1993 lines
51 KiB
C
1993 lines
51 KiB
C
/* $NetBSD: ofw.c,v 1.34 2005/01/05 10:25:43 tsutsui Exp $ */
|
|
|
|
/*
|
|
* Copyright 1997
|
|
* Digital Equipment Corporation. All rights reserved.
|
|
*
|
|
* This software is furnished under license and may be used and
|
|
* copied only in accordance with the following terms and conditions.
|
|
* Subject to these conditions, you may download, copy, install,
|
|
* use, modify and distribute this software in source and/or binary
|
|
* form. No title or ownership is transferred hereby.
|
|
*
|
|
* 1) Any source code used, modified or distributed must reproduce
|
|
* and retain this copyright notice and list of conditions as
|
|
* they appear in the source file.
|
|
*
|
|
* 2) No right is granted to use any trade name, trademark, or logo of
|
|
* Digital Equipment Corporation. Neither the "Digital Equipment
|
|
* Corporation" name nor any trademark or logo of Digital Equipment
|
|
* Corporation may be used to endorse or promote products derived
|
|
* from this software without the prior written permission of
|
|
* Digital Equipment Corporation.
|
|
*
|
|
* 3) This software is provided "AS-IS" and any express or implied
|
|
* warranties, including but not limited to, any implied warranties
|
|
* of merchantability, fitness for a particular purpose, or
|
|
* non-infringement are disclaimed. In no event shall DIGITAL be
|
|
* liable for any damages whatsoever, and in particular, DIGITAL
|
|
* shall not be liable for special, indirect, consequential, or
|
|
* incidental damages or damages for lost profits, loss of
|
|
* revenue or loss of use, whether such damages arise in contract,
|
|
* negligence, tort, under statute, in equity, at law or otherwise,
|
|
* even if advised of the possibility of such damage.
|
|
*/
|
|
|
|
/*
|
|
* Routines for interfacing between NetBSD and OFW.
|
|
*
|
|
* Parts of this could be moved to an MI file in time. -JJK
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.34 2005/01/05 10:25:43 tsutsui Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/mbuf.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <dev/cons.h>
|
|
|
|
#define _ARM32_BUS_DMA_PRIVATE
|
|
#include <machine/bus.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/bootconfig.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <dev/ofw/openfirm.h>
|
|
#include <machine/ofw.h>
|
|
|
|
#include <netinet/in.h>
|
|
|
|
#if BOOT_FW_DHCP
|
|
#include <nfs/bootdata.h>
|
|
#endif
|
|
|
|
#ifdef SHARK
|
|
#include "machine/pio.h"
|
|
#include "machine/isa_machdep.h"
|
|
#endif
|
|
|
|
#include "pc.h"
|
|
#include "isadma.h"
|
|
|
|
#define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
|
|
#define IO_VIRT_SIZE 0x01000000
|
|
|
|
#define KERNEL_IMG_PTS 2
|
|
#define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
|
|
#define KERNEL_OFW_PTS 4
|
|
#define KERNEL_IO_PTS 4
|
|
|
|
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
|
|
/*
|
|
* The range 0xf1000000 - 0xf6ffffff is available for kernel VM space
|
|
* OFW sits at 0xf7000000
|
|
*/
|
|
#define KERNEL_VM_SIZE 0x06000000
|
|
|
|
/*
|
|
* Imported variables
|
|
*/
|
|
extern BootConfig bootconfig; /* temporary, I hope */
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* NOTE: These variables will be removed, well some of them */
|
|
extern u_int spl_mask;
|
|
extern u_int current_mask;
|
|
#endif
|
|
|
|
extern int ofw_handleticks;
|
|
|
|
|
|
/*
|
|
* Imported routines
|
|
*/
|
|
extern void dump_spl_masks __P((void));
|
|
extern void dumpsys __P((void));
|
|
extern void dotickgrovelling __P((vaddr_t));
|
|
#if defined(SHARK) && (NPC > 0)
|
|
extern void shark_screen_cleanup __P((int));
|
|
#endif
|
|
|
|
#define WriteWord(a, b) \
|
|
*((volatile unsigned int *)(a)) = (b)
|
|
|
|
#define ReadWord(a) \
|
|
(*((volatile unsigned int *)(a)))
|
|
|
|
|
|
/*
|
|
* Exported variables
|
|
*/
|
|
/* These should all be in a meminfo structure. */
|
|
paddr_t physical_start;
|
|
paddr_t physical_freestart;
|
|
paddr_t physical_freeend;
|
|
paddr_t physical_end;
|
|
u_int free_pages;
|
|
int physmem;
|
|
pv_addr_t systempage;
|
|
#ifndef OFWGENCFG
|
|
pv_addr_t irqstack;
|
|
#endif
|
|
pv_addr_t undstack;
|
|
pv_addr_t abtstack;
|
|
pv_addr_t kernelstack;
|
|
|
|
paddr_t msgbufphys;
|
|
|
|
/* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
|
|
static vaddr_t virt_freeptr;
|
|
|
|
int ofw_callbacks = 0; /* debugging counter */
|
|
|
|
/**************************************************************/
|
|
|
|
|
|
/*
|
|
* Declarations and definitions private to this module
|
|
*
|
|
*/
|
|
|
|
struct mem_region {
|
|
paddr_t start;
|
|
psize_t size;
|
|
};
|
|
|
|
struct mem_translation {
|
|
vaddr_t virt;
|
|
vsize_t size;
|
|
paddr_t phys;
|
|
unsigned int mode;
|
|
};
|
|
|
|
struct isa_range {
|
|
paddr_t isa_phys_hi;
|
|
paddr_t isa_phys_lo;
|
|
paddr_t parent_phys_start;
|
|
psize_t isa_size;
|
|
};
|
|
|
|
struct vl_range {
|
|
paddr_t vl_phys_hi;
|
|
paddr_t vl_phys_lo;
|
|
paddr_t parent_phys_start;
|
|
psize_t vl_size;
|
|
};
|
|
|
|
struct vl_isa_range {
|
|
paddr_t isa_phys_hi;
|
|
paddr_t isa_phys_lo;
|
|
paddr_t parent_phys_hi;
|
|
paddr_t parent_phys_lo;
|
|
psize_t isa_size;
|
|
};
|
|
|
|
struct dma_range {
|
|
paddr_t start;
|
|
psize_t size;
|
|
};
|
|
|
|
struct ofw_cbargs {
|
|
char *name;
|
|
int nargs;
|
|
int nreturns;
|
|
int args_n_results[12];
|
|
};
|
|
|
|
|
|
/* Memory info */
|
|
static int nOFphysmem;
|
|
static struct mem_region *OFphysmem;
|
|
static int nOFphysavail;
|
|
static struct mem_region *OFphysavail;
|
|
static int nOFtranslations;
|
|
static struct mem_translation *OFtranslations;
|
|
static int nOFdmaranges;
|
|
static struct dma_range *OFdmaranges;
|
|
|
|
/* The OFW client services handle. */
|
|
/* Initialized by ofw_init(). */
|
|
static ofw_handle_t ofw_client_services_handle;
|
|
|
|
|
|
static void ofw_callbackhandler __P((void *));
|
|
static void ofw_construct_proc0_addrspace __P((pv_addr_t *));
|
|
static void ofw_getphysmeminfo __P((void));
|
|
static void ofw_getvirttranslations __P((void));
|
|
static void *ofw_malloc(vsize_t size);
|
|
static void ofw_claimpages __P((vaddr_t *, pv_addr_t *, vsize_t));
|
|
static void ofw_discardmappings __P ((vaddr_t, vaddr_t, vsize_t));
|
|
static int ofw_mem_ihandle __P((void));
|
|
static int ofw_mmu_ihandle __P((void));
|
|
static paddr_t ofw_claimphys __P((paddr_t, psize_t, paddr_t));
|
|
#if 0
|
|
static paddr_t ofw_releasephys __P((paddr_t, psize_t));
|
|
#endif
|
|
static vaddr_t ofw_claimvirt __P((vaddr_t, vsize_t, vaddr_t));
|
|
static void ofw_settranslation __P ((vaddr_t, paddr_t, vsize_t, int));
|
|
static void ofw_initallocator __P((void));
|
|
static void ofw_configisaonly __P((paddr_t *, paddr_t *));
|
|
static void ofw_configvl __P((int, paddr_t *, paddr_t *));
|
|
static vaddr_t ofw_valloc __P((vsize_t, vaddr_t));
|
|
|
|
|
|
/*
|
|
* DHCP hooks. For a first cut, we look to see if there is a DHCP
|
|
* packet that was saved by the firmware. If not, we proceed as before,
|
|
* getting hand-configured data from NVRAM. If there is one, we get the
|
|
* packet, and extract the data from it. For now, we hand that data up
|
|
* in the boot_args string as before.
|
|
*/
|
|
|
|
|
|
/**************************************************************/
|
|
|
|
|
|
/*
|
|
*
|
|
* Support routines for xxx_machdep.c
|
|
*
|
|
* The intent is that all OFW-based configurations use the
|
|
* exported routines in this file to do their business. If
|
|
* they need to override some function they are free to do so.
|
|
*
|
|
* The exported routines are:
|
|
*
|
|
* openfirmware
|
|
* ofw_init
|
|
* ofw_boot
|
|
* ofw_getbootinfo
|
|
* ofw_configmem
|
|
* ofw_configisa
|
|
* ofw_configisadma
|
|
* ofw_gettranslation
|
|
* ofw_map
|
|
* ofw_getcleaninfo
|
|
*/
|
|
|
|
|
|
int
|
|
openfirmware(args)
|
|
void *args;
|
|
{
|
|
int ofw_result;
|
|
u_int saved_irq_state;
|
|
|
|
/* OFW is not re-entrant, so we wrap a mutex around the call. */
|
|
saved_irq_state = disable_interrupts(I32_bit);
|
|
ofw_result = ofw_client_services_handle(args);
|
|
(void)restore_interrupts(saved_irq_state);
|
|
|
|
return(ofw_result);
|
|
}
|
|
|
|
|
|
void
|
|
ofw_init(ofw_handle)
|
|
ofw_handle_t ofw_handle;
|
|
{
|
|
ofw_client_services_handle = ofw_handle;
|
|
|
|
/* Everything we allocate in the remainder of this block is
|
|
* constrained to be in the "kernel-static" portion of the
|
|
* virtual address space (i.e., 0xF0000000 - 0xF1000000).
|
|
* This is because all such objects are expected to be in
|
|
* that range by NetBSD, or the objects will be re-mapped
|
|
* after the page-table-switch to other specific locations.
|
|
* In the latter case, it's simplest if our pre-switch handles
|
|
* on those objects are in regions that are already "well-
|
|
* known." (Otherwise, the cloning of the OFW-managed address-
|
|
* space becomes more awkward.) To minimize the number of L2
|
|
* page tables that we use, we are further restricting the
|
|
* remaining allocations in this block to the bottom quarter of
|
|
* the legal range. OFW will have loaded the kernel text+data+bss
|
|
* starting at the bottom of the range, and we will allocate
|
|
* objects from the top, moving downwards. The two sub-regions
|
|
* will collide if their total sizes hit 8MB. The current total
|
|
* is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
|
|
* limit. The variable virt-freeptr represents the next free va
|
|
* (moving downwards).
|
|
*/
|
|
virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
|
|
}
|
|
|
|
|
|
void
|
|
ofw_boot(howto, bootstr)
|
|
int howto;
|
|
char *bootstr;
|
|
{
|
|
|
|
#ifdef DIAGNOSTIC
|
|
printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
|
|
printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
|
|
|
|
printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
|
|
irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
|
|
irqmasks[IPL_VM]);
|
|
printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
|
|
irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
|
|
|
|
dump_spl_masks();
|
|
#endif
|
|
|
|
/*
|
|
* If we are still cold then hit the air brakes
|
|
* and crash to earth fast
|
|
*/
|
|
if (cold) {
|
|
doshutdownhooks();
|
|
printf("Halted while still in the ICE age.\n");
|
|
printf("The operating system has halted.\n");
|
|
goto ofw_exit;
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/*
|
|
* If RB_NOSYNC was not specified sync the discs.
|
|
* Note: Unless cold is set to 1 here, syslogd will die during the unmount.
|
|
* It looks like syslogd is getting woken up only to find that it cannot
|
|
* page part of the binary in as the filesystem has been unmounted.
|
|
*/
|
|
if (!(howto & RB_NOSYNC))
|
|
bootsync();
|
|
|
|
/* Say NO to interrupts */
|
|
splhigh();
|
|
|
|
/* Do a dump if requested. */
|
|
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
|
|
dumpsys();
|
|
|
|
/* Run any shutdown hooks */
|
|
doshutdownhooks();
|
|
|
|
/* Make sure IRQ's are disabled */
|
|
IRQdisable;
|
|
|
|
if (howto & RB_HALT) {
|
|
printf("The operating system has halted.\n");
|
|
goto ofw_exit;
|
|
}
|
|
|
|
/* Tell the user we are booting */
|
|
printf("rebooting...\n");
|
|
|
|
/* Jump into the OFW boot routine. */
|
|
{
|
|
static char str[256];
|
|
char *ap = str, *ap1 = ap;
|
|
|
|
if (bootstr && *bootstr) {
|
|
if (strlen(bootstr) > sizeof str - 5)
|
|
printf("boot string too large, ignored\n");
|
|
else {
|
|
strcpy(str, bootstr);
|
|
ap1 = ap = str + strlen(str);
|
|
*ap++ = ' ';
|
|
}
|
|
}
|
|
*ap++ = '-';
|
|
if (howto & RB_SINGLE)
|
|
*ap++ = 's';
|
|
if (howto & RB_KDB)
|
|
*ap++ = 'd';
|
|
*ap++ = 0;
|
|
if (ap[-2] == '-')
|
|
*ap1 = 0;
|
|
#if defined(SHARK) && (NPC > 0)
|
|
shark_screen_cleanup(0);
|
|
#endif
|
|
OF_boot(str);
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
ofw_exit:
|
|
printf("Calling OF_exit...\n");
|
|
#if defined(SHARK) && (NPC > 0)
|
|
shark_screen_cleanup(1);
|
|
#endif
|
|
OF_exit();
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
|
|
#if BOOT_FW_DHCP
|
|
|
|
extern char *ip2dotted __P((struct in_addr));
|
|
|
|
/*
|
|
* Get DHCP data from OFW
|
|
*/
|
|
|
|
void
|
|
get_fw_dhcp_data(bdp)
|
|
struct bootdata *bdp;
|
|
{
|
|
int chosen;
|
|
int dhcplen;
|
|
|
|
bzero((char *)bdp, sizeof(*bdp));
|
|
if ((chosen = OF_finddevice("/chosen")) == -1)
|
|
panic("no /chosen from OFW");
|
|
if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
|
|
u_char *cp;
|
|
int dhcp_type = 0;
|
|
char *ip;
|
|
|
|
/*
|
|
* OFW saved a DHCP (or BOOTP) packet for us.
|
|
*/
|
|
if (dhcplen > sizeof(bdp->dhcp_packet))
|
|
panic("DHCP packet too large");
|
|
OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
|
|
sizeof(bdp->dhcp_packet));
|
|
SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
|
|
/*
|
|
* Collect the interesting data from DHCP into
|
|
* the bootdata structure.
|
|
*/
|
|
bdp->ip_address = bdp->dhcp_packet.yiaddr;
|
|
ip = ip2dotted(bdp->ip_address);
|
|
if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
|
|
parse_dhcp_options(&bdp->dhcp_packet,
|
|
bdp->dhcp_packet.options + 4,
|
|
&bdp->dhcp_packet.options[dhcplen
|
|
- DHCP_FIXED_NON_UDP], bdp, ip);
|
|
if (bdp->root_ip.s_addr == 0)
|
|
bdp->root_ip = bdp->dhcp_packet.siaddr;
|
|
if (bdp->swap_ip.s_addr == 0)
|
|
bdp->swap_ip = bdp->dhcp_packet.siaddr;
|
|
}
|
|
/*
|
|
* If the DHCP packet did not contain all the necessary data,
|
|
* look in NVRAM for the missing parts.
|
|
*/
|
|
{
|
|
int options;
|
|
int proplen;
|
|
#define BOOTJUNKV_SIZE 256
|
|
char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
|
|
|
|
|
|
if ((options = OF_finddevice("/options")) == -1)
|
|
panic("can't find /options");
|
|
if (bdp->ip_address.s_addr == 0 &&
|
|
(proplen = OF_getprop(options, "ipaddr",
|
|
bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
|
|
bootjunkv[proplen] = '\0';
|
|
if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
|
|
bdp->ip_address.s_addr = 0;
|
|
}
|
|
if (bdp->ip_mask.s_addr == 0 &&
|
|
(proplen = OF_getprop(options, "netmask",
|
|
bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
|
|
bootjunkv[proplen] = '\0';
|
|
if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
|
|
bdp->ip_mask.s_addr = 0;
|
|
}
|
|
if (bdp->hostname[0] == '\0' &&
|
|
(proplen = OF_getprop(options, "hostname",
|
|
bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
|
|
bdp->hostname[proplen] = '\0';
|
|
}
|
|
if (bdp->root[0] == '\0' &&
|
|
(proplen = OF_getprop(options, "rootfs",
|
|
bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
|
|
bootjunkv[proplen] = '\0';
|
|
parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
|
|
}
|
|
if (bdp->swap[0] == '\0' &&
|
|
(proplen = OF_getprop(options, "swapfs",
|
|
bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
|
|
bootjunkv[proplen] = '\0';
|
|
parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* BOOT_FW_DHCP */
|
|
|
|
void
|
|
ofw_getbootinfo(bp_pp, ba_pp)
|
|
char **bp_pp;
|
|
char **ba_pp;
|
|
{
|
|
int chosen;
|
|
int bp_len;
|
|
int ba_len;
|
|
char *bootpathv;
|
|
char *bootargsv;
|
|
|
|
/* Read the bootpath and bootargs out of OFW. */
|
|
/* XXX is bootpath still interesting? --emg */
|
|
if ((chosen = OF_finddevice("/chosen")) == -1)
|
|
panic("no /chosen from OFW");
|
|
bp_len = OF_getproplen(chosen, "bootpath");
|
|
ba_len = OF_getproplen(chosen, "bootargs");
|
|
if (bp_len < 0 || ba_len < 0)
|
|
panic("can't get boot data from OFW");
|
|
|
|
bootpathv = (char *)ofw_malloc(bp_len);
|
|
bootargsv = (char *)ofw_malloc(ba_len);
|
|
|
|
if (bp_len)
|
|
OF_getprop(chosen, "bootpath", bootpathv, bp_len);
|
|
else
|
|
bootpathv[0] = '\0';
|
|
|
|
if (ba_len)
|
|
OF_getprop(chosen, "bootargs", bootargsv, ba_len);
|
|
else
|
|
bootargsv[0] = '\0';
|
|
|
|
*bp_pp = bootpathv;
|
|
*ba_pp = bootargsv;
|
|
#ifdef DIAGNOSTIC
|
|
printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
|
|
#endif
|
|
}
|
|
|
|
paddr_t
|
|
ofw_getcleaninfo(void)
|
|
{
|
|
int cpu;
|
|
vaddr_t vclean;
|
|
paddr_t pclean;
|
|
|
|
if ((cpu = OF_finddevice("/cpu")) == -1)
|
|
panic("no /cpu from OFW");
|
|
|
|
if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
|
|
sizeof(vclean))) != sizeof(vclean)) {
|
|
#ifdef DEBUG
|
|
printf("no OFW d-cache-flush-address property\n");
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
if ((pclean = ofw_gettranslation(
|
|
of_decode_int((unsigned char *)&vclean))) == -1)
|
|
panic("OFW failed to translate cache flush address");
|
|
|
|
return pclean;
|
|
}
|
|
|
|
void
|
|
ofw_configisa(pio, pmem)
|
|
paddr_t *pio;
|
|
paddr_t *pmem;
|
|
{
|
|
int vl;
|
|
|
|
if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
|
|
ofw_configisaonly(pio, pmem);
|
|
else /* old style OFW dev info tree */
|
|
ofw_configvl(vl, pio, pmem);
|
|
}
|
|
|
|
static void
|
|
ofw_configisaonly(pio, pmem)
|
|
paddr_t *pio;
|
|
paddr_t *pmem;
|
|
{
|
|
int isa;
|
|
int rangeidx;
|
|
int size;
|
|
paddr_t hi, start;
|
|
struct isa_range ranges[2];
|
|
|
|
if ((isa = OF_finddevice("/isa")) == -1)
|
|
panic("OFW has no /isa device node");
|
|
|
|
/* expect to find two isa ranges: IO/data and memory/data */
|
|
if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
|
|
!= sizeof(ranges))
|
|
panic("unexpected size of OFW /isa ranges property: %d", size);
|
|
|
|
*pio = *pmem = -1;
|
|
|
|
for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
|
|
hi = of_decode_int((unsigned char *)
|
|
&ranges[rangeidx].isa_phys_hi);
|
|
start = of_decode_int((unsigned char *)
|
|
&ranges[rangeidx].parent_phys_start);
|
|
|
|
if (hi & 1) { /* then I/O space */
|
|
*pio = start;
|
|
} else {
|
|
*pmem = start;
|
|
}
|
|
} /* END for */
|
|
|
|
if ((*pio == -1) || (*pmem == -1))
|
|
panic("bad OFW /isa ranges property");
|
|
|
|
}
|
|
|
|
static void
|
|
ofw_configvl(vl, pio, pmem)
|
|
int vl;
|
|
paddr_t *pio;
|
|
paddr_t *pmem;
|
|
{
|
|
int isa;
|
|
int ir, vr;
|
|
int size;
|
|
paddr_t hi, start;
|
|
struct vl_isa_range isa_ranges[2];
|
|
struct vl_range vl_ranges[2];
|
|
|
|
if ((isa = OF_finddevice("/vlbus/isa")) == -1)
|
|
panic("OFW has no /vlbus/isa device node");
|
|
|
|
/* expect to find two isa ranges: IO/data and memory/data */
|
|
if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
|
|
!= sizeof(isa_ranges))
|
|
panic("unexpected size of OFW /vlbus/isa ranges property: %d",
|
|
size);
|
|
|
|
/* expect to find two vl ranges: IO/data and memory/data */
|
|
if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
|
|
!= sizeof(vl_ranges))
|
|
panic("unexpected size of OFW /vlbus ranges property: %d", size);
|
|
|
|
*pio = -1;
|
|
*pmem = -1;
|
|
|
|
for (ir = 0; ir < 2; ++ir) {
|
|
for (vr = 0; vr < 2; ++vr) {
|
|
if ((isa_ranges[ir].parent_phys_hi
|
|
== vl_ranges[vr].vl_phys_hi) &&
|
|
(isa_ranges[ir].parent_phys_lo
|
|
== vl_ranges[vr].vl_phys_lo)) {
|
|
hi = of_decode_int((unsigned char *)
|
|
&isa_ranges[ir].isa_phys_hi);
|
|
start = of_decode_int((unsigned char *)
|
|
&vl_ranges[vr].parent_phys_start);
|
|
|
|
if (hi & 1) { /* then I/O space */
|
|
*pio = start;
|
|
} else {
|
|
*pmem = start;
|
|
}
|
|
} /* END if */
|
|
} /* END for */
|
|
} /* END for */
|
|
|
|
if ((*pio == -1) || (*pmem == -1))
|
|
panic("bad OFW /isa ranges property");
|
|
}
|
|
|
|
#if NISADMA > 0
|
|
struct arm32_dma_range *shark_isa_dma_ranges;
|
|
int shark_isa_dma_nranges;
|
|
#endif
|
|
|
|
void
|
|
ofw_configisadma(pdma)
|
|
paddr_t *pdma;
|
|
{
|
|
int root;
|
|
int rangeidx;
|
|
int size;
|
|
struct dma_range *dr;
|
|
|
|
if ((root = OF_finddevice("/")) == -1 ||
|
|
(size = OF_getproplen(root, "dma-ranges")) <= 0 ||
|
|
(OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
|
|
OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
|
|
panic("bad / dma-ranges property");
|
|
|
|
nOFdmaranges = size / sizeof(struct dma_range);
|
|
|
|
#if NISADMA > 0
|
|
/* Allocate storage for non-OFW representation of the range. */
|
|
shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
|
|
sizeof(*shark_isa_dma_ranges));
|
|
if (shark_isa_dma_ranges == NULL)
|
|
panic("unable to allocate shark_isa_dma_ranges");
|
|
shark_isa_dma_nranges = nOFdmaranges;
|
|
#endif
|
|
|
|
for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
|
|
++rangeidx, ++dr) {
|
|
dr->start = of_decode_int((unsigned char *)&dr->start);
|
|
dr->size = of_decode_int((unsigned char *)&dr->size);
|
|
#if NISADMA > 0
|
|
shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
|
|
shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
|
|
shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
|
|
#endif
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
printf("DMA ranges size = %d\n", size);
|
|
|
|
for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
|
|
printf("%08lx %08lx\n",
|
|
(u_long)OFdmaranges[rangeidx].start,
|
|
(u_long)OFdmaranges[rangeidx].size);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Memory configuration:
|
|
*
|
|
* We start off running in the environment provided by OFW.
|
|
* This has the MMU turned on, the kernel code and data
|
|
* mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
|
|
* data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
|
|
* page0 mapped-in at 0x0.
|
|
*
|
|
* The strategy is to set-up the address space for proc0 --
|
|
* including the allocation of space for new page tables -- while
|
|
* memory is still managed by OFW. We then effectively create a
|
|
* copy of the address space by dumping all of OFW's translations
|
|
* and poking them into the new page tables. We then notify OFW
|
|
* that we are assuming control of memory-management by installing
|
|
* our callback-handler, and switch to the NetBSD-managed page
|
|
* tables with the setttb() call.
|
|
*
|
|
* This scheme may cause some amount of memory to be wasted within
|
|
* OFW as dead page tables, but it shouldn't be more than about
|
|
* 20-30KB. (It's also possible that OFW will re-use the space.)
|
|
*/
|
|
void
|
|
ofw_configmem(void)
|
|
{
|
|
pv_addr_t proc0_ttbbase;
|
|
int i;
|
|
|
|
/* Set-up proc0 address space. */
|
|
ofw_construct_proc0_addrspace(&proc0_ttbbase);
|
|
|
|
/*
|
|
* Get a dump of OFW's picture of physical memory.
|
|
* This is used below to initialize a load of variables used by pmap.
|
|
* We get it now rather than later because we are about to
|
|
* tell OFW to stop managing memory.
|
|
*/
|
|
ofw_getphysmeminfo();
|
|
|
|
/* We are about to take control of memory-management from OFW.
|
|
* Establish callbacks for OFW to use for its future memory needs.
|
|
* This is required for us to keep using OFW services.
|
|
*/
|
|
|
|
/* First initialize our callback memory allocator. */
|
|
ofw_initallocator();
|
|
|
|
OF_set_callback(ofw_callbackhandler);
|
|
|
|
/* Switch to the proc0 pagetables. */
|
|
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
|
|
setttb(proc0_ttbbase.pv_pa);
|
|
cpu_tlb_flushID();
|
|
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
|
|
|
|
/*
|
|
* Moved from cpu_startup() as data_abort_handler() references
|
|
* this during uvm init
|
|
*/
|
|
{
|
|
extern struct user *proc0paddr;
|
|
proc0paddr = (struct user *)kernelstack.pv_va;
|
|
lwp0.l_addr = proc0paddr;
|
|
}
|
|
|
|
/* Aaaaaaaah, running in the proc0 address space! */
|
|
/* I feel good... */
|
|
|
|
/* Set-up the various globals which describe physical memory for pmap. */
|
|
{
|
|
struct mem_region *mp;
|
|
int totalcnt;
|
|
int availcnt;
|
|
|
|
/* physmem, physical_start, physical_end */
|
|
physmem = 0;
|
|
for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
|
|
totalcnt++, mp++) {
|
|
#ifdef OLDPRINTFS
|
|
printf("physmem: %x, %x\n", mp->start, mp->size);
|
|
#endif
|
|
physmem += btoc(mp->size);
|
|
}
|
|
physical_start = OFphysmem[0].start;
|
|
mp--;
|
|
physical_end = mp->start + mp->size;
|
|
|
|
/* free_pages, physical_freestart, physical_freeend */
|
|
free_pages = 0;
|
|
for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
|
|
availcnt++, mp++) {
|
|
#ifdef OLDPRINTFS
|
|
printf("physavail: %x, %x\n", mp->start, mp->size);
|
|
#endif
|
|
free_pages += btoc(mp->size);
|
|
}
|
|
physical_freestart = OFphysavail[0].start;
|
|
mp--;
|
|
physical_freeend = mp->start + mp->size;
|
|
#ifdef OLDPRINTFS
|
|
printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
|
|
physmem, free_pages);
|
|
#endif
|
|
|
|
/*
|
|
* This is a hack to work with the existing pmap code.
|
|
* That code depends on a RiscPC BootConfig structure
|
|
* containing, among other things, an array describing
|
|
* the regions of physical memory. So, for now, we need
|
|
* to stuff our OFW-derived physical memory info into a
|
|
* "fake" BootConfig structure.
|
|
*
|
|
* An added twist is that we initialize the BootConfig
|
|
* structure with our "available" physical memory regions
|
|
* rather than the "total" physical memory regions. Why?
|
|
* Because:
|
|
*
|
|
* (a) the VM code requires that the "free" pages it is
|
|
* initialized with have consecutive indices. This
|
|
* allows it to use more efficient data structures
|
|
* (presumably).
|
|
* (b) the current pmap routines which report the initial
|
|
* set of free page indices (pmap_next_page) and
|
|
* which map addresses to indices (pmap_page_index)
|
|
* assume that the free pages are consecutive across
|
|
* memory region boundaries.
|
|
*
|
|
* This means that memory which is "stolen" at startup time
|
|
* (say, for page descriptors) MUST come from either the
|
|
* bottom of the first region or the top of the last.
|
|
*
|
|
* This requirement doesn't mesh well with OFW (or at least
|
|
* our use of it). We can get around it for the time being
|
|
* by pretending that our "available" region array describes
|
|
* all of our physical memory. This may cause some important
|
|
* information to be excluded from a dump file, but so far
|
|
* I haven't come across any other negative effects.
|
|
*
|
|
* In the long-run we should fix the index
|
|
* generation/translation code in the pmap module.
|
|
*/
|
|
|
|
if (DRAM_BLOCKS < (availcnt + 1))
|
|
panic("more ofw memory regions than bootconfig blocks");
|
|
|
|
for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
|
|
bootconfig.dram[i].address = mp->start;
|
|
bootconfig.dram[i].pages = btoc(mp->size);
|
|
}
|
|
bootconfig.dramblocks = availcnt;
|
|
}
|
|
|
|
/* Load memory into UVM. */
|
|
uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
|
|
|
|
/* XXX Please kill this code dead. */
|
|
for (i = 0; i < bootconfig.dramblocks; i++) {
|
|
paddr_t start = (paddr_t)bootconfig.dram[i].address;
|
|
paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
|
|
#if NISADMA > 0
|
|
paddr_t istart, isize;
|
|
#endif
|
|
|
|
if (start < physical_freestart)
|
|
start = physical_freestart;
|
|
if (end > physical_freeend)
|
|
end = physical_freeend;
|
|
|
|
#if 0
|
|
printf("%d: %lx -> %lx\n", loop, start, end - 1);
|
|
#endif
|
|
|
|
#if NISADMA > 0
|
|
if (arm32_dma_range_intersect(shark_isa_dma_ranges,
|
|
shark_isa_dma_nranges,
|
|
start, end - start,
|
|
&istart, &isize)) {
|
|
/*
|
|
* Place the pages that intersect with the
|
|
* ISA DMA range onto the ISA DMA free list.
|
|
*/
|
|
#if 0
|
|
printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
|
|
istart + isize - 1);
|
|
#endif
|
|
uvm_page_physload(atop(istart),
|
|
atop(istart + isize), atop(istart),
|
|
atop(istart + isize), VM_FREELIST_ISADMA);
|
|
|
|
/*
|
|
* Load the pieces that come before the
|
|
* intersection onto the default free list.
|
|
*/
|
|
if (start < istart) {
|
|
#if 0
|
|
printf(" BEFORE 0x%lx -> 0x%lx\n",
|
|
start, istart - 1);
|
|
#endif
|
|
uvm_page_physload(atop(start),
|
|
atop(istart), atop(start),
|
|
atop(istart), VM_FREELIST_DEFAULT);
|
|
}
|
|
|
|
/*
|
|
* Load the pieces that come after the
|
|
* intersection onto the default free list.
|
|
*/
|
|
if ((istart + isize) < end) {
|
|
#if 0
|
|
printf(" AFTER 0x%lx -> 0x%lx\n",
|
|
(istart + isize), end - 1);
|
|
#endif
|
|
uvm_page_physload(atop(istart + isize),
|
|
atop(end), atop(istart + isize),
|
|
atop(end), VM_FREELIST_DEFAULT);
|
|
}
|
|
} else {
|
|
uvm_page_physload(atop(start), atop(end),
|
|
atop(start), atop(end), VM_FREELIST_DEFAULT);
|
|
}
|
|
#else /* NISADMA > 0 */
|
|
uvm_page_physload(atop(start), atop(end),
|
|
atop(start), atop(end), VM_FREELIST_DEFAULT);
|
|
#endif /* NISADMA > 0 */
|
|
}
|
|
|
|
/* Initialize pmap module. */
|
|
pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, KERNEL_VM_BASE,
|
|
KERNEL_VM_BASE + KERNEL_VM_SIZE);
|
|
}
|
|
|
|
|
|
/*
|
|
************************************************************
|
|
|
|
Routines private to this module
|
|
|
|
************************************************************
|
|
*/
|
|
|
|
/* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
|
|
static void
|
|
ofw_callbackhandler(v)
|
|
void *v;
|
|
{
|
|
struct ofw_cbargs *args = v;
|
|
char *name = args->name;
|
|
int nargs = args->nargs;
|
|
int nreturns = args->nreturns;
|
|
int *args_n_results = args->args_n_results;
|
|
|
|
ofw_callbacks++;
|
|
|
|
#if defined(OFWGENCFG)
|
|
/* Check this first, so that we don't waste IRQ time parsing. */
|
|
if (strcmp(name, "tick") == 0) {
|
|
vaddr_t frame;
|
|
|
|
/* Check format. */
|
|
if (nargs != 1 || nreturns < 1) {
|
|
args_n_results[nargs] = -1;
|
|
args->nreturns = 1;
|
|
return;
|
|
}
|
|
args_n_results[nargs] = 0; /* properly formatted request */
|
|
|
|
/*
|
|
* Note that we are running in the IRQ frame, with interrupts
|
|
* disabled.
|
|
*
|
|
* We need to do two things here:
|
|
* - copy a few words out of the input frame into a global
|
|
* area, for later use by our real tick-handling code
|
|
* - patch a few words in the frame so that when OFW returns
|
|
* from the interrupt it will resume with our handler
|
|
* rather than the code that was actually interrupted.
|
|
* Our handler will resume when it finishes with the code
|
|
* that was actually interrupted.
|
|
*
|
|
* It's simplest to do this in assembler, since it requires
|
|
* switching frames and grovelling about with registers.
|
|
*/
|
|
frame = (vaddr_t)args_n_results[0];
|
|
if (ofw_handleticks)
|
|
dotickgrovelling(frame);
|
|
args_n_results[nargs + 1] = frame;
|
|
args->nreturns = 1;
|
|
} else
|
|
#endif
|
|
|
|
if (strcmp(name, "map") == 0) {
|
|
vaddr_t va;
|
|
paddr_t pa;
|
|
vsize_t size;
|
|
int mode;
|
|
int ap_bits;
|
|
int dom_bits;
|
|
int cb_bits;
|
|
|
|
/* Check format. */
|
|
if (nargs != 4 || nreturns < 2) {
|
|
args_n_results[nargs] = -1;
|
|
args->nreturns = 1;
|
|
return;
|
|
}
|
|
args_n_results[nargs] = 0; /* properly formatted request */
|
|
|
|
pa = (paddr_t)args_n_results[0];
|
|
va = (vaddr_t)args_n_results[1];
|
|
size = (vsize_t)args_n_results[2];
|
|
mode = args_n_results[3];
|
|
ap_bits = (mode & 0x00000C00);
|
|
dom_bits = (mode & 0x000001E0);
|
|
cb_bits = (mode & 0x000000C0);
|
|
|
|
/* Sanity checks. */
|
|
if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
|
|
(va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
|
|
(pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
|
|
size == 0 || (dom_bits >> 5) != 0) {
|
|
args_n_results[nargs + 1] = -1;
|
|
args->nreturns = 1;
|
|
return;
|
|
}
|
|
|
|
/* Write-back anything stuck in the cache. */
|
|
cpu_idcache_wbinv_all();
|
|
|
|
/* Install new mappings. */
|
|
{
|
|
pt_entry_t *pte = vtopte(va);
|
|
int npages = size >> PGSHIFT;
|
|
|
|
ap_bits >>= 10;
|
|
for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
|
|
*pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
|
|
cb_bits);
|
|
PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
|
|
}
|
|
|
|
/* Clean out tlb. */
|
|
tlb_flush();
|
|
|
|
args_n_results[nargs + 1] = 0;
|
|
args->nreturns = 2;
|
|
} else if (strcmp(name, "unmap") == 0) {
|
|
vaddr_t va;
|
|
vsize_t size;
|
|
|
|
/* Check format. */
|
|
if (nargs != 2 || nreturns < 1) {
|
|
args_n_results[nargs] = -1;
|
|
args->nreturns = 1;
|
|
return;
|
|
}
|
|
args_n_results[nargs] = 0; /* properly formatted request */
|
|
|
|
va = (vaddr_t)args_n_results[0];
|
|
size = (vsize_t)args_n_results[1];
|
|
|
|
/* Sanity checks. */
|
|
if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
|
|
(va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
|
|
(size & PGOFSET) != 0 || size == 0) {
|
|
args_n_results[nargs + 1] = -1;
|
|
args->nreturns = 1;
|
|
return;
|
|
}
|
|
|
|
/* Write-back anything stuck in the cache. */
|
|
cpu_idcache_wbinv_all();
|
|
|
|
/* Zero the mappings. */
|
|
{
|
|
pt_entry_t *pte = vtopte(va);
|
|
int npages = size >> PGSHIFT;
|
|
|
|
for (; npages > 0; pte++, npages--)
|
|
*pte = 0;
|
|
PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
|
|
}
|
|
|
|
/* Clean out tlb. */
|
|
tlb_flush();
|
|
|
|
args->nreturns = 1;
|
|
} else if (strcmp(name, "translate") == 0) {
|
|
vaddr_t va;
|
|
paddr_t pa;
|
|
int mode;
|
|
pt_entry_t pte;
|
|
|
|
/* Check format. */
|
|
if (nargs != 1 || nreturns < 4) {
|
|
args_n_results[nargs] = -1;
|
|
args->nreturns = 1;
|
|
return;
|
|
}
|
|
args_n_results[nargs] = 0; /* properly formatted request */
|
|
|
|
va = (vaddr_t)args_n_results[0];
|
|
|
|
/* Sanity checks.
|
|
* For now, I am only willing to translate va's in the
|
|
* "ofw range." Eventually, I may be more generous. -JJK
|
|
*/
|
|
if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
|
|
va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
|
|
args_n_results[nargs + 1] = -1;
|
|
args->nreturns = 1;
|
|
return;
|
|
}
|
|
|
|
/* Lookup mapping. */
|
|
pte = *vtopte(va);
|
|
if (pte == 0) {
|
|
/* No mapping. */
|
|
args_n_results[nargs + 1] = -1;
|
|
args->nreturns = 2;
|
|
} else {
|
|
/* Existing mapping. */
|
|
pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
|
|
mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
|
|
|
|
args_n_results[nargs + 1] = 0;
|
|
args_n_results[nargs + 2] = pa;
|
|
args_n_results[nargs + 3] = mode;
|
|
args->nreturns = 4;
|
|
}
|
|
} else if (strcmp(name, "claim-phys") == 0) {
|
|
struct pglist alloclist;
|
|
paddr_t low, high, align;
|
|
psize_t size;
|
|
|
|
/*
|
|
* XXX
|
|
* XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
|
|
* XXX
|
|
*/
|
|
|
|
/* Check format. */
|
|
if (nargs != 4 || nreturns < 3) {
|
|
args_n_results[nargs] = -1;
|
|
args->nreturns = 1;
|
|
return;
|
|
}
|
|
args_n_results[nargs] = 0; /* properly formatted request */
|
|
|
|
low = args_n_results[0];
|
|
size = args_n_results[2];
|
|
align = args_n_results[3];
|
|
high = args_n_results[1] + size;
|
|
|
|
#if 0
|
|
printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
|
|
low, size, align, high);
|
|
align = size;
|
|
printf("forcing align to be 0x%x\n", align);
|
|
#endif
|
|
|
|
args_n_results[nargs + 1] =
|
|
uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
|
|
#if 0
|
|
printf(" -> 0x%lx", args_n_results[nargs + 1]);
|
|
#endif
|
|
if (args_n_results[nargs + 1] != 0) {
|
|
#if 0
|
|
printf("(failed)\n");
|
|
#endif
|
|
args_n_results[nargs + 1] = -1;
|
|
args->nreturns = 2;
|
|
return;
|
|
}
|
|
args_n_results[nargs + 2] = alloclist.tqh_first->phys_addr;
|
|
#if 0
|
|
printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
|
|
#endif
|
|
args->nreturns = 3;
|
|
|
|
} else if (strcmp(name, "release-phys") == 0) {
|
|
printf("unimplemented ofw callback - %s\n", name);
|
|
args_n_results[nargs] = -1;
|
|
args->nreturns = 1;
|
|
} else if (strcmp(name, "claim-virt") == 0) {
|
|
vaddr_t va;
|
|
vsize_t size;
|
|
vaddr_t align;
|
|
|
|
/* XXX - notyet */
|
|
/* printf("unimplemented ofw callback - %s\n", name);*/
|
|
args_n_results[nargs] = -1;
|
|
args->nreturns = 1;
|
|
return;
|
|
|
|
/* Check format. */
|
|
if (nargs != 2 || nreturns < 3) {
|
|
args_n_results[nargs] = -1;
|
|
args->nreturns = 1;
|
|
return;
|
|
}
|
|
args_n_results[nargs] = 0; /* properly formatted request */
|
|
|
|
/* Allocate size bytes with specified alignment. */
|
|
size = (vsize_t)args_n_results[0];
|
|
align = (vaddr_t)args_n_results[1];
|
|
if (align % PAGE_SIZE != 0) {
|
|
args_n_results[nargs + 1] = -1;
|
|
args->nreturns = 2;
|
|
return;
|
|
}
|
|
|
|
if (va == 0) {
|
|
/* Couldn't allocate. */
|
|
args_n_results[nargs + 1] = -1;
|
|
args->nreturns = 2;
|
|
} else {
|
|
/* Successful allocation. */
|
|
args_n_results[nargs + 1] = 0;
|
|
args_n_results[nargs + 2] = va;
|
|
args->nreturns = 3;
|
|
}
|
|
} else if (strcmp(name, "release-virt") == 0) {
|
|
vaddr_t va;
|
|
vsize_t size;
|
|
|
|
/* XXX - notyet */
|
|
printf("unimplemented ofw callback - %s\n", name);
|
|
args_n_results[nargs] = -1;
|
|
args->nreturns = 1;
|
|
return;
|
|
|
|
/* Check format. */
|
|
if (nargs != 2 || nreturns < 1) {
|
|
args_n_results[nargs] = -1;
|
|
args->nreturns = 1;
|
|
return;
|
|
}
|
|
args_n_results[nargs] = 0; /* properly formatted request */
|
|
|
|
/* Release bytes. */
|
|
va = (vaddr_t)args_n_results[0];
|
|
size = (vsize_t)args_n_results[1];
|
|
|
|
args->nreturns = 1;
|
|
} else {
|
|
args_n_results[nargs] = -1;
|
|
args->nreturns = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ofw_construct_proc0_addrspace(pv_addr_t *proc0_ttbbase)
|
|
{
|
|
int i, oft;
|
|
static pv_addr_t proc0_pagedir;
|
|
static pv_addr_t proc0_pt_sys;
|
|
static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
|
|
static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
|
|
static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
|
|
static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
|
|
static pv_addr_t msgbuf;
|
|
vaddr_t L1pagetable;
|
|
struct mem_translation *tp;
|
|
|
|
/* Set-up the system page. */
|
|
KASSERT(vector_page == 0); /* XXX for now */
|
|
systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
|
|
if (systempage.pv_va == -1) {
|
|
/* Something was already mapped to vector_page's VA. */
|
|
systempage.pv_va = vector_page;
|
|
systempage.pv_pa = ofw_gettranslation(vector_page);
|
|
if (systempage.pv_pa == -1)
|
|
panic("bogus result from gettranslation(vector_page)");
|
|
} else {
|
|
/* We were just allocated the page-length range at VA 0. */
|
|
if (systempage.pv_va != vector_page)
|
|
panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
|
|
|
|
/* Now allocate a physical page, and establish the mapping. */
|
|
systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
|
|
if (systempage.pv_pa == -1)
|
|
panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
|
|
ofw_settranslation(systempage.pv_va, systempage.pv_pa,
|
|
PAGE_SIZE, -1); /* XXX - mode? -JJK */
|
|
|
|
/* Zero the memory. */
|
|
bzero((char *)systempage.pv_va, PAGE_SIZE);
|
|
}
|
|
|
|
/* Allocate/initialize space for the proc0, NetBSD-managed */
|
|
/* page tables that we will be switching to soon. */
|
|
ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE);
|
|
ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
|
|
for (i = 0; i < KERNEL_IMG_PTS; i++)
|
|
ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
|
|
for (i = 0; i < KERNEL_VMDATA_PTS; i++)
|
|
ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
|
|
for (i = 0; i < KERNEL_OFW_PTS; i++)
|
|
ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
|
|
for (i = 0; i < KERNEL_IO_PTS; i++)
|
|
ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
|
|
|
|
/* Allocate/initialize space for stacks. */
|
|
#ifndef OFWGENCFG
|
|
ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
|
|
#endif
|
|
ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
|
|
ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
|
|
ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
|
|
|
|
/* Allocate/initialize space for msgbuf area. */
|
|
ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
|
|
msgbufphys = msgbuf.pv_pa;
|
|
|
|
/* Construct the proc0 L1 pagetable. */
|
|
L1pagetable = proc0_pagedir.pv_va;
|
|
|
|
pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
|
|
for (i = 0; i < KERNEL_IMG_PTS; i++)
|
|
pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
|
|
&proc0_pt_kernel[i]);
|
|
for (i = 0; i < KERNEL_VMDATA_PTS; i++)
|
|
pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
|
|
&proc0_pt_vmdata[i]);
|
|
for (i = 0; i < KERNEL_OFW_PTS; i++)
|
|
pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
|
|
&proc0_pt_ofw[i]);
|
|
for (i = 0; i < KERNEL_IO_PTS; i++)
|
|
pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
|
|
&proc0_pt_io[i]);
|
|
|
|
/*
|
|
* OK, we're done allocating.
|
|
* Get a dump of OFW's translations, and make the appropriate
|
|
* entries in the L2 pagetables that we just allocated.
|
|
*/
|
|
|
|
ofw_getvirttranslations();
|
|
|
|
for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
|
|
oft++, tp++) {
|
|
|
|
vaddr_t va;
|
|
paddr_t pa;
|
|
int npages = tp->size / PAGE_SIZE;
|
|
|
|
/* Size must be an integral number of pages. */
|
|
if (npages == 0 || tp->size % PAGE_SIZE != 0)
|
|
panic("illegal ofw translation (size)");
|
|
|
|
/* Make an entry for each page in the appropriate table. */
|
|
for (va = tp->virt, pa = tp->phys; npages > 0;
|
|
va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
|
|
/*
|
|
* Map the top bits to the appropriate L2 pagetable.
|
|
* The only allowable regions are page0, the
|
|
* kernel-static area, and the ofw area.
|
|
*/
|
|
switch (va >> (L1_S_SHIFT + 2)) {
|
|
case 0:
|
|
/* page0 */
|
|
break;
|
|
|
|
#if KERNEL_IMG_PTS != 2
|
|
#error "Update ofw translation range list"
|
|
#endif
|
|
case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
|
|
case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
|
|
/* kernel static area */
|
|
break;
|
|
|
|
case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
|
|
case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
|
|
case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
|
|
case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
|
|
/* ofw area */
|
|
break;
|
|
|
|
case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
|
|
case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
|
|
case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
|
|
case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
|
|
/* io area */
|
|
break;
|
|
|
|
default:
|
|
/* illegal */
|
|
panic("illegal ofw translation (addr) %#lx",
|
|
va);
|
|
}
|
|
|
|
/* Make the entry. */
|
|
pmap_map_entry(L1pagetable, va, pa,
|
|
VM_PROT_READ|VM_PROT_WRITE,
|
|
(tp->mode & 0xC) == 0xC ? PTE_CACHE
|
|
: PTE_NOCACHE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We don't actually want some of the mappings that we just
|
|
* set up to appear in proc0's address space. In particular,
|
|
* we don't want aliases to physical addresses that the kernel
|
|
* has-mapped/will-map elsewhere.
|
|
*/
|
|
ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
|
|
msgbuf.pv_va, MSGBUFSIZE);
|
|
|
|
/* update the top of the kernel VM */
|
|
pmap_curmaxkvaddr =
|
|
KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
|
|
|
|
/*
|
|
* gross hack for the sake of not thrashing the TLB and making
|
|
* cache flush more efficient: blast l1 ptes for sections.
|
|
*/
|
|
for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
|
|
vaddr_t va = tp->virt;
|
|
paddr_t pa = tp->phys;
|
|
|
|
if (((va | pa) & L1_S_OFFSET) == 0) {
|
|
int nsections = tp->size / L1_S_SIZE;
|
|
|
|
while (nsections--) {
|
|
/* XXXJRT prot?? */
|
|
pmap_map_section(L1pagetable, va, pa,
|
|
VM_PROT_READ|VM_PROT_WRITE,
|
|
(tp->mode & 0xC) == 0xC ? PTE_CACHE
|
|
: PTE_NOCACHE);
|
|
va += L1_S_SIZE;
|
|
pa += L1_S_SIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* OUT parameters are the new ttbbase and the pt which maps pts. */
|
|
*proc0_ttbbase = proc0_pagedir;
|
|
}
|
|
|
|
|
|
static void
|
|
ofw_getphysmeminfo()
|
|
{
|
|
int phandle;
|
|
int mem_len;
|
|
int avail_len;
|
|
int i;
|
|
|
|
if ((phandle = OF_finddevice("/memory")) == -1 ||
|
|
(mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
|
|
(OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
|
|
OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
|
|
(avail_len = OF_getproplen(phandle, "available")) <= 0 ||
|
|
(OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
|
|
OF_getprop(phandle, "available", OFphysavail, avail_len)
|
|
!= avail_len)
|
|
panic("can't get physmeminfo from OFW");
|
|
|
|
nOFphysmem = mem_len / sizeof(struct mem_region);
|
|
nOFphysavail = avail_len / sizeof(struct mem_region);
|
|
|
|
/*
|
|
* Sort the blocks in each array into ascending address order.
|
|
* Also, page-align all blocks.
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
|
|
struct mem_region *mp;
|
|
int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
|
|
int j;
|
|
|
|
#ifdef OLDPRINTFS
|
|
printf("ofw_getphysmeminfo: %d blocks\n", cnt);
|
|
#endif
|
|
|
|
/* XXX - Convert all the values to host order. -JJK */
|
|
for (j = 0, mp = tmp; j < cnt; j++, mp++) {
|
|
mp->start = of_decode_int((unsigned char *)&mp->start);
|
|
mp->size = of_decode_int((unsigned char *)&mp->size);
|
|
}
|
|
|
|
for (j = 0, mp = tmp; j < cnt; j++, mp++) {
|
|
u_int s, sz;
|
|
struct mem_region *mp1;
|
|
|
|
/* Page-align start of the block. */
|
|
s = mp->start % PAGE_SIZE;
|
|
if (s != 0) {
|
|
s = (PAGE_SIZE - s);
|
|
|
|
if (mp->size >= s) {
|
|
mp->start += s;
|
|
mp->size -= s;
|
|
}
|
|
}
|
|
|
|
/* Page-align the size. */
|
|
mp->size -= mp->size % PAGE_SIZE;
|
|
|
|
/* Handle empty block. */
|
|
if (mp->size == 0) {
|
|
memmove(mp, mp + 1, (cnt - (mp - tmp))
|
|
* sizeof(struct mem_region));
|
|
cnt--;
|
|
mp--;
|
|
continue;
|
|
}
|
|
|
|
/* Bubble sort. */
|
|
s = mp->start;
|
|
sz = mp->size;
|
|
for (mp1 = tmp; mp1 < mp; mp1++)
|
|
if (s < mp1->start)
|
|
break;
|
|
if (mp1 < mp) {
|
|
memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
|
|
mp1->start = s;
|
|
mp1->size = sz;
|
|
}
|
|
}
|
|
|
|
#ifdef OLDPRINTFS
|
|
for (mp = tmp; mp->size; mp++) {
|
|
printf("%x, %x\n", mp->start, mp->size);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
ofw_getvirttranslations(void)
|
|
{
|
|
int mmu_phandle;
|
|
int mmu_ihandle;
|
|
int trans_len;
|
|
int over, len;
|
|
int i;
|
|
struct mem_translation *tp;
|
|
|
|
mmu_ihandle = ofw_mmu_ihandle();
|
|
|
|
/* overallocate to avoid increases during allocation */
|
|
over = 4 * sizeof(struct mem_translation);
|
|
if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
|
|
(len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
|
|
(OFtranslations = ofw_malloc(len + over)) == 0 ||
|
|
(trans_len = OF_getprop(mmu_phandle, "translations",
|
|
OFtranslations, len + over)) > (len + over))
|
|
panic("can't get virttranslations from OFW");
|
|
|
|
/* XXX - Convert all the values to host order. -JJK */
|
|
nOFtranslations = trans_len / sizeof(struct mem_translation);
|
|
#ifdef OLDPRINTFS
|
|
printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
|
|
#endif
|
|
for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
|
|
tp->virt = of_decode_int((unsigned char *)&tp->virt);
|
|
tp->size = of_decode_int((unsigned char *)&tp->size);
|
|
tp->phys = of_decode_int((unsigned char *)&tp->phys);
|
|
tp->mode = of_decode_int((unsigned char *)&tp->mode);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ofw_valloc: allocate blocks of VM for IO and other special purposes
|
|
*/
|
|
typedef struct _vfree {
|
|
struct _vfree *pNext;
|
|
vaddr_t start;
|
|
vsize_t size;
|
|
} VFREE, *PVFREE;
|
|
|
|
static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
|
|
|
|
static PVFREE vflist = &vfinitial;
|
|
|
|
static vaddr_t
|
|
ofw_valloc(size, align)
|
|
vsize_t size;
|
|
vaddr_t align;
|
|
{
|
|
PVFREE *ppvf;
|
|
PVFREE pNew;
|
|
vaddr_t new;
|
|
vaddr_t lead;
|
|
|
|
for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
|
|
if (align == 0) {
|
|
new = (*ppvf)->start;
|
|
lead = 0;
|
|
} else {
|
|
new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
|
|
lead = new - (*ppvf)->start;
|
|
}
|
|
|
|
if (((*ppvf)->size - lead) >= size) {
|
|
if (lead == 0) {
|
|
/* using whole block */
|
|
if (size == (*ppvf)->size) {
|
|
/* splice out of list */
|
|
(*ppvf) = (*ppvf)->pNext;
|
|
} else { /* tail of block is free */
|
|
(*ppvf)->start = new + size;
|
|
(*ppvf)->size -= size;
|
|
}
|
|
} else {
|
|
vsize_t tail = ((*ppvf)->start
|
|
+ (*ppvf)->size) - (new + size);
|
|
/* free space at beginning */
|
|
(*ppvf)->size = lead;
|
|
|
|
if (tail != 0) {
|
|
/* free space at tail */
|
|
pNew = ofw_malloc(sizeof(VFREE));
|
|
pNew->pNext = (*ppvf)->pNext;
|
|
(*ppvf)->pNext = pNew;
|
|
pNew->start = new + size;
|
|
pNew->size = tail;
|
|
}
|
|
}
|
|
return new;
|
|
} /* END if */
|
|
} /* END for */
|
|
|
|
return -1;
|
|
}
|
|
|
|
vaddr_t
|
|
ofw_map(pa, size, cb_bits)
|
|
paddr_t pa;
|
|
vsize_t size;
|
|
int cb_bits;
|
|
{
|
|
vaddr_t va;
|
|
|
|
if ((va = ofw_valloc(size, size)) == -1)
|
|
panic("cannot alloc virtual memory for %#lx", pa);
|
|
|
|
ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
|
|
|
|
ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
|
|
|
|
return va;
|
|
}
|
|
|
|
static int
|
|
ofw_mem_ihandle(void)
|
|
{
|
|
static int mem_ihandle = 0;
|
|
int chosen;
|
|
|
|
if (mem_ihandle != 0)
|
|
return(mem_ihandle);
|
|
|
|
if ((chosen = OF_finddevice("/chosen")) == -1 ||
|
|
OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
|
|
panic("ofw_mem_ihandle");
|
|
|
|
mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
|
|
|
|
return(mem_ihandle);
|
|
}
|
|
|
|
|
|
static int
|
|
ofw_mmu_ihandle(void)
|
|
{
|
|
static int mmu_ihandle = 0;
|
|
int chosen;
|
|
|
|
if (mmu_ihandle != 0)
|
|
return(mmu_ihandle);
|
|
|
|
if ((chosen = OF_finddevice("/chosen")) == -1 ||
|
|
OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
|
|
panic("ofw_mmu_ihandle");
|
|
|
|
mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
|
|
|
|
return(mmu_ihandle);
|
|
}
|
|
|
|
|
|
/* Return -1 on failure. */
|
|
static paddr_t
|
|
ofw_claimphys(pa, size, align)
|
|
paddr_t pa;
|
|
psize_t size;
|
|
paddr_t align;
|
|
{
|
|
int mem_ihandle = ofw_mem_ihandle();
|
|
|
|
/* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
|
|
if (align == 0) {
|
|
/* Allocate at specified base; alignment is ignored. */
|
|
pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
|
|
} else {
|
|
/* Allocate anywhere, with specified alignment. */
|
|
pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
|
|
}
|
|
|
|
/* printf("%x\n", pa);*/
|
|
return(pa);
|
|
}
|
|
|
|
|
|
#if 0
|
|
/* Return -1 on failure. */
|
|
static paddr_t
|
|
ofw_releasephys(pa, size)
|
|
paddr_t pa;
|
|
psize_t size;
|
|
{
|
|
int mem_ihandle = ofw_mem_ihandle();
|
|
|
|
/* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
|
|
|
|
return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
|
|
}
|
|
#endif
|
|
|
|
/* Return -1 on failure. */
|
|
static vaddr_t
|
|
ofw_claimvirt(va, size, align)
|
|
vaddr_t va;
|
|
vsize_t size;
|
|
vaddr_t align;
|
|
{
|
|
int mmu_ihandle = ofw_mmu_ihandle();
|
|
|
|
/*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
|
|
if (align == 0) {
|
|
/* Allocate at specified base; alignment is ignored. */
|
|
va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
|
|
} else {
|
|
/* Allocate anywhere, with specified alignment. */
|
|
va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
|
|
}
|
|
|
|
/*printf("%x\n", va);*/
|
|
return(va);
|
|
}
|
|
|
|
|
|
/* Return -1 if no mapping. */
|
|
paddr_t
|
|
ofw_gettranslation(va)
|
|
vaddr_t va;
|
|
{
|
|
int mmu_ihandle = ofw_mmu_ihandle();
|
|
paddr_t pa;
|
|
int mode;
|
|
int exists;
|
|
|
|
/*printf("ofw_gettranslation (%x) --> ", va);*/
|
|
exists = 0; /* gets set to true if translation exists */
|
|
if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
|
|
&exists) != 0)
|
|
return(-1);
|
|
|
|
/*printf("%x\n", exists ? pa : -1);*/
|
|
return(exists ? pa : -1);
|
|
}
|
|
|
|
|
|
static void
|
|
ofw_settranslation(va, pa, size, mode)
|
|
vaddr_t va;
|
|
paddr_t pa;
|
|
vsize_t size;
|
|
int mode;
|
|
{
|
|
int mmu_ihandle = ofw_mmu_ihandle();
|
|
|
|
/*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
|
|
if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
|
|
panic("ofw_settranslation failed");
|
|
}
|
|
|
|
/*
|
|
* Allocation routine used before the kernel takes over memory.
|
|
* Use this for efficient storage for things that aren't rounded to
|
|
* page size.
|
|
*
|
|
* The point here is not necessarily to be very efficient (even though
|
|
* that's sort of nice), but to do proper dynamic allocation to avoid
|
|
* size-limitation errors.
|
|
*
|
|
*/
|
|
|
|
typedef struct _leftover {
|
|
struct _leftover *pNext;
|
|
vsize_t size;
|
|
} LEFTOVER, *PLEFTOVER;
|
|
|
|
/* leftover bits of pages. first word is pointer to next.
|
|
second word is size of leftover */
|
|
static PLEFTOVER leftovers = NULL;
|
|
|
|
static void *
|
|
ofw_malloc(size)
|
|
vsize_t size;
|
|
{
|
|
PLEFTOVER *ppLeftover;
|
|
PLEFTOVER pLeft;
|
|
pv_addr_t new;
|
|
vsize_t newSize, claim_size;
|
|
|
|
/* round and set minimum size */
|
|
size = max(sizeof(LEFTOVER),
|
|
((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
|
|
|
|
for (ppLeftover = &leftovers; *ppLeftover;
|
|
ppLeftover = &((*ppLeftover)->pNext))
|
|
if ((*ppLeftover)->size >= size)
|
|
break;
|
|
|
|
if (*ppLeftover) { /* have a leftover of the right size */
|
|
/* remember the leftover */
|
|
new.pv_va = (vaddr_t)*ppLeftover;
|
|
if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
|
|
/* splice out of chain */
|
|
*ppLeftover = (*ppLeftover)->pNext;
|
|
} else {
|
|
/* remember the next pointer */
|
|
pLeft = (*ppLeftover)->pNext;
|
|
newSize = (*ppLeftover)->size - size; /* reduce size */
|
|
/* move pointer */
|
|
*ppLeftover = (PLEFTOVER)(((vaddr_t)*ppLeftover)
|
|
+ size);
|
|
(*ppLeftover)->pNext = pLeft;
|
|
(*ppLeftover)->size = newSize;
|
|
}
|
|
} else {
|
|
claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
|
|
ofw_claimpages(&virt_freeptr, &new, claim_size);
|
|
if ((size + sizeof(LEFTOVER)) <= claim_size) {
|
|
pLeft = (PLEFTOVER)(new.pv_va + size);
|
|
pLeft->pNext = leftovers;
|
|
pLeft->size = claim_size - size;
|
|
leftovers = pLeft;
|
|
}
|
|
}
|
|
|
|
return (void *)(new.pv_va);
|
|
}
|
|
|
|
/*
|
|
* Here is a really, really sleazy free. It's not used right now,
|
|
* because it's not worth the extra complexity for just a few bytes.
|
|
*
|
|
*/
|
|
#if 0
|
|
static void
|
|
ofw_free(addr, size)
|
|
vaddr_t addr;
|
|
vsize_t size;
|
|
{
|
|
PLEFTOVER pLeftover = (PLEFTOVER)addr;
|
|
|
|
/* splice right into list without checks or compaction */
|
|
pLeftover->pNext = leftovers;
|
|
pLeftover->size = size;
|
|
leftovers = pLeftover;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Allocate and zero round(size)/PAGE_SIZE pages of memory.
|
|
* We guarantee that the allocated memory will be
|
|
* aligned to a boundary equal to the smallest power of
|
|
* 2 greater than or equal to size.
|
|
* free_pp is an IN/OUT parameter which points to the
|
|
* last allocated virtual address in an allocate-downwards
|
|
* stack. pv_p is an OUT parameter which contains the
|
|
* virtual and physical base addresses of the allocated
|
|
* memory.
|
|
*/
|
|
static void
|
|
ofw_claimpages(free_pp, pv_p, size)
|
|
vaddr_t *free_pp;
|
|
pv_addr_t *pv_p;
|
|
vsize_t size;
|
|
{
|
|
/* round-up to page boundary */
|
|
vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
|
|
vsize_t aligned_size;
|
|
vaddr_t va;
|
|
paddr_t pa;
|
|
|
|
if (alloc_size == 0)
|
|
panic("ofw_claimpages zero");
|
|
|
|
for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
|
|
;
|
|
|
|
/* The only way to provide the alignment guarantees is to
|
|
* allocate the virtual and physical ranges separately,
|
|
* then do an explicit map call.
|
|
*/
|
|
va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
|
|
if (ofw_claimvirt(va, alloc_size, 0) != va)
|
|
panic("ofw_claimpages va alloc");
|
|
pa = ofw_claimphys(0, alloc_size, aligned_size);
|
|
if (pa == -1)
|
|
panic("ofw_claimpages pa alloc");
|
|
/* XXX - what mode? -JJK */
|
|
ofw_settranslation(va, pa, alloc_size, -1);
|
|
|
|
/* The memory's mapped-in now, so we can zero it. */
|
|
bzero((char *)va, alloc_size);
|
|
|
|
/* Set OUT parameters. */
|
|
*free_pp = va;
|
|
pv_p->pv_va = va;
|
|
pv_p->pv_pa = pa;
|
|
}
|
|
|
|
|
|
static void
|
|
ofw_discardmappings(L2pagetable, va, size)
|
|
vaddr_t L2pagetable;
|
|
vaddr_t va;
|
|
vsize_t size;
|
|
{
|
|
/* round-up to page boundary */
|
|
vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
|
|
int npages = alloc_size / PAGE_SIZE;
|
|
|
|
if (npages == 0)
|
|
panic("ofw_discardmappings zero");
|
|
|
|
/* Discard each mapping. */
|
|
for (; npages > 0; va += PAGE_SIZE, npages--) {
|
|
/* Sanity. The current entry should be non-null. */
|
|
if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
|
|
panic("ofw_discardmappings zero entry");
|
|
|
|
/* Clear the entry. */
|
|
WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
ofw_initallocator(void)
|
|
{
|
|
|
|
}
|