NetBSD/lib/libcrypto/man/BIO_f_base64.3
2006-11-13 22:01:59 +00:00

224 lines
6.0 KiB
Groff

.\" $NetBSD: BIO_f_base64.3,v 1.14 2006/11/13 22:01:59 christos Exp $
.\"
.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.32
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sh \" Subsection heading
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. | will give a
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
.\" expand to `' in nroff, nothing in troff, for use with C<>.
.tr \(*W-|\(bv\*(Tr
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
'br\}
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. nr % 0
. rr F
.\}
.\"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.hy 0
.if n .na
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "BIO_f_base64 3"
.TH BIO_f_base64 3 "2006-05-29" "0.9.8d" "OpenSSL"
.SH "NAME"
BIO_f_base64 \- base64 BIO filter
.SH "LIBRARY"
libcrypto, -lcrypto
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 2
\& #include <openssl/bio.h>
\& #include <openssl/evp.h>
.Ve
.PP
.Vb 1
\& BIO_METHOD * BIO_f_base64(void);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
\&\fIBIO_f_base64()\fR returns the base64 \s-1BIO\s0 method. This is a filter
\&\s-1BIO\s0 that base64 encodes any data written through it and decodes
any data read through it.
.PP
Base64 BIOs do not support \fIBIO_gets()\fR or \fIBIO_puts()\fR.
.PP
\&\fIBIO_flush()\fR on a base64 \s-1BIO\s0 that is being written through is
used to signal that no more data is to be encoded: this is used
to flush the final block through the \s-1BIO\s0.
.PP
The flag \s-1BIO_FLAGS_BASE64_NO_NL\s0 can be set with \fIBIO_set_flags()\fR
to encode the data all on one line or expect the data to be all
on one line.
.SH "NOTES"
.IX Header "NOTES"
Because of the format of base64 encoding the end of the encoded
block cannot always be reliably determined.
.SH "RETURN VALUES"
.IX Header "RETURN VALUES"
\&\fIBIO_f_base64()\fR returns the base64 \s-1BIO\s0 method.
.SH "EXAMPLES"
.IX Header "EXAMPLES"
Base64 encode the string \*(L"Hello World\en\*(R" and write the result
to standard output:
.PP
.Vb 2
\& BIO *bio, *b64;
\& char message[] = "Hello World \en";
.Ve
.PP
.Vb 5
\& b64 = BIO_new(BIO_f_base64());
\& bio = BIO_new_fp(stdout, BIO_NOCLOSE);
\& bio = BIO_push(b64, bio);
\& BIO_write(bio, message, strlen(message));
\& BIO_flush(bio);
.Ve
.PP
.Vb 1
\& BIO_free_all(bio);
.Ve
.PP
Read Base64 encoded data from standard input and write the decoded
data to standard output:
.PP
.Vb 3
\& BIO *bio, *b64, *bio_out;
\& char inbuf[512];
\& int inlen;
.Ve
.PP
.Vb 6
\& b64 = BIO_new(BIO_f_base64());
\& bio = BIO_new_fp(stdin, BIO_NOCLOSE);
\& bio_out = BIO_new_fp(stdout, BIO_NOCLOSE);
\& bio = BIO_push(b64, bio);
\& while((inlen = BIO_read(bio, inbuf, 512)) > 0)
\& BIO_write(bio_out, inbuf, inlen);
.Ve
.PP
.Vb 1
\& BIO_free_all(bio);
.Ve
.SH "BUGS"
.IX Header "BUGS"
The ambiguity of \s-1EOF\s0 in base64 encoded data can cause additional
data following the base64 encoded block to be misinterpreted.
.PP
There should be some way of specifying a test that the \s-1BIO\s0 can perform
to reliably determine \s-1EOF\s0 (for example a \s-1MIME\s0 boundary).
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\s-1TBA\s0