NetBSD/dist/ntp/ntpd/refclock_jupiter.c
2000-03-29 12:38:44 +00:00

1266 lines
33 KiB
C

/* $NetBSD: refclock_jupiter.c,v 1.1.1.1 2000/03/29 12:38:53 simonb Exp $ */
/*
* Copyright (c) 1997, 1998
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
* 4. The name of the University may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#if defined(REFCLOCK) && defined(CLOCK_JUPITER) && defined(PPS)
#include <stdio.h>
#include <ctype.h>
#include <sys/time.h>
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_unixtime.h"
#include "ntp_stdlib.h"
#include "ntp_calendar.h"
#include "jupiter.h"
#include <sys/ppsclock.h>
#ifdef XNTP_BIG_ENDIAN
#define getshort(s) ((((s) & 0xff) << 8) | (((s) >> 8) & 0xff))
#define putshort(s) ((((s) & 0xff) << 8) | (((s) >> 8) & 0xff))
#else
#define getshort(s) (s)
#define putshort(s) (s)
#endif
/* XXX */
#ifdef sun
char *strerror(int);
#endif
/*
* This driver supports the Rockwell Jupiter GPS Receiver board
* adapted to precision timing applications. It requires the
* ppsclock line discipline or streams module described in the
* Line Disciplines and Streams Drivers page. It also requires a
* gadget box and 1-PPS level converter, such as described in the
* Pulse-per-second (PPS) Signal Interfacing page.
*
* It may work (with minor modifications) with other Rockwell GPS
* receivers such as the CityTracker.
*/
/*
* GPS Definitions
*/
#define DEVICE "/dev/gps%d" /* device name and unit */
#define SPEED232 B9600 /* baud */
/*
* The number of raw samples which we acquire to derive a single estimate.
* NSAMPLES ideally should not exceed the default poll interval 64.
* NKEEP must be a power of 2 to simplify the averaging process.
*/
#define NSAMPLES 64
#define NKEEP 8
#define REFCLOCKMAXDISPERSE .25 /* max sample dispersion */
/*
* Radio interface parameters
*/
#define PRECISION (-18) /* precision assumed (about 4 us) */
#define REFID "GPS\0" /* reference id */
#define DESCRIPTION "Rockwell Jupiter GPS Receiver" /* who we are */
#define DEFFUDGETIME 0 /* default fudge time (ms) */
/* Unix timestamp for the GPS epoch: January 6, 1980 */
#define GPS_EPOCH 315964800
/* Double short to unsigned int */
#define DS2UI(p) ((getshort((p)[1]) << 16) | getshort((p)[0]))
/* Double short to signed int */
#define DS2I(p) ((getshort((p)[1]) << 16) | getshort((p)[0]))
/* One week's worth of seconds */
#define WEEKSECS (7 * 24 * 60 * 60)
/*
* Jupiter unit control structure.
*/
struct jupiterunit {
u_int pollcnt; /* poll message counter */
u_int polled; /* Hand in a time sample? */
u_int lastserial; /* last pps serial number */
struct ppsclockev ppsev; /* PPS control structure */
u_int gweek; /* current GPS week number */
u_int32 lastsweek; /* last seconds into GPS week */
u_int32 timecode; /* current ntp timecode */
u_int32 stime; /* used to detect firmware bug */
int wantid; /* don't reconfig on channel id msg */
u_int moving; /* mobile platform? */
u_long sloppyclockflag; /* fudge flags */
u_int known; /* position known yet? */
int coderecv; /* total received samples */
int nkeep; /* number of samples to preserve */
int rshift; /* number of rshifts for division */
l_fp filter[NSAMPLES]; /* offset filter */
l_fp lastref; /* last reference timestamp */
u_short sbuf[512]; /* local input buffer */
int ssize; /* space used in sbuf */
};
/*
* Function prototypes
*/
static void jupiter_canmsg P((struct peer *, u_int));
static u_short jupiter_cksum P((u_short *, u_int));
#ifdef QSORT_USES_VOID_P
int jupiter_cmpl_fp P((const void *, const void *));
#else
int jupiter_cmpl_fp P((const l_fp *, const l_fp *));
#endif /* not QSORT_USES_VOID_P */
static void jupiter_config P((struct peer *));
static void jupiter_debug P((struct peer *, char *, ...))
__attribute__ ((format (printf, 2, 3)));
static char * jupiter_offset P((struct peer *));
static char * jupiter_parse_t P((struct peer *, u_short *));
static void jupiter_platform P((struct peer *, u_int));
static void jupiter_poll P((int, struct peer *));
static int jupiter_pps P((struct peer *));
static char * jupiter_process P((struct peer *));
static int jupiter_recv P((struct peer *));
static void jupiter_receive P((register struct recvbuf *rbufp));
static void jupiter_reqmsg P((struct peer *, u_int, u_int));
static void jupiter_reqonemsg P((struct peer *, u_int));
static char * jupiter_send P((struct peer *, struct jheader *));
static void jupiter_shutdown P((int, struct peer *));
static int jupiter_start P((int, struct peer *));
static int jupiter_ttyinit P((struct peer *, int));
/*
* Transfer vector
*/
struct refclock refclock_jupiter = {
jupiter_start, /* start up driver */
jupiter_shutdown, /* shut down driver */
jupiter_poll, /* transmit poll message */
noentry, /* (clock control) */
noentry, /* (clock init) */
noentry, /* (clock buginfo) */
NOFLAGS /* not used */
};
/*
* jupiter_start - open the devices and initialize data for processing
*/
static int
jupiter_start(
register int unit,
register struct peer *peer
)
{
struct refclockproc *pp;
register struct jupiterunit *up;
register int fd;
char gpsdev[20];
/*
* Open serial port
*/
(void)sprintf(gpsdev, DEVICE, unit);
fd = open(gpsdev, O_RDWR
#ifdef O_NONBLOCK
| O_NONBLOCK
#endif
, 0);
if (fd < 0) {
jupiter_debug(peer, "jupiter_start: open %s: %s\n",
gpsdev, strerror(errno));
return (0);
}
if (!jupiter_ttyinit(peer, fd))
return (0);
/* Allocate unit structure */
if ((up = (struct jupiterunit *)
emalloc(sizeof(struct jupiterunit))) == NULL) {
(void) close(fd);
return (0);
}
memset((char *)up, 0, sizeof(struct jupiterunit));
pp = peer->procptr;
pp->io.clock_recv = jupiter_receive;
pp->io.srcclock = (caddr_t)peer;
pp->io.datalen = 0;
pp->io.fd = fd;
if (!io_addclock(&pp->io)) {
(void) close(fd);
free(up);
return (0);
}
pp->unitptr = (caddr_t)up;
/*
* Initialize miscellaneous variables
*/
peer->precision = PRECISION;
pp->clockdesc = DESCRIPTION;
memcpy((char *)&pp->refid, REFID, 4);
/* Ensure the receiver is properly configured */
jupiter_config(peer);
/* Turn on pulse gathering by requesting the first sample */
if (ioctl(fd, CIOGETEV, (caddr_t)&up->ppsev) < 0) {
jupiter_debug(peer, "jupiter_ttyinit: CIOGETEV: %s\n",
strerror(errno));
(void) close(fd);
free(up);
return (0);
}
up->lastserial = up->ppsev.serial;
memset(&up->ppsev, 0, sizeof(up->ppsev));
return (1);
}
/*
* jupiter_shutdown - shut down the clock
*/
static void
jupiter_shutdown(register int unit, register struct peer *peer)
{
register struct jupiterunit *up;
struct refclockproc *pp;
pp = peer->procptr;
up = (struct jupiterunit *)pp->unitptr;
io_closeclock(&pp->io);
free(up);
}
/*
* jupiter_config - Configure the receiver
*/
static void
jupiter_config(register struct peer *peer)
{
register int i;
register struct jupiterunit *up;
register struct refclockproc *pp;
pp = peer->procptr;
up = (struct jupiterunit *)pp->unitptr;
/*
* Initialize the unit variables
*
* STRANGE BEHAVIOUR WARNING: The fudge flags are not available
* at the time jupiter_start is called. These are set later,
* and so the code must be prepared to handle changing flags.
*/
up->sloppyclockflag = pp->sloppyclockflag;
if (pp->sloppyclockflag & CLK_FLAG2) {
up->moving = 1; /* Receiver on mobile platform */
msyslog(LOG_DEBUG, "jupiter_config: mobile platform");
} else {
up->moving = 0; /* Static Installation */
}
/* XXX fludge flags don't make the trip from the config to here... */
#ifdef notdef
/* Configure for trailing edge triggers */
#ifdef CIOSETTET
i = ((pp->sloppyclockflag & CLK_FLAG3) != 0);
jupiter_debug(peer, "jupiter_configure: (sloppyclockflag 0x%lx)\n",
pp->sloppyclockflag);
if (ioctl(pp->io.fd, CIOSETTET, (char *)&i) < 0)
msyslog(LOG_DEBUG, "jupiter_configure: CIOSETTET %d: %m", i);
#else
if (pp->sloppyclockflag & CLK_FLAG3)
msyslog(LOG_DEBUG, "jupiter_configure: \
No kernel support for trailing edge trigger");
#endif
#endif
up->pollcnt = 2;
up->polled = 0;
up->known = 0;
up->gweek = 0;
up->lastsweek = 2 * WEEKSECS;
up->timecode = 0;
up->stime = 0;
up->ssize = 0;
up->coderecv = 0;
up->nkeep = NKEEP;
if (up->nkeep > NSAMPLES)
up->nkeep = NSAMPLES;
if (up->nkeep >= 1)
up->rshift = 0;
if (up->nkeep >= 2)
up->rshift = 1;
if (up->nkeep >= 4)
up->rshift = 2;
if (up->nkeep >= 8)
up->rshift = 3;
if (up->nkeep >= 16)
up->rshift = 4;
if (up->nkeep >= 32)
up->rshift = 5;
if (up->nkeep >= 64)
up->rshift = 6;
up->nkeep = 1;
i = up->rshift;
while (i > 0) {
up->nkeep *= 2;
i--;
}
/* Stop outputting all messages */
jupiter_canmsg(peer, JUPITER_ALL);
/* Request the receiver id so we can syslog the firmware version */
jupiter_reqonemsg(peer, JUPITER_O_ID);
/* Flag that this the id was requested (so we don't get called again) */
up->wantid = 1;
/* Request perodic time mark pulse messages */
jupiter_reqmsg(peer, JUPITER_O_PULSE, 1);
/* Set application platform type */
if (up->moving)
jupiter_platform(peer, JUPITER_I_PLAT_MED);
else
jupiter_platform(peer, JUPITER_I_PLAT_LOW);
}
/*
* jupiter_poll - jupiter watchdog routine
*/
static void
jupiter_poll(register int unit, register struct peer *peer)
{
register struct jupiterunit *up;
register struct refclockproc *pp;
pp = peer->procptr;
up = (struct jupiterunit *)pp->unitptr;
/*
* You don't need to poll this clock. It puts out timecodes
* once per second. If asked for a timestamp, take note.
* The next time a timecode comes in, it will be fed back.
*/
/*
* If we haven't had a response in a while, reset the receiver.
*/
if (up->pollcnt > 0) {
up->pollcnt--;
} else {
refclock_report(peer, CEVNT_TIMEOUT);
/* Request the receiver id to trigger a reconfig */
jupiter_reqonemsg(peer, JUPITER_O_ID);
up->wantid = 0;
}
/*
* polled every 64 seconds. Ask jupiter_receive to hand in
* a timestamp.
*/
up->polled = 1;
pp->polls++;
}
/*
* jupiter_receive - receive gps data
* Gag me!
*/
static void
jupiter_receive(register struct recvbuf *rbufp)
{
register int bpcnt, cc, size, ppsret;
register u_int32 last_timecode, laststime;
register char *cp;
register u_char *bp;
register u_short *sp;
register u_long sloppyclockflag;
register struct jupiterunit *up;
register struct jid *ip;
register struct jheader *hp;
register struct refclockproc *pp;
register struct peer *peer;
/* Initialize pointers and read the timecode and timestamp */
peer = (struct peer *)rbufp->recv_srcclock;
pp = peer->procptr;
up = (struct jupiterunit *)pp->unitptr;
/*
* If operating mode has been changed, then reinitialize the receiver
* before doing anything else.
*/
/* XXX Sloppy clock flags are broken!! */
sloppyclockflag = up->sloppyclockflag;
up->sloppyclockflag = pp->sloppyclockflag;
if ((pp->sloppyclockflag & CLK_FLAG2) !=
(sloppyclockflag & CLK_FLAG2)) {
jupiter_debug(peer,
"jupiter_receive: mode switch: reset receiver\n");
jupiter_config(peer);
return;
}
up->pollcnt = 2;
bp = (u_char *)rbufp->recv_buffer;
bpcnt = rbufp->recv_length;
/* This shouldn't happen */
if (bpcnt > sizeof(up->sbuf) - up->ssize)
bpcnt = sizeof(up->sbuf) - up->ssize;
/* Append to input buffer */
memcpy((u_char *)up->sbuf + up->ssize, bp, bpcnt);
up->ssize += bpcnt;
/* While there's at least a header and we parse a intact message */
while (up->ssize > sizeof(*hp) && (cc = jupiter_recv(peer)) > 0) {
hp = (struct jheader *)up->sbuf;
sp = (u_short *)(hp + 1);
size = cc - sizeof(*hp);
switch (getshort(hp->id)) {
case JUPITER_O_PULSE:
if (size != sizeof(struct jpulse)) {
jupiter_debug(peer,
"jupiter_receive: pulse: len %d != %u\n",
size, (int)sizeof(struct jpulse));
refclock_report(peer, CEVNT_BADREPLY);
break;
}
/*
* There appears to be a firmware bug related
* to the pulse message; in addition to the one
* per second messages, we get an extra pulse
* message once an hour (on the anniversary of
* the cold start). It seems to come 200 ms
* after the one requested. So if we've seen a
* pulse message in the last 210 ms, we skip
* this one.
*/
laststime = up->stime;
up->stime = DS2UI(((struct jpulse *)sp)->stime);
if (laststime != 0 && up->stime - laststime <= 21) {
jupiter_debug(peer, "jupiter_receive: \
avoided firmware bug (stime %.2f, laststime %.2f)\n",
(double)up->stime * 0.01, (double)laststime * 0.01);
break;
}
/* Retrieve pps timestamp */
ppsret = jupiter_pps(peer);
/* Parse timecode (even when there's no pps) */
last_timecode = up->timecode;
if ((cp = jupiter_parse_t(peer, sp)) != NULL) {
jupiter_debug(peer,
"jupiter_receive: pulse: %s\n", cp);
break;
}
/* Bail if we didn't get a pps timestamp */
if (ppsret)
break;
/* Bail if we don't have the last timecode yet */
if (last_timecode == 0)
break;
/* Add the new sample to a median filter */
if ((cp = jupiter_offset(peer)) != NULL) {
jupiter_debug(peer,
"jupiter_receive: offset: %s\n", cp);
refclock_report(peer, CEVNT_BADTIME);
break;
}
/*
* The clock will blurt a timecode every second
* but we only want one when polled. If we
* havn't been polled, bail out.
*/
if (!up->polled)
break;
/*
* It's a live one! Remember this time.
*/
pp->lasttime = current_time;
/*
* Determine the reference clock offset and
* dispersion. NKEEP of NSAMPLE offsets are
* passed through a median filter.
* Save the (filtered) offset and dispersion in
* pp->offset and pp->disp.
*/
if ((cp = jupiter_process(peer)) != NULL) {
jupiter_debug(peer,
"jupiter_receive: process: %s\n", cp);
refclock_report(peer, CEVNT_BADTIME);
break;
}
/*
* Return offset and dispersion to control
* module. We use lastrec as both the reference
* time and receive time in order to avoid
* being cute, like setting the reference time
* later than the receive time, which may cause
* a paranoid protocol module to chuck out the
* data.
*/
jupiter_debug(peer,
"jupiter_receive: process time: \
%4d-%03d %02d:%02d:%02d at %s, %s\n",
pp->year, pp->day,
pp->hour, pp->minute, pp->second,
prettydate(&pp->lastrec), lfptoa(&pp->offset, 6));
refclock_receive(peer);
/*
* We have succeeded in answering the poll.
* Turn off the flag and return
*/
up->polled = 0;
break;
case JUPITER_O_ID:
if (size != sizeof(struct jid)) {
jupiter_debug(peer,
"jupiter_receive: id: len %d != %u\n",
size, (int)sizeof(struct jid));
refclock_report(peer, CEVNT_BADREPLY);
break;
}
/*
* If we got this message because the Jupiter
* just powered up, it needs to be reconfigured.
*/
ip = (struct jid *)sp;
jupiter_debug(peer,
"jupiter_receive: >> %s chan ver %s, %s (%s)\n",
ip->chans, ip->vers, ip->date, ip->opts);
msyslog(LOG_DEBUG,
"jupiter_receive: %s chan ver %s, %s (%s)\n",
ip->chans, ip->vers, ip->date, ip->opts);
if (up->wantid)
up->wantid = 0;
else {
jupiter_debug(peer,
"jupiter_receive: reset receiver\n");
jupiter_config(peer);
/* Rese since jupiter_config() just zeroed it */
up->ssize = cc;
}
break;
default:
jupiter_debug(peer,
"jupiter_receive: >> unknown message id %d\n",
getshort(hp->id));
break;
}
up->ssize -= cc;
if (up->ssize < 0) {
fprintf(stderr, "jupiter_recv: negative ssize!\n");
abort();
} else if (up->ssize > 0)
memcpy(up->sbuf, (u_char *)up->sbuf + cc, up->ssize);
}
record_clock_stats(&peer->srcadr, "<timecode is binary>");
}
/*
* jupiter_offset - Calculate the offset, and add to the rolling filter.
*/
static char *
jupiter_offset(register struct peer *peer)
{
register struct jupiterunit *up;
register struct refclockproc *pp;
register int i;
l_fp offset;
pp = peer->procptr;
up = (struct jupiterunit *)pp->unitptr;
/*
* Calculate the offset
*/
if (!clocktime(pp->day, pp->hour, pp->minute, pp->second, GMT,
pp->lastrec.l_ui, &pp->yearstart, &offset.l_ui)) {
return ("jupiter_process: clocktime failed");
}
if (pp->usec) {
TVUTOTSF(pp->usec, offset.l_uf);
} else {
MSUTOTSF(pp->msec, offset.l_uf);
}
L_ADD(&offset, &pp->fudgetime1);
up->lastref = offset; /* save last reference time */
L_SUB(&offset, &pp->lastrec); /* form true offset */
/*
* A rolling filter. Initialize first time around.
*/
i = ((up->coderecv)) % NSAMPLES;
up->filter[i] = offset;
if (up->coderecv == 0)
for (i = 1; (u_int) i < NSAMPLES; i++)
up->filter[i] = up->filter[0];
up->coderecv++;
return (NULL);
}
/*
* jupiter_process - process the sample from the clock,
* passing it through a median filter and optionally averaging
* the samples. Returns offset and dispersion in "up" structure.
*/
static char *
jupiter_process(register struct peer *peer)
{
register struct jupiterunit *up;
register struct refclockproc *pp;
register int i, n;
register int j, k;
l_fp offset, median, lftmp;
u_fp disp;
l_fp off[NSAMPLES];
pp = peer->procptr;
up = (struct jupiterunit *)pp->unitptr;
/*
* Copy the raw offsets and sort into ascending order
*/
for (i = 0; i < NSAMPLES; i++)
off[i] = up->filter[i];
qsort((char *)off, NSAMPLES, sizeof(l_fp), jupiter_cmpl_fp);
/*
* Reject the furthest from the median of NSAMPLES samples until
* NKEEP samples remain.
*/
i = 0;
n = NSAMPLES;
while ((n - i) > up->nkeep) {
lftmp = off[n - 1];
median = off[(n + i) / 2];
L_SUB(&lftmp, &median);
L_SUB(&median, &off[i]);
if (L_ISHIS(&median, &lftmp)) {
/* reject low end */
i++;
} else {
/* reject high end */
n--;
}
}
/*
* Copy key values to the billboard to measure performance.
*/
pp->lastref = up->lastref;
pp->coderecv = up->coderecv;
pp->filter[0] = off[0]; /* smallest offset */
pp->filter[1] = off[NSAMPLES-1]; /* largest offset */
for (j = 2, k = i; k < n; j++, k++)
pp->filter[j] = off[k]; /* offsets actually examined */
/*
* Compute the dispersion based on the difference between the
* extremes of the remaining offsets. Add to this the time since
* the last clock update, which represents the dispersion
* increase with time. We know that NTP_MAXSKEW is 16. If the
* sum is greater than the allowed sample dispersion, bail out.
* If the loop is unlocked, return the most recent offset;
* otherwise, return the median offset.
*/
lftmp = off[n - 1];
L_SUB(&lftmp, &off[i]);
disp = LFPTOFP(&lftmp);
if (disp > REFCLOCKMAXDISPERSE)
return ("Maximum dispersion exceeded");
/*
* Now compute the offset estimate. If fudge flag 1
* is set, average the remainder, otherwise pick the
* median.
*/
if (pp->sloppyclockflag & CLK_FLAG1) {
L_CLR(&lftmp);
while (i < n) {
L_ADD(&lftmp, &off[i]);
i++;
}
i = up->rshift;
while (i > 0) {
L_RSHIFT(&lftmp);
i--;
}
offset = lftmp;
} else {
i = (n + i) / 2;
offset = off[i];
}
/*
* The payload: filtered offset and dispersion.
*/
pp->offset = offset;
pp->disp = disp;
return (NULL);
}
/* Compare two l_fp's, used with qsort() */
#ifdef QSORT_USES_VOID_P
int
jupiter_cmpl_fp(register const void *p1, register const void *p2)
#else
int
jupiter_cmpl_fp(register const l_fp *fp1, register const l_fp *fp2)
#endif
{
#ifdef QSORT_USES_VOID_P
register const l_fp *fp1 = (const l_fp *)p1;
register const l_fp *fp2 = (const l_fp *)p2;
#endif
if (!L_ISGEQ(fp1, fp2))
return (-1);
if (L_ISEQU(fp1, fp2))
return (0);
return (1);
}
static char *
jupiter_parse_t(register struct peer *peer, register u_short *sp)
{
register struct refclockproc *pp;
register struct jupiterunit *up;
register struct tm *tm;
register char *cp;
register struct jpulse *jp;
register struct calendar *jt;
register u_int32 sweek;
register u_int32 last_timecode;
register u_short flags;
time_t t;
struct calendar cal;
pp = peer->procptr;
up = (struct jupiterunit *)pp->unitptr;
jp = (struct jpulse *)sp;
/* The timecode is presented as seconds into the current GPS week */
sweek = DS2UI(jp->sweek);
/*
* If we don't know the current GPS week, calculate it from the
* current time. (It's too bad they didn't include this
* important value in the pulse message). We'd like to pick it
* up from one of the other messages like gpos or chan but they
* don't appear to be synchronous with time keeping and changes
* too soon (something like 10 seconds before the new GPS
* week).
*
* If we already know the current GPS week, increment it when
* we wrap into a new week.
*/
if (up->gweek == 0)
up->gweek = (time(NULL) - GPS_EPOCH) / WEEKSECS;
else if (sweek == 0 && up->lastsweek == WEEKSECS - 1) {
++up->gweek;
jupiter_debug(peer,
"jupiter_parse_t: NEW gps week %u\n", up->gweek);
}
/*
* See if the sweek stayed the same (this happens when there is
* no pps pulse).
*
* Otherwise, look for time warps:
*
* - we have stored at least one lastsweek and
* - the sweek didn't increase by one and
* - we didn't wrap to a new GPS week
*
* Then we warped.
*/
if (up->lastsweek == sweek)
jupiter_debug(peer,
"jupiter_parse_t: gps sweek not incrementing (%d)\n",
sweek);
else if (up->lastsweek != 2 * WEEKSECS &&
up->lastsweek + 1 != sweek &&
!(sweek == 0 && up->lastsweek == WEEKSECS - 1))
jupiter_debug(peer,
"jupiter_parse_t: gps sweek jumped (was %d, now %d)\n",
up->lastsweek, sweek);
up->lastsweek = sweek;
/* This timecode describes next pulse */
last_timecode = up->timecode;
up->timecode = (u_int32)JAN_1970 +
GPS_EPOCH + (up->gweek * WEEKSECS) + sweek;
if (last_timecode == 0)
/* XXX debugging */
jupiter_debug(peer,
"jupiter_parse_t: UTC <none> (gweek/sweek %u/%u)\n",
up->gweek, sweek);
else {
/* XXX debugging */
t = last_timecode - (u_int32)JAN_1970;
tm = gmtime(&t);
cp = asctime(tm);
jupiter_debug(peer,
"jupiter_parse_t: UTC %.24s (gweek/sweek %u/%u)\n",
cp, up->gweek, sweek);
/* Billboard last_timecode (which is now the current time) */
jt = &cal;
caljulian(last_timecode, jt);
pp = peer->procptr;
pp->year = jt->year;
pp->day = jt->yearday;
pp->hour = jt->hour;
pp->minute = jt->minute;
pp->second = jt->second;
pp->msec = 0;
pp->usec = 0;
}
/* XXX debugging */
tm = gmtime(&up->ppsev.tv.tv_sec);
cp = asctime(tm);
flags = getshort(jp->flags);
jupiter_debug(peer,
"jupiter_parse_t: PPS %.19s.%06lu %.4s (serial %u)%s\n",
cp, up->ppsev.tv.tv_usec, cp + 20, up->ppsev.serial,
(flags & JUPITER_O_PULSE_VALID) == 0 ?
" NOT VALID" : "");
/* Toss if not designated "valid" by the gps */
if ((flags & JUPITER_O_PULSE_VALID) == 0) {
refclock_report(peer, CEVNT_BADTIME);
return ("time mark not valid");
}
/* We better be sync'ed to UTC... */
if ((flags & JUPITER_O_PULSE_UTC) == 0) {
refclock_report(peer, CEVNT_BADTIME);
return ("time mark not sync'ed to UTC");
}
return (NULL);
}
/*
* Process a PPS signal, returning a timestamp.
*/
static int
jupiter_pps(register struct peer *peer)
{
register struct refclockproc *pp;
register struct jupiterunit *up;
register int firsttime;
struct timeval ntp_tv;
pp = peer->procptr;
up = (struct jupiterunit *)pp->unitptr;
/*
* Grab the timestamp of the PPS signal.
*/
firsttime = (up->ppsev.tv.tv_sec == 0);
if (ioctl(pp->io.fd, CIOGETEV, (caddr_t)&up->ppsev) < 0) {
/* XXX Actually, if this fails, we're pretty much screwed */
jupiter_debug(peer, "jupiter_pps: CIOGETEV: %s\n",
strerror(errno));
refclock_report(peer, CEVNT_FAULT);
return (1);
}
/*
* Check pps serial number against last one
*/
if (!firsttime && up->lastserial + 1 != up->ppsev.serial) {
if (up->ppsev.serial == up->lastserial)
jupiter_debug(peer, "jupiter_pps: no new pps event\n");
else
jupiter_debug(peer,
"jupiter_pps: missed %d pps events\n",
up->ppsev.serial - up->lastserial - 1);
up->lastserial = up->ppsev.serial;
refclock_report(peer, CEVNT_FAULT);
return (1);
}
up->lastserial = up->ppsev.serial;
/*
* Return the timestamp in pp->lastrec
*/
ntp_tv = up->ppsev.tv;
ntp_tv.tv_sec += (u_int32)JAN_1970;
TVTOTS(&ntp_tv, &pp->lastrec);
return (0);
}
/*
* jupiter_debug - print debug messages
*/
#if defined(__STDC__)
static void
jupiter_debug(struct peer *peer, char *fmt, ...)
#else
static void
jupiter_debug(peer, fmt, va_alist)
struct peer *peer;
char *fmt;
#endif /* __STDC__ */
{
va_list ap;
if (debug) {
#if defined(__STDC__)
va_start(ap, fmt);
#else
va_start(ap);
#endif /* __STDC__ */
/*
* Print debug message to stdout
* In the future, we may want to get get more creative...
*/
vfprintf(stderr, fmt, ap);
va_end(ap);
}
}
/* Checksum and transmit a message to the Jupiter */
static char *
jupiter_send(register struct peer *peer, register struct jheader *hp)
{
register u_int len, size;
register int cc;
register u_short *sp;
static char errstr[132];
size = sizeof(*hp);
hp->hsum = putshort(jupiter_cksum((u_short *)hp,
(size / sizeof(u_short)) - 1));
len = getshort(hp->len);
if (len > 0) {
sp = (u_short *)(hp + 1);
sp[len] = putshort(jupiter_cksum(sp, len));
size += (len + 1) * sizeof(u_short);
}
if ((cc = write(peer->procptr->io.fd, (char *)hp, size)) < 0) {
(void)sprintf(errstr, "write: %s", strerror(errno));
return (errstr);
} else if (cc != size) {
(void)sprintf(errstr, "short write (%d != %d)", cc, size);
return (errstr);
}
return (NULL);
}
/* Request periodic message output */
static struct {
struct jheader jheader;
struct jrequest jrequest;
} reqmsg = {
{ putshort(JUPITER_SYNC), 0,
putshort((sizeof(struct jrequest) / sizeof(u_short)) - 1),
0, putshort(JUPITER_FLAG_REQUEST | JUPITER_FLAG_NAK |
JUPITER_FLAG_CONN | JUPITER_FLAG_LOG), 0 },
{ 0, 0, 0, 0 }
};
/* An interval of zero means to output on trigger */
static void
jupiter_reqmsg(register struct peer *peer, register u_int id,
register u_int interval)
{
register struct jheader *hp;
register struct jrequest *rp;
register char *cp;
hp = &reqmsg.jheader;
hp->id = putshort(id);
rp = &reqmsg.jrequest;
rp->trigger = putshort(interval == 0);
rp->interval = putshort(interval);
if ((cp = jupiter_send(peer, hp)) != NULL)
jupiter_debug(peer, "jupiter_reqmsg: %u: %s\n", id, cp);
}
/* Cancel periodic message output */
static struct jheader canmsg = {
putshort(JUPITER_SYNC), 0, 0, 0,
putshort(JUPITER_FLAG_REQUEST | JUPITER_FLAG_NAK | JUPITER_FLAG_DISC),
0
};
static void
jupiter_canmsg(register struct peer *peer, register u_int id)
{
register struct jheader *hp;
register char *cp;
hp = &canmsg;
hp->id = putshort(id);
if ((cp = jupiter_send(peer, hp)) != NULL)
jupiter_debug(peer, "jupiter_canmsg: %u: %s\n", id, cp);
}
/* Request a single message output */
static struct jheader reqonemsg = {
putshort(JUPITER_SYNC), 0, 0, 0,
putshort(JUPITER_FLAG_REQUEST | JUPITER_FLAG_NAK | JUPITER_FLAG_QUERY),
0
};
static void
jupiter_reqonemsg(register struct peer *peer, register u_int id)
{
register struct jheader *hp;
register char *cp;
hp = &reqonemsg;
hp->id = putshort(id);
if ((cp = jupiter_send(peer, hp)) != NULL)
jupiter_debug(peer, "jupiter_reqonemsg: %u: %s\n", id, cp);
}
/* Set the platform dynamics */
static struct {
struct jheader jheader;
struct jplat jplat;
} platmsg = {
{ putshort(JUPITER_SYNC), putshort(JUPITER_I_PLAT),
putshort((sizeof(struct jplat) / sizeof(u_short)) - 1), 0,
putshort(JUPITER_FLAG_REQUEST | JUPITER_FLAG_NAK), 0 },
{ 0, 0, 0 }
};
static void
jupiter_platform(register struct peer *peer, register u_int platform)
{
register struct jheader *hp;
register struct jplat *pp;
register char *cp;
hp = &platmsg.jheader;
pp = &platmsg.jplat;
pp->platform = putshort(platform);
if ((cp = jupiter_send(peer, hp)) != NULL)
jupiter_debug(peer, "jupiter_platform: %u: %s\n", platform, cp);
}
/* Checksum "len" shorts */
static u_short
jupiter_cksum(register u_short *sp, register u_int len)
{
register u_short sum, x;
sum = 0;
while (len-- > 0) {
x = *sp++;
sum += getshort(x);
}
return (~sum + 1);
}
/* Return the size of the next message (or zero if we don't have it all yet) */
static int
jupiter_recv(register struct peer *peer)
{
register int n, len, size, cc;
register struct refclockproc *pp;
register struct jupiterunit *up;
register struct jheader *hp;
register u_char *bp;
register u_short *sp;
pp = peer->procptr;
up = (struct jupiterunit *)pp->unitptr;
/* Must have at least a header's worth */
cc = sizeof(*hp);
size = up->ssize;
if (size < cc)
return (0);
/* Search for the sync short if missing */
sp = up->sbuf;
hp = (struct jheader *)sp;
if (getshort(hp->sync) != JUPITER_SYNC) {
/* Wasn't at the front, sync up */
jupiter_debug(peer, "syncing");
bp = (u_char *)sp;
n = size;
while (n >= 2) {
if (bp[0] != (JUPITER_SYNC & 0xff)) {
jupiter_debug(peer, "{0x%x}", bp[0]);
++bp;
--n;
continue;
}
if (bp[1] == ((JUPITER_SYNC >> 8) & 0xff))
break;
jupiter_debug(peer, "{0x%x 0x%x}", bp[0], bp[1]);
bp += 2;
n -= 2;
}
jupiter_debug(peer, "\n");
/* Shuffle data to front of input buffer */
if (n > 0)
memcpy(sp, bp, n);
size = n;
up->ssize = size;
if (size < cc || hp->sync != JUPITER_SYNC)
return (0);
}
if (jupiter_cksum(sp, (cc / sizeof(u_short) - 1)) !=
getshort(hp->hsum)) {
jupiter_debug(peer, "jupiter_recv: bad header checksum!\n");
/* This is drastic but checksum errors should be rare */
up->ssize = 0;
return (0);
}
/* Check for a payload */
len = getshort(hp->len);
if (len > 0) {
n = (len + 1) * sizeof(u_short);
/* Not enough data yet */
if (size < cc + n)
return (0);
/* Check payload checksum */
sp = (u_short *)(hp + 1);
if (jupiter_cksum(sp, len) != getshort(sp[len])) {
jupiter_debug(peer,
"jupiter_recv: bad payload checksum!\n");
/* This is drastic but checksum errors should be rare */
up->ssize = 0;
return (0);
}
cc += n;
}
return (cc);
}
static int
jupiter_ttyinit(register struct peer *peer, register int fd)
{
struct termios termios;
memset((char *)&termios, 0, sizeof(termios));
if (cfsetispeed(&termios, B9600) < 0 ||
cfsetospeed(&termios, B9600) < 0) {
jupiter_debug(peer,
"jupiter_ttyinit: cfsetispeed/cfgetospeed: %s\n",
strerror(errno));
return (0);
}
#ifdef HAVE_CFMAKERAW
cfmakeraw(&termios);
#else
termios.c_iflag &= ~(IMAXBEL | IXOFF | INPCK | BRKINT | PARMRK |
ISTRIP | INLCR | IGNCR | ICRNL | IXON | IGNPAR);
termios.c_iflag |= IGNBRK;
termios.c_oflag &= ~OPOST;
termios.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHONL | ICANON | ISIG |
IEXTEN | NOFLSH | TOSTOP | PENDIN);
termios.c_cflag &= ~(CSIZE | PARENB);
termios.c_cflag |= CS8 | CREAD;
termios.c_cc[VMIN] = 1;
#endif
termios.c_cflag |= CLOCAL;
if (tcsetattr(fd, TCSANOW, &termios) < 0) {
jupiter_debug(peer, "jupiter_ttyinit: tcsetattr: %s\n",
strerror(errno));
return (0);
}
#ifdef TIOCSPPS
if (ioctl(fd, TIOCSPPS, (char *)&fdpps) < 0) {
jupiter_debug(peer, "jupiter_ttyinit: TIOCSPPS: %s\n",
strerror(errno));
return (0);
}
#endif
#ifdef I_PUSH
if (ioctl(fd, I_PUSH, "ppsclock") < 0) {
jupiter_debug(peer, "jupiter_ttyinit: push ppsclock: %s\n",
strerror(errno));
return (0);
}
#endif
return (1);
}
#else /* not (REFCLOCK && CLOCK_JUPITER && PPS) */
int refclock_jupiter_bs;
#endif /* not (REFCLOCK && CLOCK_JUPITER && PPS) */