NetBSD/sys/kern/kern_sysctl.c
jdolecek e9e91a0fb5 split off thread specific stuff from struct sigacts to struct sigctx, leaving
only signal handler array sharable between threads
move other random signal stuff from struct proc to struct sigctx

This addresses kern/10981 by Matthew Orgass.
2000-12-22 22:58:52 +00:00

1919 lines
45 KiB
C

/* $NetBSD: kern_sysctl.c,v 1.86 2000/12/22 22:59:00 jdolecek Exp $ */
/*-
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Mike Karels at Berkeley Software Design, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
*/
/*
* sysctl system call.
*/
#include "opt_ddb.h"
#include "opt_insecure.h"
#include "opt_defcorename.h"
#include "opt_sysv.h"
#include "pty.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/dkstat.h>
#include <sys/exec.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/msgbuf.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/syscallargs.h>
#include <sys/tty.h>
#include <sys/unistd.h>
#include <sys/vnode.h>
#define __SYSCTL_PRIVATE
#include <sys/sysctl.h>
#include <sys/lock.h>
#if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
#include <sys/ipc.h>
#endif
#ifdef SYSVMSG
#include <sys/msg.h>
#endif
#ifdef SYSVSEM
#include <sys/sem.h>
#endif
#ifdef SYSVSHM
#include <sys/shm.h>
#endif
#include <dev/cons.h>
#if defined(DDB)
#include <ddb/ddbvar.h>
#endif
#define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
static int sysctl_file __P((void *, size_t *));
#if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
static int sysctl_sysvipc __P((int *, u_int, void *, size_t *));
#endif
static int sysctl_msgbuf __P((void *, size_t *));
static int sysctl_doeproc __P((int *, u_int, void *, size_t *));
#ifdef MULTIPROCESSOR
static int sysctl_docptime __P((void *, size_t *, void *));
static int sysctl_ncpus __P((void));
#endif
static void fill_kproc2 __P((struct proc *, struct kinfo_proc2 *));
static int sysctl_procargs __P((int *, u_int, void *, size_t *, struct proc *));
#if NPTY > 0
static int sysctl_pty __P((void *, size_t *, void *, size_t));
#endif
/*
* The `sysctl_memlock' is intended to keep too many processes from
* locking down memory by doing sysctls at once. Whether or not this
* is really a good idea to worry about it probably a subject of some
* debate.
*/
struct lock sysctl_memlock;
void
sysctl_init(void)
{
lockinit(&sysctl_memlock, PRIBIO|PCATCH, "sysctl", 0, 0);
}
int
sys___sysctl(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
struct sys___sysctl_args /* {
syscallarg(int *) name;
syscallarg(u_int) namelen;
syscallarg(void *) old;
syscallarg(size_t *) oldlenp;
syscallarg(void *) new;
syscallarg(size_t) newlen;
} */ *uap = v;
int error;
size_t savelen = 0, oldlen = 0;
sysctlfn *fn;
int name[CTL_MAXNAME];
size_t *oldlenp;
/*
* all top-level sysctl names are non-terminal
*/
if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
return (EINVAL);
error = copyin(SCARG(uap, name), &name,
SCARG(uap, namelen) * sizeof(int));
if (error)
return (error);
/*
* For all but CTL_PROC, must be root to change a value.
* For CTL_PROC, must be root, or owner of the proc (and not suid),
* this is checked in proc_sysctl() (once we know the targer proc).
*/
if (SCARG(uap, new) != NULL && name[0] != CTL_PROC &&
(error = suser(p->p_ucred, &p->p_acflag)))
return error;
switch (name[0]) {
case CTL_KERN:
fn = kern_sysctl;
break;
case CTL_HW:
fn = hw_sysctl;
break;
case CTL_VM:
fn = uvm_sysctl;
break;
case CTL_NET:
fn = net_sysctl;
break;
case CTL_VFS:
fn = vfs_sysctl;
break;
case CTL_MACHDEP:
fn = cpu_sysctl;
break;
#ifdef DEBUG
case CTL_DEBUG:
fn = debug_sysctl;
break;
#endif
#ifdef DDB
case CTL_DDB:
fn = ddb_sysctl;
break;
#endif
case CTL_PROC:
fn = proc_sysctl;
break;
default:
return (EOPNOTSUPP);
}
/*
* XXX Hey, we wire `old', but what about `new'?
*/
oldlenp = SCARG(uap, oldlenp);
if (oldlenp) {
if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen))))
return (error);
oldlenp = &oldlen;
}
if (SCARG(uap, old) != NULL) {
error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
if (error)
return (error);
if (uvm_vslock(p, SCARG(uap, old), oldlen,
VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) {
(void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
return (EFAULT);
}
savelen = oldlen;
}
error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
oldlenp, SCARG(uap, new), SCARG(uap, newlen), p);
if (SCARG(uap, old) != NULL) {
uvm_vsunlock(p, SCARG(uap, old), savelen);
(void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
}
if (error)
return (error);
if (SCARG(uap, oldlenp))
error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
return (error);
}
/*
* Attributes stored in the kernel.
*/
char hostname[MAXHOSTNAMELEN];
int hostnamelen;
char domainname[MAXHOSTNAMELEN];
int domainnamelen;
long hostid;
#ifdef INSECURE
int securelevel = -1;
#else
int securelevel = 0;
#endif
#ifndef DEFCORENAME
#define DEFCORENAME "%n.core"
#endif
char defcorename[MAXPATHLEN] = DEFCORENAME;
int defcorenamelen = sizeof(DEFCORENAME);
extern int kern_logsigexit;
extern fixpt_t ccpu;
#ifndef MULTIPROCESSOR
#define sysctl_ncpus() 1
#endif
#ifdef MULTIPROCESSOR
#ifndef CPU_INFO_FOREACH
#define CPU_INFO_ITERATOR int
#define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
#endif
static int
sysctl_docptime(oldp, oldlenp, newp)
void *oldp;
size_t *oldlenp;
void *newp;
{
u_int64_t cp_time[CPUSTATES];
int i;
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
for (i=0; i<CPUSTATES; i++)
cp_time[i] = 0;
for (CPU_INFO_FOREACH(cii, ci)) {
for (i=0; i<CPUSTATES; i++)
cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
}
return (sysctl_rdstruct(oldp, oldlenp, newp,
cp_time, sizeof(cp_time)));
}
static int
sysctl_ncpus(void)
{
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
int ncpus = 0;
for (CPU_INFO_FOREACH(cii, ci))
ncpus++;
return ncpus;
}
#endif
/*
* kernel related system variables.
*/
int
kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
int *name;
u_int namelen;
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
struct proc *p;
{
int error, level, inthostid;
int old_autonicetime;
int old_vnodes;
dev_t consdev;
/* All sysctl names at this level, except for a few, are terminal. */
switch (name[0]) {
case KERN_PROC:
case KERN_PROC2:
case KERN_PROF:
case KERN_MBUF:
case KERN_PROC_ARGS:
case KERN_SYSVIPC_INFO:
/* Not terminal. */
break;
default:
if (namelen != 1)
return (ENOTDIR); /* overloaded */
}
switch (name[0]) {
case KERN_OSTYPE:
return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
case KERN_OSRELEASE:
return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
case KERN_OSREV:
return (sysctl_rdint(oldp, oldlenp, newp, __NetBSD_Version__));
case KERN_VERSION:
return (sysctl_rdstring(oldp, oldlenp, newp, version));
case KERN_MAXVNODES:
old_vnodes = desiredvnodes;
error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes);
if (old_vnodes > desiredvnodes) {
desiredvnodes = old_vnodes;
return (EINVAL);
}
return (error);
case KERN_MAXPROC:
return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc));
case KERN_MAXFILES:
return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles));
case KERN_ARGMAX:
return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX));
case KERN_SECURELVL:
level = securelevel;
if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
newp == NULL)
return (error);
if (level < securelevel && p->p_pid != 1)
return (EPERM);
securelevel = level;
return (0);
case KERN_HOSTNAME:
error = sysctl_string(oldp, oldlenp, newp, newlen,
hostname, sizeof(hostname));
if (newp && !error)
hostnamelen = newlen;
return (error);
case KERN_DOMAINNAME:
error = sysctl_string(oldp, oldlenp, newp, newlen,
domainname, sizeof(domainname));
if (newp && !error)
domainnamelen = newlen;
return (error);
case KERN_HOSTID:
inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */
error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
hostid = inthostid;
return (error);
case KERN_CLOCKRATE:
return (sysctl_clockrate(oldp, oldlenp));
case KERN_BOOTTIME:
return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime,
sizeof(struct timeval)));
case KERN_VNODE:
return (sysctl_vnode(oldp, oldlenp, p));
case KERN_PROC:
case KERN_PROC2:
return (sysctl_doeproc(name, namelen, oldp, oldlenp));
case KERN_PROC_ARGS:
return (sysctl_procargs(name + 1, namelen - 1,
oldp, oldlenp, p));
case KERN_FILE:
return (sysctl_file(oldp, oldlenp));
#ifdef GPROF
case KERN_PROF:
return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp,
newp, newlen));
#endif
case KERN_POSIX1:
return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION));
case KERN_NGROUPS:
return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX));
case KERN_JOB_CONTROL:
return (sysctl_rdint(oldp, oldlenp, newp, 1));
case KERN_SAVED_IDS:
#ifdef _POSIX_SAVED_IDS
return (sysctl_rdint(oldp, oldlenp, newp, 1));
#else
return (sysctl_rdint(oldp, oldlenp, newp, 0));
#endif
case KERN_MAXPARTITIONS:
return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS));
case KERN_RAWPARTITION:
return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART));
#ifdef NTP
case KERN_NTPTIME:
return (sysctl_ntptime(oldp, oldlenp));
#endif
case KERN_AUTONICETIME:
old_autonicetime = autonicetime;
error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime);
if (autonicetime < 0)
autonicetime = old_autonicetime;
return (error);
case KERN_AUTONICEVAL:
error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval);
if (autoniceval < PRIO_MIN)
autoniceval = PRIO_MIN;
if (autoniceval > PRIO_MAX)
autoniceval = PRIO_MAX;
return (error);
case KERN_RTC_OFFSET:
return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset));
case KERN_ROOT_DEVICE:
return (sysctl_rdstring(oldp, oldlenp, newp,
root_device->dv_xname));
case KERN_MSGBUFSIZE:
/*
* deal with cases where the message buffer has
* become corrupted.
*/
if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
msgbufenabled = 0;
return (ENXIO);
}
return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs));
case KERN_FSYNC:
return (sysctl_rdint(oldp, oldlenp, newp, 1));
case KERN_SYSVMSG:
#ifdef SYSVMSG
return (sysctl_rdint(oldp, oldlenp, newp, 1));
#else
return (sysctl_rdint(oldp, oldlenp, newp, 0));
#endif
case KERN_SYSVSEM:
#ifdef SYSVSEM
return (sysctl_rdint(oldp, oldlenp, newp, 1));
#else
return (sysctl_rdint(oldp, oldlenp, newp, 0));
#endif
case KERN_SYSVSHM:
#ifdef SYSVSHM
return (sysctl_rdint(oldp, oldlenp, newp, 1));
#else
return (sysctl_rdint(oldp, oldlenp, newp, 0));
#endif
case KERN_DEFCORENAME:
if (newp && newlen < 1)
return (EINVAL);
error = sysctl_string(oldp, oldlenp, newp, newlen,
defcorename, sizeof(defcorename));
if (newp && !error)
defcorenamelen = newlen;
return (error);
case KERN_SYNCHRONIZED_IO:
return (sysctl_rdint(oldp, oldlenp, newp, 1));
case KERN_IOV_MAX:
return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX));
case KERN_MBUF:
return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp,
newp, newlen));
case KERN_MAPPED_FILES:
return (sysctl_rdint(oldp, oldlenp, newp, 1));
case KERN_MEMLOCK:
return (sysctl_rdint(oldp, oldlenp, newp, 1));
case KERN_MEMLOCK_RANGE:
return (sysctl_rdint(oldp, oldlenp, newp, 1));
case KERN_MEMORY_PROTECTION:
return (sysctl_rdint(oldp, oldlenp, newp, 1));
case KERN_LOGIN_NAME_MAX:
return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX));
case KERN_LOGSIGEXIT:
return (sysctl_int(oldp, oldlenp, newp, newlen,
&kern_logsigexit));
case KERN_FSCALE:
return (sysctl_rdint(oldp, oldlenp, newp, FSCALE));
case KERN_CCPU:
return (sysctl_rdint(oldp, oldlenp, newp, ccpu));
case KERN_CP_TIME:
#ifndef MULTIPROCESSOR
return (sysctl_rdstruct(oldp, oldlenp, newp,
curcpu()->ci_schedstate.spc_cp_time,
sizeof(curcpu()->ci_schedstate.spc_cp_time)));
#else
return (sysctl_docptime(oldp, oldlenp, newp));
#endif
#if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
case KERN_SYSVIPC_INFO:
return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp));
#endif
case KERN_MSGBUF:
return (sysctl_msgbuf(oldp, oldlenp));
case KERN_CONSDEV:
if (cn_tab != NULL)
consdev = cn_tab->cn_dev;
else
consdev = NODEV;
return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
sizeof consdev));
#if NPTY > 0
case KERN_MAXPTYS:
return sysctl_pty(oldp, oldlenp, newp, newlen);
#endif
default:
return (EOPNOTSUPP);
}
/* NOTREACHED */
}
/*
* hardware related system variables.
*/
int
hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
int *name;
u_int namelen;
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
struct proc *p;
{
/* all sysctl names at this level are terminal */
if (namelen != 1)
return (ENOTDIR); /* overloaded */
switch (name[0]) {
case HW_MACHINE:
return (sysctl_rdstring(oldp, oldlenp, newp, machine));
case HW_MACHINE_ARCH:
return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch));
case HW_MODEL:
return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
case HW_NCPU:
return (sysctl_rdint(oldp, oldlenp, newp, sysctl_ncpus()));
case HW_BYTEORDER:
return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER));
case HW_PHYSMEM:
return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem)));
case HW_USERMEM:
return (sysctl_rdint(oldp, oldlenp, newp,
ctob(physmem - uvmexp.wired)));
case HW_PAGESIZE:
return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE));
case HW_ALIGNBYTES:
return (sysctl_rdint(oldp, oldlenp, newp, ALIGNBYTES));
case HW_CNMAGIC: {
char magic[CNS_LEN];
int error;
if (oldp)
cn_get_magic(magic, CNS_LEN);
error = sysctl_string(oldp, oldlenp, newp, newlen,
magic, sizeof(magic));
if (newp && !error) {
error = cn_set_magic(magic);
}
return (error);
}
default:
return (EOPNOTSUPP);
}
/* NOTREACHED */
}
#ifdef DEBUG
/*
* Debugging related system variables.
*/
struct ctldebug debug0, debug1, debug2, debug3, debug4;
struct ctldebug debug5, debug6, debug7, debug8, debug9;
struct ctldebug debug10, debug11, debug12, debug13, debug14;
struct ctldebug debug15, debug16, debug17, debug18, debug19;
static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
&debug0, &debug1, &debug2, &debug3, &debug4,
&debug5, &debug6, &debug7, &debug8, &debug9,
&debug10, &debug11, &debug12, &debug13, &debug14,
&debug15, &debug16, &debug17, &debug18, &debug19,
};
int
debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
int *name;
u_int namelen;
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
struct proc *p;
{
struct ctldebug *cdp;
/* all sysctl names at this level are name and field */
if (namelen != 2)
return (ENOTDIR); /* overloaded */
cdp = debugvars[name[0]];
if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0)
return (EOPNOTSUPP);
switch (name[1]) {
case CTL_DEBUG_NAME:
return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
case CTL_DEBUG_VALUE:
return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
default:
return (EOPNOTSUPP);
}
/* NOTREACHED */
}
#endif /* DEBUG */
int
proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
int *name;
u_int namelen;
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
struct proc *p;
{
struct proc *ptmp = NULL;
const struct proclist_desc *pd;
int error = 0;
struct rlimit alim;
struct plimit *newplim;
char *tmps = NULL;
int i, curlen, len;
if (namelen < 2)
return EINVAL;
if (name[0] == PROC_CURPROC) {
ptmp = p;
} else {
proclist_lock_read();
for (pd = proclists; pd->pd_list != NULL; pd++) {
for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL;
ptmp = LIST_NEXT(ptmp, p_list)) {
/* Skip embryonic processes. */
if (ptmp->p_stat == SIDL)
continue;
if (ptmp->p_pid == (pid_t)name[0])
break;
}
if (ptmp != NULL)
break;
}
proclist_unlock_read();
if (ptmp == NULL)
return(ESRCH);
if (p->p_ucred->cr_uid != 0) {
if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
return EPERM;
if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
return EPERM; /* sgid proc */
for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
if (p->p_ucred->cr_groups[i] ==
ptmp->p_cred->p_rgid)
break;
}
if (i == p->p_ucred->cr_ngroups)
return EPERM;
}
}
if (name[1] == PROC_PID_CORENAME) {
if (namelen != 2)
return EINVAL;
/*
* Can't use sysctl_string() here because we may malloc a new
* area during the process, so we have to do it by hand.
*/
curlen = strlen(ptmp->p_limit->pl_corename) + 1;
if (oldlenp && *oldlenp < curlen) {
if (!oldp)
*oldlenp = curlen;
return (ENOMEM);
}
if (newp) {
if (securelevel > 2)
return EPERM;
if (newlen > MAXPATHLEN)
return ENAMETOOLONG;
tmps = malloc(newlen + 1, M_TEMP, M_WAITOK);
if (tmps == NULL)
return ENOMEM;
error = copyin(newp, tmps, newlen + 1);
tmps[newlen] = '\0';
if (error)
goto cleanup;
/* Enforce to be either 'core' for end with '.core' */
if (newlen < 4) { /* c.o.r.e */
error = EINVAL;
goto cleanup;
}
len = newlen - 4;
if (len > 0) {
if (tmps[len - 1] != '.' &&
tmps[len - 1] != '/') {
error = EINVAL;
goto cleanup;
}
}
if (strcmp(&tmps[len], "core") != 0) {
error = EINVAL;
goto cleanup;
}
}
if (oldp && oldlenp) {
*oldlenp = curlen;
error = copyout(ptmp->p_limit->pl_corename, oldp,
curlen);
}
if (newp && error == 0) {
/* if the 2 strings are identical, don't limcopy() */
if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) {
error = 0;
goto cleanup;
}
if (ptmp->p_limit->p_refcnt > 1 &&
(ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) {
newplim = limcopy(ptmp->p_limit);
limfree(ptmp->p_limit);
ptmp->p_limit = newplim;
} else if (ptmp->p_limit->pl_corename != defcorename) {
free(ptmp->p_limit->pl_corename, M_TEMP);
}
ptmp->p_limit->pl_corename = tmps;
return (0);
}
cleanup:
if (tmps)
free(tmps, M_TEMP);
return (error);
}
if (name[1] == PROC_PID_LIMIT) {
if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID)
return EINVAL;
memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim));
if (name[3] == PROC_PID_LIMIT_TYPE_HARD)
error = sysctl_quad(oldp, oldlenp, newp, newlen,
&alim.rlim_max);
else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT)
error = sysctl_quad(oldp, oldlenp, newp, newlen,
&alim.rlim_cur);
else
error = EINVAL;
if (error)
return error;
if (newp)
error = dosetrlimit(ptmp, p->p_cred,
name[2] - 1, &alim);
return error;
}
return (EINVAL);
}
/*
* Convenience macros.
*/
#define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \
if (oldlenp) { \
if (!oldp) \
*oldlenp = len; \
else { \
if (*oldlenp < len) \
return(ENOMEM); \
*oldlenp = len; \
error = copyout((caddr_t)valp, oldp, len); \
} \
}
#define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \
SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ))
#define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \
if (newp && newlen != len) \
return (EINVAL);
#define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \
SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ))
#define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \
if (error == 0 && newp) \
error = copyin(newp, valp, len);
#define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \
SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ))
#define SYSCTL_STRING_CORE(oldp, oldlenp, str) \
if (oldlenp) { \
len = strlen(str) + 1; \
if (!oldp) \
*oldlenp = len; \
else { \
if (*oldlenp < len) { \
err2 = ENOMEM; \
len = *oldlenp; \
} else \
*oldlenp = len; \
error = copyout(str, oldp, len);\
if (error == 0) \
error = err2; \
} \
}
/*
* Validate parameters and get old / set new parameters
* for an integer-valued sysctl function.
*/
int
sysctl_int(oldp, oldlenp, newp, newlen, valp)
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
int *valp;
{
int error = 0;
SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int)
SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int)
return (error);
}
/*
* As above, but read-only.
*/
int
sysctl_rdint(oldp, oldlenp, newp, val)
void *oldp;
size_t *oldlenp;
void *newp;
int val;
{
int error = 0;
if (newp)
return (EPERM);
SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int)
return (error);
}
/*
* Validate parameters and get old / set new parameters
* for an quad-valued sysctl function.
*/
int
sysctl_quad(oldp, oldlenp, newp, newlen, valp)
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
quad_t *valp;
{
int error = 0;
SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t)
SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t)
SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t)
return (error);
}
/*
* As above, but read-only.
*/
int
sysctl_rdquad(oldp, oldlenp, newp, val)
void *oldp;
size_t *oldlenp;
void *newp;
quad_t val;
{
int error = 0;
if (newp)
return (EPERM);
SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t)
return (error);
}
/*
* Validate parameters and get old / set new parameters
* for a string-valued sysctl function.
*/
int
sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen)
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
char *str;
int maxlen;
{
int len, error = 0, err2 = 0;
if (newp && newlen >= maxlen)
return (EINVAL);
SYSCTL_STRING_CORE(oldp, oldlenp, str);
if (error == 0 && newp) {
error = copyin(newp, str, newlen);
str[newlen] = 0;
}
return (error);
}
/*
* As above, but read-only.
*/
int
sysctl_rdstring(oldp, oldlenp, newp, str)
void *oldp;
size_t *oldlenp;
void *newp;
const char *str;
{
int len, error = 0, err2 = 0;
if (newp)
return (EPERM);
SYSCTL_STRING_CORE(oldp, oldlenp, str);
return (error);
}
/*
* Validate parameters and get old / set new parameters
* for a structure oriented sysctl function.
*/
int
sysctl_struct(oldp, oldlenp, newp, newlen, sp, len)
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
void *sp;
int len;
{
int error = 0;
SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len)
SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len)
return (error);
}
/*
* Validate parameters and get old parameters
* for a structure oriented sysctl function.
*/
int
sysctl_rdstruct(oldp, oldlenp, newp, sp, len)
void *oldp;
size_t *oldlenp;
void *newp;
const void *sp;
int len;
{
int error = 0;
if (newp)
return (EPERM);
SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
return (error);
}
/*
* As above, but can return a truncated result.
*/
int
sysctl_rdminstruct(oldp, oldlenp, newp, sp, len)
void *oldp;
size_t *oldlenp;
void *newp;
const void *sp;
int len;
{
int error = 0;
if (newp)
return (EPERM);
len = min(*oldlenp, len);
SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len)
return (error);
}
/*
* Get file structures.
*/
static int
sysctl_file(vwhere, sizep)
void *vwhere;
size_t *sizep;
{
int buflen, error;
struct file *fp;
char *start, *where;
start = where = vwhere;
buflen = *sizep;
if (where == NULL) {
/*
* overestimate by 10 files
*/
*sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
return (0);
}
/*
* first copyout filehead
*/
if (buflen < sizeof(filehead)) {
*sizep = 0;
return (0);
}
error = copyout((caddr_t)&filehead, where, sizeof(filehead));
if (error)
return (error);
buflen -= sizeof(filehead);
where += sizeof(filehead);
/*
* followed by an array of file structures
*/
for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
if (buflen < sizeof(struct file)) {
*sizep = where - start;
return (ENOMEM);
}
error = copyout((caddr_t)fp, where, sizeof(struct file));
if (error)
return (error);
buflen -= sizeof(struct file);
where += sizeof(struct file);
}
*sizep = where - start;
return (0);
}
#if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
#define FILL_PERM(src, dst) do { \
(dst)._key = (src)._key; \
(dst).uid = (src).uid; \
(dst).gid = (src).gid; \
(dst).cuid = (src).cuid; \
(dst).cgid = (src).cgid; \
(dst).mode = (src).mode; \
(dst)._seq = (src)._seq; \
} while (0);
#define FILL_MSG(src, dst) do { \
FILL_PERM((src).msg_perm, (dst).msg_perm); \
(dst).msg_qnum = (src).msg_qnum; \
(dst).msg_qbytes = (src).msg_qbytes; \
(dst)._msg_cbytes = (src)._msg_cbytes; \
(dst).msg_lspid = (src).msg_lspid; \
(dst).msg_lrpid = (src).msg_lrpid; \
(dst).msg_stime = (src).msg_stime; \
(dst).msg_rtime = (src).msg_rtime; \
(dst).msg_ctime = (src).msg_ctime; \
} while (0)
#define FILL_SEM(src, dst) do { \
FILL_PERM((src).sem_perm, (dst).sem_perm); \
(dst).sem_nsems = (src).sem_nsems; \
(dst).sem_otime = (src).sem_otime; \
(dst).sem_ctime = (src).sem_ctime; \
} while (0)
#define FILL_SHM(src, dst) do { \
FILL_PERM((src).shm_perm, (dst).shm_perm); \
(dst).shm_segsz = (src).shm_segsz; \
(dst).shm_lpid = (src).shm_lpid; \
(dst).shm_cpid = (src).shm_cpid; \
(dst).shm_atime = (src).shm_atime; \
(dst).shm_dtime = (src).shm_dtime; \
(dst).shm_ctime = (src).shm_ctime; \
(dst).shm_nattch = (src).shm_nattch; \
} while (0)
static int
sysctl_sysvipc(name, namelen, where, sizep)
int *name;
u_int namelen;
void *where;
size_t *sizep;
{
#ifdef SYSVMSG
struct msg_sysctl_info *msgsi;
#endif
#ifdef SYSVSEM
struct sem_sysctl_info *semsi;
#endif
#ifdef SYSVSHM
struct shm_sysctl_info *shmsi;
#endif
size_t infosize, dssize, tsize, buflen;
void *buf = NULL, *buf2;
char *start;
int32_t nds;
int i, error, ret;
if (namelen != 1)
return (EINVAL);
start = where;
buflen = *sizep;
switch (*name) {
case KERN_SYSVIPC_MSG_INFO:
#ifdef SYSVMSG
infosize = sizeof(msgsi->msginfo);
nds = msginfo.msgmni;
dssize = sizeof(msgsi->msgids[0]);
break;
#else
return (EINVAL);
#endif
case KERN_SYSVIPC_SEM_INFO:
#ifdef SYSVSEM
infosize = sizeof(semsi->seminfo);
nds = seminfo.semmni;
dssize = sizeof(semsi->semids[0]);
break;
#else
return (EINVAL);
#endif
case KERN_SYSVIPC_SHM_INFO:
#ifdef SYSVSHM
infosize = sizeof(shmsi->shminfo);
nds = shminfo.shmmni;
dssize = sizeof(shmsi->shmids[0]);
break;
#else
return (EINVAL);
#endif
default:
return (EINVAL);
}
/*
* Round infosize to 64 bit boundary if requesting more than just
* the info structure or getting the total data size.
*/
if (where == NULL || *sizep > infosize)
infosize = ((infosize + 7) / 8) * 8;
tsize = infosize + nds * dssize;
/* Return just the total size required. */
if (where == NULL) {
*sizep = tsize;
return (0);
}
/* Not enough room for even the info struct. */
if (buflen < infosize) {
*sizep = 0;
return (ENOMEM);
}
buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
memset(buf, 0, min(tsize, buflen));
switch (*name) {
#ifdef SYSVMSG
case KERN_SYSVIPC_MSG_INFO:
msgsi = (struct msg_sysctl_info *)buf;
buf2 = &msgsi->msgids[0];
msgsi->msginfo = msginfo;
break;
#endif
#ifdef SYSVSEM
case KERN_SYSVIPC_SEM_INFO:
semsi = (struct sem_sysctl_info *)buf;
buf2 = &semsi->semids[0];
semsi->seminfo = seminfo;
break;
#endif
#ifdef SYSVSHM
case KERN_SYSVIPC_SHM_INFO:
shmsi = (struct shm_sysctl_info *)buf;
buf2 = &shmsi->shmids[0];
shmsi->shminfo = shminfo;
break;
#endif
}
buflen -= infosize;
ret = 0;
if (buflen > 0) {
/* Fill in the IPC data structures. */
for (i = 0; i < nds; i++) {
if (buflen < dssize) {
ret = ENOMEM;
break;
}
switch (*name) {
#ifdef SYSVMSG
case KERN_SYSVIPC_MSG_INFO:
FILL_MSG(msqids[i], msgsi->msgids[i]);
break;
#endif
#ifdef SYSVSEM
case KERN_SYSVIPC_SEM_INFO:
FILL_SEM(sema[i], semsi->semids[i]);
break;
#endif
#ifdef SYSVSHM
case KERN_SYSVIPC_SHM_INFO:
FILL_SHM(shmsegs[i], shmsi->shmids[i]);
break;
#endif
}
buflen -= dssize;
}
}
*sizep -= buflen;
error = copyout(buf, start, *sizep);
/* If copyout succeeded, use return code set earlier. */
if (error == 0)
error = ret;
if (buf)
free(buf, M_TEMP);
return (error);
}
#endif /* SYSVMSG || SYSVSEM || SYSVSHM */
static int
sysctl_msgbuf(vwhere, sizep)
void *vwhere;
size_t *sizep;
{
char *where = vwhere;
size_t len, maxlen = *sizep;
long pos;
int error;
/*
* deal with cases where the message buffer has
* become corrupted.
*/
if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
msgbufenabled = 0;
return (ENXIO);
}
if (where == NULL) {
/* always return full buffer size */
*sizep = msgbufp->msg_bufs;
return (0);
}
error = 0;
maxlen = min(msgbufp->msg_bufs, maxlen);
pos = msgbufp->msg_bufx;
while (maxlen > 0) {
len = pos == 0 ? msgbufp->msg_bufx : msgbufp->msg_bufs - msgbufp->msg_bufx;
len = min(len, maxlen);
if (len == 0)
break;
error = copyout(&msgbufp->msg_bufc[pos], where, len);
if (error)
break;
where += len;
maxlen -= len;
pos = 0;
}
return (error);
}
/*
* try over estimating by 5 procs
*/
#define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
static int
sysctl_doeproc(name, namelen, vwhere, sizep)
int *name;
u_int namelen;
void *vwhere;
size_t *sizep;
{
struct eproc eproc;
struct kinfo_proc2 kproc2;
struct kinfo_proc *dp;
struct proc *p;
const struct proclist_desc *pd;
char *where, *dp2;
int type, op, arg, elem_size, elem_count;
int buflen, needed, error;
dp = vwhere;
dp2 = where = vwhere;
buflen = where != NULL ? *sizep : 0;
error = needed = 0;
type = name[0];
if (type == KERN_PROC) {
if (namelen != 3 && !(namelen == 2 && name[1] == KERN_PROC_ALL))
return (EINVAL);
op = name[1];
if (op != KERN_PROC_ALL)
arg = name[2];
} else {
if (namelen != 5)
return (EINVAL);
op = name[1];
arg = name[2];
elem_size = name[3];
elem_count = name[4];
}
proclist_lock_read();
pd = proclists;
again:
for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
/*
* Skip embryonic processes.
*/
if (p->p_stat == SIDL)
continue;
/*
* TODO - make more efficient (see notes below).
* do by session.
*/
switch (op) {
case KERN_PROC_PID:
/* could do this with just a lookup */
if (p->p_pid != (pid_t)arg)
continue;
break;
case KERN_PROC_PGRP:
/* could do this by traversing pgrp */
if (p->p_pgrp->pg_id != (pid_t)arg)
continue;
break;
case KERN_PROC_SESSION:
if (p->p_session->s_sid != (pid_t)arg)
continue;
break;
case KERN_PROC_TTY:
if (arg == KERN_PROC_TTY_REVOKE) {
if ((p->p_flag & P_CONTROLT) == 0 ||
p->p_session->s_ttyp == NULL ||
p->p_session->s_ttyvp != NULL)
continue;
} else if ((p->p_flag & P_CONTROLT) == 0 ||
p->p_session->s_ttyp == NULL) {
if ((dev_t)arg != KERN_PROC_TTY_NODEV)
continue;
} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
continue;
break;
case KERN_PROC_UID:
if (p->p_ucred->cr_uid != (uid_t)arg)
continue;
break;
case KERN_PROC_RUID:
if (p->p_cred->p_ruid != (uid_t)arg)
continue;
break;
case KERN_PROC_GID:
if (p->p_ucred->cr_gid != (uid_t)arg)
continue;
break;
case KERN_PROC_RGID:
if (p->p_cred->p_rgid != (uid_t)arg)
continue;
break;
case KERN_PROC_ALL:
/* allow everything */
break;
default:
error = EINVAL;
goto cleanup;
}
if (type == KERN_PROC) {
if (buflen >= sizeof(struct kinfo_proc)) {
fill_eproc(p, &eproc);
error = copyout((caddr_t)p, &dp->kp_proc,
sizeof(struct proc));
if (error)
goto cleanup;
error = copyout((caddr_t)&eproc, &dp->kp_eproc,
sizeof(eproc));
if (error)
goto cleanup;
dp++;
buflen -= sizeof(struct kinfo_proc);
}
needed += sizeof(struct kinfo_proc);
} else { /* KERN_PROC2 */
if (buflen >= elem_size && elem_count > 0) {
fill_kproc2(p, &kproc2);
/*
* Copy out elem_size, but not larger than
* the size of a struct kinfo_proc2.
*/
error = copyout(&kproc2, dp2,
min(sizeof(kproc2), elem_size));
if (error)
goto cleanup;
dp2 += elem_size;
buflen -= elem_size;
elem_count--;
}
needed += elem_size;
}
}
pd++;
if (pd->pd_list != NULL)
goto again;
proclist_unlock_read();
if (where != NULL) {
if (type == KERN_PROC)
*sizep = (caddr_t)dp - where;
else
*sizep = dp2 - where;
if (needed > *sizep)
return (ENOMEM);
} else {
needed += KERN_PROCSLOP;
*sizep = needed;
}
return (0);
cleanup:
proclist_unlock_read();
return (error);
}
/*
* Fill in an eproc structure for the specified process.
*/
void
fill_eproc(p, ep)
struct proc *p;
struct eproc *ep;
{
struct tty *tp;
ep->e_paddr = p;
ep->e_sess = p->p_session;
ep->e_pcred = *p->p_cred;
ep->e_ucred = *p->p_ucred;
if (p->p_stat == SIDL || P_ZOMBIE(p)) {
ep->e_vm.vm_rssize = 0;
ep->e_vm.vm_tsize = 0;
ep->e_vm.vm_dsize = 0;
ep->e_vm.vm_ssize = 0;
/* ep->e_vm.vm_pmap = XXX; */
} else {
struct vmspace *vm = p->p_vmspace;
ep->e_vm.vm_rssize = vm_resident_count(vm);
ep->e_vm.vm_tsize = vm->vm_tsize;
ep->e_vm.vm_dsize = vm->vm_dsize;
ep->e_vm.vm_ssize = vm->vm_ssize;
}
if (p->p_pptr)
ep->e_ppid = p->p_pptr->p_pid;
else
ep->e_ppid = 0;
ep->e_pgid = p->p_pgrp->pg_id;
ep->e_sid = ep->e_sess->s_sid;
ep->e_jobc = p->p_pgrp->pg_jobc;
if ((p->p_flag & P_CONTROLT) &&
(tp = ep->e_sess->s_ttyp)) {
ep->e_tdev = tp->t_dev;
ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
ep->e_tsess = tp->t_session;
} else
ep->e_tdev = NODEV;
if (p->p_wmesg)
strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN);
ep->e_xsize = ep->e_xrssize = 0;
ep->e_xccount = ep->e_xswrss = 0;
ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
if (SESS_LEADER(p))
ep->e_flag |= EPROC_SLEADER;
strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
}
/*
* Fill in an eproc structure for the specified process.
*/
static void
fill_kproc2(p, ki)
struct proc *p;
struct kinfo_proc2 *ki;
{
struct tty *tp;
memset(ki, 0, sizeof(*ki));
ki->p_forw = PTRTOINT64(p->p_forw);
ki->p_back = PTRTOINT64(p->p_back);
ki->p_paddr = PTRTOINT64(p);
ki->p_addr = PTRTOINT64(p->p_addr);
ki->p_fd = PTRTOINT64(p->p_fd);
ki->p_cwdi = PTRTOINT64(p->p_cwdi);
ki->p_stats = PTRTOINT64(p->p_stats);
ki->p_limit = PTRTOINT64(p->p_limit);
ki->p_vmspace = PTRTOINT64(p->p_vmspace);
ki->p_sigacts = PTRTOINT64(p->p_sigacts);
ki->p_sess = PTRTOINT64(p->p_session);
ki->p_tsess = 0; /* may be changed if controlling tty below */
ki->p_ru = PTRTOINT64(p->p_ru);
ki->p_eflag = 0;
ki->p_exitsig = p->p_exitsig;
ki->p_flag = p->p_flag;
ki->p_pid = p->p_pid;
if (p->p_pptr)
ki->p_ppid = p->p_pptr->p_pid;
else
ki->p_ppid = 0;
ki->p_sid = p->p_session->s_sid;
ki->p__pgid = p->p_pgrp->pg_id;
ki->p_tpgid = NO_PID; /* may be changed if controlling tty below */
ki->p_uid = p->p_ucred->cr_uid;
ki->p_ruid = p->p_cred->p_ruid;
ki->p_gid = p->p_ucred->cr_gid;
ki->p_rgid = p->p_cred->p_rgid;
memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
ki->p_jobc = p->p_pgrp->pg_jobc;
if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
ki->p_tdev = tp->t_dev;
ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
ki->p_tsess = PTRTOINT64(tp->t_session);
} else {
ki->p_tdev = NODEV;
}
ki->p_estcpu = p->p_estcpu;
ki->p_rtime_sec = p->p_rtime.tv_sec;
ki->p_rtime_usec = p->p_rtime.tv_usec;
ki->p_cpticks = p->p_cpticks;
ki->p_pctcpu = p->p_pctcpu;
ki->p_swtime = p->p_swtime;
ki->p_slptime = p->p_slptime;
if (p->p_stat == SONPROC) {
KDASSERT(p->p_cpu != NULL);
ki->p_schedflags = p->p_cpu->ci_schedstate.spc_flags;
} else
ki->p_schedflags = 0;
ki->p_uticks = p->p_uticks;
ki->p_sticks = p->p_sticks;
ki->p_iticks = p->p_iticks;
ki->p_tracep = PTRTOINT64(p->p_tracep);
ki->p_traceflag = p->p_traceflag;
ki->p_holdcnt = p->p_holdcnt;
memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
ki->p_stat = p->p_stat;
ki->p_priority = p->p_priority;
ki->p_usrpri = p->p_usrpri;
ki->p_nice = p->p_nice;
ki->p_xstat = p->p_xstat;
ki->p_acflag = p->p_acflag;
strncpy(ki->p_comm, p->p_comm,
min(sizeof(ki->p_comm), sizeof(p->p_comm)));
if (p->p_wmesg)
strncpy(ki->p_wmesg, p->p_wmesg, sizeof(ki->p_wmesg));
ki->p_wchan = PTRTOINT64(p->p_wchan);
strncpy(ki->p_login, p->p_session->s_login, sizeof(ki->p_login));
if (p->p_stat == SIDL || P_ZOMBIE(p)) {
ki->p_vm_rssize = 0;
ki->p_vm_tsize = 0;
ki->p_vm_dsize = 0;
ki->p_vm_ssize = 0;
} else {
struct vmspace *vm = p->p_vmspace;
ki->p_vm_rssize = vm_resident_count(vm);
ki->p_vm_tsize = vm->vm_tsize;
ki->p_vm_dsize = vm->vm_dsize;
ki->p_vm_ssize = vm->vm_ssize;
}
if (p->p_session->s_ttyvp)
ki->p_eflag |= EPROC_CTTY;
if (SESS_LEADER(p))
ki->p_eflag |= EPROC_SLEADER;
/* XXX Is this double check necessary? */
if ((p->p_flag & P_INMEM) == 0 || P_ZOMBIE(p)) {
ki->p_uvalid = 0;
} else {
ki->p_uvalid = 1;
ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
ki->p_uutime_sec = p->p_stats->p_ru.ru_utime.tv_sec;
ki->p_uutime_usec = p->p_stats->p_ru.ru_utime.tv_usec;
ki->p_ustime_sec = p->p_stats->p_ru.ru_stime.tv_sec;
ki->p_ustime_usec = p->p_stats->p_ru.ru_stime.tv_usec;
ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
ki->p_uctime_sec = p->p_stats->p_cru.ru_utime.tv_sec +
p->p_stats->p_cru.ru_stime.tv_sec;
ki->p_uctime_usec = p->p_stats->p_cru.ru_utime.tv_usec +
p->p_stats->p_cru.ru_stime.tv_usec;
}
#ifdef MULTIPROCESSOR
if (p->p_cpu != NULL)
ki->p_cpuid = p->p_cpu->ci_cpuid;
else
#endif
ki->p_cpuid = KI_NOCPU;
}
int
sysctl_procargs(name, namelen, where, sizep, up)
int *name;
u_int namelen;
void *where;
size_t *sizep;
struct proc *up;
{
struct ps_strings pss;
struct proc *p;
size_t len, upper_bound, xlen;
struct uio auio;
struct iovec aiov;
vaddr_t argv;
pid_t pid;
int nargv, type, error, i;
char *arg;
char *tmp;
if (namelen != 2)
return (EINVAL);
pid = name[0];
type = name[1];
switch (type) {
case KERN_PROC_ARGV:
case KERN_PROC_NARGV:
case KERN_PROC_ENV:
case KERN_PROC_NENV:
/* ok */
break;
default:
return (EINVAL);
}
/* check pid */
if ((p = pfind(pid)) == NULL)
return (EINVAL);
/* only root or same user change look at the environment */
if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
if (up->p_ucred->cr_uid != 0) {
if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
up->p_cred->p_ruid != p->p_cred->p_svuid)
return (EPERM);
}
}
if (sizep != NULL && where == NULL) {
if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
*sizep = sizeof (int);
else
*sizep = ARG_MAX; /* XXX XXX XXX */
return (0);
}
if (where == NULL || sizep == NULL)
return (EINVAL);
/*
* Zombies don't have a stack, so we can't read their psstrings.
* System processes also don't have a user stack.
*/
if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
return (EINVAL);
/*
* Lock the process down in memory.
*/
/* XXXCDC: how should locking work here? */
if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
return (EFAULT);
p->p_vmspace->vm_refcnt++; /* XXX */
/*
* Allocate a temporary buffer to hold the arguments.
*/
arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
/*
* Read in the ps_strings structure.
*/
aiov.iov_base = &pss;
aiov.iov_len = sizeof(pss);
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = (vaddr_t)p->p_psstr;
auio.uio_resid = sizeof(pss);
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = UIO_READ;
auio.uio_procp = NULL;
error = uvm_io(&p->p_vmspace->vm_map, &auio);
if (error)
goto done;
if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
else
memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
error = copyout(&nargv, where, sizeof(nargv));
*sizep = sizeof(nargv);
goto done;
}
/*
* Now read the address of the argument vector.
*/
switch (type) {
case KERN_PROC_ARGV:
/* XXX compat32 stuff here */
memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
break;
case KERN_PROC_ENV:
memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
break;
default:
return (EINVAL);
}
auio.uio_offset = (off_t)(long)tmp;
aiov.iov_base = &argv;
aiov.iov_len = sizeof(argv);
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_resid = sizeof(argv);
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = UIO_READ;
auio.uio_procp = NULL;
error = uvm_io(&p->p_vmspace->vm_map, &auio);
if (error)
goto done;
/*
* Now copy in the actual argument vector, one page at a time,
* since we don't know how long the vector is (though, we do
* know how many NUL-terminated strings are in the vector).
*/
len = 0;
upper_bound = *sizep;
for (; nargv != 0 && len < upper_bound; len += xlen) {
aiov.iov_base = arg;
aiov.iov_len = PAGE_SIZE;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = argv + len;
xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
auio.uio_resid = xlen;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = UIO_READ;
auio.uio_procp = NULL;
error = uvm_io(&p->p_vmspace->vm_map, &auio);
if (error)
goto done;
for (i = 0; i < xlen && nargv != 0; i++) {
if (arg[i] == '\0')
nargv--; /* one full string */
}
/* make sure we don't copyout past the end of the user's buffer */
if (len + i > upper_bound)
i = upper_bound - len;
error = copyout(arg, (char *)where + len, i);
if (error)
break;
if (nargv == 0) {
len += i;
break;
}
}
*sizep = len;
done:
uvmspace_free(p->p_vmspace);
free(arg, M_TEMP);
return (error);
}
#if NPTY > 0
int pty_maxptys __P((int, int)); /* defined in kern/tty_pty.c */
/*
* Validate parameters and get old / set new parameters
* for pty sysctl function.
*/
static int
sysctl_pty(oldp, oldlenp, newp, newlen)
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
{
int error = 0;
int oldmax = 0, newmax = 0;
/* get current value of maxptys */
oldmax = pty_maxptys(0, 0);
SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &oldmax, int)
if (!error && newp) {
SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int)
SYSCTL_SCALAR_NEWPCOP_TYP(newp, &newmax, int)
if (newmax != pty_maxptys(newmax, (newp != NULL)))
return (EINVAL);
}
return (error);
}
#endif /* NPTY > 0 */