OHCI_RH_PORT_STATUS(2)));
printf(" HCCA: frame_number=0x%04x done_head=0x%08x\n",
LE(sc->sc_hcca->hcca_frame_number),
LE(sc->sc_hcca->hcca_done_head));
}
#endif
int
ohci_intr(p)
void *p;
{
ohci_softc_t *sc = p;
u_int32_t intrs, eintrs;
ohci_physaddr_t done;
/* In case the interrupt occurs before initialization has completed. */
if (sc == NULL || sc->sc_hcca == NULL) {
#ifdef DIAGNOSTIC
printf("ohci_intr: sc->sc_hcca == NULL\n");
#endif
return (0);
}
intrs = 0;
done = LE(sc->sc_hcca->hcca_done_head);
if (done != 0) {
sc->sc_hcca->hcca_done_head = 0;
if (done & ~OHCI_DONE_INTRS)
intrs = OHCI_WDH;
if (done & OHCI_DONE_INTRS)
intrs |= OREAD4(sc, OHCI_INTERRUPT_STATUS);
} else
intrs = OREAD4(sc, OHCI_INTERRUPT_STATUS);
if (!intrs)
return (0);
intrs &= ~OHCI_MIE;
OWRITE4(sc, OHCI_INTERRUPT_STATUS, intrs); /* Acknowledge */
eintrs = intrs & sc->sc_eintrs;
if (!eintrs)
return (0);
sc->sc_intrs++;
DPRINTFN(7, ("ohci_intr: sc=%p intrs=%x(%x) eintr=%x\n",
sc, (u_int)intrs, OREAD4(sc, OHCI_INTERRUPT_STATUS),
(u_int)eintrs));
if (eintrs & OHCI_SO) {
printf("%s: scheduling overrun\n",USBDEVNAME(sc->sc_bus.bdev));
/* XXX do what */
intrs &= ~OHCI_SO;
}
if (eintrs & OHCI_WDH) {
ohci_process_done(sc, done &~ OHCI_DONE_INTRS);
intrs &= ~OHCI_WDH;
}
if (eintrs & OHCI_RD) {
printf("%s: resume detect\n", USBDEVNAME(sc->sc_bus.bdev));
/* XXX process resume detect */
}
if (eintrs & OHCI_UE) {
printf("%s: unrecoverable error, controller halted\n",
USBDEVNAME(sc->sc_bus.bdev));
OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET);
/* XXX what else */
}
if (eintrs & OHCI_RHSC) {
ohci_rhsc(sc, sc->sc_intrreqh);
intrs &= ~OHCI_RHSC;
/*
* Disable RHSC interrupt for now, because it will be
* on until the port has been reset.
*/
ohci_rhsc_able(sc, 0);
}
/* Block unprocessed interrupts. XXX */
OWRITE4(sc, OHCI_INTERRUPT_DISABLE, intrs);
sc->sc_eintrs &= ~intrs;
return (1);
}
void
ohci_rhsc_able(sc, on)
ohci_softc_t *sc;
int on;
{
DPRINTFN(4, ("ohci_rhsc_able: on=%d\n", on));
if (on) {
sc->sc_eintrs |= OHCI_RHSC;
OWRITE4(sc, OHCI_INTERRUPT_ENABLE, OHCI_RHSC);
} else {
sc->sc_eintrs &= ~OHCI_RHSC;
OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_RHSC);
}
}
#ifdef USB_DEBUG
char *ohci_cc_strs[] = {
"NO_ERROR",
"CRC",
"BIT_STUFFING",
"DATA_TOGGLE_MISMATCH",
"STALL",
"DEVICE_NOT_RESPONDING",
"PID_CHECK_FAILURE",
"UNEXPECTED_PID",
"DATA_OVERRUN",
"DATA_UNDERRUN",
"BUFFER_OVERRUN",
"BUFFER_UNDERRUN",
"NOT_ACCESSED",
};
#endif
void
ohci_process_done(sc, done)
ohci_softc_t *sc;
ohci_physaddr_t done;
{
ohci_soft_td_t *std, *sdone;
usbd_request_handle reqh;
int len, cc;
DPRINTFN(10,("ohci_process_done: done=0x%08lx\n", (u_long)done));
/* Reverse the done list. */
for (sdone = 0; done; done = LE(std->td->td_nexttd)) {
std = ohci_hash_find_td(sc, done);
std->dnext = sdone;
sdone = std;
}
#ifdef USB_DEBUG
if (ohcidebug > 10) {
printf("ohci_process_done: TD done:\n");
ohci_dump_tds(sdone);
}
#endif
for (std = sdone; std; std = std->dnext) {
reqh = std->reqh;
DPRINTFN(10, ("ohci_process_done: std=%p reqh=%p hcpriv=%p\n",
std, reqh, reqh->hcpriv));
cc = OHCI_TD_GET_CC(LE(std->td->td_flags));
if (reqh->status == USBD_CANCELLED ||
reqh->status == USBD_TIMEOUT) {
DPRINTF(("ohci_process_done: cancel/timeout %p\n",
reqh));
ohci_idone(sc, reqh);
} else if (cc == OHCI_CC_NO_ERROR) {
len = std->len;
if (std->td->td_cbp != 0)
len -= LE(std->td->td_be) -
LE(std->td->td_cbp) + 1;
if (std->flags & OHCI_SET_LEN)
reqh->actlen = len;
if (std->flags & OHCI_CALL_DONE) {
reqh->status = USBD_NORMAL_COMPLETION;
ohci_idone(sc, reqh);
}
} else {
ohci_soft_td_t *p, *n;
struct ohci_pipe *opipe =
(struct ohci_pipe *)reqh->pipe;
DPRINTFN(-1,("ohci_process_done: error cc=%d (%s)\n",
OHCI_TD_GET_CC(LE(std->td->td_flags)),
ohci_cc_strs[OHCI_TD_GET_CC(LE(std->td->td_flags))]));
/*
* Endpoint is halted. First unlink all the TDs
* belonging to the failed transfer, and then restart
* the endpoint.
*/
for (p = std->nexttd; p->reqh == reqh; p = n) {
n = p->nexttd;
ohci_hash_rem_td(sc, p);
ohci_free_std(sc, p);
}
/* clear halt */
opipe->sed->ed->ed_headp = LE(p->physaddr);
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_CLF);
if (cc == OHCI_CC_STALL)
reqh->status = USBD_STALLED;
else
reqh->status = USBD_IOERROR;
ohci_idone(sc, reqh);
}
ohci_hash_rem_td(sc, std);
ohci_free_std(sc, std);
}
}
void
ohci_idone(sc, reqh)
ohci_softc_t *sc;
usbd_request_handle reqh;
{
ohci_done(sc, reqh);
if (reqh->pipe->intrreqh != reqh)
usb_start_next(reqh->pipe);
}
void
ohci_done(sc, reqh)
ohci_softc_t *sc;
usbd_request_handle reqh;
{
usbd_pipe_handle pipe = reqh->pipe;
#ifdef DIAGNOSTIC
if (!reqh->hcpriv)
printf("ohci_done: reqh=%p, no hcpriv\n", reqh);
#endif
reqh->hcpriv = 0;
switch (pipe->endpoint->edesc->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
ohci_ctrl_done(sc, reqh);
break;
case UE_INTERRUPT:
ohci_intr_done(sc, reqh);
break;
case UE_BULK:
ohci_bulk_done(sc, reqh);
break;
case UE_ISOCHRONOUS:
printf("ohci_process_done: ISO done?\n");
break;
}
/* Remove request from queue. */
SIMPLEQ_REMOVE_HEAD(&pipe->queue, reqh, next);
/* And finally execute callback. */
reqh->xfercb(reqh);
}
void
ohci_ctrl_done(sc, reqh)
ohci_softc_t *sc;
usbd_request_handle reqh;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)reqh->pipe;
u_int len = opipe->u.ctl.length;
usb_dma_t *dma;
DPRINTFN(10,("ohci_ctrl_done: reqh=%p\n", reqh));
if (!reqh->isreq) {
panic("ohci_ctrl_done: not a request\n");
return;
}
if (len != 0) {
dma = &opipe->u.ctl.datadma;
if (reqh->request.bmRequestType & UT_READ)
memcpy(reqh->buffer, KERNADDR(dma), len);
usb_freemem(sc->sc_dmatag, dma);
}
usb_untimeout(ohci_timeout, reqh, reqh->timo_handle);
}
void
ohci_intr_done(sc, reqh)
ohci_softc_t *sc;
usbd_request_handle reqh;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)reqh->pipe;
usb_dma_t *dma;
ohci_soft_ed_t *sed = opipe->sed;
ohci_soft_td_t *xfer, *tail;
DPRINTFN(10,("ohci_intr_done: reqh=%p, actlen=%d\n",
reqh, reqh->actlen));
dma = &opipe->u.intr.datadma;
memcpy(reqh->buffer, KERNADDR(dma), reqh->actlen);
if (reqh->pipe->intrreqh == reqh) {
xfer = opipe->tail;
tail = ohci_alloc_std(sc); /* XXX should reuse TD */
if (!tail) {
reqh->status = USBD_NOMEM;
return;
}
tail->reqh = 0;
xfer->td->td_flags = LE(
OHCI_TD_IN | OHCI_TD_NOCC |
OHCI_TD_SET_DI(1) | OHCI_TD_TOGGLE_CARRY);
if (reqh->flags & USBD_SHORT_XFER_OK)
xfer->td->td_flags |= LE(OHCI_TD_R);
xfer->td->td_cbp = LE(DMAADDR(dma));
xfer->nexttd = tail;
xfer->td->td_nexttd = LE(tail->physaddr);
xfer->td->td_be = LE(LE(xfer->td->td_cbp) + reqh->length - 1);
xfer->len = reqh->length;
xfer->reqh = reqh;
xfer->flags = OHCI_CALL_DONE | OHCI_SET_LEN;
reqh->hcpriv = xfer;
ohci_hash_add_td(sc, xfer);
sed->ed->ed_tailp = LE(tail->physaddr);
opipe->tail = tail;
} else {
usb_freemem(sc->sc_dmatag, dma);
}
}
void
ohci_bulk_done(sc, reqh)
ohci_softc_t *sc;
usbd_request_handle reqh;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)reqh->pipe;
u_int len = opipe->u.bulk.length;
usb_dma_t *dma;
DPRINTFN(10,("ohci_bulk_done: reqh=%p, actlen=%d\n",
reqh, reqh->actlen));
dma = &opipe->u.bulk.datadma;
if (opipe->u.bulk.isread)
memcpy(reqh->buffer, KERNADDR(dma), len);
usb_freemem(sc->sc_dmatag, dma);
usb_untimeout(ohci_timeout, reqh, reqh->timo_handle);
}
void
ohci_rhsc(sc, reqh)
ohci_softc_t *sc;
usbd_request_handle reqh;
{
usbd_pipe_handle pipe;
struct ohci_pipe *opipe;
u_char *p;
int i, m;
int hstatus;
hstatus = OREAD4(sc, OHCI_RH_STATUS);
DPRINTF(("ohci_rhsc: sc=%p reqh=%p hstatus=0x%08x\n",
sc, reqh, hstatus));
if (reqh == 0) {
/* Just ignore the change. */
return;
}
pipe = reqh->pipe;
opipe = (struct ohci_pipe *)pipe;
p = KERNADDR(&opipe->u.intr.datadma);
m = min(sc->sc_noport, reqh->length * 8 - 1);
memset(p, 0, reqh->length);
for (i = 1; i <= m; i++) {
if (OREAD4(sc, OHCI_RH_PORT_STATUS(i)) >> 16)
p[i/8] |= 1 << (i%8);
}
DPRINTF(("ohci_rhsc: change=0x%02x\n", *p));
reqh->actlen = reqh->length;
reqh->status = USBD_NORMAL_COMPLETION;
reqh->xfercb(reqh);
if (reqh->pipe->intrreqh != reqh) {
sc->sc_intrreqh = 0;
usb_freemem(sc->sc_dmatag, &opipe->u.intr.datadma);
usb_start_next(reqh->pipe);
}
}
/*
* Wait here until controller claims to have an interrupt.
* Then call ohci_intr and return. Use timeout to avoid waiting
* too long.
*/
void
ohci_waitintr(sc, reqh)
ohci_softc_t *sc;
usbd_request_handle reqh;
{
int timo = reqh->timeout;
int usecs;
u_int32_t intrs;
reqh->status = USBD_IN_PROGRESS;
for (usecs = timo * 1000000 / hz; usecs > 0; usecs -= 1000) {
usb_delay_ms(&sc->sc_bus, 1);
intrs = OREAD4(sc, OHCI_INTERRUPT_STATUS) & sc->sc_eintrs;
DPRINTFN(15,("ohci_waitintr: 0x%04x\n", intrs));
#ifdef USB_DEBUG
if (ohcidebug > 15)
ohci_dumpregs(sc);
#endif
if (intrs) {
ohci_intr(sc);
if (reqh->status != USBD_IN_PROGRESS)
return;
}
}
/* Timeout */
DPRINTF(("ohci_waitintr: timeout\n"));
reqh->status = USBD_TIMEOUT;
ohci_idone(sc, reqh);
/* XXX should free TD */
}
void
ohci_poll(bus)
struct usbd_bus *bus;
{
ohci_softc_t *sc = (ohci_softc_t *)bus;
if (OREAD4(sc, OHCI_INTERRUPT_STATUS) & sc->sc_eintrs)
ohci_intr(sc);
}
usbd_status
ohci_device_request(reqh)
usbd_request_handle reqh;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)reqh->pipe;
usb_device_request_t *req = &reqh->request;
usbd_device_handle dev = opipe->pipe.device;
ohci_softc_t *sc = (ohci_softc_t *)dev->bus;
int addr = dev->address;
ohci_soft_td_t *setup, *xfer = 0, *stat, *next, *tail;
ohci_soft_ed_t *sed;
usb_dma_t *dmap;
int isread;
int len;
usbd_status r;
int s;
isread = req->bmRequestType & UT_READ;
len = UGETW(req->wLength);
DPRINTFN(3,("ohci_device_control type=0x%02x, request=0x%02x, "
"wValue=0x%04x, wIndex=0x%04x len=%d, addr=%d, endpt=%d\n",
req->bmRequestType, req->bRequest, UGETW(req->wValue),
UGETW(req->wIndex), len, addr,
opipe->pipe.endpoint->edesc->bEndpointAddress));
setup = opipe->tail;
stat = ohci_alloc_std(sc);
if (!stat) {
r = USBD_NOMEM;
goto bad1;
}
tail = ohci_alloc_std(sc);
if (!tail) {
r = USBD_NOMEM;
goto bad2;
}
tail->reqh = 0;
sed = opipe->sed;
dmap = &opipe->u.ctl.datadma;
opipe->u.ctl.length = len;
/* Update device address and length since they may have changed. */
/* XXX This only needs to be done once, but it's too early in open. */
sed->ed->ed_flags = LE(
(LE(sed->ed->ed_flags) & ~(OHCI_ED_ADDRMASK | OHCI_ED_MAXPMASK)) |
OHCI_ED_SET_FA(addr) |
OHCI_ED_SET_MAXP(UGETW(opipe->pipe.endpoint->edesc->wMaxPacketSize)));
/* Set up data transaction */
if (len != 0) {
xfer = ohci_alloc_std(sc);
if (!xfer) {
r = USBD_NOMEM;
goto bad3;
}
r = usb_allocmem(sc->sc_dmatag, len, 0, dmap);
if (r != USBD_NORMAL_COMPLETION)
goto bad4;
xfer->td->td_flags = LE(
(isread ? OHCI_TD_IN : OHCI_TD_OUT) | OHCI_TD_NOCC |
OHCI_TD_TOGGLE_1 | OHCI_TD_NOINTR |
(reqh->flags & USBD_SHORT_XFER_OK ? OHCI_TD_R : 0));
xfer->td->td_cbp = LE(DMAADDR(dmap));
xfer->nexttd = stat;
xfer->td->td_nexttd = LE(stat->physaddr);
xfer->td->td_be = LE(LE(xfer->td->td_cbp) + len - 1);
xfer->len = len;
xfer->reqh = reqh;
xfer->flags = OHCI_SET_LEN;
next = xfer;
stat->flags = OHCI_CALL_DONE;
} else {
next = stat;
stat->flags = OHCI_CALL_DONE | OHCI_SET_LEN;
}
memcpy(KERNADDR(&opipe->u.ctl.reqdma), req, sizeof *req);
if (!isread && len != 0)
memcpy(KERNADDR(dmap), reqh->buffer, len);
setup->td->td_flags = LE(OHCI_TD_SETUP | OHCI_TD_NOCC |
OHCI_TD_TOGGLE_0 | OHCI_TD_NOINTR);
setup->td->td_cbp = LE(DMAADDR(&opipe->u.ctl.reqdma));
setup->nexttd = next;
setup->td->td_nexttd = LE(next->physaddr);
setup->td->td_be = LE(LE(setup->td->td_cbp) + sizeof *req - 1);
setup->len = 0; /* XXX The number of byte we count */
setup->reqh = reqh;
setup->flags = 0;
reqh->hcpriv = setup;
stat->td->td_flags = LE(
(isread ? OHCI_TD_OUT : OHCI_TD_IN) | OHCI_TD_NOCC |
OHCI_TD_TOGGLE_1 | OHCI_TD_SET_DI(1));
stat->td->td_cbp = 0;
stat->nexttd = tail;
stat->td->td_nexttd = LE(tail->physaddr);
stat->td->td_be = 0;
stat->len = 0;
stat->reqh = reqh;
#if USB_DEBUG
if (ohcidebug > 5) {
printf("ohci_device_request:\n");
ohci_dump_ed(sed);
ohci_dump_tds(setup);
}
#endif
/* Insert ED in schedule */
s = splusb();
ohci_hash_add_td(sc, setup);
if (len != 0)
ohci_hash_add_td(sc, xfer);
ohci_hash_add_td(sc, stat);
sed->ed->ed_tailp = LE(tail->physaddr);
opipe->tail = tail;
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_CLF);
if (reqh->timeout && !sc->sc_bus.use_polling) {
usb_timeout(ohci_timeout, reqh,
MS_TO_TICKS(reqh->timeout), reqh->timo_handle);
}
splx(s);
#if USB_DEBUG
if (ohcidebug > 5) {
delay(5000);
printf("ohci_device_request: status=%x\n",
OREAD4(sc, OHCI_COMMAND_STATUS));
ohci_dump_ed(sed);
ohci_dump_tds(setup);
}
#endif
return (USBD_NORMAL_COMPLETION);
bad4:
ohci_free_std(sc, xfer);
bad3:
ohci_free_std(sc, tail);
bad2:
ohci_free_std(sc, stat);
bad1:
return (r);
}
/*
* Add an ED to the schedule. Called at splusb().
*/
void
ohci_add_ed(sed, head)
ohci_soft_ed_t *sed;
ohci_soft_ed_t *head;
{
sed->next = head->next;
sed->ed->ed_nexted = head->ed->ed_nexted;
head->next = sed;
head->ed->ed_nexted = LE(sed->physaddr);
}
/*
* Remove an ED from the schedule. Called at splusb().
*/
void
ohci_rem_ed(sed, head)
ohci_soft_ed_t *sed;
ohci_soft_ed_t *head;
{
ohci_soft_ed_t *p;
/* XXX */
for (p = head; p && p->next != sed; p = p->next)
;
if (!p)
panic("ohci_rem_ed: ED not found\n");
p->next = sed->next;
p->ed->ed_nexted = sed->ed->ed_nexted;
}
/*
* When a transfer is completed the TD is added to the done queue by
* the host controller. This queue is the processed by software.
* Unfortunately the queue contains the physical address of the TD
* and we have no simple way to translate this back to a kernel address.
* To make the translation possible (and fast) we use a hash table of
* TDs currently in the schedule. The physical address is used as the
* hash value.
*/
#define HASH(a) (((a) >> 4) % OHCI_HASH_SIZE)
/* Called at splusb() */
void
ohci_hash_add_td(sc, std)
ohci_softc_t *sc;
ohci_soft_td_t *std;
{
int h = HASH(std->physaddr);
LIST_INSERT_HEAD(&sc->sc_hash_tds[h], std, hnext);
}
/* Called at splusb() */
void
ohci_hash_rem_td(sc, std)
ohci_softc_t *sc;
ohci_soft_td_t *std;
{
LIST_REMOVE(std, hnext);
}
ohci_soft_td_t *
ohci_hash_find_td(sc, a)
ohci_softc_t *sc;
ohci_physaddr_t a;
{
int h = HASH(a);
ohci_soft_td_t *std;
for (std = LIST_FIRST(&sc->sc_hash_tds[h]);
std != 0;
std = LIST_NEXT(std, hnext))
if (std->physaddr == a)
return (std);
panic("ohci_hash_find_td: addr 0x%08lx not found\n", (u_long)a);
}
void
ohci_timeout(addr)
void *addr;
{
#if 0
usbd_request_handle *reqh = addr;
int s;
DPRINTF(("ohci_timeout: reqh=%p\n", reqh));
s = splusb();
/* XXX need to inactivate TD before calling interrupt routine */
ohci_XXX_done(reqh);
splx(s);
#endif
}
#ifdef USB_DEBUG
void
ohci_dump_tds(std)
ohci_soft_td_t *std;
{
for (; std; std = std->nexttd)
ohci_dump_td(std);
}
void
ohci_dump_td(std)
ohci_soft_td_t *std;
{
printf("TD(%p) at %08lx: %b delay=%d ec=%d cc=%d\ncbp=0x%08lx "
"nexttd=0x%08lx be=0x%08lx\n",
std, (u_long)std->physaddr,
(int)LE(std->td->td_flags),
"\20\23R\24OUT\25IN\31TOG1\32SETTOGGLE",
OHCI_TD_GET_DI(LE(std->td->td_flags)),
OHCI_TD_GET_EC(LE(std->td->td_flags)),
OHCI_TD_GET_CC(LE(std->td->td_flags)),
(u_long)LE(std->td->td_cbp),
(u_long)LE(std->td->td_nexttd), (u_long)LE(std->td->td_be));
}
void
ohci_dump_ed(sed)
ohci_soft_ed_t *sed;
{
printf("ED(%p) at %08lx: addr=%d endpt=%d maxp=%d %b\ntailp=0x%08lx "
"headp=%b nexted=0x%08lx\n",
sed, (u_long)sed->physaddr,
OHCI_ED_GET_FA(LE(sed->ed->ed_flags)),
OHCI_ED_GET_EN(LE(sed->ed->ed_flags)),
OHCI_ED_GET_MAXP(LE(sed->ed->ed_flags)),
(int)LE(sed->ed->ed_flags),
"\20\14OUT\15IN\16LOWSPEED\17SKIP\20ISO",
(u_long)LE(sed->ed->ed_tailp),
(u_long)LE(sed->ed->ed_headp), "\20\1HALT\2CARRY",
(u_long)LE(sed->ed->ed_nexted));
}
#endif
usbd_status
ohci_open(pipe)
usbd_pipe_handle pipe;
{
usbd_device_handle dev = pipe->device;
ohci_softc_t *sc = (ohci_softc_t *)dev->bus;
usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc;
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
u_int8_t addr = dev->address;
ohci_soft_ed_t *sed;
ohci_soft_td_t *std;
usbd_status r;
int s;
DPRINTFN(1, ("ohci_open: pipe=%p, addr=%d, endpt=%d (%d)\n",
pipe, addr, ed->bEndpointAddress, sc->sc_addr));
if (addr == sc->sc_addr) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
pipe->methods = &ohci_root_ctrl_methods;
break;
case UE_IN | OHCI_INTR_ENDPT:
pipe->methods = &ohci_root_intr_methods;
break;
default:
return (USBD_INVAL);
}
} else {
sed = ohci_alloc_sed(sc);
if (sed == 0)
goto bad0;
std = ohci_alloc_std(sc);
if (std == 0)
goto bad1;
opipe->sed = sed;
opipe->tail = std;
sed->ed->ed_flags = LE(
OHCI_ED_SET_FA(addr) |
OHCI_ED_SET_EN(ed->bEndpointAddress) |
OHCI_ED_DIR_TD |
(dev->lowspeed ? OHCI_ED_SPEED : 0) |
((ed->bmAttributes & UE_XFERTYPE) == UE_ISOCHRONOUS ?
OHCI_ED_FORMAT_ISO : OHCI_ED_FORMAT_GEN) |
OHCI_ED_SET_MAXP(UGETW(ed->wMaxPacketSize)));
sed->ed->ed_headp = sed->ed->ed_tailp = LE(std->physaddr);
switch (ed->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
pipe->methods = &ohci_device_ctrl_methods;
r = usb_allocmem(sc->sc_dmatag,
sizeof(usb_device_request_t),
0, &opipe->u.ctl.reqdma);
if (r != USBD_NORMAL_COMPLETION)
goto bad;
s = splusb();
ohci_add_ed(sed, sc->sc_ctrl_head);
splx(s);
break;
case UE_INTERRUPT:
pipe->methods = &ohci_device_intr_methods;
return (ohci_device_setintr(sc, opipe, ed->bInterval));
case UE_ISOCHRONOUS:
printf("ohci_open: open iso unimplemented\n");
return (USBD_XXX);
case UE_BULK:
pipe->methods = &ohci_device_bulk_methods;
s = splusb();
ohci_add_ed(sed, sc->sc_bulk_head);
splx(s);
break;
}
}
return (USBD_NORMAL_COMPLETION);
bad:
ohci_free_std(sc, std);
bad1:
ohci_free_sed(sc, sed);
bad0:
return (USBD_NOMEM);
}
/*
* Close a reqular pipe.
* Assumes that there are no pending transactions.
*/
void
ohci_close_pipe(pipe, head)
usbd_pipe_handle pipe;
ohci_soft_ed_t *head;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
ohci_soft_ed_t *sed = opipe->sed;
int s;
s = splusb();
#ifdef DIAGNOSTIC
sed->ed->ed_flags |= LE(OHCI_ED_SKIP);
if ((sed->ed->ed_tailp & LE(OHCI_TAILMASK)) !=
(sed->ed->ed_headp & LE(OHCI_TAILMASK))) {
ohci_physaddr_t td = sed->ed->ed_headp;
ohci_soft_td_t *std;
for (std = LIST_FIRST(&sc->sc_hash_tds[HASH(td)]);
std != 0;
std = LIST_NEXT(std, hnext))
if (std->physaddr == td)
break;
printf("ohci_close_pipe: pipe not empty sed=%p hd=0x%x "
"tl=0x%x pipe=%p, std=%p\n", sed,
(int)LE(sed->ed->ed_headp), (int)LE(sed->ed->ed_tailp),
pipe, std);
usb_delay_ms(&sc->sc_bus, 2);
if ((sed->ed->ed_tailp & LE(OHCI_TAILMASK)) !=
(sed->ed->ed_headp & LE(OHCI_TAILMASK)))
printf("ohci_close_pipe: pipe still not empty\n");
}
#endif
ohci_rem_ed(sed, head);
splx(s);
ohci_free_std(sc, opipe->tail);
ohci_free_sed(sc, opipe->sed);
}
/*
* Abort a device request.
* If this routine is called at splusb() it guarantees that the request
* will be removed from the hardware scheduling and that the callback
* for it will be called with USBD_CANCELLED status.
* It's impossible to guarantee that the requested transfer will not
* have happened since the hardware runs concurrently.
* If the transaction has already happened we rely on the ordinary
* interrupt processing to process it.
*/
void
ohci_abort_request(reqh)
usbd_request_handle reqh;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)reqh->pipe;
usbd_device_handle dev = opipe->pipe.device;
ohci_softc_t *sc = (ohci_softc_t *)dev->bus;
ohci_soft_ed_t *sed;
ohci_soft_td_t *p, *n;
int s;
DPRINTF(("ohci_abort_request: reqh=%p pipe=%p\n", reqh, opipe));
s = splusb();
reqh->status = USBD_CANCELLED; /* mark as cancelled */
if (!reqh->hcpriv) {
/* Not scheduled */
reqh->xfercb(reqh);
return;
}
sed = opipe->sed;
DPRINTFN(1,("ohci_abort_request: stop ed=%p\n", sed));
sed->ed->ed_flags |= LE(OHCI_ED_SKIP); /* force hardware skip */
delay(10); /* give HC hardware a little time */
/* if already processed by hardware let interrupt routine handle it */
if ((sed->ed->ed_tailp & LE(OHCI_TAILMASK)) ==
(sed->ed->ed_headp & LE(OHCI_TAILMASK))) {
DPRINTF(("ohci_abort_request: request processed\n"));
usb_delay_ms(dev->bus, 2);
} else {
p = reqh->hcpriv;
#ifdef DIAGNOSTIC
if (!p) {
printf("ohci_abort_request: hcpriv==0\n");
return;
}
#endif
ohci_done(sc, reqh);
for (; p->reqh == reqh; p = n) {
n = p->nexttd;
ohci_hash_rem_td(sc, p);
ohci_free_std(sc, p);
}
DPRINTFN(2,("ohci_abort_request: set hd=%x, tl=%x\n",
(int)LE(p->physaddr), (int)LE(sed->ed->ed_tailp)));
sed->ed->ed_headp = p->physaddr; /* unlink TDs */
}
sed->ed->ed_flags &= LE(~OHCI_ED_SKIP); /* remove hardware skip */
splx(s);
}
/*
* Data structures and routines to emulate the root hub.
*/
usb_device_descriptor_t ohci_devd = {
USB_DEVICE_DESCRIPTOR_SIZE,
UDESC_DEVICE, /* type */
{0x00, 0x01}, /* USB version */
UCLASS_HUB, /* class */
USUBCLASS_HUB, /* subclass */
0, /* protocol */
64, /* max packet */
{0},{0},{0x00,0x01}, /* device id */
1,2,0, /* string indicies */
1 /* # of configurations */
};
usb_config_descriptor_t ohci_confd = {
USB_CONFIG_DESCRIPTOR_SIZE,
UDESC_CONFIG,
{USB_CONFIG_DESCRIPTOR_SIZE +
USB_INTERFACE_DESCRIPTOR_SIZE +
USB_ENDPOINT_DESCRIPTOR_SIZE},
1,
1,
0,
UC_SELF_POWERED,
0 /* max power */
};
usb_interface_descriptor_t ohci_ifcd = {
USB_INTERFACE_DESCRIPTOR_SIZE,
UDESC_INTERFACE,
0,
0,
1,
UCLASS_HUB,
USUBCLASS_HUB,
0,
0
};
usb_endpoint_descriptor_t ohci_endpd = {
USB_ENDPOINT_DESCRIPTOR_SIZE,
UDESC_ENDPOINT,
UE_IN | OHCI_INTR_ENDPT,
UE_INTERRUPT,
{8, 0}, /* max packet */
255
};
usb_hub_descriptor_t ohci_hubd = {
USB_HUB_DESCRIPTOR_SIZE,
UDESC_HUB,
0,
{0,0},
0,
0,
{0},
};
int
ohci_str(p, l, s)
usb_string_descriptor_t *p;
int l;
char *s;
{
int i;
if (l == 0)
return (0);
p->bLength = 2 * strlen(s) + 2;
if (l == 1)
return (1);
p->bDescriptorType = UDESC_STRING;
l -= 2;
for (i = 0; s[i] && l > 1; i++, l -= 2)
USETW2(p->bString[i], 0, s[i]);
return (2*i+2);
}
/*
* Simulate a hardware hub by handling all the necessary requests.
*/
usbd_status
ohci_root_ctrl_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status r;
s = splusb();
r = usb_insert_transfer(reqh);
splx(s);
if (r != USBD_NORMAL_COMPLETION)
return (r);
else
return (ohci_root_ctrl_start(reqh));
}
usbd_status
ohci_root_ctrl_start(reqh)
usbd_request_handle reqh;
{
ohci_softc_t *sc = (ohci_softc_t *)reqh->pipe->device->bus;
usb_device_request_t *req;
void *buf;
int port, i;
int len, value, index, l, totlen = 0;
usb_port_status_t ps;
usb_hub_descriptor_t hubd;
usbd_status r;
u_int32_t v;
if (!reqh->isreq)
/* XXX panic */
return (USBD_INVAL);
req = &reqh->request;
buf = reqh->buffer;
DPRINTFN(4,("ohci_root_ctrl_control type=0x%02x request=%02x\n",
req->bmRequestType, req->bRequest));
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
#define C(x,y) ((x) | ((y) << 8))
switch(C(req->bRequest, req->bmRequestType)) {
case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE):
case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE):
case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT):
/*
* DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops
* for the integrated root hub.
*/
break;
case C(UR_GET_CONFIG, UT_READ_DEVICE):
if (len > 0) {
*(u_int8_t *)buf = sc->sc_conf;
totlen = 1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
DPRINTFN(8,("ohci_root_ctrl_control wValue=0x%04x\n", value));
switch(value >> 8) {
case UDESC_DEVICE:
if ((value & 0xff) != 0) {
r = USBD_IOERROR;
goto ret;
}
totlen = l = min(len, USB_DEVICE_DESCRIPTOR_SIZE);
USETW(ohci_devd.idVendor, sc->sc_id_vendor);
memcpy(buf, &ohci_devd, l);
break;
case UDESC_CONFIG:
if ((value & 0xff) != 0) {
r = USBD_IOERROR;
goto ret;
}
totlen = l = min(len, USB_CONFIG_DESCRIPTOR_SIZE);
memcpy(buf, &ohci_confd, l);
buf = (char *)buf + l;
len -= l;
l = min(len, USB_INTERFACE_DESCRIPTOR_SIZE);
totlen += l;
memcpy(buf, &ohci_ifcd, l);
buf = (char *)buf + l;
len -= l;
l = min(len, USB_ENDPOINT_DESCRIPTOR_SIZE);
totlen += l;
memcpy(buf, &ohci_endpd, l);
break;
case UDESC_STRING:
if (len == 0)
break;
*(u_int8_t *)buf = 0;
totlen = 1;
switch (value & 0xff) {
case 1: /* Vendor */
totlen = ohci_str(buf, len, sc->sc_vendor);
break;
case 2: /* Product */
totlen = ohci_str(buf, len, "OHCI root hub");
break;
}
break;
default:
r = USBD_IOERROR;
goto ret;
}
break;
case C(UR_GET_INTERFACE, UT_READ_INTERFACE):
if (len > 0) {
*(u_int8_t *)buf = 0;
totlen = 1;
}
break;
case C(UR_GET_STATUS, UT_READ_DEVICE):
if (len > 1) {
USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED);
totlen = 2;
}
break;
case C(UR_GET_STATUS, UT_READ_INTERFACE):
case C(UR_GET_STATUS, UT_READ_ENDPOINT):
if (len > 1) {
USETW(((usb_status_t *)buf)->wStatus, 0);
totlen = 2;
}
break;
case C(UR_SET_ADDRESS, UT_WRITE_DEVICE):
if (value >= USB_MAX_DEVICES) {
r = USBD_IOERROR;
goto ret;
}
sc->sc_addr = value;
break;
case C(UR_SET_CONFIG, UT_WRITE_DEVICE):
if (value != 0 && value != 1) {
r = USBD_IOERROR;
goto ret;
}
sc->sc_conf = value;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_DEVICE):
case C(UR_SET_FEATURE, UT_WRITE_INTERFACE):
case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT):
r = USBD_IOERROR;
goto ret;
case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE):
break;
case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT):
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
DPRINTFN(8, ("ohci_root_ctrl_control: UR_CLEAR_PORT_FEATURE "
"port=%d feature=%d\n",
index, value));
if (index < 1 || index > sc->sc_noport) {
r = USBD_IOERROR;
goto ret;
}
port = OHCI_RH_PORT_STATUS(index);
switch(value) {
case UHF_PORT_ENABLE:
OWRITE4(sc, port, UPS_CURRENT_CONNECT_STATUS);
break;
case UHF_PORT_SUSPEND:
OWRITE4(sc, port, UPS_OVERCURRENT_INDICATOR);
break;
case UHF_PORT_POWER:
OWRITE4(sc, port, UPS_LOW_SPEED);
break;
case UHF_C_PORT_CONNECTION:
OWRITE4(sc, port, UPS_C_CONNECT_STATUS << 16);
break;
case UHF_C_PORT_ENABLE:
OWRITE4(sc, port, UPS_C_PORT_ENABLED << 16);
break;
case UHF_C_PORT_SUSPEND:
OWRITE4(sc, port, UPS_C_SUSPEND << 16);
break;
case UHF_C_PORT_OVER_CURRENT:
OWRITE4(sc, port, UPS_C_OVERCURRENT_INDICATOR << 16);
break;
case UHF_C_PORT_RESET:
OWRITE4(sc, port, UPS_C_PORT_RESET << 16);
break;
default:
r = USBD_IOERROR;
goto ret;
}
switch(value) {
case UHF_C_PORT_CONNECTION:
case UHF_C_PORT_ENABLE:
case UHF_C_PORT_SUSPEND:
case UHF_C_PORT_OVER_CURRENT:
case UHF_C_PORT_RESET:
/* Enable RHSC interrupt if condition is cleared. */
if ((OREAD4(sc, port) >> 16) == 0)
ohci_rhsc_able(sc, 1);
break;
default:
break;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if (value != 0) {
r = USBD_IOERROR;
goto ret;
}
v = OREAD4(sc, OHCI_RH_DESCRIPTOR_A);
hubd = ohci_hubd;
hubd.bNbrPorts = sc->sc_noport;
USETW(hubd.wHubCharacteristics,
(v & OHCI_NPS ? UHD_PWR_NO_SWITCH :
v & OHCI_PSM ? UHD_PWR_GANGED : UHD_PWR_INDIVIDUAL)
/* XXX overcurrent */
);
hubd.bPwrOn2PwrGood = OHCI_GET_POTPGT(v);
v = OREAD4(sc, OHCI_RH_DESCRIPTOR_B);
for (i = 0, l = sc->sc_noport; l > 0; i++, l -= 8, v >>= 8)
hubd.DeviceRemovable[i++] = (u_int8_t)v;
hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
l = min(len, hubd.bDescLength);
totlen = l;
memcpy(buf, &hubd, l);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
if (len != 4) {
r = USBD_IOERROR;
goto ret;
}
memset(buf, 0, len); /* ? XXX */
totlen = len;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
DPRINTFN(8,("ohci_root_ctrl_transfer: get port status i=%d\n",
index));
if (index < 1 || index > sc->sc_noport) {
r = USBD_IOERROR;
goto ret;
}
if (len != 4) {
r = USBD_IOERROR;
goto ret;
}
v = OREAD4(sc, OHCI_RH_PORT_STATUS(index));
DPRINTFN(8,("ohci_root_ctrl_transfer: port status=0x%04x\n",
v));
USETW(ps.wPortStatus, v);
USETW(ps.wPortChange, v >> 16);
l = min(len, sizeof ps);
memcpy(buf, &ps, l);
totlen = l;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
r = USBD_IOERROR;
goto ret;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
if (index < 1 || index > sc->sc_noport) {
r = USBD_IOERROR;
goto ret;
}
port = OHCI_RH_PORT_STATUS(index);
switch(value) {
case UHF_PORT_ENABLE:
OWRITE4(sc, port, UPS_PORT_ENABLED);
break;
case UHF_PORT_SUSPEND:
OWRITE4(sc, port, UPS_SUSPEND);
break;
case UHF_PORT_RESET:
DPRINTFN(5,("ohci_root_ctrl_transfer: reset port %d\n",
index));
OWRITE4(sc, port, UPS_RESET);
for (i = 0; i < 10; i++) {
usb_delay_ms(&sc->sc_bus, 10);
if ((OREAD4(sc, port) & UPS_RESET) == 0)
break;
}
DPRINTFN(8,("ohci port %d reset, status = 0x%04x\n",
index, OREAD4(sc, port)));
break;
case UHF_PORT_POWER:
DPRINTFN(2,("ohci_root_ctrl_transfer: set port power "
"%d\n", index));
OWRITE4(sc, port, UPS_PORT_POWER);
break;
default:
r = USBD_IOERROR;
goto ret;
}
break;
default:
r = USBD_IOERROR;
goto ret;
}
reqh->actlen = totlen;
r = USBD_NORMAL_COMPLETION;
ret:
SIMPLEQ_REMOVE_HEAD(&reqh->pipe->queue, reqh, next);
reqh->status = r;
reqh->xfercb(reqh);
usb_start_next(reqh->pipe);
return (USBD_IN_PROGRESS);
}
/* Abort a root control request. */
void
ohci_root_ctrl_abort(reqh)
usbd_request_handle reqh;
{
/* Nothing to do, all transfers are synchronous. */
}
/* Close the root pipe. */
void
ohci_root_ctrl_close(pipe)
usbd_pipe_handle pipe;
{
DPRINTF(("ohci_root_ctrl_close\n"));
/* Nothing to do. */
}
usbd_status
ohci_root_intr_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status r;
s = splusb();
r = usb_insert_transfer(reqh);
splx(s);
if (r != USBD_NORMAL_COMPLETION)
return (r);
else
return (ohci_root_intr_start(reqh));
}
usbd_status
ohci_root_intr_start(reqh)
usbd_request_handle reqh;
{
usbd_pipe_handle pipe = reqh->pipe;
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
struct ohci_pipe *upipe = (struct ohci_pipe *)pipe;
usb_dma_t *dmap;
usbd_status r;
int len;
len = reqh->length;
dmap = &upipe->u.intr.datadma;
if (len == 0)
return (USBD_INVAL); /* XXX should it be? */
r = usb_allocmem(sc->sc_dmatag, len, 0, dmap);
if (r != USBD_NORMAL_COMPLETION)
return (r);
sc->sc_intrreqh = reqh;
return (USBD_IN_PROGRESS);
}
/* Abort a root interrupt request. */
void
ohci_root_intr_abort(reqh)
usbd_request_handle reqh;
{
/* No need to abort. */
}
/* Close the root pipe. */
void
ohci_root_intr_close(pipe)
usbd_pipe_handle pipe;
{
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
DPRINTF(("ohci_root_intr_close\n"));
sc->sc_intrreqh = 0;
}
/************************/
usbd_status
ohci_device_ctrl_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status r;
s = splusb();
r = usb_insert_transfer(reqh);
splx(s);
if (r != USBD_NORMAL_COMPLETION)
return (r);
else
return (ohci_device_ctrl_start(reqh));
}
usbd_status
ohci_device_ctrl_start(reqh)
usbd_request_handle reqh;
{
ohci_softc_t *sc = (ohci_softc_t *)reqh->pipe->device->bus;
usbd_status r;
if (!reqh->isreq) {
/* XXX panic */
printf("ohci_device_ctrl_transfer: not a request\n");
return (USBD_INVAL);
}
r = ohci_device_request(reqh);
if (r != USBD_NORMAL_COMPLETION)
return (r);
if (sc->sc_bus.use_polling)
ohci_waitintr(sc, reqh);
return (USBD_IN_PROGRESS);
}
/* Abort a device control request. */
void
ohci_device_ctrl_abort(reqh)
usbd_request_handle reqh;
{
DPRINTF(("ohci_device_ctrl_abort: reqh=%p\n", reqh));
ohci_abort_request(reqh);
}
/* Close a device control pipe. */
void
ohci_device_ctrl_close(pipe)
usbd_pipe_handle pipe;
{
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
DPRINTF(("ohci_device_ctrl_close: pipe=%p\n", pipe));
ohci_close_pipe(pipe, sc->sc_ctrl_head);
}
/************************/
void
ohci_device_clear_toggle(pipe)
usbd_pipe_handle pipe;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
opipe->sed->ed->ed_tailp &= LE(~OHCI_TOGGLECARRY);
}
void
ohci_noop(pipe)
usbd_pipe_handle pipe;
{
}
usbd_status
ohci_device_bulk_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status r;
s = splusb();
r = usb_insert_transfer(reqh);
splx(s);
if (r != USBD_NORMAL_COMPLETION)
return (r);
else
return (ohci_device_bulk_start(reqh));
}
usbd_status
ohci_device_bulk_start(reqh)
usbd_request_handle reqh;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)reqh->pipe;
usbd_device_handle dev = opipe->pipe.device;
ohci_softc_t *sc = (ohci_softc_t *)dev->bus;
int addr = dev->address;
ohci_soft_td_t *xfer, *tail;
ohci_soft_ed_t *sed;
usb_dma_t *dmap;
usbd_status r;
int s, len, isread;
#ifdef DIAGNOSTIC
if (reqh->isreq) {
/* XXX panic */
printf("ohci_device_bulk_start: a request\n");
return (USBD_INVAL);
}
#endif
len = reqh->length;
dmap = &opipe->u.bulk.datadma;
isread = reqh->pipe->endpoint->edesc->bEndpointAddress & UE_IN;
sed = opipe->sed;
DPRINTFN(4,("ohci_device_bulk_start: reqh=%p len=%d isread=%d "
"flags=%d endpt=%d\n", reqh, len, isread, reqh->flags,
reqh->pipe->endpoint->edesc->bEndpointAddress));
opipe->u.bulk.isread = isread;
opipe->u.bulk.length = len;
r = usb_allocmem(sc->sc_dmatag, len, 0, dmap);
if (r != USBD_NORMAL_COMPLETION)
goto ret1;
tail = ohci_alloc_std(sc);
if (!tail) {
r = USBD_NOMEM;
goto ret2;
}
tail->reqh = 0;
/* Update device address */
sed->ed->ed_flags = LE(
(LE(sed->ed->ed_flags) & ~OHCI_ED_ADDRMASK) |
OHCI_ED_SET_FA(addr));
/* Set up data transaction */
xfer = opipe->tail;
xfer->td->td_flags = LE(
(isread ? OHCI_TD_IN : OHCI_TD_OUT) | OHCI_TD_NOCC |
OHCI_TD_SET_DI(1) | OHCI_TD_TOGGLE_CARRY |
(reqh->flags & USBD_SHORT_XFER_OK ? OHCI_TD_R : 0));
xfer->td->td_cbp = LE(DMAADDR(dmap));
xfer->nexttd = tail;
xfer->td->td_nexttd = LE(tail->physaddr);
xfer->td->td_be = LE(LE(xfer->td->td_cbp) + len - 1);
xfer->len = len;
xfer->reqh = reqh;
xfer->flags = OHCI_CALL_DONE | OHCI_SET_LEN;
reqh->hcpriv = xfer;
if (!isread)
memcpy(KERNADDR(dmap), reqh->buffer, len);
DPRINTFN(4,("ohci_device_bulk_start: ed_flags=0x%08x td_flags=0x%08x "
"td_cbp=0x%08x td_be=0x%08x\n",
(int)LE(sed->ed->ed_flags), (int)LE(xfer->td->td_flags),
(int)LE(xfer->td->td_cbp), (int)LE(xfer->td->td_be)));
#ifdef USB_DEBUG
if (ohcidebug > 4) {
ohci_dump_ed(sed);
ohci_dump_tds(xfer);
}
#endif
/* Insert ED in schedule */
s = splusb();
ohci_hash_add_td(sc, xfer);
sed->ed->ed_tailp = LE(tail->physaddr);
opipe->tail = tail;
sed->ed->ed_flags &= LE(~OHCI_ED_SKIP);
OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_BLF);
if (reqh->timeout && !sc->sc_bus.use_polling) {
usb_timeout(ohci_timeout, reqh,
MS_TO_TICKS(reqh->timeout), reqh->timo_handle);
}
#ifdef USB_DEBUG
if (ohcidebug > 5) {
delay(5000);
printf("ohci_device_intr_transfer: status=%x\n",
OREAD4(sc, OHCI_COMMAND_STATUS));
ohci_dump_ed(sed);
ohci_dump_tds(xfer);
}
#endif
splx(s);
return (USBD_IN_PROGRESS);
ret2:
usb_freemem(sc->sc_dmatag, dmap);
ret1:
return (r);
}
void
ohci_device_bulk_abort(reqh)
usbd_request_handle reqh;
{
DPRINTF(("ohci_device_bulk_abort: reqh=%p\n", reqh));
ohci_abort_request(reqh);
}
/*
* Close a device bulk pipe.
*/
void
ohci_device_bulk_close(pipe)
usbd_pipe_handle pipe;
{
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
DPRINTF(("ohci_device_bulk_close: pipe=%p\n", pipe));
ohci_close_pipe(pipe, sc->sc_bulk_head);
}
/************************/
usbd_status
ohci_device_intr_transfer(reqh)
usbd_request_handle reqh;
{
int s;
usbd_status r;
s = splusb();
r = usb_insert_transfer(reqh);
splx(s);
if (r != USBD_NORMAL_COMPLETION)
return (r);
else
return (ohci_device_intr_start(reqh));
}
usbd_status
ohci_device_intr_start(reqh)
usbd_request_handle reqh;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)reqh->pipe;
usbd_device_handle dev = opipe->pipe.device;
ohci_softc_t *sc = (ohci_softc_t *)dev->bus;
ohci_soft_ed_t *sed = opipe->sed;
ohci_soft_td_t *xfer, *tail;
usb_dma_t *dmap;
usbd_status r;
int len;
int s;
DPRINTFN(3, ("ohci_device_intr_transfer: reqh=%p buf=%p len=%d "
"flags=%d priv=%p\n",
reqh, reqh->buffer, reqh->length, reqh->flags, reqh->priv));
if (reqh->isreq)
panic("ohci_device_intr_transfer: a request\n");
len = reqh->length;
dmap = &opipe->u.intr.datadma;
if (len == 0)
return (USBD_INVAL); /* XXX should it be? */
xfer = opipe->tail;
tail = ohci_alloc_std(sc);
if (!tail) {
r = USBD_NOMEM;
goto ret1;
}
tail->reqh = 0;
r = usb_allocmem(sc->sc_dmatag, len, 0, dmap);
if (r != USBD_NORMAL_COMPLETION)
goto ret2;
xfer->td->td_flags = LE(
OHCI_TD_IN | OHCI_TD_NOCC |
OHCI_TD_SET_DI(1) | OHCI_TD_TOGGLE_CARRY);
if (reqh->flags & USBD_SHORT_XFER_OK)
xfer->td->td_flags |= LE(OHCI_TD_R);
xfer->td->td_cbp = LE(DMAADDR(dmap));
xfer->nexttd = tail;
xfer->td->td_nexttd = LE(tail->physaddr);
xfer->td->td_be = LE(LE(xfer->td->td_cbp) + len - 1);
xfer->len = len;
xfer->reqh = reqh;
xfer->flags = OHCI_CALL_DONE | OHCI_SET_LEN;
reqh->hcpriv = xfer;
#if USB_DEBUG
if (ohcidebug > 5) {
printf("ohci_device_intr_transfer:\n");
ohci_dump_ed(sed);
ohci_dump_tds(xfer);
}
#endif
/* Insert ED in schedule */
s = splusb();
ohci_hash_add_td(sc, xfer);
sed->ed->ed_tailp = LE(tail->physaddr);
opipe->tail = tail;
#if 0
if (reqh->timeout && !sc->sc_bus.use_polling) {
usb_timeout(ohci_timeout, reqh,
MS_TO_TICKS(reqh->timeout), reqh->timo_handle);
}
#endif
sed->ed->ed_flags &= LE(~OHCI_ED_SKIP);
#ifdef USB_DEBUG
if (ohcidebug > 5) {
delay(5000);
printf("ohci_device_intr_transfer: status=%x\n",
OREAD4(sc, OHCI_COMMAND_STATUS));
ohci_dump_ed(sed);
ohci_dump_tds(xfer);
}
#endif
splx(s);
return (USBD_IN_PROGRESS);
ret2:
ohci_free_std(sc, xfer);
ret1:
return (r);
}
/* Abort a device control request. */
void
ohci_device_intr_abort(reqh)
usbd_request_handle reqh;
{
if (reqh->pipe->intrreqh == reqh) {
DPRINTF(("ohci_device_intr_abort: remove\n"));
reqh->pipe->intrreqh = 0;
}
ohci_abort_request(reqh);
}
/* Close a device interrupt pipe. */
void
ohci_device_intr_close(pipe)
usbd_pipe_handle pipe;
{
struct ohci_pipe *opipe = (struct ohci_pipe *)pipe;
ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus;
int nslots = opipe->u.intr.nslots;
int pos = opipe->u.intr.pos;
int j;
ohci_soft_ed_t *p, *sed = opipe->sed;
int s;
DPRINTFN(1,("ohci_device_intr_close: pipe=%p nslots=%d pos=%d\n",
pipe, nslots, pos));
s = splusb();
sed->ed->ed_flags |= LE(OHCI_ED_SKIP);
if ((sed->ed->ed_tailp & LE(OHCI_TAILMASK)) !=
(sed->ed->ed_headp & LE(OHCI_TAILMASK)))
usb_delay_ms(&sc->sc_bus, 2);
for (p = sc->sc_eds[pos]; p && p->next != sed; p = p->next)
;
if (!p)
panic("ohci_device_intr_close: ED not found\n");
p->next = sed->next;
p->ed->ed_nexted = sed->ed->ed_nexted;
splx(s);
for (j = 0; j < nslots; j++)
--sc->sc_bws[(pos * nslots + j) % OHCI_NO_INTRS];
ohci_free_std(sc, opipe->tail);
ohci_free_sed(sc, opipe->sed);
}
usbd_status
ohci_device_setintr(sc, opipe, ival)
ohci_softc_t *sc;
struct ohci_pipe *opipe;
int ival;
{
int i, j, s, best;
u_int npoll, slow, shigh, nslots;
u_int bestbw, bw;
ohci_soft_ed_t *hsed, *sed = opipe->sed;
DPRINTFN(2, ("ohci_setintr: pipe=%p\n", opipe));
if (ival == 0) {
printf("ohci_setintr: 0 interval\n");
return (USBD_INVAL);
}
npoll = OHCI_NO_INTRS;
while (npoll > ival)
npoll /= 2;
DPRINTFN(2, ("ohci_setintr: ival=%d npoll=%d\n", ival, npoll));
/*
* We now know which level in the tree the ED must go into.
* Figure out which slot has most bandwidth left over.
* Slots to examine:
* npoll
* 1 0
* 2 1 2
* 4 3 4 5 6
* 8 7 8 9 10 11 12 13 14
* N (N-1) .. (N-1+N-1)
*/
slow = npoll-1;
shigh = slow + npoll;
nslots = OHCI_NO_INTRS / npoll;
for (best = i = slow, bestbw = ~0; i < shigh; i++) {
bw = 0;
for (j = 0; j < nslots; j++)
bw += sc->sc_bws[(i * nslots + j) % OHCI_NO_INTRS];
if (bw < bestbw) {
best = i;
bestbw = bw;
}
}
DPRINTFN(2, ("ohci_setintr: best=%d(%d..%d) bestbw=%d\n",
best, slow, shigh, bestbw));
s = splusb();
hsed = sc->sc_eds[best];
sed->next = hsed->next;
sed->ed->ed_nexted = hsed->ed->ed_nexted;
hsed->next = sed;
hsed->ed->ed_nexted = LE(sed->physaddr);
splx(s);
for (j = 0; j < nslots; j++)
++sc->sc_bws[(best * nslots + j) % OHCI_NO_INTRS];
opipe->u.intr.nslots = nslots;
opipe->u.intr.pos = best;
DPRINTFN(5, ("ohci_setintr: returns %p\n", opipe));
return (USBD_NORMAL_COMPLETION);
}