NetBSD/sys/dev/pci/if_iwn.c

6158 lines
170 KiB
C

/* $NetBSD: if_iwn.c,v 1.52 2010/12/30 19:27:27 jruoho Exp $ */
/* $OpenBSD: if_iwn.c,v 1.96 2010/05/13 09:25:03 damien Exp $ */
/*-
* Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
* adapters.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.52 2010/12/30 19:27:27 jruoho Exp $");
#define IWN_USE_RBUF /* Use local storage for RX */
#undef IWN_HWCRYPTO /* XXX does not even compile yet */
/* XXX Avoid sensor code (correct option for NetBSD too?) */
#undef SMALL_KERNEL
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/proc.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <sys/callout.h>
#include <dev/sysmon/sysmonvar.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <machine/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <net/if_ether.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/firmload.h>
#include <dev/pci/if_iwnreg.h>
#include <dev/pci/if_iwnvar.h>
static const pci_product_id_t iwn_devices[] = {
PCI_PRODUCT_INTEL_WIFI_LINK_4965_1,
PCI_PRODUCT_INTEL_WIFI_LINK_4965_2,
PCI_PRODUCT_INTEL_WIFI_LINK_5100_1,
PCI_PRODUCT_INTEL_WIFI_LINK_5100_2,
PCI_PRODUCT_INTEL_WIFI_LINK_5150_1,
PCI_PRODUCT_INTEL_WIFI_LINK_5150_2,
PCI_PRODUCT_INTEL_WIFI_LINK_5300_1,
PCI_PRODUCT_INTEL_WIFI_LINK_5300_2,
PCI_PRODUCT_INTEL_WIFI_LINK_5350_1,
PCI_PRODUCT_INTEL_WIFI_LINK_5350_2,
PCI_PRODUCT_INTEL_WIFI_LINK_1000_1,
PCI_PRODUCT_INTEL_WIFI_LINK_1000_2,
PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1,
PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2,
PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1,
PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2,
PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1,
PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2,
PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1,
PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2,
#ifdef notyet
/*
* XXX NetBSD: the 6005A replaces the two 6005, above
* (see OpenBSD rev 1.96).
*/
PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_1,
PCI_PRODUCT_INTEL_WIFI_LINK_6005A_2X2_2,
PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_1,
PCI_PRODUCT_INTEL_WIFI_LINK_6005B_1X1_2,
PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_1,
PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_2,
PCI_PRODUCT_INTEL_WIFI_LINK_6005B_2X2_3
#endif
};
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset iwn_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset iwn_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset iwn_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
static int iwn_match(device_t , struct cfdata *, void *);
static void iwn_attach(device_t , device_t , void *);
const struct iwn_hal *iwn_hal_attach(struct iwn_softc *, pci_product_id_t pid);
#ifndef SMALL_KERNEL
static void iwn_sensor_attach(struct iwn_softc *);
#endif
static void iwn_radiotap_attach(struct iwn_softc *);
static int iwn_detach(device_t , int);
#if 0
static void iwn_power(int, void *);
#endif
static bool iwn_resume(device_t, const pmf_qual_t *);
static int iwn_nic_lock(struct iwn_softc *);
static int iwn_eeprom_lock(struct iwn_softc *);
static int iwn_init_otprom(struct iwn_softc *);
static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
void **, bus_size_t, bus_size_t);
static void iwn_dma_contig_free(struct iwn_dma_info *);
static int iwn_alloc_sched(struct iwn_softc *);
static void iwn_free_sched(struct iwn_softc *);
static int iwn_alloc_kw(struct iwn_softc *);
static void iwn_free_kw(struct iwn_softc *);
static int iwn_alloc_ict(struct iwn_softc *);
static void iwn_free_ict(struct iwn_softc *);
static int iwn_alloc_fwmem(struct iwn_softc *);
static void iwn_free_fwmem(struct iwn_softc *);
static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
int);
static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
static void iwn5000_ict_reset(struct iwn_softc *);
static int iwn_read_eeprom(struct iwn_softc *);
static void iwn4965_read_eeprom(struct iwn_softc *);
#ifdef IWN_DEBUG
static void iwn4965_print_power_group(struct iwn_softc *, int);
#endif
static void iwn5000_read_eeprom(struct iwn_softc *);
static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
static void iwn_newassoc(struct ieee80211_node *, int);
static int iwn_media_change(struct ifnet *);
static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void iwn_iter_func(void *, struct ieee80211_node *);
static void iwn_calib_timeout(void *);
static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
#ifndef IEEE80211_NO_HT
static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
#endif
static void iwn5000_rx_calib_results(struct iwn_softc *,
struct iwn_rx_desc *, struct iwn_rx_data *);
static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
uint8_t);
static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
static void iwn_notif_intr(struct iwn_softc *);
static void iwn_wakeup_intr(struct iwn_softc *);
static void iwn_fatal_intr(struct iwn_softc *);
static int iwn_intr(void *);
static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
uint16_t);
static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
uint16_t);
#ifdef notyet
static void iwn5000_reset_sched(struct iwn_softc *, int, int);
#endif
static int iwn_tx(struct iwn_softc *, struct mbuf *,
struct ieee80211_node *, int);
static void iwn_start(struct ifnet *);
static void iwn_watchdog(struct ifnet *);
static int iwn_ioctl(struct ifnet *, u_long, void *);
static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
int);
static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
int);
static int iwn_set_link_quality(struct iwn_softc *,
struct ieee80211_node *);
static int iwn_add_broadcast_node(struct iwn_softc *, int);
static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
static int iwn_set_critical_temp(struct iwn_softc *);
static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
static void iwn4965_power_calibration(struct iwn_softc *, int);
static int iwn4965_set_txpower(struct iwn_softc *, int);
static int iwn5000_set_txpower(struct iwn_softc *, int);
static int iwn4965_get_rssi(const struct iwn_rx_stat *);
static int iwn5000_get_rssi(const struct iwn_rx_stat *);
static int iwn_get_noise(const struct iwn_rx_general_stats *);
static int iwn4965_get_temperature(struct iwn_softc *);
static int iwn5000_get_temperature(struct iwn_softc *);
static int iwn_init_sensitivity(struct iwn_softc *);
static void iwn_collect_noise(struct iwn_softc *,
const struct iwn_rx_general_stats *);
static int iwn4965_init_gains(struct iwn_softc *);
static int iwn5000_init_gains(struct iwn_softc *);
static int iwn4965_set_gains(struct iwn_softc *);
static int iwn5000_set_gains(struct iwn_softc *);
static void iwn_tune_sensitivity(struct iwn_softc *,
const struct iwn_rx_stats *);
static int iwn_send_sensitivity(struct iwn_softc *);
static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
static int iwn_config(struct iwn_softc *);
static int iwn_scan(struct iwn_softc *, uint16_t);
static int iwn_auth(struct iwn_softc *);
static int iwn_run(struct iwn_softc *);
#ifdef IWN_HWCRYPTO
static int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
static void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
#endif
static int iwn_wme_update(struct ieee80211com *);
#ifndef IEEE80211_NO_HT
static int iwn_ampdu_rx_start(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void iwn_ampdu_rx_stop(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static int iwn_ampdu_tx_start(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void iwn_ampdu_tx_stop(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void iwn4965_ampdu_tx_start(struct iwn_softc *,
struct ieee80211_node *, uint8_t, uint16_t);
static void iwn4965_ampdu_tx_stop(struct iwn_softc *,
uint8_t, uint16_t);
static void iwn5000_ampdu_tx_start(struct iwn_softc *,
struct ieee80211_node *, uint8_t, uint16_t);
static void iwn5000_ampdu_tx_stop(struct iwn_softc *,
uint8_t, uint16_t);
#endif
static int iwn5000_query_calibration(struct iwn_softc *);
static int iwn5000_send_calibration(struct iwn_softc *);
static int iwn5000_send_wimax_coex(struct iwn_softc *);
static int iwn4965_post_alive(struct iwn_softc *);
static int iwn5000_post_alive(struct iwn_softc *);
static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
int);
static int iwn4965_load_firmware(struct iwn_softc *);
static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
const uint8_t *, int);
static int iwn_read_firmware_leg(struct iwn_softc *,
struct iwn_fw_info *);
static int iwn_read_firmware_tlv(struct iwn_softc *,
struct iwn_fw_info *, uint16_t);
static int iwn5000_load_firmware(struct iwn_softc *);
static int iwn_read_firmware(struct iwn_softc *);
static int iwn_clock_wait(struct iwn_softc *);
static int iwn_apm_init(struct iwn_softc *);
static void iwn_apm_stop_master(struct iwn_softc *);
static void iwn_apm_stop(struct iwn_softc *);
static int iwn4965_nic_config(struct iwn_softc *);
static int iwn5000_nic_config(struct iwn_softc *);
static int iwn_hw_prepare(struct iwn_softc *);
static int iwn_hw_init(struct iwn_softc *);
static void iwn_hw_stop(struct iwn_softc *);
static int iwn_init(struct ifnet *);
static void iwn_stop(struct ifnet *, int);
/* XXX MCLGETI alternative */
static struct mbuf *MCLGETIalt(struct iwn_softc *, int,
struct ifnet *, u_int);
#ifdef IWN_USE_RBUF
static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
static int iwn_alloc_rpool(struct iwn_softc *);
static void iwn_free_rpool(struct iwn_softc *);
#endif
/* XXX needed by iwn_scan */
static u_int8_t *ieee80211_add_ssid(u_int8_t *, const u_int8_t *, u_int);
static u_int8_t *ieee80211_add_rates(u_int8_t *,
const struct ieee80211_rateset *);
static u_int8_t *ieee80211_add_xrates(u_int8_t *,
const struct ieee80211_rateset *);
static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
#ifdef IWN_DEBUG
#define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
int iwn_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
static const struct iwn_hal iwn4965_hal = {
iwn4965_load_firmware,
iwn4965_read_eeprom,
iwn4965_post_alive,
iwn4965_nic_config,
iwn4965_update_sched,
iwn4965_get_temperature,
iwn4965_get_rssi,
iwn4965_set_txpower,
iwn4965_init_gains,
iwn4965_set_gains,
iwn4965_add_node,
iwn4965_tx_done,
#ifndef IEEE80211_NO_HT
iwn4965_ampdu_tx_start,
iwn4965_ampdu_tx_stop,
#endif
IWN4965_NTXQUEUES,
IWN4965_NDMACHNLS,
IWN4965_ID_BROADCAST,
IWN4965_RXONSZ,
IWN4965_SCHEDSZ,
IWN4965_FW_TEXT_MAXSZ,
IWN4965_FW_DATA_MAXSZ,
IWN4965_FWSZ,
IWN4965_SCHED_TXFACT
};
static const struct iwn_hal iwn5000_hal = {
iwn5000_load_firmware,
iwn5000_read_eeprom,
iwn5000_post_alive,
iwn5000_nic_config,
iwn5000_update_sched,
iwn5000_get_temperature,
iwn5000_get_rssi,
iwn5000_set_txpower,
iwn5000_init_gains,
iwn5000_set_gains,
iwn5000_add_node,
iwn5000_tx_done,
#ifndef IEEE80211_NO_HT
iwn5000_ampdu_tx_start,
iwn5000_ampdu_tx_stop,
#endif
IWN5000_NTXQUEUES,
IWN5000_NDMACHNLS,
IWN5000_ID_BROADCAST,
IWN5000_RXONSZ,
IWN5000_SCHEDSZ,
IWN5000_FW_TEXT_MAXSZ,
IWN5000_FW_DATA_MAXSZ,
IWN5000_FWSZ,
IWN5000_SCHED_TXFACT
};
CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
iwn_detach, NULL);
static int
iwn_match(device_t parent, cfdata_t match __unused, void *aux)
{
struct pci_attach_args *pa = aux;
size_t i;
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
return 0;
for (i = 0; i < __arraycount(iwn_devices); i++)
if (PCI_PRODUCT(pa->pa_id) == iwn_devices[i])
return 1;
return 0;
}
static void
iwn_attach(device_t parent __unused, device_t self, void *aux)
{
struct iwn_softc *sc = device_private(self);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct pci_attach_args *pa = aux;
const struct iwn_hal *hal;
const char *intrstr;
char devinfo[256];
pci_intr_handle_t ih;
pcireg_t memtype, reg;
int i, error;
int revision;
sc->sc_dev = self;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
sc->sc_dmat = pa->pa_dmat;
mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
callout_init(&sc->calib_to, 0);
callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
revision = PCI_REVISION(pa->pa_class);
aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
/*
* Get the offset of the PCI Express Capability Structure in PCI
* Configuration Space.
*/
error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
if (error == 0) {
aprint_error(": PCIe capability structure not found!\n");
return;
}
/* Clear device-specific "PCI retry timeout" register (41h). */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
reg &= ~0xff00;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
/* Enable bus-mastering and hardware bug workaround. */
/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
reg |= PCI_COMMAND_MASTER_ENABLE;
if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
DPRINTF(("PCIe INTx Disable set\n"));
reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
}
pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
&sc->sc_sh, NULL, &sc->sc_sz);
if (error != 0) {
aprint_error(": can't map mem space\n");
return;
}
/* Install interrupt handler. */
if (pci_intr_map(pa, &ih) != 0) {
aprint_error(": can't map interrupt\n");
return;
}
intrstr = pci_intr_string(sc->sc_pct, ih);
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error(": can't establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
/* Attach Hardware Abstraction Layer. */
hal = iwn_hal_attach(sc, PCI_PRODUCT(pa->pa_id));
if (hal == NULL)
return;
if ((error = iwn_hw_prepare(sc)) != 0) {
aprint_error(": hardware not ready\n");
return;
}
/* Read MAC address, channels, etc from EEPROM. */
if ((error = iwn_read_eeprom(sc)) != 0) {
aprint_error(": could not read EEPROM\n");
return;
}
/* Allocate DMA memory for firmware transfers. */
if ((error = iwn_alloc_fwmem(sc)) != 0) {
aprint_error(": could not allocate memory for firmware\n");
return;
}
/* Allocate "Keep Warm" page. */
if ((error = iwn_alloc_kw(sc)) != 0) {
aprint_error(": could not allocate keep warm page\n");
goto fail1;
}
/* Allocate ICT table for 5000 Series. */
if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
(error = iwn_alloc_ict(sc)) != 0) {
aprint_error(": could not allocate ICT table\n");
goto fail2;
}
/* Allocate TX scheduler "rings". */
if ((error = iwn_alloc_sched(sc)) != 0) {
aprint_error(": could not allocate TX scheduler rings\n");
goto fail3;
}
#ifdef IWN_USE_RBUF
/* Allocate RX buffers. */
if ((error = iwn_alloc_rpool(sc)) != 0) {
aprint_error_dev(self, "could not allocate RX buffers\n");
goto fail3;
}
#endif
/* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */
for (i = 0; i < hal->ntxqs; i++) {
if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
aprint_error(": could not allocate TX ring %d\n", i);
goto fail4;
}
}
/* Allocate RX ring. */
if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
aprint_error(": could not allocate RX ring\n");
goto fail4;
}
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
/* Count the number of available chains. */
sc->ntxchains =
((sc->txchainmask >> 2) & 1) +
((sc->txchainmask >> 1) & 1) +
((sc->txchainmask >> 0) & 1);
sc->nrxchains =
((sc->rxchainmask >> 2) & 1) +
((sc->rxchainmask >> 1) & 1) +
((sc->rxchainmask >> 0) & 1);
aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
ether_sprintf(ic->ic_myaddr));
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
/* XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN,
* and IEEE80211_C_PMGT too. */
ic->ic_caps =
IEEE80211_C_IBSS | /* IBSS mode support */
IEEE80211_C_WPA | /* 802.11i */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_WME; /* 802.11e */
#ifndef IEEE80211_NO_HT
/* Set HT capabilities. */
ic->ic_htcaps =
#if IWN_RBUF_SIZE == 8192
IEEE80211_HTCAP_AMSDU7935 |
#endif
IEEE80211_HTCAP_CBW20_40 |
IEEE80211_HTCAP_SGI20 |
IEEE80211_HTCAP_SGI40;
if (sc->hw_type != IWN_HW_REV_TYPE_4965)
ic->ic_htcaps |= IEEE80211_HTCAP_GF;
if (sc->hw_type == IWN_HW_REV_TYPE_6050)
ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
else
ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
#endif /* !IEEE80211_NO_HT */
/* Set supported legacy rates. */
ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
}
#ifndef IEEE80211_NO_HT
/* Set supported HT rates. */
ic->ic_sup_mcs[0] = 0xff;
if (sc->nrxchains > 1) /* MCS 0-7 */
ic->ic_sup_mcs[1] = 0xff; /* MCS 7-15 */
if (sc->nrxchains > 2)
ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
#endif
/* IBSS channel undefined for now. */
ic->ic_ibss_chan = &ic->ic_channels[0];
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = iwn_init;
ifp->if_ioctl = iwn_ioctl;
ifp->if_start = iwn_start;
ifp->if_stop = iwn_stop;
ifp->if_watchdog = iwn_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ic);
ic->ic_node_alloc = iwn_node_alloc;
ic->ic_newassoc = iwn_newassoc;
#ifdef IWN_HWCRYPTO
ic->ic_crypto.cs_key_set = iwn_set_key;
ic->ic_crypto.cs_key_delete = iwn_delete_key;
#endif
ic->ic_wme.wme_update = iwn_wme_update;
#ifndef IEEE80211_NO_HT
ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
#endif
/* Override 802.11 state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = iwn_newstate;
ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 15;
#ifndef SMALL_KERNEL
iwn_sensor_attach(sc);
#endif
iwn_radiotap_attach(sc);
/*
* XXX for NetBSD, OpenBSD timeout_set replaced by
* callout_init and callout_setfunc, above.
*/
if (pmf_device_register(self, NULL, iwn_resume))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
/* XXX NetBSD add call to ieee80211_announce for dmesg. */
ieee80211_announce(ic);
return;
/* Free allocated memory if something failed during attachment. */
fail4: while (--i >= 0)
iwn_free_tx_ring(sc, &sc->txq[i]);
#ifdef IWN_USE_RBUF
iwn_free_rpool(sc);
#endif
iwn_free_sched(sc);
fail3: if (sc->ict != NULL)
iwn_free_ict(sc);
fail2: iwn_free_kw(sc);
fail1: iwn_free_fwmem(sc);
}
const struct iwn_hal *
iwn_hal_attach(struct iwn_softc *sc, pci_product_id_t pid)
{
sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
switch (sc->hw_type) {
case IWN_HW_REV_TYPE_4965:
sc->sc_hal = &iwn4965_hal;
sc->limits = &iwn4965_sensitivity_limits;
sc->fwname = "iwlwifi-4965-2.ucode";
sc->txchainmask = IWN_ANT_AB;
sc->rxchainmask = IWN_ANT_ABC;
break;
case IWN_HW_REV_TYPE_5100:
sc->sc_hal = &iwn5000_hal;
sc->limits = &iwn5000_sensitivity_limits;
sc->fwname = "iwlwifi-5000-2.ucode";
sc->txchainmask = IWN_ANT_B;
sc->rxchainmask = IWN_ANT_AB;
break;
case IWN_HW_REV_TYPE_5150:
sc->sc_hal = &iwn5000_hal;
sc->limits = &iwn5150_sensitivity_limits;
sc->fwname = "iwlwifi-5150-2.ucode";
sc->txchainmask = IWN_ANT_A;
sc->rxchainmask = IWN_ANT_AB;
break;
case IWN_HW_REV_TYPE_5300:
case IWN_HW_REV_TYPE_5350:
sc->sc_hal = &iwn5000_hal;
sc->limits = &iwn5000_sensitivity_limits;
sc->fwname = "iwlwifi-5000-2.ucode";
sc->txchainmask = IWN_ANT_ABC;
sc->rxchainmask = IWN_ANT_ABC;
break;
case IWN_HW_REV_TYPE_1000:
sc->sc_hal = &iwn5000_hal;
sc->limits = &iwn1000_sensitivity_limits;
sc->fwname = "iwlwifi-1000-3.ucode";
sc->txchainmask = IWN_ANT_A;
sc->rxchainmask = IWN_ANT_AB;
break;
case IWN_HW_REV_TYPE_6000:
sc->sc_hal = &iwn5000_hal;
sc->limits = &iwn6000_sensitivity_limits;
sc->fwname = "iwlwifi-6000-4.ucode";
switch (pid) {
case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1:
case PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2:
sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
sc->txchainmask = IWN_ANT_BC;
sc->rxchainmask = IWN_ANT_BC;
break;
default:
sc->txchainmask = IWN_ANT_ABC;
sc->rxchainmask = IWN_ANT_ABC;
break;
}
break;
case IWN_HW_REV_TYPE_6050:
sc->sc_hal = &iwn5000_hal;
sc->limits = &iwn6000_sensitivity_limits;
sc->fwname = "iwlwifi-6050-2.ucode";
sc->txchainmask = IWN_ANT_AB;
sc->rxchainmask = IWN_ANT_AB;
break;
case IWN_HW_REV_TYPE_6005:
sc->sc_hal = &iwn5000_hal;
sc->limits = &iwn6000_sensitivity_limits;
sc->fwname = "iwlwifi-6005-2.ucode";
sc->txchainmask = IWN_ANT_AB;
sc->rxchainmask = IWN_ANT_AB;
break;
default:
aprint_normal(": adapter type %d not supported\n", sc->hw_type);
return NULL;
}
return sc->sc_hal;
}
#ifndef SMALL_KERNEL
/*
* Attach the adapter on-board thermal sensor to the sensors framework.
*/
static void
iwn_sensor_attach(struct iwn_softc *sc)
{
int error;
sc->sc_sensor.units = ENVSYS_STEMP;
#if 0
/* XXX something like this ought to work */
sc->sc_sensor.flags = ENVSYS_FMONLIMITS | ENVSYS_FMONNOTSUPP;
sc->sc_sensor.limits.sel_critmax = IWN_CTOK(110);
#endif
(void)strlcpy(sc->sc_sensor.desc,
"temperature", sizeof(sc->sc_sensor.desc));
/* Temperature is not valid unless interface is up. */
sc->sc_sensor.value_cur = 0;
sc->sc_sensor.state = ENVSYS_SINVALID;
sc->sc_sme = sysmon_envsys_create();
/* Initialize sensor */
if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
sysmon_envsys_destroy(sc->sc_sme);
return;
}
/*
* Hook into the System Monitor.
*/
sc->sc_sme->sme_name = device_xname(sc->sc_dev);
sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to register with sysmon (%d)\n", error);
sysmon_envsys_destroy(sc->sc_sme);
return;
}
}
#endif
/*
* Attach the interface to 802.11 radiotap.
*/
static void
iwn_radiotap_attach(struct iwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
}
static int
iwn_detach(device_t self, int flags __unused)
{
struct iwn_softc *sc = device_private(self);
struct ifnet *ifp = sc->sc_ic.ic_ifp;
int qid;
callout_stop(&sc->calib_to);
/* Uninstall interrupt handler. */
if (sc->sc_ih != NULL)
pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
/* Free DMA resources. */
iwn_free_rx_ring(sc, &sc->rxq);
for (qid = 0; qid < sc->sc_hal->ntxqs; qid++)
iwn_free_tx_ring(sc, &sc->txq[qid]);
#ifdef IWN_USE_RBUF
iwn_free_rpool(sc);
#endif
iwn_free_sched(sc);
iwn_free_kw(sc);
if (sc->ict != NULL)
iwn_free_ict(sc);
iwn_free_fwmem(sc);
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
#ifndef SMALL_KERNEL
/* Detach the thermal sensor. */
sysmon_envsys_sensor_detach(sc->sc_sme, &sc->sc_sensor);
sysmon_envsys_destroy(sc->sc_sme);
#endif
ieee80211_ifdetach(&sc->sc_ic);
if_detach(ifp);
return 0;
}
#if 0
/*
* XXX Investigate if clearing the PCI retry timeout could eliminate
* the repeated scan calls. Also the calls to if_init and if_start
* are similar to the effect of adding the call to ifioctl_common .
*/
static void
iwn_power(int why, void *arg)
{
struct iwn_softc *sc = arg;
struct ifnet *ifp;
pcireg_t reg;
int s;
if (why != PWR_RESUME)
return;
/* Clear device-specific "PCI retry timeout" register (41h). */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
reg &= ~0xff00;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
s = splnet();
ifp = &sc->sc_ic.ic_if;
if (ifp->if_flags & IFF_UP) {
ifp->if_init(ifp);
if (ifp->if_flags & IFF_RUNNING)
ifp->if_start(ifp);
}
splx(s);
}
#endif
static bool
iwn_resume(device_t dv, const pmf_qual_t *qual)
{
return true;
}
static int
iwn_nic_lock(struct iwn_softc *sc)
{
int ntries;
/* Request exclusive access to NIC. */
IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
/* Spin until we actually get the lock. */
for (ntries = 0; ntries < 1000; ntries++) {
if ((IWN_READ(sc, IWN_GP_CNTRL) &
(IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
IWN_GP_CNTRL_MAC_ACCESS_ENA)
return 0;
DELAY(10);
}
return ETIMEDOUT;
}
static __inline void
iwn_nic_unlock(struct iwn_softc *sc)
{
IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
}
static __inline uint32_t
iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
{
IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
IWN_BARRIER_READ_WRITE(sc);
return IWN_READ(sc, IWN_PRPH_RDATA);
}
static __inline void
iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
{
IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
IWN_BARRIER_WRITE(sc);
IWN_WRITE(sc, IWN_PRPH_WDATA, data);
}
static __inline void
iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
{
iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
}
static __inline void
iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
{
iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
}
static __inline void
iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
const uint32_t *data, int count)
{
for (; count > 0; count--, data++, addr += 4)
iwn_prph_write(sc, addr, *data);
}
static __inline uint32_t
iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
{
IWN_WRITE(sc, IWN_MEM_RADDR, addr);
IWN_BARRIER_READ_WRITE(sc);
return IWN_READ(sc, IWN_MEM_RDATA);
}
static __inline void
iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
{
IWN_WRITE(sc, IWN_MEM_WADDR, addr);
IWN_BARRIER_WRITE(sc);
IWN_WRITE(sc, IWN_MEM_WDATA, data);
}
static __inline void
iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
{
uint32_t tmp;
tmp = iwn_mem_read(sc, addr & ~3);
if (addr & 3)
tmp = (tmp & 0x0000ffff) | data << 16;
else
tmp = (tmp & 0xffff0000) | data;
iwn_mem_write(sc, addr & ~3, tmp);
}
static __inline void
iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
int count)
{
for (; count > 0; count--, addr += 4)
*data++ = iwn_mem_read(sc, addr);
}
static __inline void
iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
int count)
{
for (; count > 0; count--, addr += 4)
iwn_mem_write(sc, addr, val);
}
static int
iwn_eeprom_lock(struct iwn_softc *sc)
{
int i, ntries;
for (i = 0; i < 100; i++) {
/* Request exclusive access to EEPROM. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_HW_IF_CONFIG_EEPROM_LOCKED);
/* Spin until we actually get the lock. */
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_EEPROM_LOCKED)
return 0;
DELAY(10);
}
}
return ETIMEDOUT;
}
static __inline void
iwn_eeprom_unlock(struct iwn_softc *sc)
{
IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
}
/*
* Initialize access by host to One Time Programmable ROM.
* NB: This kind of ROM can be found on 1000 or 6000 Series only.
*/
static int
iwn_init_otprom(struct iwn_softc *sc)
{
uint16_t prev = 0, base, next;
int count, error;
/* Wait for clock stabilization before accessing prph. */
if ((error = iwn_clock_wait(sc)) != 0)
return error;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
DELAY(5);
iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
iwn_nic_unlock(sc);
/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
IWN_RESET_LINK_PWR_MGMT_DIS);
}
IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
/* Clear ECC status. */
IWN_SETBITS(sc, IWN_OTP_GP,
IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
/*
* Find the block before last block (contains the EEPROM image)
* for HW without OTP shadow RAM.
*/
if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
/* Switch to absolute addressing mode. */
IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
base = 0;
for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
error = iwn_read_prom_data(sc, base, &next, 2);
if (error != 0)
return error;
if (next == 0) /* End of linked-list. */
break;
prev = base;
base = le16toh(next);
}
if (count == 0 || count == IWN1000_OTP_NBLOCKS)
return EIO;
/* Skip "next" word. */
sc->prom_base = prev + 1;
}
return 0;
}
static int
iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
{
uint8_t *out = data;
uint32_t val, tmp;
int ntries;
addr += sc->prom_base;
for (; count > 0; count -= 2, addr++) {
IWN_WRITE(sc, IWN_EEPROM, addr << 2);
for (ntries = 0; ntries < 10; ntries++) {
val = IWN_READ(sc, IWN_EEPROM);
if (val & IWN_EEPROM_READ_VALID)
break;
DELAY(5);
}
if (ntries == 10) {
aprint_error_dev(sc->sc_dev,
"timeout reading ROM at 0x%x\n", addr);
return ETIMEDOUT;
}
if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
/* OTPROM, check for ECC errors. */
tmp = IWN_READ(sc, IWN_OTP_GP);
if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
aprint_error_dev(sc->sc_dev,
"OTPROM ECC error at 0x%x\n", addr);
return EIO;
}
if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
/* Correctable ECC error, clear bit. */
IWN_SETBITS(sc, IWN_OTP_GP,
IWN_OTP_GP_ECC_CORR_STTS);
}
}
*out++ = val >> 16;
if (count > 1)
*out++ = val >> 24;
}
return 0;
}
static int
iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
bus_size_t size, bus_size_t alignment)
{
int nsegs, error;
dma->tag = tag;
dma->size = size;
error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
&dma->map);
if (error != 0)
goto fail;
error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
if (error != 0)
goto fail;
error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
if (error != 0)
goto fail;
error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
BUS_DMA_NOWAIT);
if (error != 0)
goto fail;
/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
memset(dma->vaddr, 0, size);
bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
dma->paddr = dma->map->dm_segs[0].ds_addr;
if (kvap != NULL)
*kvap = dma->vaddr;
return 0;
fail: iwn_dma_contig_free(dma);
return error;
}
static void
iwn_dma_contig_free(struct iwn_dma_info *dma)
{
if (dma->map != NULL) {
if (dma->vaddr != NULL) {
bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
bus_dmamem_free(dma->tag, &dma->seg, 1);
dma->vaddr = NULL;
}
bus_dmamap_destroy(dma->tag, dma->map);
dma->map = NULL;
}
}
static int
iwn_alloc_sched(struct iwn_softc *sc)
{
/* TX scheduler rings must be aligned on a 1KB boundary. */
return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
(void **)&sc->sched, sc->sc_hal->schedsz, 1024);
}
static void
iwn_free_sched(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->sched_dma);
}
static int
iwn_alloc_kw(struct iwn_softc *sc)
{
/* "Keep Warm" page must be aligned on a 4KB boundary. */
return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
4096);
}
static void
iwn_free_kw(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->kw_dma);
}
static int
iwn_alloc_ict(struct iwn_softc *sc)
{
/* ICT table must be aligned on a 4KB boundary. */
return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
(void **)&sc->ict, IWN_ICT_SIZE, 4096);
}
static void
iwn_free_ict(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->ict_dma);
}
static int
iwn_alloc_fwmem(struct iwn_softc *sc)
{
/* Must be aligned on a 16-byte boundary. */
return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
sc->sc_hal->fwsz, 16);
}
static void
iwn_free_fwmem(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->fw_dma);
}
static int
iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
bus_size_t size;
int i, error;
ring->cur = 0;
/* Allocate RX descriptors (256-byte aligned.) */
size = IWN_RX_RING_COUNT * sizeof (uint32_t);
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
(void **)&ring->desc, size, 256);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate RX ring DMA memory\n");
goto fail;
}
/* Allocate RX status area (16-byte aligned.) */
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
(void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate RX status DMA memory\n");
goto fail;
}
/*
* Allocate and map RX buffers.
*/
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
struct iwn_rx_data *data = &ring->data[i];
error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&data->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create RX buf DMA map\n");
goto fail;
}
data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
if (data->m == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate RX mbuf\n");
error = ENOBUFS;
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
BUS_DMA_NOWAIT | BUS_DMA_READ);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"can't not map mbuf (error %d)\n", error);
goto fail;
}
/* Set physical address of RX buffer (256-byte aligned.) */
ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
}
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
BUS_DMASYNC_PREWRITE);
return 0;
fail: iwn_free_rx_ring(sc, ring);
return error;
}
static void
iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
int ntries;
if (iwn_nic_lock(sc) == 0) {
IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
for (ntries = 0; ntries < 1000; ntries++) {
if (IWN_READ(sc, IWN_FH_RX_STATUS) &
IWN_FH_RX_STATUS_IDLE)
break;
DELAY(10);
}
iwn_nic_unlock(sc);
}
ring->cur = 0;
sc->last_rx_valid = 0;
}
static void
iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
int i;
iwn_dma_contig_free(&ring->desc_dma);
iwn_dma_contig_free(&ring->stat_dma);
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
struct iwn_rx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
}
static int
iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
{
bus_addr_t paddr;
bus_size_t size;
int i, error;
ring->qid = qid;
ring->queued = 0;
ring->cur = 0;
/* Allocate TX descriptors (256-byte aligned.) */
size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
(void **)&ring->desc, size, 256);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate TX ring DMA memory\n");
goto fail;
}
/*
* We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
* to allocate commands space for other rings.
* XXX Do we really need to allocate descriptors for other rings?
*/
if (qid > 4)
return 0;
size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
(void **)&ring->cmd, size, 4);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate TX cmd DMA memory\n");
goto fail;
}
paddr = ring->cmd_dma.paddr;
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
data->cmd_paddr = paddr;
data->scratch_paddr = paddr + 12;
paddr += sizeof (struct iwn_tx_cmd);
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
&data->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create TX buf DMA map\n");
goto fail;
}
}
return 0;
fail: iwn_free_tx_ring(sc, ring);
return error;
}
static void
iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
int i;
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
}
/* Clear TX descriptors. */
memset(ring->desc, 0, ring->desc_dma.size);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
sc->qfullmsk &= ~(1 << ring->qid);
ring->queued = 0;
ring->cur = 0;
}
static void
iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
int i;
iwn_dma_contig_free(&ring->desc_dma);
iwn_dma_contig_free(&ring->cmd_dma);
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
}
static void
iwn5000_ict_reset(struct iwn_softc *sc)
{
/* Disable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
/* Reset ICT table. */
memset(sc->ict, 0, IWN_ICT_SIZE);
sc->ict_cur = 0;
/* Set physical address of ICT table (4KB aligned.) */
DPRINTF(("enabling ICT\n"));
IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
/* Enable periodic RX interrupt. */
sc->int_mask |= IWN_INT_RX_PERIODIC;
/* Switch to ICT interrupt mode in driver. */
sc->sc_flags |= IWN_FLAG_USE_ICT;
/* Re-enable interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
}
static int
iwn_read_eeprom(struct iwn_softc *sc)
{
const struct iwn_hal *hal = sc->sc_hal;
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
int error;
/* Check whether adapter has an EEPROM or an OTPROM. */
if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
(IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
"OTPROM" : "EEPROM"));
/* Adapter has to be powered on for EEPROM access to work. */
if ((error = iwn_apm_init(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not power ON adapter\n");
return error;
}
if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
aprint_error_dev(sc->sc_dev,
"bad ROM signature\n");
return EIO;
}
if ((error = iwn_eeprom_lock(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not lock ROM (error=%d)\n", error);
return error;
}
if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
if ((error = iwn_init_otprom(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not initialize OTPROM\n");
return error;
}
}
iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
sc->rfcfg = le16toh(val);
DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
/* Read MAC address. */
iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
/* Read adapter-specific information from EEPROM. */
hal->read_eeprom(sc);
iwn_apm_stop(sc); /* Power OFF adapter. */
iwn_eeprom_unlock(sc);
return 0;
}
static void
iwn4965_read_eeprom(struct iwn_softc *sc)
{
uint32_t addr;
uint16_t val;
int i;
/* Read regulatory domain (4 ASCII characters.) */
iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
/* Read the list of authorized channels (20MHz ones only.) */
for (i = 0; i < 5; i++) {
addr = iwn4965_regulatory_bands[i];
iwn_read_eeprom_channels(sc, i, addr);
}
/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
sc->maxpwr2GHz = val & 0xff;
sc->maxpwr5GHz = val >> 8;
/* Check that EEPROM values are within valid range. */
if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
sc->maxpwr5GHz = 38;
if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
sc->maxpwr2GHz = 38;
DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
/* Read samples for each TX power group. */
iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
sizeof sc->bands);
/* Read voltage at which samples were taken. */
iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
sc->eeprom_voltage = (int16_t)le16toh(val);
DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
#ifdef IWN_DEBUG
/* Print samples. */
if (iwn_debug > 0) {
for (i = 0; i < IWN_NBANDS; i++)
iwn4965_print_power_group(sc, i);
}
#endif
}
#ifdef IWN_DEBUG
static void
iwn4965_print_power_group(struct iwn_softc *sc, int i)
{
struct iwn4965_eeprom_band *band = &sc->bands[i];
struct iwn4965_eeprom_chan_samples *chans = band->chans;
int j, c;
aprint_normal("===band %d===\n", i);
aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
aprint_normal("chan1 num=%d\n", chans[0].num);
for (c = 0; c < 2; c++) {
for (j = 0; j < IWN_NSAMPLES; j++) {
aprint_normal("chain %d, sample %d: temp=%d gain=%d "
"power=%d pa_det=%d\n", c, j,
chans[0].samples[c][j].temp,
chans[0].samples[c][j].gain,
chans[0].samples[c][j].power,
chans[0].samples[c][j].pa_det);
}
}
aprint_normal("chan2 num=%d\n", chans[1].num);
for (c = 0; c < 2; c++) {
for (j = 0; j < IWN_NSAMPLES; j++) {
aprint_normal("chain %d, sample %d: temp=%d gain=%d "
"power=%d pa_det=%d\n", c, j,
chans[1].samples[c][j].temp,
chans[1].samples[c][j].gain,
chans[1].samples[c][j].power,
chans[1].samples[c][j].pa_det);
}
}
}
#endif
static void
iwn5000_read_eeprom(struct iwn_softc *sc)
{
struct iwn5000_eeprom_calib_hdr hdr;
int32_t temp, volt;
uint32_t base, addr;
uint16_t val;
int i;
/* Read regulatory domain (4 ASCII characters.) */
iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
base = le16toh(val);
iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
sc->eeprom_domain, 4);
/* Read the list of authorized channels (20MHz ones only.) */
for (i = 0; i < 5; i++) {
addr = base + iwn5000_regulatory_bands[i];
iwn_read_eeprom_channels(sc, i, addr);
}
/* Read enhanced TX power information for 6000 Series. */
if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
iwn_read_eeprom_enhinfo(sc);
iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
base = le16toh(val);
iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
hdr.version, hdr.pa_type, le16toh(hdr.volt)));
sc->calib_ver = hdr.version;
if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
/* Compute temperature offset. */
iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
temp = le16toh(val);
iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
volt = le16toh(val);
sc->temp_off = temp - (volt / -5);
DPRINTF(("temp=%d volt=%d offset=%dK\n",
temp, volt, sc->temp_off));
} else {
/* Read crystal calibration. */
iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
&sc->eeprom_crystal, sizeof (uint32_t));
DPRINTF(("crystal calibration 0x%08x\n",
le32toh(sc->eeprom_crystal)));
}
}
static void
iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct iwn_chan_band *band = &iwn_bands[n];
struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
uint8_t chan;
int i;
iwn_read_prom_data(sc, addr, channels,
band->nchan * sizeof (struct iwn_eeprom_chan));
for (i = 0; i < band->nchan; i++) {
if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
continue;
chan = band->chan[i];
if (n == 0) { /* 2GHz band */
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
ic->ic_channels[chan].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
} else { /* 5GHz band */
/*
* Some adapters support channels 7, 8, 11 and 12
* both in the 2GHz and 4.9GHz bands.
* Because of limitations in our net80211 layer,
* we don't support them in the 4.9GHz band.
*/
if (chan <= 14)
continue;
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
/* We have at least one valid 5GHz channel. */
sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
}
/* Is active scan allowed on this channel? */
if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
ic->ic_channels[chan].ic_flags |=
IEEE80211_CHAN_PASSIVE;
}
/* Save maximum allowed TX power for this channel. */
sc->maxpwr[chan] = channels[i].maxpwr;
DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
chan, channels[i].flags, sc->maxpwr[chan]));
}
}
static void
iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
{
struct iwn_eeprom_enhinfo enhinfo[35];
uint16_t val, base;
int8_t maxpwr;
int i;
iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
base = le16toh(val);
iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
enhinfo, sizeof enhinfo);
memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
for (i = 0; i < __arraycount(enhinfo); i++) {
if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
continue; /* Skip invalid entries. */
maxpwr = 0;
if (sc->txchainmask & IWN_ANT_A)
maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
if (sc->txchainmask & IWN_ANT_B)
maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
if (sc->txchainmask & IWN_ANT_C)
maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
if (sc->ntxchains == 2)
maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
else if (sc->ntxchains == 3)
maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
maxpwr /= 2; /* Convert half-dBm to dBm. */
DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
sc->enh_maxpwr[i] = maxpwr;
}
}
static struct ieee80211_node *
iwn_node_alloc(struct ieee80211_node_table *ic __unused)
{
return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
}
static void
iwn_newassoc(struct ieee80211_node *ni, int isnew)
{
struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
struct iwn_node *wn = (void *)ni;
uint8_t rate;
int ridx, i;
ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
/* Start at lowest available bit-rate, AMRR will raise. */
ni->ni_txrate = 0;
for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
/* Map 802.11 rate to HW rate index. */
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
if (iwn_rates[ridx].rate == rate)
break;
wn->ridx[i] = ridx;
}
}
static int
iwn_media_change(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t rate, ridx;
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
/* Map 802.11 rate to HW rate index. */
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
if (iwn_rates[ridx].rate == rate)
break;
sc->fixed_ridx = ridx;
}
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
iwn_stop(ifp, 0);
error = iwn_init(ifp);
}
return error;
}
static int
iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct iwn_softc *sc = ifp->if_softc;
int error;
callout_stop(&sc->calib_to);
switch (nstate) {
case IEEE80211_S_SCAN:
/* XXX Do not abort a running scan. */
if (sc->sc_flags & IWN_FLAG_SCANNING) {
if (ic->ic_state != nstate)
aprint_error_dev(sc->sc_dev, "scan request(%d) "
"while scanning(%d) ignored\n", nstate,
ic->ic_state);
break;
}
/* XXX Not sure if call and flags are needed. */
ieee80211_node_table_reset(&ic->ic_scan);
ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
sc->sc_flags |= IWN_FLAG_SCANNING;
/* Make the link LED blink while we're scanning. */
iwn_set_led(sc, IWN_LED_LINK, 10, 10);
if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not initiate scan\n");
return error;
}
ic->ic_state = nstate;
return 0;
case IEEE80211_S_ASSOC:
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* FALLTHROUGH */
case IEEE80211_S_AUTH:
/* Reset state to handle reassociations correctly. */
sc->rxon.associd = 0;
sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
sc->calib.state = IWN_CALIB_STATE_INIT;
if ((error = iwn_auth(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not move to auth state\n");
return error;
}
break;
case IEEE80211_S_RUN:
if ((error = iwn_run(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not move to run state\n");
return error;
}
break;
case IEEE80211_S_INIT:
sc->sc_flags &= ~IWN_FLAG_SCANNING;
sc->calib.state = IWN_CALIB_STATE_INIT;
break;
}
return sc->sc_newstate(ic, nstate, arg);
}
static void
iwn_iter_func(void *arg, struct ieee80211_node *ni)
{
struct iwn_softc *sc = arg;
struct iwn_node *wn = (struct iwn_node *)ni;
ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
}
static void
iwn_calib_timeout(void *arg)
{
struct iwn_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int s;
s = splnet();
if (ic->ic_fixed_rate == -1) {
if (ic->ic_opmode == IEEE80211_M_STA)
iwn_iter_func(sc, ic->ic_bss);
else
ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
}
/* Force automatic TX power calibration every 60 secs. */
if (++sc->calib_cnt >= 120) {
uint32_t flags = 0;
DPRINTF(("sending request for statistics\n"));
(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
sizeof flags, 1);
sc->calib_cnt = 0;
}
splx(s);
/* Automatic rate control triggered every 500ms. */
callout_schedule(&sc->calib_to, hz/2);
}
/*
* Process an RX_PHY firmware notification. This is usually immediately
* followed by an MPDU_RX_DONE notification.
*/
static void
iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
DPRINTFN(2, ("received PHY stats\n"));
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*stat), BUS_DMASYNC_POSTREAD);
/* Save RX statistics, they will be used on MPDU_RX_DONE. */
memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
sc->last_rx_valid = 1;
}
/*
* Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
* Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
*/
static void
iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
const struct iwn_hal *hal = sc->sc_hal;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwn_rx_ring *ring = &sc->rxq;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m, *m1;
struct iwn_rx_stat *stat;
char *head;
uint32_t flags;
int error, len, rssi;
if (desc->type == IWN_MPDU_RX_DONE) {
/* Check for prior RX_PHY notification. */
if (!sc->last_rx_valid) {
DPRINTF(("missing RX_PHY\n"));
ifp->if_ierrors++;
return;
}
sc->last_rx_valid = 0;
stat = &sc->last_rx_stat;
} else
stat = (struct iwn_rx_stat *)(desc + 1);
bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
BUS_DMASYNC_POSTREAD);
if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
aprint_error_dev(sc->sc_dev,
"invalid RX statistic header\n");
ifp->if_ierrors++;
return;
}
if (desc->type == IWN_MPDU_RX_DONE) {
struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
head = (char *)(mpdu + 1);
len = le16toh(mpdu->len);
} else {
head = (char *)(stat + 1) + stat->cfg_phy_len;
len = le16toh(stat->len);
}
flags = le32toh(*(uint32_t *)(head + len));
/* Discard frames with a bad FCS early. */
if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
DPRINTFN(2, ("RX flags error %x\n", flags));
ifp->if_ierrors++;
return;
}
/* Discard frames that are too short. */
if (len < sizeof (*wh)) {
DPRINTF(("frame too short: %d\n", len));
ic->ic_stats.is_rx_tooshort++;
ifp->if_ierrors++;
return;
}
m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
if (m1 == NULL) {
ic->ic_stats.is_rx_nobuf++;
ifp->if_ierrors++;
return;
}
bus_dmamap_unload(sc->sc_dmat, data->map);
error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
if (error != 0) {
m_freem(m1);
/* Try to reload the old mbuf. */
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
BUS_DMA_NOWAIT | BUS_DMA_READ);
if (error != 0) {
panic("%s: could not load old RX mbuf",
device_xname(sc->sc_dev));
}
/* Physical address may have changed. */
ring->desc[ring->cur] =
htole32(data->map->dm_segs[0].ds_addr >> 8);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
ring->cur * sizeof (uint32_t), sizeof (uint32_t),
BUS_DMASYNC_PREWRITE);
ifp->if_ierrors++;
return;
}
m = data->m;
data->m = m1;
/* Update RX descriptor. */
ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
ring->cur * sizeof (uint32_t), sizeof (uint32_t),
BUS_DMASYNC_PREWRITE);
/* Finalize mbuf. */
m->m_pkthdr.rcvif = ifp;
m->m_data = head;
m->m_pkthdr.len = m->m_len = len;
/* Grab a reference to the source node. */
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
/* NetBSD does decryption in ieee80211_input. */
rssi = hal->get_rssi(stat);
/* XXX Added for NetBSD: scans never stop without it */
if (ic->ic_state == IEEE80211_S_SCAN)
iwn_fix_channel(ic, m);
if (sc->sc_drvbpf != NULL) {
struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
tap->wr_chan_freq =
htole16(ic->ic_channels[stat->chan].ic_freq);
tap->wr_chan_flags =
htole16(ic->ic_channels[stat->chan].ic_flags);
tap->wr_dbm_antsignal = (int8_t)rssi;
tap->wr_dbm_antnoise = (int8_t)sc->noise;
tap->wr_tsft = stat->tstamp;
switch (stat->rate) {
/* CCK rates. */
case 10: tap->wr_rate = 2; break;
case 20: tap->wr_rate = 4; break;
case 55: tap->wr_rate = 11; break;
case 110: tap->wr_rate = 22; break;
/* OFDM rates. */
case 0xd: tap->wr_rate = 12; break;
case 0xf: tap->wr_rate = 18; break;
case 0x5: tap->wr_rate = 24; break;
case 0x7: tap->wr_rate = 36; break;
case 0x9: tap->wr_rate = 48; break;
case 0xb: tap->wr_rate = 72; break;
case 0x1: tap->wr_rate = 96; break;
case 0x3: tap->wr_rate = 108; break;
/* Unknown rate: should not happen. */
default: tap->wr_rate = 0;
}
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
/* Send the frame to the 802.11 layer. */
ieee80211_input(ic, m, ni, rssi, 0);
/* Node is no longer needed. */
ieee80211_free_node(ni);
}
#ifndef IEEE80211_NO_HT
/* Process an incoming Compressed BlockAck. */
static void
iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
struct iwn_tx_ring *txq;
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
BUS_DMASYNC_POSTREAD);
txq = &sc->txq[le16toh(ba->qid)];
/* XXX TBD */
}
#endif
/*
* Process a CALIBRATION_RESULT notification sent by the initialization
* firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
*/
static void
iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
int len, idx = -1;
/* Runtime firmware should not send such a notification. */
if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
return;
len = (le32toh(desc->len) & 0x3fff) - 4;
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
BUS_DMASYNC_POSTREAD);
switch (calib->code) {
case IWN5000_PHY_CALIB_DC:
if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
sc->hw_type == IWN_HW_REV_TYPE_6050)
idx = 0;
break;
case IWN5000_PHY_CALIB_LO:
idx = 1;
break;
case IWN5000_PHY_CALIB_TX_IQ:
idx = 2;
break;
case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
sc->hw_type != IWN_HW_REV_TYPE_5150)
idx = 3;
break;
case IWN5000_PHY_CALIB_BASE_BAND:
idx = 4;
break;
}
if (idx == -1) /* Ignore other results. */
return;
/* Save calibration result. */
if (sc->calibcmd[idx].buf != NULL)
free(sc->calibcmd[idx].buf, M_DEVBUF);
sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
if (sc->calibcmd[idx].buf == NULL) {
DPRINTF(("not enough memory for calibration result %d\n",
calib->code));
return;
}
DPRINTF(("saving calibration result code=%d len=%d\n",
calib->code, len));
sc->calibcmd[idx].len = len;
memcpy(sc->calibcmd[idx].buf, calib, len);
}
/*
* Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
* The latter is sent by the firmware after each received beacon.
*/
static void
iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
const struct iwn_hal *hal = sc->sc_hal;
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_calib_state *calib = &sc->calib;
struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
int temp;
/* Ignore statistics received during a scan. */
if (ic->ic_state != IEEE80211_S_RUN)
return;
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*stats), BUS_DMASYNC_POSTREAD);
DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
/* Test if temperature has changed. */
if (stats->general.temp != sc->rawtemp) {
/* Convert "raw" temperature to degC. */
sc->rawtemp = stats->general.temp;
temp = hal->get_temperature(sc);
DPRINTFN(2, ("temperature=%dC\n", temp));
#ifndef SMALL_KERNEL
/* Update temperature sensor. */
sc->sc_sensor.value_cur = IWN_CTOMUK(temp);
sc->sc_sensor.state = ENVSYS_SVALID;
#endif
/* Update TX power if need be (4965AGN only.) */
if (sc->hw_type == IWN_HW_REV_TYPE_4965)
iwn4965_power_calibration(sc, temp);
}
if (desc->type != IWN_BEACON_STATISTICS)
return; /* Reply to a statistics request. */
sc->noise = iwn_get_noise(&stats->rx.general);
/* Test that RSSI and noise are present in stats report. */
if (le32toh(stats->rx.general.flags) != 1) {
DPRINTF(("received statistics without RSSI\n"));
return;
}
if (calib->state == IWN_CALIB_STATE_ASSOC)
iwn_collect_noise(sc, &stats->rx.general);
else if (calib->state == IWN_CALIB_STATE_RUN)
iwn_tune_sensitivity(sc, &stats->rx);
}
/*
* Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
* and 5000 adapters have different incompatible TX status formats.
*/
static void
iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*stat), BUS_DMASYNC_POSTREAD);
iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
}
static void
iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
#ifdef notyet
/* Reset TX scheduler slot. */
iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
#endif
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*stat), BUS_DMASYNC_POSTREAD);
iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
}
/*
* Adapter-independent backend for TX_DONE firmware notifications.
*/
static void
iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
uint8_t status)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
struct iwn_tx_data *data = &ring->data[desc->idx];
struct iwn_node *wn = (struct iwn_node *)data->ni;
/* Update rate control statistics. */
wn->amn.amn_txcnt++;
if (ackfailcnt > 0)
wn->amn.amn_retrycnt++;
if (status != 1 && status != 2)
ifp->if_oerrors++;
else
ifp->if_opackets++;
/* Unmap and free mbuf. */
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
ieee80211_free_node(data->ni);
data->ni = NULL;
sc->sc_tx_timer = 0;
if (--ring->queued < IWN_TX_RING_LOMARK) {
sc->qfullmsk &= ~(1 << ring->qid);
if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
ifp->if_flags &= ~IFF_OACTIVE;
(*ifp->if_start)(ifp);
}
}
}
/*
* Process a "command done" firmware notification. This is where we wakeup
* processes waiting for a synchronous command completion.
*/
static void
iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
{
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_data *data;
if ((desc->qid & 0xf) != 4)
return; /* Not a command ack. */
data = &ring->data[desc->idx];
/* If the command was mapped in an mbuf, free it. */
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
wakeup(&ring->desc[desc->idx]);
}
/*
* Process an INT_FH_RX or INT_SW_RX interrupt.
*/
static void
iwn_notif_intr(struct iwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
uint16_t hw;
bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
while (sc->rxq.cur != hw) {
struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
struct iwn_rx_desc *desc;
bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
BUS_DMASYNC_POSTREAD);
desc = mtod(data->m, struct iwn_rx_desc *);
DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
desc->qid & 0xf, desc->idx, desc->flags, desc->type));
if (!(desc->qid & 0x80)) /* Reply to a command. */
iwn_cmd_done(sc, desc);
switch (desc->type) {
case IWN_RX_PHY:
iwn_rx_phy(sc, desc, data);
break;
case IWN_RX_DONE: /* 4965AGN only. */
case IWN_MPDU_RX_DONE:
/* An 802.11 frame has been received. */
iwn_rx_done(sc, desc, data);
break;
#ifndef IEEE80211_NO_HT
case IWN_RX_COMPRESSED_BA:
/* A Compressed BlockAck has been received. */
iwn_rx_compressed_ba(sc, desc, data);
break;
#endif
case IWN_TX_DONE:
/* An 802.11 frame has been transmitted. */
sc->sc_hal->tx_done(sc, desc, data);
break;
case IWN_RX_STATISTICS:
case IWN_BEACON_STATISTICS:
iwn_rx_statistics(sc, desc, data);
break;
case IWN_BEACON_MISSED:
{
struct iwn_beacon_missed *miss =
(struct iwn_beacon_missed *)(desc + 1);
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*miss), BUS_DMASYNC_POSTREAD);
/*
* If more than 5 consecutive beacons are missed,
* reinitialize the sensitivity state machine.
*/
DPRINTF(("beacons missed %d/%d\n",
le32toh(miss->consecutive), le32toh(miss->total)));
if (ic->ic_state == IEEE80211_S_RUN &&
le32toh(miss->consecutive) > 5)
(void)iwn_init_sensitivity(sc);
break;
}
case IWN_UC_READY:
{
struct iwn_ucode_info *uc =
(struct iwn_ucode_info *)(desc + 1);
/* The microcontroller is ready. */
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*uc), BUS_DMASYNC_POSTREAD);
DPRINTF(("microcode alive notification version=%d.%d "
"subtype=%x alive=%x\n", uc->major, uc->minor,
uc->subtype, le32toh(uc->valid)));
if (le32toh(uc->valid) != 1) {
aprint_error_dev(sc->sc_dev,
"microcontroller initialization "
"failed\n");
break;
}
if (uc->subtype == IWN_UCODE_INIT) {
/* Save microcontroller report. */
memcpy(&sc->ucode_info, uc, sizeof (*uc));
}
/* Save the address of the error log in SRAM. */
sc->errptr = le32toh(uc->errptr);
break;
}
case IWN_STATE_CHANGED:
{
uint32_t *status = (uint32_t *)(desc + 1);
/* Enabled/disabled notification. */
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*status), BUS_DMASYNC_POSTREAD);
DPRINTF(("state changed to %x\n", le32toh(*status)));
if (le32toh(*status) & 1) {
/* The radio button has to be pushed. */
aprint_error_dev(sc->sc_dev,
"Radio transmitter is off\n");
/* Turn the interface down. */
ifp->if_flags &= ~IFF_UP;
iwn_stop(ifp, 1);
return; /* No further processing. */
}
break;
}
case IWN_START_SCAN:
{
struct iwn_start_scan *scan =
(struct iwn_start_scan *)(desc + 1);
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*scan), BUS_DMASYNC_POSTREAD);
DPRINTFN(2, ("scanning channel %d status %x\n",
scan->chan, le32toh(scan->status)));
/* Fix current channel. */
ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
break;
}
case IWN_STOP_SCAN:
{
struct iwn_stop_scan *scan =
(struct iwn_stop_scan *)(desc + 1);
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*scan), BUS_DMASYNC_POSTREAD);
DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
scan->nchan, scan->status, scan->chan));
if (scan->status == 1 && scan->chan <= 14 &&
(sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
/*
* We just finished scanning 2GHz channels,
* start scanning 5GHz ones.
*/
if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
break;
}
sc->sc_flags &= ~IWN_FLAG_SCANNING;
ieee80211_end_scan(ic);
break;
}
case IWN5000_CALIBRATION_RESULT:
iwn5000_rx_calib_results(sc, desc, data);
break;
case IWN5000_CALIBRATION_DONE:
sc->sc_flags |= IWN_FLAG_CALIB_DONE;
wakeup(sc);
break;
}
sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
}
/* Tell the firmware what we have processed. */
hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
}
/*
* Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
* from power-down sleep mode.
*/
static void
iwn_wakeup_intr(struct iwn_softc *sc)
{
int qid;
DPRINTF(("ucode wakeup from power-down sleep\n"));
/* Wakeup RX and TX rings. */
IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
struct iwn_tx_ring *ring = &sc->txq[qid];
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
}
}
/*
* Dump the error log of the firmware when a firmware panic occurs. Although
* we can't debug the firmware because it is neither open source nor free, it
* can help us to identify certain classes of problems.
*/
static void
iwn_fatal_intr(struct iwn_softc *sc)
{
const struct iwn_hal *hal = sc->sc_hal;
struct iwn_fw_dump dump;
int i;
/* Force a complete recalibration on next init. */
sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
/* Check that the error log address is valid. */
if (sc->errptr < IWN_FW_DATA_BASE ||
sc->errptr + sizeof (dump) >
IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
aprint_error_dev(sc->sc_dev,
"bad firmware error log address 0x%08x\n", sc->errptr);
return;
}
if (iwn_nic_lock(sc) != 0) {
aprint_error_dev(sc->sc_dev,
"could not read firmware error log\n");
return;
}
/* Read firmware error log from SRAM. */
iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
sizeof (dump) / sizeof (uint32_t));
iwn_nic_unlock(sc);
if (dump.valid == 0) {
aprint_error_dev(sc->sc_dev,
"firmware error log is empty\n");
return;
}
aprint_error("firmware error log:\n");
aprint_error(" error type = \"%s\" (0x%08X)\n",
(dump.id < __arraycount(iwn_fw_errmsg)) ?
iwn_fw_errmsg[dump.id] : "UNKNOWN",
dump.id);
aprint_error(" program counter = 0x%08X\n", dump.pc);
aprint_error(" source line = 0x%08X\n", dump.src_line);
aprint_error(" error data = 0x%08X%08X\n",
dump.error_data[0], dump.error_data[1]);
aprint_error(" branch link = 0x%08X%08X\n",
dump.branch_link[0], dump.branch_link[1]);
aprint_error(" interrupt link = 0x%08X%08X\n",
dump.interrupt_link[0], dump.interrupt_link[1]);
aprint_error(" time = %u\n", dump.time[0]);
/* Dump driver status (TX and RX rings) while we're here. */
aprint_error("driver status:\n");
for (i = 0; i < hal->ntxqs; i++) {
struct iwn_tx_ring *ring = &sc->txq[i];
aprint_error(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
i, ring->qid, ring->cur, ring->queued);
}
aprint_error(" rx ring: cur=%d\n", sc->rxq.cur);
aprint_error(" 802.11 state %d\n", sc->sc_ic.ic_state);
}
static int
iwn_intr(void *arg)
{
struct iwn_softc *sc = arg;
struct ifnet *ifp = sc->sc_ic.ic_ifp;
uint32_t r1, r2, tmp;
/* Disable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
/* Read interrupts from ICT (fast) or from registers (slow). */
if (sc->sc_flags & IWN_FLAG_USE_ICT) {
tmp = 0;
while (sc->ict[sc->ict_cur] != 0) {
tmp |= sc->ict[sc->ict_cur];
sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
}
tmp = le32toh(tmp);
if (tmp == 0xffffffff) /* Shouldn't happen. */
tmp = 0;
else if (tmp & 0xc0000) /* Workaround a HW bug. */
tmp |= 0x8000;
r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
r2 = 0; /* Unused. */
} else {
r1 = IWN_READ(sc, IWN_INT);
if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
return 0; /* Hardware gone! */
r2 = IWN_READ(sc, IWN_FH_INT);
}
if (r1 == 0 && r2 == 0) {
if (ifp->if_flags & IFF_UP)
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
return 0; /* Interrupt not for us. */
}
/* Acknowledge interrupts. */
IWN_WRITE(sc, IWN_INT, r1);
if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
IWN_WRITE(sc, IWN_FH_INT, r2);
if (r1 & IWN_INT_RF_TOGGLED) {
tmp = IWN_READ(sc, IWN_GP_CNTRL);
aprint_error_dev(sc->sc_dev,
"RF switch: radio %s\n",
(tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
}
if (r1 & IWN_INT_CT_REACHED) {
aprint_error_dev(sc->sc_dev,
"critical temperature reached!\n");
}
if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
aprint_error_dev(sc->sc_dev,
"fatal firmware error\n");
/* Dump firmware error log and stop. */
iwn_fatal_intr(sc);
ifp->if_flags &= ~IFF_UP;
iwn_stop(ifp, 1);
return 1;
}
if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
(r2 & IWN_FH_INT_RX)) {
if (sc->sc_flags & IWN_FLAG_USE_ICT) {
if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
IWN_WRITE_1(sc, IWN_INT_PERIODIC,
IWN_INT_PERIODIC_DIS);
iwn_notif_intr(sc);
if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
IWN_WRITE_1(sc, IWN_INT_PERIODIC,
IWN_INT_PERIODIC_ENA);
}
} else
iwn_notif_intr(sc);
}
if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
if (sc->sc_flags & IWN_FLAG_USE_ICT)
IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
wakeup(sc); /* FH DMA transfer completed. */
}
if (r1 & IWN_INT_ALIVE)
wakeup(sc); /* Firmware is alive. */
if (r1 & IWN_INT_WAKEUP)
iwn_wakeup_intr(sc);
/* Re-enable interrupts. */
if (ifp->if_flags & IFF_UP)
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
return 1;
}
/*
* Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
* 5000 adapters use a slightly different format.)
*/
static void
iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
uint16_t len)
{
uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
*w = htole16(len + 8);
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
sizeof (uint16_t),
BUS_DMASYNC_PREWRITE);
if (idx < IWN_SCHED_WINSZ) {
*(w + IWN_TX_RING_COUNT) = *w;
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(char *)(void *)(w + IWN_TX_RING_COUNT) -
(char *)(void *)sc->sched_dma.vaddr,
sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
}
}
static void
iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
uint16_t len)
{
uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
*w = htole16(id << 12 | (len + 8));
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
if (idx < IWN_SCHED_WINSZ) {
*(w + IWN_TX_RING_COUNT) = *w;
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(char *)(void *)(w + IWN_TX_RING_COUNT) -
(char *)(void *)sc->sched_dma.vaddr,
sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
}
}
#ifdef notyet
static void
iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
{
uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
*w = (*w & htole16(0xf000)) | htole16(1);
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
if (idx < IWN_SCHED_WINSZ) {
*(w + IWN_TX_RING_COUNT) = *w;
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(char *)(void *)(w + IWN_TX_RING_COUNT) -
(char *)(void *)sc->sched_dma.vaddr,
sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
}
}
#endif
static int
iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
{
const struct iwn_hal *hal = sc->sc_hal;
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_node *wn = (void *)ni;
struct iwn_tx_ring *ring;
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
struct iwn_cmd_data *tx;
const struct iwn_rate *rinfo;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
struct mbuf *m1;
uint32_t flags;
u_int hdrlen;
bus_dma_segment_t *seg;
uint8_t tid, ridx, txant, type;
int i, totlen, error, pad;
const struct chanAccParams *cap;
int noack;
int hdrlen2;
wh = mtod(m, struct ieee80211_frame *);
hdrlen = ieee80211_anyhdrsize(wh);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
hdrlen2 = (IEEE80211_QOS_HAS_SEQ(wh)) ?
sizeof (struct ieee80211_qosframe) :
sizeof (struct ieee80211_frame);
if (hdrlen != hdrlen2)
aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
hdrlen, hdrlen2);
/* XXX OpenBSD sets a different tid when using QOS */
tid = 0;
if (IEEE80211_QOS_HAS_SEQ(wh)) {
cap = &ic->ic_wme.wme_chanParams;
noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
}
else
noack = 0;
ring = &sc->txq[ac];
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
/* Choose a TX rate index. */
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA) {
ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
} else if (ic->ic_fixed_rate != -1) {
ridx = sc->fixed_ridx;
} else
ridx = wn->ridx[ni->ni_txrate];
rinfo = &iwn_rates[ridx];
/* Encrypt the frame if need be. */
/*
* XXX For now, NetBSD swaps the encryption and bpf sections
* in order to match old code and other drivers. Tests with
* tcpdump indicates that the order is irrelevant, however,
* as bpf produces unencrypted data for both ordering choices.
*/
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m);
if (k == NULL) {
m_freem(m);
return ENOBUFS;
}
/* Packet header may have moved, reset our local pointer. */
wh = mtod(m, struct ieee80211_frame *);
}
totlen = m->m_pkthdr.len;
if (sc->sc_drvbpf != NULL) {
struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
tap->wt_rate = rinfo->rate;
tap->wt_hwqueue = ac;
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
}
/* Prepare TX firmware command. */
cmd = &ring->cmd[ring->cur];
cmd->code = IWN_CMD_TX_DATA;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
tx = (struct iwn_cmd_data *)cmd->data;
/* NB: No need to clear tx, all fields are reinitialized here. */
tx->scratch = 0; /* clear "scratch" area */
flags = 0;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* Unicast frame, check if an ACK is expected. */
if (!noack)
flags |= IWN_TX_NEED_ACK;
}
#ifdef notyet
/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
#endif
if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* NB: Group frames are sent using CCK in 802.11b/g. */
if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
flags |= IWN_TX_NEED_RTS;
} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
ridx >= IWN_RIDX_OFDM6) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
flags |= IWN_TX_NEED_CTS;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
flags |= IWN_TX_NEED_RTS;
}
if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
/* 5000 autoselects RTS/CTS or CTS-to-self. */
flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
flags |= IWN_TX_NEED_PROTECTION;
} else
flags |= IWN_TX_FULL_TXOP;
}
}
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA)
tx->id = hal->broadcast_id;
else
tx->id = wn->id;
if (type == IEEE80211_FC0_TYPE_MGT) {
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
#ifndef IEEE80211_STA_ONLY
/* Tell HW to set timestamp in probe responses. */
/* XXX NetBSD rev 1.11 added probe requests here but */
/* probe requests do not take timestamps (from Bergamini). */
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= IWN_TX_INSERT_TSTAMP;
#endif
/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
/* changes here. These are not needed (from Bergamini). */
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
tx->timeout = htole16(3);
else
tx->timeout = htole16(2);
} else
tx->timeout = htole16(0);
if (hdrlen & 3) {
/* First segment's length must be a multiple of 4. */
flags |= IWN_TX_NEED_PADDING;
pad = 4 - (hdrlen & 3);
} else
pad = 0;
tx->len = htole16(totlen);
tx->tid = tid;
tx->rts_ntries = 60;
tx->data_ntries = 15;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
tx->plcp = rinfo->plcp;
tx->rflags = rinfo->flags;
if (tx->id == hal->broadcast_id) {
/* Group or management frame. */
tx->linkq = 0;
/* XXX Alternate between antenna A and B? */
txant = IWN_LSB(sc->txchainmask);
tx->rflags |= IWN_RFLAG_ANT(txant);
} else {
tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
flags |= IWN_TX_LINKQ; /* enable MRR */
}
/* Set physical address of "scratch area". */
tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
/* Copy 802.11 header in TX command. */
/* XXX NetBSD changed this in rev 1.20 */
memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
/* Trim 802.11 header. */
m_adj(m, hdrlen);
tx->security = 0;
tx->flags = htole32(flags);
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (error != 0) {
if (error != EFBIG) {
aprint_error_dev(sc->sc_dev,
"can't map mbuf (error %d)\n", error);
m_freem(m);
return error;
}
/* Too many DMA segments, linearize mbuf. */
MGETHDR(m1, M_DONTWAIT, MT_DATA);
if (m1 == NULL) {
m_freem(m);
return ENOBUFS;
}
if (m->m_pkthdr.len > MHLEN) {
MCLGET(m1, M_DONTWAIT);
if (!(m1->m_flags & M_EXT)) {
m_freem(m);
m_freem(m1);
return ENOBUFS;
}
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
m_freem(m);
m = m1;
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"can't map mbuf (error %d)\n", error);
m_freem(m);
return error;
}
}
data->m = m;
data->ni = ni;
DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
/* Fill TX descriptor. */
desc->nsegs = 1 + data->map->dm_nsegs;
/* First DMA segment is used by the TX command. */
desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
(4 + sizeof (*tx) + hdrlen + pad) << 4);
/* Other DMA segments are for data payload. */
seg = data->map->dm_segs;
for (i = 1; i <= data->map->dm_nsegs; i++) {
desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
seg->ds_len << 4);
seg++;
}
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
(char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
sizeof (*cmd), BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
(char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
sizeof (*desc), BUS_DMASYNC_PREWRITE);
#ifdef notyet
/* Update TX scheduler. */
hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
#endif
/* Kick TX ring. */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
/* Mark TX ring as full if we reach a certain threshold. */
if (++ring->queued > IWN_TX_RING_HIMARK)
sc->qfullmsk |= 1 << ring->qid;
return 0;
}
static void
iwn_start(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ether_header *eh;
struct mbuf *m;
int ac;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
if (sc->qfullmsk != 0) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* Send pending management frames first. */
IF_DEQUEUE(&ic->ic_mgtq, m);
if (m != NULL) {
ni = (void *)m->m_pkthdr.rcvif;
ac = 0;
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* Encapsulate and send data frames. */
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (m->m_len < sizeof (*eh) &&
(m = m_pullup(m, sizeof (*eh))) == NULL) {
ifp->if_oerrors++;
continue;
}
eh = mtod(m, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m);
ifp->if_oerrors++;
continue;
}
/* classify mbuf so we can find which tx ring to use */
if (ieee80211_classify(ic, m, ni) != 0) {
m_freem(m);
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
/* No QoS encapsulation for EAPOL frames. */
ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
M_WME_GETAC(m) : WME_AC_BE;
bpf_mtap(ifp, m);
if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
sendit:
bpf_mtap3(ic->ic_rawbpf, m);
if (iwn_tx(sc, m, ni, ac) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
static void
iwn_watchdog(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
aprint_error_dev(sc->sc_dev,
"device timeout\n");
ifp->if_flags &= ~IFF_UP;
iwn_stop(ifp, 1);
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
static int
iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifaddr *ifa;
const struct sockaddr *sa;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifa = (struct ifaddr *)data;
ifp->if_flags |= IFF_UP;
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET)
arp_ifinit(&ic->ic_ac, ifa);
#endif
/* FALLTHROUGH */
case SIOCSIFFLAGS:
/* XXX Added as it is in every NetBSD driver */
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
error = iwn_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
iwn_stop(ifp, 1);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(sa, &sc->sc_ec) :
ether_delmulti(sa, &sc->sc_ec);
if (error == ENETRESET)
error = 0;
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
error = 0;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
iwn_stop(ifp, 0);
error = iwn_init(ifp);
}
}
splx(s);
return error;
}
/*
* Send a command to the firmware.
*/
static int
iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
{
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
struct mbuf *m;
bus_addr_t paddr;
int totlen, error;
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
totlen = 4 + size;
if (size > sizeof cmd->data) {
/* Command is too large to fit in a descriptor. */
if (totlen > MCLBYTES)
return EINVAL;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return ENOMEM;
if (totlen > MHLEN) {
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
return ENOMEM;
}
}
cmd = mtod(m, struct iwn_tx_cmd *);
error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (error != 0) {
m_freem(m);
return error;
}
data->m = m;
paddr = data->map->dm_segs[0].ds_addr;
} else {
cmd = &ring->cmd[ring->cur];
paddr = data->cmd_paddr;
}
cmd->code = code;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
memcpy(cmd->data, buf, size);
desc->nsegs = 1;
desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
if (size > sizeof cmd->data) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
BUS_DMASYNC_PREWRITE);
} else {
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
(char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
totlen, BUS_DMASYNC_PREWRITE);
}
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
(char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
sizeof (*desc), BUS_DMASYNC_PREWRITE);
#ifdef notyet
/* Update TX scheduler. */
sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
#endif
DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
/* Kick command ring. */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
}
static int
iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
{
struct iwn4965_node_info hnode;
char *src, *dst;
/*
* We use the node structure for 5000 Series internally (it is
* a superset of the one for 4965AGN). We thus copy the common
* fields before sending the command.
*/
src = (char *)node;
dst = (char *)&hnode;
memcpy(dst, src, 48);
/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
memcpy(dst + 48, src + 72, 20);
return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
}
static int
iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
{
/* Direct mapping. */
return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
}
static int
iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
{
struct iwn_node *wn = (void *)ni;
struct ieee80211_rateset *rs = &ni->ni_rates;
struct iwn_cmd_link_quality linkq;
const struct iwn_rate *rinfo;
uint8_t txant;
int i, txrate;
/* Use the first valid TX antenna. */
txant = IWN_LSB(sc->txchainmask);
memset(&linkq, 0, sizeof linkq);
linkq.id = wn->id;
linkq.antmsk_1stream = txant;
linkq.antmsk_2stream = IWN_ANT_AB;
linkq.ampdu_max = 31;
linkq.ampdu_threshold = 3;
linkq.ampdu_limit = htole16(4000); /* 4ms */
/* Start at highest available bit-rate. */
txrate = rs->rs_nrates - 1;
for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
rinfo = &iwn_rates[wn->ridx[txrate]];
linkq.retry[i].plcp = rinfo->plcp;
linkq.retry[i].rflags = rinfo->flags;
linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
/* Next retry at immediate lower bit-rate. */
if (txrate > 0)
txrate--;
}
return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
}
/*
* Broadcast node is used to send group-addressed and management frames.
*/
static int
iwn_add_broadcast_node(struct iwn_softc *sc, int async)
{
const struct iwn_hal *hal = sc->sc_hal;
struct iwn_node_info node;
struct iwn_cmd_link_quality linkq;
const struct iwn_rate *rinfo;
uint8_t txant;
int i, error;
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
node.id = hal->broadcast_id;
DPRINTF(("adding broadcast node\n"));
if ((error = hal->add_node(sc, &node, async)) != 0)
return error;
/* Use the first valid TX antenna. */
txant = IWN_LSB(sc->txchainmask);
memset(&linkq, 0, sizeof linkq);
linkq.id = hal->broadcast_id;
linkq.antmsk_1stream = txant;
linkq.antmsk_2stream = IWN_ANT_AB;
linkq.ampdu_max = 64;
linkq.ampdu_threshold = 3;
linkq.ampdu_limit = htole16(4000); /* 4ms */
/* Use lowest mandatory bit-rate. */
rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
&iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
linkq.retry[0].plcp = rinfo->plcp;
linkq.retry[0].rflags = rinfo->flags;
linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
/* Use same bit-rate for all TX retries. */
for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
linkq.retry[i].plcp = linkq.retry[0].plcp;
linkq.retry[i].rflags = linkq.retry[0].rflags;
}
return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
}
static void
iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
{
struct iwn_cmd_led led;
/* Clear microcode LED ownership. */
IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
led.which = which;
led.unit = htole32(10000); /* on/off in unit of 100ms */
led.off = off;
led.on = on;
(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
}
/*
* Set the critical temperature at which the firmware will stop the radio
* and notify us.
*/
static int
iwn_set_critical_temp(struct iwn_softc *sc)
{
struct iwn_critical_temp crit;
int32_t temp;
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
if (sc->hw_type == IWN_HW_REV_TYPE_5150)
temp = (IWN_CTOK(110) - sc->temp_off) * -5;
else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
temp = IWN_CTOK(110);
else
temp = 110;
memset(&crit, 0, sizeof crit);
crit.tempR = htole32(temp);
DPRINTF(("setting critical temperature to %d\n", temp));
return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
}
static int
iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
{
struct iwn_cmd_timing cmd;
uint64_t val, mod;
memset(&cmd, 0, sizeof cmd);
memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
cmd.bintval = htole16(ni->ni_intval);
cmd.lintval = htole16(10);
/* Compute remaining time until next beacon. */
val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
mod = le64toh(cmd.tstamp) % val;
cmd.binitval = htole32((uint32_t)(val - mod));
DPRINTF(("timing bintval=%u, tstamp=%zu, init=%u\n",
ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
}
static void
iwn4965_power_calibration(struct iwn_softc *sc, int temp)
{
/* Adjust TX power if need be (delta >= 3 degC.) */
DPRINTF(("temperature %d->%d\n", sc->temp, temp));
if (abs(temp - sc->temp) >= 3) {
/* Record temperature of last calibration. */
sc->temp = temp;
(void)iwn4965_set_txpower(sc, 1);
}
}
/*
* Set TX power for current channel (each rate has its own power settings).
* This function takes into account the regulatory information from EEPROM,
* the current temperature and the current voltage.
*/
static int
iwn4965_set_txpower(struct iwn_softc *sc, int async)
{
/* Fixed-point arithmetic division using a n-bit fractional part. */
#define fdivround(a, b, n) \
((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
/* Linear interpolation. */
#define interpolate(x, x1, y1, x2, y2, n) \
((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_ucode_info *uc = &sc->ucode_info;
struct ieee80211_channel *ch;
struct iwn4965_cmd_txpower cmd;
struct iwn4965_eeprom_chan_samples *chans;
const uint8_t *rf_gain, *dsp_gain;
int32_t vdiff, tdiff;
int i, c, grp, maxpwr;
uint8_t chan;
/* Retrieve current channel from last RXON. */
chan = sc->rxon.chan;
DPRINTF(("setting TX power for channel %d\n", chan));
ch = &ic->ic_channels[chan];
memset(&cmd, 0, sizeof cmd);
cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
cmd.chan = chan;
if (IEEE80211_IS_CHAN_5GHZ(ch)) {
maxpwr = sc->maxpwr5GHz;
rf_gain = iwn4965_rf_gain_5ghz;
dsp_gain = iwn4965_dsp_gain_5ghz;
} else {
maxpwr = sc->maxpwr2GHz;
rf_gain = iwn4965_rf_gain_2ghz;
dsp_gain = iwn4965_dsp_gain_2ghz;
}
/* Compute voltage compensation. */
vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
if (vdiff > 0)
vdiff *= 2;
if (abs(vdiff) > 2)
vdiff = 0;
DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
vdiff, le32toh(uc->volt), sc->eeprom_voltage));
/* Get channel attenuation group. */
if (chan <= 20) /* 1-20 */
grp = 4;
else if (chan <= 43) /* 34-43 */
grp = 0;
else if (chan <= 70) /* 44-70 */
grp = 1;
else if (chan <= 124) /* 71-124 */
grp = 2;
else /* 125-200 */
grp = 3;
DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
/* Get channel sub-band. */
for (i = 0; i < IWN_NBANDS; i++)
if (sc->bands[i].lo != 0 &&
sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
break;
if (i == IWN_NBANDS) /* Can't happen in real-life. */
return EINVAL;
chans = sc->bands[i].chans;
DPRINTF(("chan %d sub-band=%d\n", chan, i));
for (c = 0; c < 2; c++) {
uint8_t power, gain, temp;
int maxchpwr, pwr, ridx, idx;
power = interpolate(chan,
chans[0].num, chans[0].samples[c][1].power,
chans[1].num, chans[1].samples[c][1].power, 1);
gain = interpolate(chan,
chans[0].num, chans[0].samples[c][1].gain,
chans[1].num, chans[1].samples[c][1].gain, 1);
temp = interpolate(chan,
chans[0].num, chans[0].samples[c][1].temp,
chans[1].num, chans[1].samples[c][1].temp, 1);
DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
c, power, gain, temp));
/* Compute temperature compensation. */
tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
DPRINTF(("temperature compensation=%d (current=%d, "
"EEPROM=%d)\n", tdiff, sc->temp, temp));
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
/* Convert dBm to half-dBm. */
maxchpwr = sc->maxpwr[chan] * 2;
if ((ridx / 8) & 1)
maxchpwr -= 6; /* MIMO 2T: -3dB */
pwr = maxpwr;
/* Adjust TX power based on rate. */
if ((ridx % 8) == 5)
pwr -= 15; /* OFDM48: -7.5dB */
else if ((ridx % 8) == 6)
pwr -= 17; /* OFDM54: -8.5dB */
else if ((ridx % 8) == 7)
pwr -= 20; /* OFDM60: -10dB */
else
pwr -= 10; /* Others: -5dB */
/* Do not exceed channel max TX power. */
if (pwr > maxchpwr)
pwr = maxchpwr;
idx = gain - (pwr - power) - tdiff - vdiff;
if ((ridx / 8) & 1) /* MIMO */
idx += (int32_t)le32toh(uc->atten[grp][c]);
if (cmd.band == 0)
idx += 9; /* 5GHz */
if (ridx == IWN_RIDX_MAX)
idx += 5; /* CCK */
/* Make sure idx stays in a valid range. */
if (idx < 0)
idx = 0;
else if (idx > IWN4965_MAX_PWR_INDEX)
idx = IWN4965_MAX_PWR_INDEX;
DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
c, ridx, idx));
cmd.power[ridx].rf_gain[c] = rf_gain[idx];
cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
}
}
DPRINTF(("setting TX power for chan %d\n", chan));
return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
#undef interpolate
#undef fdivround
}
static int
iwn5000_set_txpower(struct iwn_softc *sc, int async)
{
struct iwn5000_cmd_txpower cmd;
/*
* TX power calibration is handled automatically by the firmware
* for 5000 Series.
*/
memset(&cmd, 0, sizeof cmd);
cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
cmd.srv_limit = IWN5000_TXPOWER_AUTO;
DPRINTF(("setting TX power\n"));
return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
}
/*
* Retrieve the maximum RSSI (in dBm) among receivers.
*/
static int
iwn4965_get_rssi(const struct iwn_rx_stat *stat)
{
const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
uint8_t mask, agc;
int rssi;
mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
agc = (le16toh(phy->agc) >> 7) & 0x7f;
rssi = 0;
if (mask & IWN_ANT_A)
rssi = MAX(rssi, phy->rssi[0]);
if (mask & IWN_ANT_B)
rssi = MAX(rssi, phy->rssi[2]);
if (mask & IWN_ANT_C)
rssi = MAX(rssi, phy->rssi[4]);
return rssi - agc - IWN_RSSI_TO_DBM;
}
static int
iwn5000_get_rssi(const struct iwn_rx_stat *stat)
{
const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
uint8_t agc;
int rssi;
agc = (le32toh(phy->agc) >> 9) & 0x7f;
rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
le16toh(phy->rssi[1]) & 0xff);
rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
return rssi - agc - IWN_RSSI_TO_DBM;
}
/*
* Retrieve the average noise (in dBm) among receivers.
*/
static int
iwn_get_noise(const struct iwn_rx_general_stats *stats)
{
int i, total, nbant, noise;
total = nbant = 0;
for (i = 0; i < 3; i++) {
if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
continue;
total += noise;
nbant++;
}
/* There should be at least one antenna but check anyway. */
return (nbant == 0) ? -127 : (total / nbant) - 107;
}
/*
* Compute temperature (in degC) from last received statistics.
*/
static int
iwn4965_get_temperature(struct iwn_softc *sc)
{
struct iwn_ucode_info *uc = &sc->ucode_info;
int32_t r1, r2, r3, r4, temp;
r1 = le32toh(uc->temp[0].chan20MHz);
r2 = le32toh(uc->temp[1].chan20MHz);
r3 = le32toh(uc->temp[2].chan20MHz);
r4 = le32toh(sc->rawtemp);
if (r1 == r3) /* Prevents division by 0 (should not happen.) */
return 0;
/* Sign-extend 23-bit R4 value to 32-bit. */
r4 = (r4 << 8) >> 8;
/* Compute temperature in Kelvin. */
temp = (259 * (r4 - r2)) / (r3 - r1);
temp = (temp * 97) / 100 + 8;
DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
return IWN_KTOC(temp);
}
static int
iwn5000_get_temperature(struct iwn_softc *sc)
{
int32_t temp;
/*
* Temperature is not used by the driver for 5000 Series because
* TX power calibration is handled by firmware. We export it to
* users through the sensor framework though.
*/
temp = le32toh(sc->rawtemp);
if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
temp = (temp / -5) + sc->temp_off;
temp = IWN_KTOC(temp);
}
return temp;
}
/*
* Initialize sensitivity calibration state machine.
*/
static int
iwn_init_sensitivity(struct iwn_softc *sc)
{
const struct iwn_hal *hal = sc->sc_hal;
struct iwn_calib_state *calib = &sc->calib;
uint32_t flags;
int error;
/* Reset calibration state machine. */
memset(calib, 0, sizeof (*calib));
calib->state = IWN_CALIB_STATE_INIT;
calib->cck_state = IWN_CCK_STATE_HIFA;
/* Set initial correlation values. */
calib->ofdm_x1 = sc->limits->min_ofdm_x1;
calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
calib->ofdm_x4 = sc->limits->min_ofdm_x4;
calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
calib->cck_x4 = 125;
calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
calib->energy_cck = sc->limits->energy_cck;
/* Write initial sensitivity. */
if ((error = iwn_send_sensitivity(sc)) != 0)
return error;
/* Write initial gains. */
if ((error = hal->init_gains(sc)) != 0)
return error;
/* Request statistics at each beacon interval. */
flags = 0;
DPRINTF(("sending request for statistics\n"));
return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
}
/*
* Collect noise and RSSI statistics for the first 20 beacons received
* after association and use them to determine connected antennas and
* to set differential gains.
*/
static void
iwn_collect_noise(struct iwn_softc *sc,
const struct iwn_rx_general_stats *stats)
{
const struct iwn_hal *hal = sc->sc_hal;
struct iwn_calib_state *calib = &sc->calib;
uint32_t val;
int i;
/* Accumulate RSSI and noise for all 3 antennas. */
for (i = 0; i < 3; i++) {
calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
}
/* NB: We update differential gains only once after 20 beacons. */
if (++calib->nbeacons < 20)
return;
/* Determine highest average RSSI. */
val = MAX(calib->rssi[0], calib->rssi[1]);
val = MAX(calib->rssi[2], val);
/* Determine which antennas are connected. */
sc->chainmask = sc->rxchainmask;
for (i = 0; i < 3; i++)
if (val - calib->rssi[i] > 15 * 20)
sc->chainmask &= ~(1 << i);
DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
sc->rxchainmask, sc->chainmask));
/* If none of the TX antennas are connected, keep at least one. */
if ((sc->chainmask & sc->txchainmask) == 0)
sc->chainmask |= IWN_LSB(sc->txchainmask);
(void)hal->set_gains(sc);
calib->state = IWN_CALIB_STATE_RUN;
#ifdef notyet
/* XXX Disable RX chains with no antennas connected. */
sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
#endif
/* Enable power-saving mode if requested by user. */
if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
(void)iwn_set_pslevel(sc, 0, 3, 1);
}
static int
iwn4965_init_gains(struct iwn_softc *sc)
{
struct iwn_phy_calib_gain cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
/* Differential gains initially set to 0 for all 3 antennas. */
DPRINTF(("setting initial differential gains\n"));
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
static int
iwn5000_init_gains(struct iwn_softc *sc)
{
struct iwn_phy_calib cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
cmd.ngroups = 1;
cmd.isvalid = 1;
DPRINTF(("setting initial differential gains\n"));
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
static int
iwn4965_set_gains(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_phy_calib_gain cmd;
int i, delta, noise;
/* Get minimal noise among connected antennas. */
noise = INT_MAX; /* NB: There's at least one antenna. */
for (i = 0; i < 3; i++)
if (sc->chainmask & (1 << i))
noise = MIN(calib->noise[i], noise);
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
/* Set differential gains for connected antennas. */
for (i = 0; i < 3; i++) {
if (sc->chainmask & (1 << i)) {
/* Compute attenuation (in unit of 1.5dB). */
delta = (noise - (int32_t)calib->noise[i]) / 30;
/* NB: delta <= 0 */
/* Limit to [-4.5dB,0]. */
cmd.gain[i] = MIN(abs(delta), 3);
if (delta < 0)
cmd.gain[i] |= 1 << 2; /* sign bit */
}
}
DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
static int
iwn5000_set_gains(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_phy_calib_gain cmd;
int i, ant, div, delta;
/* We collected 20 beacons and !=6050 need a 1.5 factor. */
div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
cmd.ngroups = 1;
cmd.isvalid = 1;
/* Get first available RX antenna as referential. */
ant = IWN_LSB(sc->rxchainmask);
/* Set differential gains for other antennas. */
for (i = ant + 1; i < 3; i++) {
if (sc->chainmask & (1 << i)) {
/* The delta is relative to antenna "ant". */
delta = ((int32_t)calib->noise[ant] -
(int32_t)calib->noise[i]) / div;
/* Limit to [-4.5dB,+4.5dB]. */
cmd.gain[i - 1] = MIN(abs(delta), 3);
if (delta < 0)
cmd.gain[i - 1] |= 1 << 2; /* sign bit */
}
}
DPRINTF(("setting differential gains: %x/%x (%x)\n",
cmd.gain[0], cmd.gain[1], sc->chainmask));
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
/*
* Tune RF RX sensitivity based on the number of false alarms detected
* during the last beacon period.
*/
static void
iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
{
#define inc(val, inc, max) \
if ((val) < (max)) { \
if ((val) < (max) - (inc)) \
(val) += (inc); \
else \
(val) = (max); \
needs_update = 1; \
}
#define dec(val, dec, min) \
if ((val) > (min)) { \
if ((val) > (min) + (dec)) \
(val) -= (dec); \
else \
(val) = (min); \
needs_update = 1; \
}
const struct iwn_sensitivity_limits *limits = sc->limits;
struct iwn_calib_state *calib = &sc->calib;
uint32_t val, rxena, fa;
uint32_t energy[3], energy_min;
uint8_t noise[3], noise_ref;
int i, needs_update = 0;
/* Check that we've been enabled long enough. */
if ((rxena = le32toh(stats->general.load)) == 0)
return;
/* Compute number of false alarms since last call for OFDM. */
fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
fa *= 200 * 1024; /* 200TU */
/* Save counters values for next call. */
calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
calib->fa_ofdm = le32toh(stats->ofdm.fa);
if (fa > 50 * rxena) {
/* High false alarm count, decrease sensitivity. */
DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
} else if (fa < 5 * rxena) {
/* Low false alarm count, increase sensitivity. */
DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
}
/* Compute maximum noise among 3 receivers. */
for (i = 0; i < 3; i++)
noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
val = MAX(noise[0], noise[1]);
val = MAX(noise[2], val);
/* Insert it into our samples table. */
calib->noise_samples[calib->cur_noise_sample] = val;
calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
/* Compute maximum noise among last 20 samples. */
noise_ref = calib->noise_samples[0];
for (i = 1; i < 20; i++)
noise_ref = MAX(noise_ref, calib->noise_samples[i]);
/* Compute maximum energy among 3 receivers. */
for (i = 0; i < 3; i++)
energy[i] = le32toh(stats->general.energy[i]);
val = MIN(energy[0], energy[1]);
val = MIN(energy[2], val);
/* Insert it into our samples table. */
calib->energy_samples[calib->cur_energy_sample] = val;
calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
/* Compute minimum energy among last 10 samples. */
energy_min = calib->energy_samples[0];
for (i = 1; i < 10; i++)
energy_min = MAX(energy_min, calib->energy_samples[i]);
energy_min += 6;
/* Compute number of false alarms since last call for CCK. */
fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
fa += le32toh(stats->cck.fa) - calib->fa_cck;
fa *= 200 * 1024; /* 200TU */
/* Save counters values for next call. */
calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
calib->fa_cck = le32toh(stats->cck.fa);
if (fa > 50 * rxena) {
/* High false alarm count, decrease sensitivity. */
DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
calib->cck_state = IWN_CCK_STATE_HIFA;
calib->low_fa = 0;
if (calib->cck_x4 > 160) {
calib->noise_ref = noise_ref;
if (calib->energy_cck > 2)
dec(calib->energy_cck, 2, energy_min);
}
if (calib->cck_x4 < 160) {
calib->cck_x4 = 161;
needs_update = 1;
} else
inc(calib->cck_x4, 3, limits->max_cck_x4);
inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
} else if (fa < 5 * rxena) {
/* Low false alarm count, increase sensitivity. */
DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
calib->cck_state = IWN_CCK_STATE_LOFA;
calib->low_fa++;
if (calib->cck_state != IWN_CCK_STATE_INIT &&
(((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
calib->low_fa > 100)) {
inc(calib->energy_cck, 2, limits->min_energy_cck);
dec(calib->cck_x4, 3, limits->min_cck_x4);
dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
}
} else {
/* Not worth to increase or decrease sensitivity. */
DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
calib->low_fa = 0;
calib->noise_ref = noise_ref;
if (calib->cck_state == IWN_CCK_STATE_HIFA) {
/* Previous interval had many false alarms. */
dec(calib->energy_cck, 8, energy_min);
}
calib->cck_state = IWN_CCK_STATE_INIT;
}
if (needs_update)
(void)iwn_send_sensitivity(sc);
#undef dec
#undef inc
}
static int
iwn_send_sensitivity(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_sensitivity_cmd cmd;
memset(&cmd, 0, sizeof cmd);
cmd.which = IWN_SENSITIVITY_WORKTBL;
/* OFDM modulation. */
cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
cmd.energy_ofdm_th = htole16(62);
/* CCK modulation. */
cmd.corr_cck_x4 = htole16(calib->cck_x4);
cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
cmd.energy_cck = htole16(calib->energy_cck);
/* Barker modulation: use default values. */
cmd.corr_barker = htole16(190);
cmd.corr_barker_mrc = htole16(390);
DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
calib->energy_cck));
return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
}
/*
* Set STA mode power saving level (between 0 and 5).
* Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
*/
static int
iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
{
struct iwn_pmgt_cmd cmd;
const struct iwn_pmgt *pmgt;
uint32_t maxp, skip_dtim;
pcireg_t reg;
int i;
/* Select which PS parameters to use. */
if (dtim <= 2)
pmgt = &iwn_pmgt[0][level];
else if (dtim <= 10)
pmgt = &iwn_pmgt[1][level];
else
pmgt = &iwn_pmgt[2][level];
memset(&cmd, 0, sizeof cmd);
if (level != 0) /* not CAM */
cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
if (level == 5)
cmd.flags |= htole16(IWN_PS_FAST_PD);
/* Retrieve PCIe Active State Power Management (ASPM). */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
sc->sc_cap_off + PCI_PCIE_LCSR);
if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
cmd.flags |= htole16(IWN_PS_PCI_PMGT);
cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
if (dtim == 0) {
dtim = 1;
skip_dtim = 0;
} else
skip_dtim = pmgt->skip_dtim;
if (skip_dtim != 0) {
cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
maxp = pmgt->intval[4];
if (maxp == (uint32_t)-1)
maxp = dtim * (skip_dtim + 1);
else if (maxp > dtim)
maxp = (maxp / dtim) * dtim;
} else
maxp = dtim;
for (i = 0; i < 5; i++)
cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
DPRINTF(("setting power saving level to %d\n", level));
return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
}
static int
iwn_config(struct iwn_softc *sc)
{
const struct iwn_hal *hal = sc->sc_hal;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct iwn_bluetooth bluetooth;
uint32_t txmask;
uint16_t rxchain;
int error;
/* Configure valid TX chains for 5000 Series. */
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
txmask = htole32(sc->txchainmask);
DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
sizeof txmask, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not configure valid TX chains\n");
return error;
}
}
/* Configure bluetooth coexistence. */
memset(&bluetooth, 0, sizeof bluetooth);
bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
DPRINTF(("configuring bluetooth coexistence\n"));
error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not configure bluetooth coexistence\n");
return error;
}
/* Set mode, channel, RX filter and enable RX. */
memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
sc->rxon.mode = IWN_MODE_STA;
sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
break;
case IEEE80211_M_MONITOR:
sc->rxon.mode = IWN_MODE_MONITOR;
sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
IWN_FILTER_CTL | IWN_FILTER_PROMISC);
break;
default:
/* Should not get there. */
break;
}
sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
sc->rxon.ht_single_mask = 0xff;
sc->rxon.ht_dual_mask = 0xff;
sc->rxon.ht_triple_mask = 0xff;
rxchain =
IWN_RXCHAIN_VALID(sc->rxchainmask) |
IWN_RXCHAIN_MIMO_COUNT(2) |
IWN_RXCHAIN_IDLE_COUNT(2);
sc->rxon.rxchain = htole16(rxchain);
DPRINTF(("setting configuration\n"));
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"RXON command failed\n");
return error;
}
if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not add broadcast node\n");
return error;
}
/* Configuration has changed, set TX power accordingly. */
if ((error = hal->set_txpower(sc, 0)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not set TX power\n");
return error;
}
if ((error = iwn_set_critical_temp(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not set critical temperature\n");
return error;
}
/* Set power saving level to CAM during initialization. */
if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not set power saving level\n");
return error;
}
return 0;
}
static int
iwn_scan(struct iwn_softc *sc, uint16_t flags)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_scan_hdr *hdr;
struct iwn_cmd_data *tx;
struct iwn_scan_essid *essid;
struct iwn_scan_chan *chan;
struct ieee80211_frame *wh;
struct ieee80211_rateset *rs;
struct ieee80211_channel *c;
uint8_t *buf, *frm;
uint16_t rxchain;
uint8_t txant;
int buflen, error;
buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
if (buf == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate buffer for scan command\n");
return ENOMEM;
}
hdr = (struct iwn_scan_hdr *)buf;
/*
* Move to the next channel if no frames are received within 10ms
* after sending the probe request.
*/
hdr->quiet_time = htole16(10); /* timeout in milliseconds */
hdr->quiet_threshold = htole16(1); /* min # of packets */
/* Select antennas for scanning. */
rxchain =
IWN_RXCHAIN_VALID(sc->rxchainmask) |
IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
IWN_RXCHAIN_DRIVER_FORCE;
if ((flags & IEEE80211_CHAN_5GHZ) &&
sc->hw_type == IWN_HW_REV_TYPE_4965) {
/* Ant A must be avoided in 5GHz because of an HW bug. */
rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
} else /* Use all available RX antennas. */
rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
hdr->rxchain = htole16(rxchain);
hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
tx = (struct iwn_cmd_data *)(hdr + 1);
tx->flags = htole32(IWN_TX_AUTO_SEQ);
tx->id = sc->sc_hal->broadcast_id;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
if (flags & IEEE80211_CHAN_5GHZ) {
hdr->crc_threshold = 0xffff;
/* Send probe requests at 6Mbps. */
tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
} else {
hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
/* Send probe requests at 1Mbps. */
tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
tx->rflags = IWN_RFLAG_CCK;
rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
}
/* Use the first valid TX antenna. */
txant = IWN_LSB(sc->txchainmask);
tx->rflags |= IWN_RFLAG_ANT(txant);
essid = (struct iwn_scan_essid *)(tx + 1);
if (ic->ic_des_esslen != 0) {
essid[0].id = IEEE80211_ELEMID_SSID;
essid[0].len = ic->ic_des_esslen;
memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
}
/*
* Build a probe request frame. Most of the following code is a
* copy & paste of what is done in net80211.
*/
wh = (struct ieee80211_frame *)(essid + 20);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
*(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
*(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
frm = (uint8_t *)(wh + 1);
frm = ieee80211_add_ssid(frm, NULL, 0);
frm = ieee80211_add_rates(frm, rs);
#ifndef IEEE80211_NO_HT
if (ic->ic_flags & IEEE80211_F_HTON)
frm = ieee80211_add_htcaps(frm, ic);
#endif
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
frm = ieee80211_add_xrates(frm, rs);
/* Set length of probe request. */
tx->len = htole16(frm - (uint8_t *)wh);
chan = (struct iwn_scan_chan *)frm;
for (c = &ic->ic_channels[1];
c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
if ((c->ic_flags & flags) != flags)
continue;
chan->chan = htole16(ieee80211_chan2ieee(ic, c));
DPRINTFN(2, ("adding channel %d\n", chan->chan));
chan->flags = 0;
if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
chan->flags |= htole32(IWN_CHAN_ACTIVE);
if (ic->ic_des_esslen != 0)
chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
chan->dsp_gain = 0x6e;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
chan->rf_gain = 0x3b;
chan->active = htole16(24);
chan->passive = htole16(110);
} else {
chan->rf_gain = 0x28;
chan->active = htole16(36);
chan->passive = htole16(120);
}
hdr->nchan++;
chan++;
}
buflen = (uint8_t *)chan - buf;
hdr->len = htole16(buflen);
DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
free(buf, M_DEVBUF);
return error;
}
static int
iwn_auth(struct iwn_softc *sc)
{
const struct iwn_hal *hal = sc->sc_hal;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
int error;
/* Update adapter configuration. */
IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
switch (ic->ic_curmode) {
case IEEE80211_MODE_11A:
sc->rxon.cck_mask = 0;
sc->rxon.ofdm_mask = 0x15;
break;
case IEEE80211_MODE_11B:
sc->rxon.cck_mask = 0x03;
sc->rxon.ofdm_mask = 0;
break;
default: /* Assume 802.11b/g. */
sc->rxon.cck_mask = 0x0f;
sc->rxon.ofdm_mask = 0x15;
}
DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"RXON command failed\n");
return error;
}
/* Configuration has changed, set TX power accordingly. */
if ((error = hal->set_txpower(sc, 1)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not set TX power\n");
return error;
}
/*
* Reconfiguring RXON clears the firmware nodes table so we must
* add the broadcast node again.
*/
if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not add broadcast node\n");
return error;
}
return 0;
}
static int
iwn_run(struct iwn_softc *sc)
{
const struct iwn_hal *hal = sc->sc_hal;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct iwn_node_info node;
int error;
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* Link LED blinks while monitoring. */
iwn_set_led(sc, IWN_LED_LINK, 5, 5);
return 0;
}
if ((error = iwn_set_timing(sc, ni)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not set timing\n");
return error;
}
/* Update adapter configuration. */
sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
/* Short preamble and slot time are negotiated when associating. */
sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
sc->rxon.filter |= htole32(IWN_FILTER_BSS);
DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not update configuration\n");
return error;
}
/* Configuration has changed, set TX power accordingly. */
if ((error = hal->set_txpower(sc, 1)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not set TX power\n");
return error;
}
/* Fake a join to initialize the TX rate. */
((struct iwn_node *)ni)->id = IWN_ID_BSS;
iwn_newassoc(ni, 1);
/* Add BSS node. */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
node.id = IWN_ID_BSS;
#ifdef notyet
node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
IWN_AMDPU_DENSITY(5)); /* 2us */
#endif
DPRINTF(("adding BSS node\n"));
error = hal->add_node(sc, &node, 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not add BSS node\n");
return error;
}
DPRINTF(("setting link quality for node %d\n", node.id));
if ((error = iwn_set_link_quality(sc, ni)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not setup link quality for node %d\n", node.id);
return error;
}
if ((error = iwn_init_sensitivity(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not set sensitivity\n");
return error;
}
/* Start periodic calibration timer. */
sc->calib.state = IWN_CALIB_STATE_ASSOC;
sc->calib_cnt = 0;
callout_schedule(&sc->calib_to, hz/2);
/* Link LED always on while associated. */
iwn_set_led(sc, IWN_LED_LINK, 0, 1);
return 0;
}
#ifdef IWN_HWCRYPTO
/*
* We support CCMP hardware encryption/decryption of unicast frames only.
* HW support for TKIP really sucks. We should let TKIP die anyway.
*/
static int
iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct iwn_softc *sc = ic->ic_softc;
const struct iwn_hal *hal = sc->sc_hal;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
uint16_t kflags;
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
k->k_cipher != IEEE80211_CIPHER_CCMP)
return ieee80211_set_key(ic, ni, k);
kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
if (k->k_flags & IEEE80211_KEY_GROUP)
kflags |= IWN_KFLAG_GROUP;
memset(&node, 0, sizeof node);
node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
hal->broadcast_id : wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_KEY;
node.kflags = htole16(kflags);
node.kid = k->k_id;
memcpy(node.key, k->k_key, k->k_len);
DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
return hal->add_node(sc, &node, 1);
}
static void
iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct iwn_softc *sc = ic->ic_softc;
const struct iwn_hal *hal = sc->sc_hal;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
k->k_cipher != IEEE80211_CIPHER_CCMP) {
/* See comment about other ciphers above. */
ieee80211_delete_key(ic, ni, k);
return;
}
if (ic->ic_state != IEEE80211_S_RUN)
return; /* Nothing to do. */
memset(&node, 0, sizeof node);
node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
hal->broadcast_id : wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_KEY;
node.kflags = htole16(IWN_KFLAG_INVALID);
node.kid = 0xff;
DPRINTF(("delete keys for node %d\n", node.id));
(void)hal->add_node(sc, &node, 1);
}
#endif
/* XXX Added for NetBSD (copied from rev 1.39). */
static int
iwn_wme_update(struct ieee80211com *ic)
{
#define IWN_EXP2(v) htole16((1 << (v)) - 1)
#define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
struct iwn_softc *sc = ic->ic_ifp->if_softc;
const struct wmeParams *wmep;
struct iwn_edca_params cmd;
int ac;
/* don't override default WME values if WME is not actually enabled */
if (!(ic->ic_flags & IEEE80211_F_WME))
return 0;
cmd.flags = 0;
for (ac = 0; ac < WME_NUM_AC; ac++) {
wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
cmd.ac[ac].aifsn = wmep->wmep_aifsn;
cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
cmd.ac[ac].txoplimit = IWN_USEC(wmep->wmep_txopLimit);
DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
"txop=%d\n", ac, cmd.ac[ac].aifsn,
cmd.ac[ac].cwmin,
cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
}
return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
#undef IWN_USEC
#undef IWN_EXP2
}
#ifndef IEEE80211_NO_HT
/*
* This function is called by upper layer when an ADDBA request is received
* from another STA and before the ADDBA response is sent.
*/
static int
iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
struct iwn_softc *sc = ic->ic_softc;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_ADDBA;
node.addba_tid = tid;
node.addba_ssn = htole16(ba->ba_winstart);
DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
ba->ba_winstart));
return sc->sc_hal->add_node(sc, &node, 1);
}
/*
* This function is called by upper layer on teardown of an HT-immediate
* Block Ack agreement (eg. uppon receipt of a DELBA frame.)
*/
static void
iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct iwn_softc *sc = ic->ic_softc;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_DELBA;
node.delba_tid = tid;
DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
(void)sc->sc_hal->add_node(sc, &node, 1);
}
/*
* This function is called by upper layer when an ADDBA response is received
* from another STA.
*/
static int
iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
struct iwn_softc *sc = ic->ic_softc;
const struct iwn_hal *hal = sc->sc_hal;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
int error;
/* Enable TX for the specified RA/TID. */
wn->disable_tid &= ~(1 << tid);
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_DISABLE_TID;
node.disable_tid = htole16(wn->disable_tid);
error = hal->add_node(sc, &node, 1);
if (error != 0)
return error;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
iwn_nic_unlock(sc);
return 0;
}
static void
iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
struct iwn_softc *sc = ic->ic_softc;
if (iwn_nic_lock(sc) != 0)
return;
sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
iwn_nic_unlock(sc);
}
static void
iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
uint8_t tid, uint16_t ssn)
{
struct iwn_node *wn = (void *)ni;
int qid = 7 + tid;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_CHGACT);
/* Assign RA/TID translation to the queue. */
iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
wn->id << 4 | tid);
/* Enable chain-building mode for the queue. */
iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
/* Set starting sequence number from the ADDBA request. */
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
/* Set scheduler window size. */
iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
IWN_SCHED_WINSZ);
/* Set scheduler frame limit. */
iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16);
/* Enable interrupts for the queue. */
iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as active. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
iwn_tid2fifo[tid] << 1);
}
static void
iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
{
int qid = 7 + tid;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_CHGACT);
/* Set starting sequence number from the ADDBA request. */
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
/* Disable interrupts for the queue. */
iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as inactive. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
}
static void
iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
uint8_t tid, uint16_t ssn)
{
struct iwn_node *wn = (void *)ni;
int qid = 10 + tid;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_CHGACT);
/* Assign RA/TID translation to the queue. */
iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
wn->id << 4 | tid);
/* Enable chain-building mode for the queue. */
iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
/* Enable aggregation for the queue. */
iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
/* Set starting sequence number from the ADDBA request. */
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
/* Set scheduler window size and frame limit. */
iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
/* Enable interrupts for the queue. */
iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as active. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
}
static void
iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
{
int qid = 10 + tid;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_CHGACT);
/* Disable aggregation for the queue. */
iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
/* Set starting sequence number from the ADDBA request. */
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
/* Disable interrupts for the queue. */
iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as inactive. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
}
#endif /* !IEEE80211_NO_HT */
/*
* Query calibration tables from the initialization firmware. We do this
* only once at first boot. Called from a process context.
*/
static int
iwn5000_query_calibration(struct iwn_softc *sc)
{
struct iwn5000_calib_config cmd;
int error;
memset(&cmd, 0, sizeof cmd);
cmd.ucode.once.enable = 0xffffffff;
cmd.ucode.once.start = 0xffffffff;
cmd.ucode.once.send = 0xffffffff;
cmd.ucode.flags = 0xffffffff;
DPRINTF(("sending calibration query\n"));
error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
if (error != 0)
return error;
/* Wait at most two seconds for calibration to complete. */
if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
return error;
}
/*
* Send calibration results to the runtime firmware. These results were
* obtained on first boot from the initialization firmware.
*/
static int
iwn5000_send_calibration(struct iwn_softc *sc)
{
int idx, error;
for (idx = 0; idx < 5; idx++) {
if (sc->calibcmd[idx].buf == NULL)
continue; /* No results available. */
DPRINTF(("send calibration result idx=%d len=%d\n",
idx, sc->calibcmd[idx].len));
error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
sc->calibcmd[idx].len, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not send calibration result\n");
return error;
}
}
return 0;
}
static int
iwn5000_send_wimax_coex(struct iwn_softc *sc)
{
struct iwn5000_wimax_coex wimax;
#ifdef notyet
if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
/* Enable WiMAX coexistence for combo adapters. */
wimax.flags =
IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
IWN_WIMAX_COEX_STA_TABLE_VALID |
IWN_WIMAX_COEX_ENABLE;
memcpy(wimax.events, iwn6050_wimax_events,
sizeof iwn6050_wimax_events);
} else
#endif
{
/* Disable WiMAX coexistence. */
wimax.flags = 0;
memset(wimax.events, 0, sizeof wimax.events);
}
DPRINTF(("Configuring WiMAX coexistence\n"));
return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
}
/*
* This function is called after the runtime firmware notifies us of its
* readiness (called in a process context.)
*/
static int
iwn4965_post_alive(struct iwn_softc *sc)
{
int error, qid;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Clear TX scheduler state in SRAM. */
sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
/* Set physical address of TX scheduler rings (1KB aligned.) */
iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
/* Disable chain mode for all our 16 queues. */
iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
/* Set scheduler window size. */
iwn_mem_write(sc, sc->sched_base +
IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
/* Set scheduler frame limit. */
iwn_mem_write(sc, sc->sched_base +
IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16);
}
/* Enable interrupts for all our 16 queues. */
iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
/* Identify TX FIFO rings (0-7). */
iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
for (qid = 0; qid < 7; qid++) {
static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
}
iwn_nic_unlock(sc);
return 0;
}
/*
* This function is called after the initialization or runtime firmware
* notifies us of its readiness (called in a process context.)
*/
static int
iwn5000_post_alive(struct iwn_softc *sc)
{
int error, qid;
/* Switch to using ICT interrupt mode. */
iwn5000_ict_reset(sc);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Clear TX scheduler state in SRAM. */
sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
/* Set physical address of TX scheduler rings (1KB aligned.) */
iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
/* Enable chain mode for all queues, except command queue. */
iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
iwn_mem_write(sc, sc->sched_base +
IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
/* Set scheduler window size and frame limit. */
iwn_mem_write(sc, sc->sched_base +
IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
}
/* Enable interrupts for all our 20 queues. */
iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
/* Identify TX FIFO rings (0-7). */
iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
for (qid = 0; qid < 7; qid++) {
static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
}
iwn_nic_unlock(sc);
/* Configure WiMAX coexistence for combo adapters. */
error = iwn5000_send_wimax_coex(sc);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not configure WiMAX coexistence\n");
return error;
}
if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
struct iwn5000_phy_calib_crystal cmd;
/* Perform crystal calibration. */
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
cmd.ngroups = 1;
cmd.isvalid = 1;
cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
DPRINTF(("sending crystal calibration %d, %d\n",
cmd.cap_pin[0], cmd.cap_pin[1]));
error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"crystal calibration failed\n");
return error;
}
}
if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
/* Query calibration from the initialization firmware. */
if ((error = iwn5000_query_calibration(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not query calibration\n");
return error;
}
/*
* We have the calibration results now, reboot with the
* runtime firmware (call ourselves recursively!)
*/
iwn_hw_stop(sc);
error = iwn_hw_init(sc);
} else {
/* Send calibration results to runtime firmware. */
error = iwn5000_send_calibration(sc);
}
return error;
}
/*
* The firmware boot code is small and is intended to be copied directly into
* the NIC internal memory (no DMA transfer.)
*/
static int
iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
{
int error, ntries;
size /= sizeof (uint32_t);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Copy microcode image into NIC memory. */
iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
(const uint32_t *)ucode, size);
iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
/* Start boot load now. */
iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
/* Wait for transfer to complete. */
for (ntries = 0; ntries < 1000; ntries++) {
if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
IWN_BSM_WR_CTRL_START))
break;
DELAY(10);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"could not load boot firmware\n");
iwn_nic_unlock(sc);
return ETIMEDOUT;
}
/* Enable boot after power up. */
iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
iwn_nic_unlock(sc);
return 0;
}
static int
iwn4965_load_firmware(struct iwn_softc *sc)
{
struct iwn_fw_info *fw = &sc->fw;
struct iwn_dma_info *dma = &sc->fw_dma;
int error;
/* Copy initialization sections into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
BUS_DMASYNC_PREWRITE);
memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
fw->init.text, fw->init.textsz);
bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
fw->init.textsz, BUS_DMASYNC_PREWRITE);
/* Tell adapter where to find initialization sections. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
(dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
iwn_nic_unlock(sc);
/* Load firmware boot code. */
error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load boot firmware\n");
return error;
}
/* Now press "execute". */
IWN_WRITE(sc, IWN_RESET, 0);
/* Wait at most one second for first alive notification. */
if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for adapter to initialize\n");
return error;
}
/* Retrieve current temperature for initial TX power calibration. */
sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
sc->temp = iwn4965_get_temperature(sc);
/* Copy runtime sections into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
BUS_DMASYNC_PREWRITE);
memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
fw->main.text, fw->main.textsz);
bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
fw->main.textsz, BUS_DMASYNC_PREWRITE);
/* Tell adapter where to find runtime sections. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
(dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
IWN_FW_UPDATED | fw->main.textsz);
iwn_nic_unlock(sc);
return 0;
}
static int
iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
const uint8_t *section, int size)
{
struct iwn_dma_info *dma = &sc->fw_dma;
int error;
/* Copy firmware section into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, section, size);
bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
IWN_FH_TX_CONFIG_DMA_PAUSE);
IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
IWN_LOADDR(dma->paddr));
IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
IWN_HIADDR(dma->paddr) << 28 | size);
IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
IWN_FH_TXBUF_STATUS_TBNUM(1) |
IWN_FH_TXBUF_STATUS_TBIDX(1) |
IWN_FH_TXBUF_STATUS_TFBD_VALID);
/* Kick Flow Handler to start DMA transfer. */
IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
iwn_nic_unlock(sc);
/* Wait at most five seconds for FH DMA transfer to complete. */
return tsleep(sc, PCATCH, "iwninit", 5 * hz);
}
static int
iwn5000_load_firmware(struct iwn_softc *sc)
{
struct iwn_fw_part *fw;
int error;
/* Load the initialization firmware on first boot only. */
fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
&sc->fw.main : &sc->fw.init;
error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
fw->text, fw->textsz);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load firmware %s section\n", ".text");
return error;
}
error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
fw->data, fw->datasz);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load firmware %s section\n", ".data");
return error;
}
/* Now press "execute". */
IWN_WRITE(sc, IWN_RESET, 0);
return 0;
}
/*
* Extract text and data sections from a legacy firmware image.
*/
static int
iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
{
const uint32_t *ptr;
size_t hdrlen = 24;
uint32_t rev;
ptr = (const uint32_t *)fw->data;
rev = le32toh(*ptr++);
/* Check firmware API version. */
if (IWN_FW_API(rev) <= 1) {
aprint_error_dev(sc->sc_dev,
"bad firmware, need API version >=2\n");
return EINVAL;
}
if (IWN_FW_API(rev) >= 3) {
/* Skip build number (version 2 header). */
hdrlen += 4;
ptr++;
}
if (fw->size < hdrlen) {
aprint_error_dev(sc->sc_dev,
"firmware too short: %zd bytes\n", fw->size);
return EINVAL;
}
fw->main.textsz = le32toh(*ptr++);
fw->main.datasz = le32toh(*ptr++);
fw->init.textsz = le32toh(*ptr++);
fw->init.datasz = le32toh(*ptr++);
fw->boot.textsz = le32toh(*ptr++);
/* Check that all firmware sections fit. */
if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
aprint_error_dev(sc->sc_dev,
"firmware too short: %zd bytes\n", fw->size);
return EINVAL;
}
/* Get pointers to firmware sections. */
fw->main.text = (const uint8_t *)ptr;
fw->main.data = fw->main.text + fw->main.textsz;
fw->init.text = fw->main.data + fw->main.datasz;
fw->init.data = fw->init.text + fw->init.textsz;
fw->boot.text = fw->init.data + fw->init.datasz;
return 0;
}
/*
* Extract text and data sections from a TLV firmware image.
*/
static int
iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
uint16_t alt)
{
const struct iwn_fw_tlv_hdr *hdr;
const struct iwn_fw_tlv *tlv;
const uint8_t *ptr, *end;
uint64_t altmask;
uint32_t len;
if (fw->size < sizeof (*hdr)) {
aprint_error_dev(sc->sc_dev,
"firmware too short: %zd bytes\n", fw->size);
return EINVAL;
}
hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
aprint_error_dev(sc->sc_dev,
"bad firmware signature 0x%08x\n", le32toh(hdr->signature));
return EINVAL;
}
DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
le32toh(hdr->build)));
/*
* Select the closest supported alternative that is less than
* or equal to the specified one.
*/
altmask = le64toh(hdr->altmask);
while (alt > 0 && !(altmask & (1ULL << alt)))
alt--; /* Downgrade. */
DPRINTF(("using alternative %d\n", alt));
ptr = (const uint8_t *)(hdr + 1);
end = (const uint8_t *)(fw->data + fw->size);
/* Parse type-length-value fields. */
while (ptr + sizeof (*tlv) <= end) {
tlv = (const struct iwn_fw_tlv *)ptr;
len = le32toh(tlv->len);
ptr += sizeof (*tlv);
if (ptr + len > end) {
aprint_error_dev(sc->sc_dev,
"firmware too short: %zd bytes\n", fw->size);
return EINVAL;
}
/* Skip other alternatives. */
if (tlv->alt != 0 && tlv->alt != htole16(alt))
goto next;
switch (le16toh(tlv->type)) {
case IWN_FW_TLV_MAIN_TEXT:
fw->main.text = ptr;
fw->main.textsz = len;
break;
case IWN_FW_TLV_MAIN_DATA:
fw->main.data = ptr;
fw->main.datasz = len;
break;
case IWN_FW_TLV_INIT_TEXT:
fw->init.text = ptr;
fw->init.textsz = len;
break;
case IWN_FW_TLV_INIT_DATA:
fw->init.data = ptr;
fw->init.datasz = len;
break;
case IWN_FW_TLV_BOOT_TEXT:
fw->boot.text = ptr;
fw->boot.textsz = len;
break;
default:
DPRINTF(("TLV type %d not handled\n",
le16toh(tlv->type)));
break;
}
next: /* TLV fields are 32-bit aligned. */
ptr += (len + 3) & ~3;
}
return 0;
}
static int
iwn_read_firmware(struct iwn_softc *sc)
{
const struct iwn_hal *hal = sc->sc_hal;
struct iwn_fw_info *fw = &sc->fw;
firmware_handle_t fwh;
int error;
/* Initialize for error returns */
fw->data = NULL;
fw->size = 0;
/* Open firmware image. */
if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not get firmware handle %s\n", sc->fwname);
return error;
}
fw->size = firmware_get_size(fwh);
if (fw->size < sizeof (uint32_t)) {
aprint_error_dev(sc->sc_dev,
"firmware too short: %zd bytes\n", fw->size);
firmware_close(fwh);
return EINVAL;
}
/* Read the firmware. */
fw->data = firmware_malloc(fw->size);
if (fw->data == NULL) {
aprint_error_dev(sc->sc_dev,
"not enough memory to stock firmware %s\n", sc->fwname);
firmware_close(fwh);
return ENOMEM;
}
error = firmware_read(fwh, 0, fw->data, fw->size);
firmware_close(fwh);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not read firmware %s\n", sc->fwname);
goto out;
}
/* Retrieve text and data sections. */
if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
error = iwn_read_firmware_leg(sc, fw);
else
error = iwn_read_firmware_tlv(sc, fw, 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not read firmware sections\n");
goto out;
}
/* Make sure text and data sections fit in hardware memory. */
if (fw->main.textsz > hal->fw_text_maxsz ||
fw->main.datasz > hal->fw_data_maxsz ||
fw->init.textsz > hal->fw_text_maxsz ||
fw->init.datasz > hal->fw_data_maxsz ||
fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
(fw->boot.textsz & 3) != 0) {
aprint_error_dev(sc->sc_dev,
"firmware sections too large\n");
goto out;
}
/* We can proceed with loading the firmware. */
return 0;
out:
firmware_free(fw->data, fw->size);
fw->data = NULL;
fw->size = 0;
return error ? error : EINVAL;
}
static int
iwn_clock_wait(struct iwn_softc *sc)
{
int ntries;
/* Set "initialization complete" bit. */
IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
/* Wait for clock stabilization. */
for (ntries = 0; ntries < 2500; ntries++) {
if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
return 0;
DELAY(10);
}
aprint_error_dev(sc->sc_dev,
"timeout waiting for clock stabilization\n");
return ETIMEDOUT;
}
static int
iwn_apm_init(struct iwn_softc *sc)
{
pcireg_t reg;
int error;
/* Disable L0s exit timer (NMI bug workaround.) */
IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
/* Don't wait for ICH L0s (ICH bug workaround.) */
IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
/* Set FH wait threshold to max (HW bug under stress workaround.) */
IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
/* Enable HAP INTA to move adapter from L1a to L0s. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
/* Retrieve PCIe Active State Power Management (ASPM). */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
sc->sc_cap_off + PCI_PCIE_LCSR);
/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
else
IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
sc->hw_type <= IWN_HW_REV_TYPE_1000)
IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
/* Wait for clock stabilization before accessing prph. */
if ((error = iwn_clock_wait(sc)) != 0)
return error;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
/* Enable DMA and BSM (Bootstrap State Machine.) */
iwn_prph_write(sc, IWN_APMG_CLK_EN,
IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
} else {
/* Enable DMA. */
iwn_prph_write(sc, IWN_APMG_CLK_EN,
IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
}
DELAY(20);
/* Disable L1-Active. */
iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
iwn_nic_unlock(sc);
return 0;
}
static void
iwn_apm_stop_master(struct iwn_softc *sc)
{
int ntries;
/* Stop busmaster DMA activity. */
IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
return;
DELAY(10);
}
aprint_error_dev(sc->sc_dev,
"timeout waiting for master\n");
}
static void
iwn_apm_stop(struct iwn_softc *sc)
{
iwn_apm_stop_master(sc);
/* Reset the entire device. */
IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
DELAY(10);
/* Clear "initialization complete" bit. */
IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
}
static int
iwn4965_nic_config(struct iwn_softc *sc)
{
if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
/*
* I don't believe this to be correct but this is what the
* vendor driver is doing. Probably the bits should not be
* shifted in IWN_RFCFG_*.
*/
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_RFCFG_TYPE(sc->rfcfg) |
IWN_RFCFG_STEP(sc->rfcfg) |
IWN_RFCFG_DASH(sc->rfcfg));
}
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
return 0;
}
static int
iwn5000_nic_config(struct iwn_softc *sc)
{
uint32_t tmp;
int error;
if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_RFCFG_TYPE(sc->rfcfg) |
IWN_RFCFG_STEP(sc->rfcfg) |
IWN_RFCFG_DASH(sc->rfcfg));
}
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
/*
* Select first Switching Voltage Regulator (1.32V) to
* solve a stability issue related to noisy DC2DC line
* in the silicon of 1000 Series.
*/
tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
}
iwn_nic_unlock(sc);
if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
/* Use internal power amplifier only. */
IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
}
if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
/* Indicate that ROM calibration version is >=6. */
IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
}
return 0;
}
/*
* Take NIC ownership over Intel Active Management Technology (AMT).
*/
static int
iwn_hw_prepare(struct iwn_softc *sc)
{
int ntries;
/* Check if hardware is ready. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
for (ntries = 0; ntries < 5; ntries++) {
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_NIC_READY)
return 0;
DELAY(10);
}
/* Hardware not ready, force into ready state. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
for (ntries = 0; ntries < 15000; ntries++) {
if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_PREPARE_DONE))
break;
DELAY(10);
}
if (ntries == 15000)
return ETIMEDOUT;
/* Hardware should be ready now. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
for (ntries = 0; ntries < 5; ntries++) {
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_NIC_READY)
return 0;
DELAY(10);
}
return ETIMEDOUT;
}
static int
iwn_hw_init(struct iwn_softc *sc)
{
const struct iwn_hal *hal = sc->sc_hal;
int error, chnl, qid;
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
if ((error = iwn_apm_init(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not power ON adapter\n");
return error;
}
/* Select VMAIN power source. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
iwn_nic_unlock(sc);
/* Perform adapter-specific initialization. */
if ((error = hal->nic_config(sc)) != 0)
return error;
/* Initialize RX ring. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
/* Set physical address of RX ring (256-byte aligned.) */
IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
/* Set physical address of RX status (16-byte aligned.) */
IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
/* Enable RX. */
IWN_WRITE(sc, IWN_FH_RX_CONFIG,
IWN_FH_RX_CONFIG_ENA |
IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
IWN_FH_RX_CONFIG_IRQ_DST_HOST |
IWN_FH_RX_CONFIG_SINGLE_FRAME |
IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
iwn_nic_unlock(sc);
IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Initialize TX scheduler. */
iwn_prph_write(sc, hal->sched_txfact_addr, 0);
/* Set physical address of "keep warm" page (16-byte aligned.) */
IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
/* Initialize TX rings. */
for (qid = 0; qid < hal->ntxqs; qid++) {
struct iwn_tx_ring *txq = &sc->txq[qid];
/* Set physical address of TX ring (256-byte aligned.) */
IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
txq->desc_dma.paddr >> 8);
}
iwn_nic_unlock(sc);
/* Enable DMA channels. */
for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
IWN_FH_TX_CONFIG_DMA_ENA |
IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
}
/* Clear "radio off" and "commands blocked" bits. */
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
/* Enable interrupt coalescing. */
IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
/* Enable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
/* _Really_ make sure "radio off" bit is cleared! */
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
if ((error = hal->load_firmware(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not load firmware\n");
return error;
}
/* Wait at most one second for firmware alive notification. */
if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for adapter to initialize\n");
return error;
}
/* Do post-firmware initialization. */
return hal->post_alive(sc);
}
static void
iwn_hw_stop(struct iwn_softc *sc)
{
const struct iwn_hal *hal = sc->sc_hal;
int chnl, qid, ntries;
uint32_t tmp;
IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
/* Disable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
IWN_WRITE(sc, IWN_INT, 0xffffffff);
IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
sc->sc_flags &= ~IWN_FLAG_USE_ICT;
/* Make sure we no longer hold the NIC lock. */
iwn_nic_unlock(sc);
/* Stop TX scheduler. */
iwn_prph_write(sc, hal->sched_txfact_addr, 0);
/* Stop all DMA channels. */
if (iwn_nic_lock(sc) == 0) {
for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
for (ntries = 0; ntries < 200; ntries++) {
tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
IWN_FH_TX_STATUS_IDLE(chnl))
break;
DELAY(10);
}
}
iwn_nic_unlock(sc);
}
/* Stop RX ring. */
iwn_reset_rx_ring(sc, &sc->rxq);
/* Reset all TX rings. */
for (qid = 0; qid < hal->ntxqs; qid++)
iwn_reset_tx_ring(sc, &sc->txq[qid]);
if (iwn_nic_lock(sc) == 0) {
iwn_prph_write(sc, IWN_APMG_CLK_DIS,
IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
iwn_nic_unlock(sc);
}
DELAY(5);
/* Power OFF adapter. */
iwn_apm_stop(sc);
}
static int
iwn_init(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int error;
mutex_enter(&sc->sc_mtx);
if (sc->sc_flags & IWN_FLAG_HW_INITED)
goto out;
if ((error = iwn_hw_prepare(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"hardware not ready\n");
goto fail;
}
/* Check that the radio is not disabled by hardware switch. */
if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
aprint_error_dev(sc->sc_dev,
"radio is disabled by hardware switch\n");
error = EPERM; /* :-) */
goto fail;
}
/* Read firmware images from the filesystem. */
if ((error = iwn_read_firmware(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not read firmware\n");
goto fail;
}
/* Initialize interrupt mask to default value. */
sc->int_mask = IWN_INT_MASK_DEF;
sc->sc_flags &= ~IWN_FLAG_USE_ICT;
/* Initialize hardware and upload firmware. */
KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
error = iwn_hw_init(sc);
firmware_free(sc->fw.data, sc->fw.size);
sc->fw.data = NULL;
sc->fw.size = 0;
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not initialize hardware\n");
goto fail;
}
/* Configure adapter now that it is ready. */
if ((error = iwn_config(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not configure device\n");
goto fail;
}
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ieee80211_begin_scan(ic, 0);
else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
sc->sc_flags |= IWN_FLAG_HW_INITED;
out:
mutex_exit(&sc->sc_mtx);
return 0;
fail: mutex_exit(&sc->sc_mtx);
iwn_stop(ifp, 1);
return error;
}
static void
iwn_stop(struct ifnet *ifp, int disable)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
if (!disable)
mutex_enter(&sc->sc_mtx);
sc->sc_flags &= ~IWN_FLAG_HW_INITED;
ifp->if_timer = sc->sc_tx_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* Power OFF hardware. */
iwn_hw_stop(sc);
#ifndef SMALL_KERNEL
/* Temperature sensor is no longer valid. */
sc->sc_sensor.value_cur = 0;
sc->sc_sensor.state = ENVSYS_SINVALID;
#endif
if (!disable)
mutex_exit(&sc->sc_mtx);
}
/*
* XXX MCLGETI alternative
*
* With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
* as long as there are available free buffers then it uses MEXTMALLOC.,
* Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
* The MCLGET4K code is used for testing an alternative mbuf cache.
*/
static struct mbuf *
MCLGETIalt(struct iwn_softc *sc, int how,
struct ifnet *ifp __unused, u_int size)
{
struct mbuf *m;
#ifdef IWN_USE_RBUF
struct iwn_rbuf *rbuf;
#endif
MGETHDR(m, how, MT_DATA);
if (m == NULL)
return NULL;
#ifdef IWN_USE_RBUF
if (sc->rxq.nb_free_entries > 0 &&
(rbuf = iwn_alloc_rbuf(sc)) != NULL) {
/* Attach buffer to mbuf header. */
MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
m->m_flags |= M_EXT_RW;
}
else {
MEXTMALLOC(m, size, how);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return NULL;
}
}
#else
#ifdef MCLGET4K
if (size == 4096)
MCLGET4K(m, how);
else
panic("size must be 4k");
#else
MEXTMALLOC(m, size, how);
#endif
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return NULL;
}
#endif
return m;
}
#ifdef IWN_USE_RBUF
static struct iwn_rbuf *
iwn_alloc_rbuf(struct iwn_softc *sc)
{
struct iwn_rbuf *rbuf;
mutex_enter(&sc->rxq.freelist_mtx);
rbuf = SLIST_FIRST(&sc->rxq.freelist);
if (rbuf != NULL) {
SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
sc->rxq.nb_free_entries --;
}
mutex_exit(&sc->rxq.freelist_mtx);
return rbuf;
}
/*
* This is called automatically by the network stack when the mbuf to which
* our RX buffer is attached is freed.
*/
static void
iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
{
struct iwn_rbuf *rbuf = arg;
struct iwn_softc *sc = rbuf->sc;
/* Put the RX buffer back in the free list. */
mutex_enter(&sc->rxq.freelist_mtx);
SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
mutex_exit(&sc->rxq.freelist_mtx);
sc->rxq.nb_free_entries ++;
if (__predict_true(m != NULL))
pool_cache_put(mb_cache, m);
}
static int
iwn_alloc_rpool(struct iwn_softc *sc)
{
struct iwn_rx_ring *ring = &sc->rxq;
struct iwn_rbuf *rbuf;
int i, error;
mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
/* Allocate a big chunk of DMA'able memory... */
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate RX buffers DMA memory\n");
return error;
}
/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
SLIST_INIT(&ring->freelist);
for (i = 0; i < IWN_RBUF_COUNT; i++) {
rbuf = &ring->rbuf[i];
rbuf->sc = sc; /* Backpointer for callbacks. */
rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
}
ring->nb_free_entries = IWN_RBUF_COUNT;
return 0;
}
static void
iwn_free_rpool(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->rxq.buf_dma);
}
#endif
/*
* XXX code from OpenBSD src/sys/net80211/ieee80211_output.c
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
* Copyright (c) 2007-2009 Damien Bergamini
* All rights reserved.
*/
/*
* Add an SSID element to a frame (see 7.3.2.1).
*/
static u_int8_t *
ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
{
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = len;
memcpy(frm, ssid, len);
return frm + len;
}
/*
* Add a supported rates element to a frame (see 7.3.2.2).
*/
static u_int8_t *
ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
{
int nrates;
*frm++ = IEEE80211_ELEMID_RATES;
nrates = min(rs->rs_nrates, IEEE80211_RATE_SIZE);
*frm++ = nrates;
memcpy(frm, rs->rs_rates, nrates);
return frm + nrates;
}
/*
* Add an extended supported rates element to a frame (see 7.3.2.14).
*/
static u_int8_t *
ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
{
int nrates;
KASSERT(rs->rs_nrates > IEEE80211_RATE_SIZE);
*frm++ = IEEE80211_ELEMID_XRATES;
nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
*frm++ = nrates;
memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
return frm + nrates;
}
/*
* XXX: Hack to set the current channel to the value advertised in beacons or
* probe responses. Only used during AP detection.
* XXX: Duplicated from if_iwi.c
*/
static void
iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
{
struct ieee80211_frame *wh;
uint8_t subtype;
uint8_t *frm, *efrm;
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
return;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
return;
frm = (uint8_t *)(wh + 1);
efrm = mtod(m, uint8_t *) + m->m_len;
frm += 12; /* skip tstamp, bintval and capinfo fields */
while (frm < efrm) {
if (*frm == IEEE80211_ELEMID_DSPARMS)
#if IEEE80211_CHAN_MAX < 255
if (frm[2] <= IEEE80211_CHAN_MAX)
#endif
ic->ic_curchan = &ic->ic_channels[frm[2]];
frm += frm[1] + 2;
}
}