NetBSD/sys/arch/mvme68k
scw 7f3786d36a Add preliminary support for the MVME162-LX 200/300 series of boards.
Currently, the major onboard devices are supported (disk, network,
rs232 and VMEbus). However, work is still need to support the remaining
devices (eg. IndustryPack sites).

These boards are available with a dazzling array of build options. At
this time, the following options are *required*:

	o Real floating point hardware (the 68LC040 model isn't tested),
	o The VMEchip2 must be present,
	o If offboard VMEbus RAM is not present, at least 8MB of onboard
	  RAM is required.
	o Even if offboard VMEbus RAM *is* present, at least 4MB of onboard
	  RAM is required. (Boards with 1 or 2MB onboard RAM *can* be
	  supported with offboard RAM, but not without some funky values in
	  the VMEbus Master mapping registers.)

There is no support for boards other than those in the -LX 200/300 series.
2000-09-06 19:51:42 +00:00
..
compile
conf Add preliminary support for the MVME162-LX 200/300 series of boards. 2000-09-06 19:51:42 +00:00
dev Add preliminary support for the MVME162-LX 200/300 series of boards. 2000-09-06 19:51:42 +00:00
include Make need_resched() take a "struct cpu_info *" argument. This 2000-08-25 01:04:06 +00:00
mvme68k Add preliminary support for the MVME162-LX 200/300 series of boards. 2000-09-06 19:51:42 +00:00
stand g/c RB_DFLTROOT 2000-07-29 20:06:27 +00:00
Makefile
README.VMEbus-RAM

	$NetBSD: README.VMEbus-RAM,v 1.2 1997/11/01 19:18:39 scw Exp $

NetBSD/mvme68k port: VMEbus RAM card configuration

As of version 1.3, NetBSD-mvme68k (for VME147) officially supports
additional RAM in A32 space over the VMEbus.

This file describes where to configure your VMEbus RAM and how to
point the kernel in the direction of it.

The MVME147 board has a fairly primitive VMEbus controller chip. The
mapping of cpu address to VMEbus address is hardwired and so dictates
what can be seen where by the 68030.

From the cpu's perspective, A24 space spans 0x00000000 to 0x00ffffff.
However, onboard RAM also spans this space. With 8Mb of onboard RAM,
only the top 8Mb of VMEbus A24 space can be seen. With 16Mb onboard,
there is no easy way to get at A24 space at all!

The cpu sees VMEbus A32 space starting from 0x01000000. The lowest
16Mb of A32 space is not accessable (it's covered either by onboard
RAM or A24 space). With 32Mb of onboard RAM, the cpu can address A32
space from 0x02000000 upwards. This still leaves a considerable chunk
of A32 space visible, so in practice isn't really a problem.

The best place for VMEbus RAM cards is in A32 space, at the address
given by:

	max(0x01000000, onboard_ram_size)

In my case, this would locate my 8Mb VMEbus RAM card at 0x01000000.

This starting address needs to be written to the MVME147's NVRAM at
address 0xfffe0764, as follows:

	147Bug> mm fffe0764 ;L
	FFFE0764 00000000? 01000000   <cr>	<--- you type 01000000
	FFFE0768 00000000? .          <cr>
	147Bug>

Next, you need to configure the end address of VMEbus RAM. Assuming
your RAM card is 8Mb in size, this would be 0x017fffff. You need to
write this value to NVRAM address 0xfffe0768, as follows:

	147Bug> mm fffe0768 ;L
	FFFE0768 00000000? 017fffff   <cr>	<--- you type 017fffff
	FFFE076c 00000000? .          <cr>
	147Bug>

You could obviously combine the above two steps.

If you have more than one VMEbus RAM card, you must configure them so
that they appear physically contiguous in A32 address space. So, to add
another 8Mb card in addition to the card above, it should be jumpered
to start at 0x01800000. In this case, you would change NVRAM location
0xfffe0768 to be 0x01ffffff.

If NVRAM location 0xfffe0764 is zero, the kernel assumes you only have
onboard RAM and will not attempt to use any VMEbus RAM.


Some extra notes on VMEbus RAM cards
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

So... You've got your nice shiny VMEbus RAM card up and running with
NetBSD, and you're wondering why your system runs slower than it did
with less RAM!

The simple answer is "Motorola got it wrong". (Or at least that's my
opinion. If anyone can cure the following, let me know!)

In their infinite wisdom, the designers of the MVME147 decided that
they would disable the 68030's cache on *any* access to the VMEbus.
The upshot is that the cache only works for onboard RAM, not VMEbus
RAM, hence your system runs slower. As far as I can see, the only
way to cure this is to physically cut a trace on the circuit board
and use the MMU to control caching on a page-by-page basis...

Anyhow, hopefully the above instructions have finally put to rest
the most asked question about the mvme68k port.

Cheers,
Steve Woodford: scw@netbsd.org