NetBSD/gnu/usr.bin/gcc2/cc1plus/cp-class.c

4278 lines
132 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Functions related to building classes and their related objects.
Copyright (C) 1987, 1992, 1993 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#ifndef lint
static char rcsid[] = "$Id: cp-class.c,v 1.2 1993/08/02 17:31:25 mycroft Exp $";
#endif /* not lint */
/* High-level class interface. */
#include "config.h"
#include "tree.h"
#include <stdio.h>
#include "cp-tree.h"
#include "flags.h"
#ifdef DEBUG_CP_BINDING_LEVELS
#include "cp-decl.h"
#endif
#include "obstack.h"
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
extern struct obstack permanent_obstack;
/* Way of stacking class types. */
static tree *current_class_base, *current_class_stack;
static int current_class_stacksize;
int current_class_depth;
struct class_level
{
/* The previous class level. */
struct class_level *level_chain;
/* The class instance variable, as a PARM_DECL. */
tree decl;
/* The class instance variable, as an object. */
tree object;
/* The virtual function table pointer
for the class instance variable. */
tree vtable_decl;
/* Name of the current class. */
tree name;
/* Type of the current class. */
tree type;
/* Flags for this class level. */
int this_is_variable;
int memoized_lookups;
int save_memoized;
int unused;
};
tree current_class_decl, C_C_D; /* PARM_DECL: the class instance variable */
tree current_vtable_decl;
/* The following two can be derived from the previous one */
tree current_class_name; /* IDENTIFIER_NODE: name of current class */
tree current_class_type; /* _TYPE: the type of the current class */
static tree prev_class_type; /* _TYPE: the previous type that was a class */
static tree get_vfield_name PROTO((tree));
tree the_null_vtable_entry;
/* Way of stacking language names. */
tree *current_lang_base, *current_lang_stack;
static int current_lang_stacksize;
/* Names of languages we recognize. */
tree lang_name_c, lang_name_cplusplus;
tree current_lang_name;
/* When layout out an aggregate type, the size of the
basetypes (virtual and non-virtual) is passed to layout_record
via this node. */
static tree base_layout_decl;
/* Variables shared between cp-class.c and cp-call.c. */
int n_vtables = 0;
int n_vtable_entries = 0;
int n_vtable_searches = 0;
int n_vtable_elems = 0;
int n_convert_harshness = 0;
int n_compute_conversion_costs = 0;
int n_build_method_call = 0;
int n_inner_fields_searched = 0;
/* Virtual baseclass things. */
tree
build_vbase_pointer (exp, type)
tree exp, type;
{
char *name;
name = (char *) alloca (TYPE_NAME_LENGTH (type) + sizeof (VBASE_NAME) + 1);
sprintf (name, VBASE_NAME_FORMAT, TYPE_NAME_STRING (type));
return build_component_ref (exp, get_identifier (name), 0, 0);
}
/* Build multi-level access to EXPR using hierarchy path PATH.
CODE is PLUS_EXPR if we are going with the grain,
and MINUS_EXPR if we are not (in which case, we cannot traverse
virtual baseclass links).
TYPE is the type we want this path to have on exit.
ALIAS_THIS is non-zero if EXPR in an expression involving `this'. */
tree
build_vbase_path (code, type, expr, path, alias_this)
enum tree_code code;
tree type, expr, path;
int alias_this;
{
register int changed = 0;
tree last = NULL_TREE, last_virtual = NULL_TREE;
int nonnull = 0;
int fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
tree null_expr = 0, nonnull_expr;
tree basetype;
tree offset = integer_zero_node;
if (!fixed_type_p && TREE_SIDE_EFFECTS (expr))
expr = save_expr (expr);
nonnull_expr = expr;
if (BINFO_INHERITANCE_CHAIN (path))
{
tree reverse_path = NULL_TREE;
while (path)
{
tree r = copy_node (path);
BINFO_INHERITANCE_CHAIN (r) = reverse_path;
reverse_path = r;
path = BINFO_INHERITANCE_CHAIN (path);
}
path = reverse_path;
}
basetype = BINFO_TYPE (path);
while (path)
{
if (TREE_VIA_VIRTUAL (path))
{
last_virtual = BINFO_TYPE (path);
if (code == PLUS_EXPR)
{
changed = ! fixed_type_p;
if (changed)
{
extern int flag_assume_nonnull_objects;
tree ind;
if (last)
nonnull_expr = convert_pointer_to (last, nonnull_expr);
ind = build_indirect_ref (nonnull_expr, NULL);
nonnull_expr = build_vbase_pointer (ind, last_virtual);
if (nonnull == 0 && !flag_assume_nonnull_objects
&& null_expr == NULL_TREE)
{
null_expr = build1 (NOP_EXPR, TYPE_POINTER_TO (last_virtual), integer_zero_node);
expr = build (COND_EXPR, TYPE_POINTER_TO (last_virtual),
build (EQ_EXPR, integer_type_node, expr,
integer_zero_node),
null_expr, nonnull_expr);
}
}
/* else we'll figure out the offset below. */
/* Happens in the case of parse errors. */
if (nonnull_expr == error_mark_node)
return error_mark_node;
}
else
{
error_with_aggr_type (last_virtual, "cannot cast up from virtual baseclass `%s'");
return error_mark_node;
}
}
last = path;
path = BINFO_INHERITANCE_CHAIN (path);
}
/* LAST is now the last basetype assoc on the path. */
/* A pointer to a virtual base member of a non-null object
is non-null. Therefore, we only need to test for zeroness once.
Make EXPR the canonical expression to deal with here. */
if (null_expr)
{
TREE_OPERAND (expr, 2) = nonnull_expr;
TREE_TYPE (TREE_OPERAND (expr, 1)) = TREE_TYPE (nonnull_expr);
}
else
expr = nonnull_expr;
/* If we go through any virtual base pointers, make sure that
casts to BASETYPE from the last virtual base class use
the right value for BASETYPE. */
if (changed)
{
tree intype = TREE_TYPE (TREE_TYPE (expr));
if (TYPE_MAIN_VARIANT (intype) == BINFO_TYPE (last))
basetype = intype;
else
{
tree binfo = get_binfo (last, TYPE_MAIN_VARIANT (intype), 0);
basetype = last;
offset = BINFO_OFFSET (binfo);
}
}
else
{
if (last_virtual)
{
offset = BINFO_OFFSET (binfo_member (last_virtual,
CLASSTYPE_VBASECLASSES (basetype)));
offset = size_binop (PLUS_EXPR, offset, BINFO_OFFSET (last));
}
else
offset = BINFO_OFFSET (last);
#if 0
/* why unconditionally set this? (mrs) see deja-gnu/g++.mike/net15.C
for a test case. */
code = PLUS_EXPR;
#endif
}
if (TREE_INT_CST_LOW (offset))
{
/* For multiple inheritance: if `this' can be set by any
function, then it could be 0 on entry to any function.
Preserve such zeroness here. Otherwise, only in the
case of constructors need we worry, and in those cases,
it will be zero, or initialized to some legal value to
which we may add. */
if (nonnull == 0 && (alias_this == 0 || flag_this_is_variable > 0))
{
if (null_expr)
TREE_TYPE (null_expr) = type;
else
null_expr = build1 (NOP_EXPR, type, integer_zero_node);
if (TREE_SIDE_EFFECTS (expr))
expr = save_expr (expr);
return build (COND_EXPR, type,
build (EQ_EXPR, integer_type_node, expr, integer_zero_node),
null_expr,
build (code, type, expr, offset));
}
else return build (code, type, expr, offset);
}
/* Cannot change the TREE_TYPE of a NOP_EXPR here, since it may
be used multiple times in initialization of multiple inheritance. */
if (null_expr)
{
TREE_TYPE (expr) = type;
return expr;
}
else
return build1 (NOP_EXPR, type, expr);
}
/* Virtual function things. */
/* Virtual functions to be dealt with after laying out our
base classes. Usually this is used only when classes have virtual
baseclasses, but it can happen also when classes have non-virtual
baseclasses if the derived class overrides baseclass functions
at different offsets. */
static tree pending_hard_virtuals;
static int doing_hard_virtuals;
/* The names of the entries in the virtual table structure. */
static tree delta_name, pfn_name;
/* XXX This is set but never used. (bpk) */
#if 0
/* Temporary binfo list to memoize lookups of the left-most non-virtual
baseclass B in a lattice topped by T. B can appear multiple times
in the lattice.
TREE_PURPOSE is B's TYPE_MAIN_VARIANT.
TREE_VALUE is the path by which B is reached from T.
TREE_TYPE is B's real type.
If TREE_TYPE is NULL_TREE, it means that B was reached via
a virtual baseclass.
N.B.: This list consists of nodes on the temporary obstack. */
static tree leftmost_baseclasses;
#endif
/* Build an entry in the virtual function table.
DELTA is the offset for the `this' pointer.
PFN is an ADDR_EXPR containing a pointer to the virtual function.
Note that the index (DELTA2) in the virtual function table
is always 0. */
tree
build_vtable_entry (delta, pfn)
tree delta, pfn;
{
tree elems = tree_cons (NULL_TREE, delta,
tree_cons (NULL_TREE, integer_zero_node,
build_tree_list (NULL_TREE, pfn)));
tree entry = build (CONSTRUCTOR, vtable_entry_type, NULL_TREE, elems);
/* DELTA is constructed by `size_int', which means it may be an
unsigned quantity on some platforms. Therefore, we cannot use
`int_fits_type_p', because when DELTA is really negative,
`force_fit_type' will make it look like a very large number. */
if ((TREE_INT_CST_LOW (TYPE_MAX_VALUE (short_integer_type_node))
< TREE_INT_CST_LOW (delta))
|| (TREE_INT_CST_LOW (delta)
< TREE_INT_CST_LOW (TYPE_MIN_VALUE (short_integer_type_node))))
sorry ("object size exceeds built-in limit for virtual function table implementation");
TREE_CONSTANT (entry) = 1;
TREE_STATIC (entry) = 1;
TREE_READONLY (entry) = 1;
#ifdef GATHER_STATISTICS
n_vtable_entries += 1;
#endif
return entry;
}
/* Given an object INSTANCE, return an expression which yields
the virtual function corresponding to INDEX. There are many special
cases for INSTANCE which we take care of here, mainly to avoid
creating extra tree nodes when we don't have to. */
tree
build_vfn_ref (ptr_to_instptr, instance, index)
tree *ptr_to_instptr, instance;
tree index;
{
extern int building_cleanup;
tree vtbl, aref;
tree basetype = TREE_TYPE (instance);
if (TREE_CODE (basetype) == REFERENCE_TYPE)
basetype = TREE_TYPE (basetype);
if (instance == C_C_D)
{
if (current_vtable_decl == NULL_TREE
|| current_vtable_decl == error_mark_node
|| !UNIQUELY_DERIVED_FROM_P (DECL_FCONTEXT (CLASSTYPE_VFIELD (current_class_type)), basetype))
vtbl = build_indirect_ref (build_vfield_ref (instance, basetype), NULL);
else
vtbl = current_vtable_decl;
}
else
{
if (optimize)
{
/* Try to figure out what a reference refers to, and
access its virtual function table directly. */
tree ref = NULL_TREE;
if (TREE_CODE (instance) == INDIRECT_REF
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (instance, 0))) == REFERENCE_TYPE)
ref = TREE_OPERAND (instance, 0);
else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
ref = instance;
if (ref && TREE_CODE (ref) == VAR_DECL
&& DECL_INITIAL (ref))
{
tree init = DECL_INITIAL (ref);
while (TREE_CODE (init) == NOP_EXPR
|| TREE_CODE (init) == NON_LVALUE_EXPR)
init = TREE_OPERAND (init, 0);
if (TREE_CODE (init) == ADDR_EXPR)
{
init = TREE_OPERAND (init, 0);
if (IS_AGGR_TYPE (TREE_TYPE (init))
&& (TREE_CODE (init) == PARM_DECL
|| TREE_CODE (init) == VAR_DECL))
instance = init;
}
}
}
if (IS_AGGR_TYPE (TREE_TYPE (instance))
&& (TREE_CODE (instance) == RESULT_DECL
|| TREE_CODE (instance) == PARM_DECL
|| TREE_CODE (instance) == VAR_DECL))
vtbl = TYPE_BINFO_VTABLE (basetype);
else
vtbl = build_indirect_ref (build_vfield_ref (instance, basetype),
NULL);
}
assemble_external (vtbl);
aref = build_array_ref (vtbl, index);
if (!building_cleanup && TREE_CODE (aref) == INDIRECT_REF)
TREE_OPERAND (aref, 0) = save_expr (TREE_OPERAND (aref, 0));
*ptr_to_instptr = build (PLUS_EXPR, TREE_TYPE (*ptr_to_instptr),
*ptr_to_instptr,
convert (integer_type_node, build_component_ref (aref, delta_name, 0, 0)));
return build_component_ref (aref, pfn_name, 0, 0);
}
/* Set TREE_PUBLIC and/or TREE_EXTERN on the vtable DECL,
based on TYPE and other static flags.
Note that anything public is tagged TREE_PUBLIC, whether
it's public in this file or in another one. */
static void
import_export_vtable (decl, type)
tree decl, type;
{
if (write_virtuals >= 2)
{
if (CLASSTYPE_INTERFACE_UNKNOWN (type) == 0)
{
TREE_PUBLIC (decl) = 1;
DECL_EXTERNAL (decl) = ! CLASSTYPE_VTABLE_NEEDS_WRITING (type);
}
}
else if (write_virtuals != 0)
{
TREE_PUBLIC (decl) = 1;
if (write_virtuals < 0)
DECL_EXTERNAL (decl) = 1;
}
}
/* Return the name of the virtual function table (as an IDENTIFIER_NODE)
for the given TYPE. */
static tree
get_vtable_name (type)
tree type;
{
tree type_id = build_typename_overload (type);
char *buf = (char *)alloca (sizeof (VTABLE_NAME_FORMAT)
+ IDENTIFIER_LENGTH (type_id) + 2);
char *ptr = IDENTIFIER_POINTER (type_id);
int i;
for (i = 0; ptr[i] == OPERATOR_TYPENAME_FORMAT[i]; i++) ;
while (ptr[i] >= '0' && ptr[i] <= '9')
i += 1;
sprintf (buf, VTABLE_NAME_FORMAT, ptr+i);
return get_identifier (buf);
}
/* Build a virtual function for type TYPE.
If BINFO is non-NULL, build the vtable starting with the initial
approximation that it is the same as the one which is the head of
the association list. */
static tree
build_vtable (binfo, type)
tree binfo, type;
{
tree name = get_vtable_name (type);
tree virtuals, decl;
if (binfo)
{
virtuals = copy_list (BINFO_VIRTUALS (binfo));
decl = build_decl (VAR_DECL, name, TREE_TYPE (BINFO_VTABLE (binfo)));
}
else
{
virtuals = NULL_TREE;
decl = build_decl (VAR_DECL, name, void_type_node);
}
#ifdef GATHER_STATISTICS
n_vtables += 1;
n_vtable_elems += list_length (virtuals);
#endif
/* Set TREE_PUBLIC and TREE_EXTERN as appropriate. */
import_export_vtable (decl, type);
IDENTIFIER_GLOBAL_VALUE (name) = decl = pushdecl_top_level (decl);
/* Initialize the association list for this type, based
on our first approximation. */
TYPE_BINFO_VTABLE (type) = decl;
TYPE_BINFO_VIRTUALS (type) = virtuals;
TREE_STATIC (decl) = 1;
DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
DECL_ALIGN (decl));
if (binfo && write_virtuals >= 0)
DECL_VIRTUAL_P (decl) = 1;
#if 0
/* Remember which class this vtable is really for. */
if (binfo)
DECL_VPARENT (decl) = BINFO_TYPE (binfo);
else
DECL_VPARENT (decl) = type;
#endif
DECL_CONTEXT (decl) = type;
binfo = TYPE_BINFO (type);
SET_BINFO_VTABLE_PATH_MARKED (binfo);
SET_BINFO_NEW_VTABLE_MARKED (binfo);
return decl;
}
/* Give TYPE a new virtual function table which is initialized
with a skeleton-copy of its original initialization. The only
entry that changes is the `delta' entry, so we can really
share a lot of structure.
FOR_TYPE is the derived type which caused this table to
be needed.
BINFO is the type association which provided TYPE for FOR_TYPE.
The way we update BASE_BINFO's vtable information is just to change the
association information in FOR_TYPE's association list. */
static void
prepare_fresh_vtable (binfo, base_binfo, for_type)
tree binfo, base_binfo, for_type;
{
tree basetype = BINFO_TYPE (binfo);
tree orig_decl = BINFO_VTABLE (binfo);
tree name = build_type_pathname (VTABLE_NAME_FORMAT, basetype, for_type);
tree new_decl = build_decl (VAR_DECL, name, TREE_TYPE (orig_decl));
tree path;
int result;
/* Remember which class this vtable is really for. */
#if 0
DECL_VPARENT (new_decl) = BINFO_TYPE (base_binfo);
#endif
DECL_CONTEXT (new_decl) = for_type;
TREE_STATIC (new_decl) = 1;
BINFO_VTABLE (binfo) = pushdecl_top_level (new_decl);
DECL_VIRTUAL_P (new_decl) = 1;
DECL_ALIGN (new_decl) = DECL_ALIGN (orig_decl);
/* Make fresh virtual list, so we can smash it later. */
BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
/* Install the value for `headof' if that's what we're doing. */
if (flag_dossier)
TREE_VALUE (TREE_CHAIN (BINFO_VIRTUALS (binfo)))
= build_vtable_entry (size_binop (MINUS_EXPR, integer_zero_node, BINFO_OFFSET (binfo)),
FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (TREE_CHAIN (BINFO_VIRTUALS (binfo)))));
#ifdef GATHER_STATISTICS
n_vtables += 1;
n_vtable_elems += list_length (BINFO_VIRTUALS (binfo));
#endif
/* Set TREE_PUBLIC and TREE_EXTERN as appropriate. */
import_export_vtable (new_decl, for_type);
if (TREE_VIA_VIRTUAL (binfo))
my_friendly_assert (binfo == binfo_member (BINFO_TYPE (binfo),
CLASSTYPE_VBASECLASSES (current_class_type)),
170);
SET_BINFO_NEW_VTABLE_MARKED (binfo);
SET_BINFO_VTABLE_PATH_MARKED (binfo);
/* Mark all types between FOR_TYPE and TYPE as having been
touched, so that if we change virtual function table entries,
new vtables will be initialized. We may reach the virtual
baseclass via ambiguous intervening baseclasses. This
loop makes sure we get through to the actual baseclass we marked.
Also, update the vtable entries to reflect the overrides
of the top-most class (short of the top type). */
do
{
result = get_base_distance (basetype, for_type, 0, &path);
for_type = path;
while (path)
{
tree path_binfo = path;
tree path_type = BINFO_TYPE (path);
if (TREE_VIA_VIRTUAL (path))
path_binfo = binfo_member (path_type,
CLASSTYPE_VBASECLASSES (current_class_type));
SET_BINFO_VTABLE_PATH_MARKED (path_binfo);
if (BINFO_INHERITANCE_CHAIN (path)
&& CLASSTYPE_VFIELD (path_type) != NULL_TREE
&& (DECL_NAME (CLASSTYPE_VFIELD (BINFO_TYPE (binfo)))
== DECL_NAME (CLASSTYPE_VFIELD (path_type)))
/* This is the baseclass just before the original FOR_TYPE. */
&& BINFO_INHERITANCE_CHAIN (BINFO_INHERITANCE_CHAIN (path)) == NULL_TREE)
{
tree old_virtuals = TREE_CHAIN (BINFO_VIRTUALS (binfo));
tree new_virtuals = TREE_CHAIN (BINFO_VIRTUALS (path_binfo));
if (flag_dossier)
{
old_virtuals = TREE_CHAIN (old_virtuals);
new_virtuals = TREE_CHAIN (new_virtuals);
}
while (old_virtuals)
{
TREE_VALUE (old_virtuals) = TREE_VALUE (new_virtuals);
old_virtuals = TREE_CHAIN (old_virtuals);
new_virtuals = TREE_CHAIN (new_virtuals);
}
}
path = BINFO_INHERITANCE_CHAIN (path);
}
}
while (result == -2);
}
/* Access the virtual function table entry that logically
contains BASE_FNDECL. VIRTUALS is the virtual function table's
initializer. */
static tree
get_vtable_entry (virtuals, base_fndecl)
tree virtuals, base_fndecl;
{
unsigned HOST_WIDE_INT i = (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
#ifdef VTABLE_USES_MASK
&& 0
#endif
? (TREE_INT_CST_LOW (DECL_VINDEX (base_fndecl))
& (((unsigned HOST_WIDE_INT)1<<(BITS_PER_WORD-1))-1))
: TREE_INT_CST_LOW (DECL_VINDEX (base_fndecl)));
#ifdef GATHER_STATISTICS
n_vtable_searches += i;
#endif
while (i > 0)
{
virtuals = TREE_CHAIN (virtuals);
i -= 1;
}
return virtuals;
}
/* Put new entry ENTRY into virtual function table initializer
VIRTUALS. The virtual function table is for type CONTEXT.
Also update DECL_VINDEX (FNDECL). */
static void
modify_vtable_entry (old_entry_in_list, new_entry, fndecl, context)
tree old_entry_in_list, new_entry, fndecl, context;
{
tree base_pfn = FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (old_entry_in_list));
tree vindex;
/* We can't put in the really right offset information
here, since we have not yet laid out the class to
take into account virtual base classes. */
TREE_VALUE (old_entry_in_list) = new_entry;
vindex = DECL_VINDEX (TREE_OPERAND (base_pfn, 0));
if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
DECL_VINDEX (fndecl) = vindex;
else
{
if (! tree_int_cst_equal (DECL_VINDEX (fndecl), vindex))
{
tree elts = CONSTRUCTOR_ELTS (new_entry);
tree vfield = CLASSTYPE_VFIELD (context);
if (! doing_hard_virtuals)
{
pending_hard_virtuals
= tree_cons (fndecl, FNADDR_FROM_VTABLE_ENTRY (new_entry),
pending_hard_virtuals);
TREE_TYPE (pending_hard_virtuals) = TREE_OPERAND (base_pfn, 0);
return;
}
#if 0
my_friendly_abort (3);
/* Compute the relative offset of vtable we are really looking for. */
TREE_VALUE (elts) = size_binop (PLUS_EXPR,
size_int (TREE_INT_CST_LOW (DECL_FIELD_BITPOS (vfield))
/* ??? This may be wrong. */
/ BITS_PER_UNIT),
TREE_VALUE (elts));
/* Say what index to use when we use that vtable. */
#ifndef VTABLE_USES_MASK
vindex = build_int_2 (TREE_INT_CST_LOW (vindex)
& ~((unsigned HOST_WIDE_INT) 1
<< (BITS_PER_WORD -1)), 0);
#endif
TREE_VALUE (TREE_CHAIN (elts)) = vindex;
#endif
}
}
}
/* Check to ensure that the virtual function table slot in VFIELD,
found by DECL_VINDEX of the BASE_FNDECL is in fact from a parent
virtual function table that is the same parent as for the
BASE_FNDECL given to us. */
static int
related_vslot (base_fndecl, vfields, type)
tree base_fndecl, vfields, type;
{
tree base_context = TYPE_MAIN_VARIANT (DECL_CONTEXT (base_fndecl));
tree base;
tree path;
int distance;
if (TREE_CODE (vfields) != TREE_LIST)
abort ();
base = VF_NORMAL_VALUE (vfields);
if (base == NULL_TREE)
base = VF_BASETYPE_VALUE (vfields);
/* The simple right way to do this is to ensure that the context of
the base virtual function is found along the leftmost path
between the most derived type associated with the vfield and the
current type. */
distance = get_base_distance (base, type, 0, &path);
if (distance == -1)
abort ();
while (path)
{
if (BINFO_TYPE (path) == base_context)
return 1;
path = BINFO_INHERITANCE_CHAIN (path);
}
/* given:
Rr
/ \
Mm Hh
\ /
P
make sure we fill in P's vtable for H with overrides of r,
but be cautious of virtual base classes. */
/* Combine the two below after debugging. */
if (get_base_distance (base_context, base, 0, &path) != -1)
{
while (path)
{
if (TREE_VIA_VIRTUAL (path))
return 0;
path = BINFO_INHERITANCE_CHAIN (path);
}
return 1;
}
return 0;
}
/* Modify virtual function tables in lattice topped by T to
place FNDECL in tables which previously held BASE_FNDECL.
PFN is just FNDECL wrapped in an ADDR_EXPR, so that it
is suitable for placement directly into an initializer.
All distinct virtual function tables that this type uses
must be updated. */
static void
modify_vtable_entries (t, fndecl, base_fndecl, pfn)
tree t;
tree fndecl, base_fndecl, pfn;
{
tree base_offset, offset;
tree base_context = DECL_CLASS_CONTEXT (base_fndecl);
tree context = DECL_CLASS_CONTEXT (fndecl);
tree vfield = CLASSTYPE_VFIELD (t);
tree vfields, vbases;
DECL_CONTEXT (fndecl) = DECL_CONTEXT (base_fndecl);
offset = integer_zero_node;
if (context != t && TYPE_USES_COMPLEX_INHERITANCE (t))
{
offset = virtual_offset (context, CLASSTYPE_VBASECLASSES (t), offset);
if (offset == NULL_TREE)
{
tree binfo = binfo_value (context, t);
offset = BINFO_OFFSET (binfo);
}
}
/* For each layer of base class (i.e., the first base class, and each
virtual base class from that one), modify the virtual function table
of the derived class to contain the new virtual function.
A class has as many vfields as it has virtual base classes (total). */
for (vfields = CLASSTYPE_VFIELDS (t); vfields; vfields = TREE_CHAIN (vfields))
{
int normal = 1;
tree binfo, this_offset;
tree base, path;
/* This can go away when the new searching strategy as a little mileage on it. */
#define NEW_SEARCH 1
#if NEW_SEARCH
if (!related_vslot (base_fndecl, vfields, t))
continue;
#endif
/* Find the right base class for this derived class, call it BASE. */
base = VF_BASETYPE_VALUE (vfields);
#if NEW_SEARCH == 0
if (base != base_context)
{
/* If BASE_FNDECL is not contained in the vtable accessed by
the vslot, don't try to modify the vtable.
Virtual functions from virtual baseclasses are not in derived
virtual function tables. This is an implementation decision;
it keeps there from being a combinatorial explosion in the
number of different vtables which must be maintained. */
/* In this case, we need to know whether BASE is derived
from BASE_CONTEXT in any case, even the case where the
derivation is ambiguous. */
int distance = get_base_distance (base, base_context, 0, (tree *)0);
if (distance < 0 && distance != -2)
continue;
/* BASE_FNDECL is defined in a class derived from
the base class owning this VFIELD. */
}
#endif
/* Get the path starting from the deepest base class CONTEXT
of T (i.e., first defn of BASE_FNDECL). */
get_base_distance (base_context, t, 0, &path);
/* Get our best approximation of what to use for constructing
the virtual function table for T. */
do
{
/* Walk from base toward derived, stopping at the
most derived baseclass that matters. That baseclass
is exactly the one which provides the vtable along
the VFIELD spine, but no more. */
if (TREE_VIA_VIRTUAL (path))
{
base = path;
binfo = binfo_member (BINFO_TYPE (base), CLASSTYPE_VBASECLASSES (t));
break;
}
if (BINFO_INHERITANCE_CHAIN (path) == NULL_TREE
|| (BINFO_TYPE (BINFO_BASETYPE (BINFO_INHERITANCE_CHAIN (path), 0))
!= BINFO_TYPE (path))
|| BINFO_INHERITANCE_CHAIN (BINFO_INHERITANCE_CHAIN (path)) == NULL_TREE)
{
base = path;
binfo = base;
break;
}
path = BINFO_INHERITANCE_CHAIN (path);
}
while (1);
/* Find the right offset for the this pointer based on the base
class we just found. */
base_offset = BINFO_OFFSET (binfo);
this_offset = size_binop (MINUS_EXPR, offset, base_offset);
/* Make sure we can modify the derived association with immunity. */
if (TREE_USED (TYPE_BINFO (t)))
TYPE_BINFO (t) = copy_binfo (TYPE_BINFO (t));
/* We call this case NORMAL iff this virtual function table
pointer field has its storage reserved in this class.
This is normally the case without virtual baseclasses
or off-center multiple baseclasses. */
normal = (vfield != NULL_TREE
&& VF_BASETYPE_VALUE (vfields) == DECL_FCONTEXT (vfield)
&& (VF_BINFO_VALUE (vfields) == NULL_TREE
|| ! TREE_VIA_VIRTUAL (VF_BINFO_VALUE (vfields))));
if (normal && VF_BINFO_VALUE (vfields))
/* Everything looks normal so far...check that we are really
working from VFIELD's basetype, and not some other appearance
of that basetype in the lattice. */
normal = (VF_BINFO_VALUE (vfields)
== get_binfo (VF_BASETYPE_VALUE (vfields), t, 0));
if (normal)
{
/* In this case, it is *type*'s vtable we are modifying.
We start with the approximation that it's vtable is that
of the immediate base class. */
base_context = t;
binfo = TYPE_BINFO (t);
if (! BINFO_NEW_VTABLE_MARKED (binfo))
build_vtable (TYPE_BINFO (DECL_CONTEXT (vfield)), t);
}
else
{
/* This is our very own copy of `basetype' to play with.
Later, we will fill in all the virtual functions
that override the virtual functions in these base classes
which are not defined by the current type. */
if (! BINFO_NEW_VTABLE_MARKED (binfo))
prepare_fresh_vtable (binfo, base, t);
}
modify_vtable_entry (get_vtable_entry (BINFO_VIRTUALS (binfo), base_fndecl),
build_vtable_entry (this_offset, pfn),
fndecl, base_context);
}
for (vbases = CLASSTYPE_VBASECLASSES (t); vbases; vbases = TREE_CHAIN (vbases))
{
tree this_offset;
tree base, path;
if (! BINFO_VTABLE (vbases))
/* There are only two ways that a type can fail to have
virtual functions: neither it nor any of its base
types define virtual functions (in which case
no updating need be done), or virtual functions
accessible to it come from virtual base classes
(in which case we have or will get them modified
in other passes of this loop). */
continue;
base = BINFO_TYPE (vbases);
path = NULL_TREE;
if (base != base_context
&& get_base_distance (base_context, base, 0, &path) == -1)
continue;
if (path)
this_offset = size_binop (MINUS_EXPR, offset, BINFO_OFFSET (path));
else
this_offset = offset;
/* Doesn't matter if not actually from this virtual base class,
but shouldn't come from deeper virtual baseclasses. The enclosing
loop should take care of such baseclasses. */
while (path)
{
if (TREE_VIA_VIRTUAL (path))
goto skip;
path = BINFO_INHERITANCE_CHAIN (path);
}
base_offset = BINFO_OFFSET (vbases);
this_offset = size_binop (MINUS_EXPR, this_offset, base_offset);
/* Make sure we can modify the derived association with immunity. */
if (TREE_USED (TYPE_BINFO (t)))
TYPE_BINFO (t) = copy_binfo (TYPE_BINFO (t));
/* This is our very own copy of `basetype' to play with. */
if (! BINFO_NEW_VTABLE_MARKED (vbases))
{
tree context_binfo = binfo_value (base_context, base);
prepare_fresh_vtable (vbases, context_binfo, t);
}
modify_vtable_entry (get_vtable_entry (BINFO_VIRTUALS (vbases), base_fndecl),
build_vtable_entry (this_offset, pfn),
fndecl, base_context);
skip: {}
}
}
static tree
add_virtual_function (pending_virtuals, has_virtual, x, t)
tree pending_virtuals;
int *has_virtual;
tree x;
tree t; /* Structure type. */
{
int debug_vbase = 1;
/* FUNCTION_TYPEs and OFFSET_TYPEs no longer freely
convert to void *. Make such a conversion here. */
tree vfn = build1 (ADDR_EXPR, ptr_type_node, x);
TREE_CONSTANT (vfn) = 1;
/* current_class_type may be NULL_TREE in case of error. */
if (current_class_type)
TREE_ADDRESSABLE (x) = CLASSTYPE_VTABLE_NEEDS_WRITING (current_class_type);
/* If the virtual function is a redefinition of a prior one,
figure out in which base class the new definition goes,
and if necessary, make a fresh virtual function table
to hold that entry. */
if (DECL_VINDEX (x) == error_mark_node)
{
tree entry = build_vtable_entry (integer_zero_node, vfn);
if (flag_dossier && *has_virtual == 0)
{
/* CLASSTYPE_DOSSIER is only used as a Boolean (NULL or not). */
CLASSTYPE_DOSSIER (t) = integer_one_node;
*has_virtual = 1;
}
/* Build a new INT_CST for this DECL_VINDEX. */
#ifdef VTABLE_USES_MASK
SET_DECL_VINDEX (x, build_int_2 (++(*has_virtual), 0));
#else
{
static tree index_table[256];
tree index;
int i = ++(*has_virtual);
if (i >= 256 || index_table[i] == 0)
{
index = build_int_2 (((unsigned HOST_WIDE_INT) 1
<< (BITS_PER_WORD - 1)) | i, ~0);
if (i < 256)
index_table[i] = index;
}
else
index = index_table[i];
DECL_VINDEX (x) = index;
}
#endif
pending_virtuals = tree_cons (DECL_VINDEX (x), entry, pending_virtuals);
}
/* Happens if declared twice in class or we're not in a class definition.
We will give error later or we've already given it. */
else if (TREE_CODE (DECL_VINDEX (x)) == INTEGER_CST
|| current_class_type == NULL_TREE)
return pending_virtuals;
else if (debug_vbase && TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
{
/* Need an entry in some other virtual function table.
Deal with this after we have laid out our virtual base classes. */
pending_hard_virtuals = temp_tree_cons (x, vfn, pending_hard_virtuals);
}
else
{
/* Need an entry in some other virtual function table.
We can do this now. */
tree base_fndecl_list = DECL_VINDEX (x), base_fndecls, prev = 0;
tree vtable_context = DECL_FCONTEXT (CLASSTYPE_VFIELD (current_class_type));
tree true_base_fndecl = 0;
/* First assign DECL_VINDEX from the base vfn with which
we share our vtable. */
base_fndecls = base_fndecl_list;
while (base_fndecls)
{
if (TREE_CHAIN (base_fndecls) == NULL_TREE
|| DECL_FCONTEXT (CLASSTYPE_VFIELD (DECL_CLASS_CONTEXT (TREE_VALUE (base_fndecls)))) == vtable_context)
{
true_base_fndecl = TREE_VALUE (base_fndecls);
modify_vtable_entries (current_class_type, x,
true_base_fndecl, vfn);
if (prev)
TREE_CHAIN (prev) = TREE_CHAIN (base_fndecls);
else
base_fndecl_list = prev;
break;
}
prev = base_fndecls;
base_fndecls = TREE_CHAIN (base_fndecls);
}
/* Now fill in the rest of the vtables. */
base_fndecls = base_fndecl_list;
while (base_fndecls)
{
/* If we haven't found one we like, first one wins. */
if (true_base_fndecl == 0)
true_base_fndecl = TREE_VALUE (base_fndecls);
modify_vtable_entries (current_class_type, x,
TREE_VALUE (base_fndecls), vfn);
base_fndecls = TREE_CHAIN (base_fndecls);
}
DECL_CONTEXT (x) = DECL_CONTEXT (true_base_fndecl);
}
return pending_virtuals;
}
/* Obstack on which to build the vector of class methods. */
struct obstack class_obstack;
extern struct obstack *current_obstack;
/* Add method METHOD to class TYPE. This is used when a method
has been defined which did not initially appear in the class definition,
and helps cut down on spurious error messages.
FIELDS is the entry in the METHOD_VEC vector entry of the class type where
the method should be added. */
void
add_method (type, fields, method)
tree type, *fields, method;
{
/* We must make a copy of METHOD here, since we must be sure that
we have exclusive title to this method's DECL_CHAIN. */
tree decl;
push_obstacks (&permanent_obstack, &permanent_obstack);
{
decl = copy_node (method);
if (DECL_RTL (decl) == 0
&& (!processing_template_decl
|| !uses_template_parms (decl)))
{
make_function_rtl (decl);
DECL_RTL (method) = DECL_RTL (decl);
}
}
if (fields && *fields)
{
/* Take care not to hide destructor. */
DECL_CHAIN (decl) = DECL_CHAIN (*fields);
DECL_CHAIN (*fields) = decl;
}
else if (CLASSTYPE_METHOD_VEC (type) == 0)
{
tree method_vec = make_node (TREE_VEC);
if (TYPE_IDENTIFIER (type) == DECL_NAME (decl))
{
TREE_VEC_ELT (method_vec, 0) = decl;
TREE_VEC_LENGTH (method_vec) = 1;
}
else
{
/* ??? Is it possible for there to have been enough room in the
current chunk for the tree_vec structure but not a tree_vec
plus a tree*? Will this work in that case? */
obstack_free (current_obstack, method_vec);
obstack_blank (current_obstack, sizeof (struct tree_vec) + sizeof (tree *));
TREE_VEC_ELT (method_vec, 1) = decl;
TREE_VEC_LENGTH (method_vec) = 2;
obstack_finish (current_obstack);
}
CLASSTYPE_METHOD_VEC (type) = method_vec;
}
else
{
tree method_vec = CLASSTYPE_METHOD_VEC (type);
int len = TREE_VEC_LENGTH (method_vec);
/* Adding a new ctor or dtor. This is easy because our
METHOD_VEC always has a slot for such entries. */
if (TYPE_IDENTIFIER (type) == DECL_NAME (decl))
{
/* TREE_VEC_ELT (method_vec, 0) = decl; */
if (decl != TREE_VEC_ELT (method_vec, 0))
{
DECL_CHAIN (decl) = TREE_VEC_ELT (method_vec, 0);
TREE_VEC_ELT (method_vec, 0) = decl;
}
}
else
{
/* This is trickier. We try to extend the TREE_VEC in-place,
but if that does not work, we copy all its data to a new
TREE_VEC that's large enough. */
struct obstack *ob = &class_obstack;
tree *end = (tree *)obstack_next_free (ob);
if (end != TREE_VEC_END (method_vec))
{
ob = current_obstack;
TREE_VEC_LENGTH (method_vec) += 1;
TREE_VEC_ELT (method_vec, len) = NULL_TREE;
method_vec = copy_node (method_vec);
TREE_VEC_LENGTH (method_vec) -= 1;
}
else
{
tree tmp_vec = (tree) obstack_base (ob);
if (obstack_room (ob) < sizeof (tree))
{
obstack_blank (ob, sizeof (struct tree_common)
+ tree_code_length[(int) TREE_VEC]
* sizeof (char *)
+ len * sizeof (tree));
tmp_vec = (tree) obstack_base (ob);
bcopy (method_vec, tmp_vec,
(sizeof (struct tree_common)
+ tree_code_length[(int) TREE_VEC] * sizeof (char *)
+ (len-1) * sizeof (tree)));
method_vec = tmp_vec;
}
else
obstack_blank (ob, sizeof (tree));
}
obstack_finish (ob);
TREE_VEC_ELT (method_vec, len) = decl;
TREE_VEC_LENGTH (method_vec) = len + 1;
CLASSTYPE_METHOD_VEC (type) = method_vec;
if (TYPE_BINFO_BASETYPES (type) && CLASSTYPE_BASELINK_VEC (type))
{
/* ??? May be better to know whether these can be extended? */
tree baselink_vec = CLASSTYPE_BASELINK_VEC (type);
TREE_VEC_LENGTH (baselink_vec) += 1;
CLASSTYPE_BASELINK_VEC (type) = copy_node (baselink_vec);
TREE_VEC_LENGTH (baselink_vec) -= 1;
TREE_VEC_ELT (CLASSTYPE_BASELINK_VEC (type), len) = 0;
}
}
}
DECL_CONTEXT (decl) = type;
DECL_CLASS_CONTEXT (decl) = type;
pop_obstacks ();
}
/* Subroutines of finish_struct. */
/* Look through the list of fields for this struct, deleting
duplicates as we go. This must be recursive to handle
anonymous unions.
FIELD is the field which may not appear anywhere in FIELDS.
FIELD_PTR, if non-null, is the starting point at which
chained deletions may take place.
The value returned is the first acceptable entry found
in FIELDS.
Note that anonymous fields which are not of UNION_TYPE are
not duplicates, they are just anonymous fields. This happens
when we have unnamed bitfields, for example. */
static tree
delete_duplicate_fields_1 (field, field_ptr, fields)
tree field, *field_ptr, fields;
{
tree x;
tree prev = field_ptr ? *field_ptr : 0;
if (DECL_NAME (field) == 0)
{
if (TREE_CODE (TREE_TYPE (field)) != UNION_TYPE)
return fields;
for (x = TYPE_FIELDS (TREE_TYPE (field)); x; x = TREE_CHAIN (x))
fields = delete_duplicate_fields_1 (x, field_ptr, fields);
if (prev)
TREE_CHAIN (prev) = fields;
return fields;
}
else
{
for (x = fields; x; prev = x, x = TREE_CHAIN (x))
{
if (DECL_NAME (x) == 0)
{
if (TREE_CODE (TREE_TYPE (x)) != UNION_TYPE)
continue;
TYPE_FIELDS (TREE_TYPE (x))
= delete_duplicate_fields_1 (field, (tree *)0, TYPE_FIELDS (TREE_TYPE (x)));
if (TYPE_FIELDS (TREE_TYPE (x)) == 0)
{
if (prev == 0)
fields = TREE_CHAIN (fields);
else
TREE_CHAIN (prev) = TREE_CHAIN (x);
}
}
else
{
if (DECL_NAME (field) == DECL_NAME (x))
{
if (TREE_CODE (field) == CONST_DECL
&& TREE_CODE (x) == CONST_DECL)
error_with_decl (x, "duplicate enum value `%s'");
else if (TREE_CODE (field) == CONST_DECL
|| TREE_CODE (x) == CONST_DECL)
error_with_decl (x, "duplicate field `%s' (as enum and non-enum)");
else if (TREE_CODE (field) == TYPE_DECL
&& TREE_CODE (x) == TYPE_DECL)
error_with_decl (x, "duplicate class scope type `%s'");
else if (TREE_CODE (field) == TYPE_DECL
|| TREE_CODE (x) == TYPE_DECL)
error_with_decl (x, "duplicate field `%s' (as type and non-type)");
else
error_with_decl (x, "duplicate member `%s'");
if (prev == 0)
fields = TREE_CHAIN (fields);
else
TREE_CHAIN (prev) = TREE_CHAIN (x);
}
}
}
}
return fields;
}
static void
delete_duplicate_fields (fields)
tree fields;
{
tree x;
for (x = fields; x && TREE_CHAIN (x); x = TREE_CHAIN (x))
TREE_CHAIN (x) = delete_duplicate_fields_1 (x, &x, TREE_CHAIN (x));
}
/* Change the visibility of T::FDECL to VISIBILITY.
Return 1 if change was legit, otherwise return 0. */
static int
alter_visibility (t, fdecl, visibility)
tree t;
tree fdecl;
enum visibility_type visibility;
{
tree elem = purpose_member (t, DECL_VISIBILITY (fdecl));
if (elem && TREE_VALUE (elem) != (tree)visibility)
{
if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
{
error_with_decl (TREE_TYPE (fdecl), "conflicting visibility specifications for method `%s', ignored");
}
else error ("conflicting visibility specifications for field `%s', ignored", IDENTIFIER_POINTER (DECL_NAME (fdecl)));
}
else if (TREE_PRIVATE (fdecl) && visibility != visibility_private)
error_with_decl (fdecl, "cannot make private `%s' non-private");
else if (TREE_PROTECTED (fdecl) && visibility == visibility_public)
error_with_decl (fdecl, "cannot make protected `%s' public");
/* ARM 11.3: an access declaration may not be used to restrict access
to a member that is accessible in the base class. */
else if (TREE_PUBLIC (fdecl)
&& (visibility == visibility_private
|| visibility == visibility_protected))
error_with_decl (fdecl, "cannot reduce visibility of public member `%s'");
else if (elem == NULL_TREE)
{
DECL_VISIBILITY (fdecl) = tree_cons (t, (tree)visibility,
DECL_VISIBILITY (fdecl));
return 1;
}
return 0;
}
static tree
get_vfield_offset (binfo)
tree binfo;
{
return size_binop (PLUS_EXPR,
DECL_FIELD_BITPOS (CLASSTYPE_VFIELD (BINFO_TYPE (binfo))),
BINFO_OFFSET (binfo));
}
/* If FOR_TYPE needs to reinitialize virtual function table pointers
for TYPE's sub-objects, add such reinitializations to BASE_INIT_LIST.
Returns BASE_INIT_LIST appropriately modified. */
static tree
maybe_fixup_vptrs (for_type, binfo, base_init_list)
tree for_type, binfo, base_init_list;
{
/* Now reinitialize any slots that don't fall under our virtual
function table pointer. */
tree vfields = CLASSTYPE_VFIELDS (BINFO_TYPE (binfo));
while (vfields)
{
tree base_binfo = get_binfo (VF_BASETYPE_VALUE (vfields), for_type, 0);
if (CLASSTYPE_NEEDS_VIRTUAL_REINIT (VF_BASETYPE_VALUE (vfields)))
{
tree base_offset = get_vfield_offset (base_binfo);
if (! tree_int_cst_equal (base_offset, get_vfield_offset (TYPE_BINFO (for_type)))
&& ! tree_int_cst_equal (base_offset, get_vfield_offset (binfo)))
base_init_list = tree_cons (error_mark_node, base_binfo,
base_init_list);
}
vfields = TREE_CHAIN (vfields);
}
return base_init_list;
}
/* If TYPE does not have a constructor, then the compiler must
manually deal with all of the initialization this type requires.
If a base initializer exists only to fill in the virtual function
table pointer, then we mark that fact with the TREE_VIRTUAL bit.
This way, we avoid multiple initializations of the same field by
each virtual function table up the class hierarchy.
Virtual base class pointers are not initialized here. They are
initialized only at the "top level" of object creation. If we
initialized them here, we would have to skip a lot of work. */
static void
build_class_init_list (type)
tree type;
{
tree base_init_list = NULL_TREE;
tree member_init_list = NULL_TREE;
/* Since we build member_init_list and base_init_list using
tree_cons, backwards fields the all through work. */
tree x;
tree binfos = BINFO_BASETYPES (TYPE_BINFO (type));
int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0;
for (x = TYPE_FIELDS (type); x; x = TREE_CHAIN (x))
{
if (TREE_CODE (x) != FIELD_DECL)
continue;
if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (x))
|| DECL_INITIAL (x) != NULL_TREE)
member_init_list = tree_cons (x, type, member_init_list);
}
member_init_list = nreverse (member_init_list);
/* We will end up doing this last. Need special marker
to avoid infinite regress. */
if (TYPE_VIRTUAL_P (type))
{
base_init_list = build_tree_list (error_mark_node, TYPE_BINFO (type));
if (CLASSTYPE_NEEDS_VIRTUAL_REINIT (type) == 0)
TREE_VALUE (base_init_list) = NULL_TREE;
TREE_ADDRESSABLE (base_init_list) = 1;
}
/* Each base class which needs to have initialization
of some kind gets to make such requests known here. */
for (i = n_baseclasses-1; i >= 0; i--)
{
tree base_binfo = TREE_VEC_ELT (binfos, i);
tree blist;
/* Don't initialize virtual baseclasses this way. */
if (TREE_VIA_VIRTUAL (base_binfo))
continue;
if (TYPE_HAS_CONSTRUCTOR (BINFO_TYPE (base_binfo)))
{
/* ...and the last shall come first... */
base_init_list = maybe_fixup_vptrs (type, base_binfo, base_init_list);
base_init_list = tree_cons (NULL_TREE, base_binfo, base_init_list);
continue;
}
if ((blist = CLASSTYPE_BASE_INIT_LIST (BINFO_TYPE (base_binfo))) == NULL_TREE)
/* Nothing to initialize. */
continue;
/* ...ditto... */
base_init_list = maybe_fixup_vptrs (type, base_binfo, base_init_list);
/* This is normally true for single inheritance.
The win is we can shrink the chain of initializations
to be done by only converting to the actual type
we are interested in. */
if (TREE_VALUE (blist)
&& TREE_CODE (TREE_VALUE (blist)) == TREE_VEC
&& tree_int_cst_equal (BINFO_OFFSET (base_binfo),
BINFO_OFFSET (TREE_VALUE (blist))))
{
if (base_init_list)
{
/* Does it do more than just fill in a
virtual function table pointer? */
if (! TREE_ADDRESSABLE (blist))
base_init_list = build_tree_list (blist, base_init_list);
/* Can we get by just with the virtual function table
pointer that it fills in? */
else if (TREE_ADDRESSABLE (base_init_list)
&& TREE_VALUE (base_init_list) == 0)
base_init_list = blist;
/* Maybe, but it is not obvious as the previous case. */
else if (! CLASSTYPE_NEEDS_VIRTUAL_REINIT (type))
{
tree last = tree_last (base_init_list);
while (TREE_VALUE (last)
&& TREE_CODE (TREE_VALUE (last)) == TREE_LIST)
last = tree_last (TREE_VALUE (last));
if (TREE_VALUE (last) == 0)
base_init_list = build_tree_list (blist, base_init_list);
}
}
else
base_init_list = blist;
}
else
{
/* The function expand_aggr_init knows how to do the
initialization of `basetype' without getting
an explicit `blist'. */
if (base_init_list)
base_init_list = tree_cons (NULL_TREE, base_binfo, base_init_list);
else
base_init_list = CLASSTYPE_BINFO_AS_LIST (BINFO_TYPE (base_binfo));
}
}
if (base_init_list)
if (member_init_list)
CLASSTYPE_BASE_INIT_LIST (type) = build_tree_list (base_init_list, member_init_list);
else
CLASSTYPE_BASE_INIT_LIST (type) = base_init_list;
else if (member_init_list)
CLASSTYPE_BASE_INIT_LIST (type) = member_init_list;
}
struct base_info
{
int has_virtual;
int max_has_virtual;
int n_ancestors;
tree vfield;
tree vfields;
char needs_default_ctor;
char cant_have_default_ctor;
char needs_const_ctor;
char cant_have_const_ctor;
char members_need_dtors;
char needs_virtual_dtor;
};
/* Record information about type T derived from its base classes.
Store most of that information in T itself, and place the
remaining information in the struct BASE_INFO.
Propagate basetype offsets throughout the lattice. Note that the
lattice topped by T is really a pair: it's a DAG that gives the
structure of the derivation hierarchy, and it's a list of the
virtual baseclasses that appear anywhere in the DAG. When a vbase
type appears in the DAG, it's offset is 0, and it's children start
their offsets from that point. When a vbase type appears in the list,
its offset is the offset it has in the hierarchy, and its children's
offsets include that offset in theirs.
Returns the index of the first base class to have virtual functions,
or zero if no such base class. */
static int
finish_base_struct (t, b, binfos)
tree t;
struct base_info *b;
tree binfos;
{
int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0;
int first_vfn_base_index = -1;
bzero (b, sizeof (struct base_info));
for (i = 0; i < n_baseclasses; i++)
{
tree base_binfo = TREE_VEC_ELT (binfos, i);
tree basetype = BINFO_TYPE (base_binfo);
/* If the type of basetype is incomplete, then
we already complained about that fact
(and we should have fixed it up as well). */
if (TYPE_SIZE (basetype) == 0)
{
int j;
/* The base type is of incomplete type. It is
probably best to pretend that it does not
exist. */
if (i == n_baseclasses-1)
TREE_VEC_ELT (binfos, i) = NULL_TREE;
TREE_VEC_LENGTH (binfos) -= 1;
n_baseclasses -= 1;
for (j = i; j+1 < n_baseclasses; j++)
TREE_VEC_ELT (binfos, j) = TREE_VEC_ELT (binfos, j+1);
}
if (TYPE_NEEDS_DESTRUCTOR (basetype))
b->members_need_dtors = 1;
if (TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype))
b->needs_default_ctor = 1;
else if (TYPE_HAS_CONSTRUCTOR (basetype))
b->cant_have_default_ctor = 1;
if (TYPE_GETS_CONST_INIT_REF (basetype))
b->needs_const_ctor = 1;
else if (TYPE_GETS_INIT_REF (basetype))
b->cant_have_const_ctor = 1;
CLASSTYPE_ALTERS_VISIBILITIES_P (t)
|= CLASSTYPE_ALTERS_VISIBILITIES_P (basetype);
b->n_ancestors += CLASSTYPE_N_SUPERCLASSES (basetype);
TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
TYPE_NEEDS_CONSTRUCTOR (t) |= TYPE_NEEDS_CONSTRUCTOR (basetype);
TYPE_NEEDS_DESTRUCTOR (t) |= TYPE_NEEDS_DESTRUCTOR (basetype);
TYPE_GETS_ASSIGNMENT (t) |= TYPE_GETS_ASSIGNMENT (basetype);
TYPE_GETS_INIT_REF (t) |= TYPE_GETS_INIT_REF (basetype);
TYPE_OVERLOADS_CALL_EXPR (t) |= TYPE_OVERLOADS_CALL_EXPR (basetype);
TYPE_OVERLOADS_ARRAY_REF (t) |= TYPE_OVERLOADS_ARRAY_REF (basetype);
TYPE_OVERLOADS_ARROW (t) |= TYPE_OVERLOADS_ARROW (basetype);
if (! TREE_VIA_VIRTUAL (base_binfo)
#if 0
/* This cannot be done, as prepare_fresh_vtable wants to modify
binfos associated with vfields anywhere in the hierarchy, not
just immediate base classes. Due to unsharing, the compiler
might consume 3% more memory on a real program.
*/
&& ! BINFO_OFFSET_ZEROP (base_binfo)
#endif
&& BINFO_BASETYPES (base_binfo))
{
tree base_binfos = BINFO_BASETYPES (base_binfo);
tree chain = NULL_TREE;
int j;
/* Now unshare the structure beneath BASE_BINFO. */
for (j = TREE_VEC_LENGTH (base_binfos)-1;
j >= 0; j--)
{
tree base_base_binfo = TREE_VEC_ELT (base_binfos, j);
if (! TREE_VIA_VIRTUAL (base_base_binfo))
TREE_VEC_ELT (base_binfos, j)
= make_binfo (BINFO_OFFSET (base_base_binfo),
BINFO_TYPE (base_base_binfo),
BINFO_VTABLE (base_base_binfo),
BINFO_VIRTUALS (base_base_binfo),
chain);
chain = TREE_VEC_ELT (base_binfos, j);
TREE_VIA_PUBLIC (chain) = TREE_VIA_PUBLIC (base_base_binfo);
TREE_VIA_PROTECTED (chain) = TREE_VIA_PROTECTED (base_base_binfo);
}
/* Completely unshare potentially shared data, and
update what is ours. */
propagate_binfo_offsets (base_binfo, BINFO_OFFSET (base_binfo));
}
if (! TREE_VIA_VIRTUAL (base_binfo))
CLASSTYPE_N_SUPERCLASSES (t) += 1;
if (TYPE_VIRTUAL_P (basetype))
{
/* If there's going to be a destructor needed, make
sure it will be virtual. */
b->needs_virtual_dtor = 1;
/* Don't borrow virtuals from virtual baseclasses. */
if (TREE_VIA_VIRTUAL (base_binfo))
continue;
if (first_vfn_base_index < 0)
{
first_vfn_base_index = i;
b->has_virtual = CLASSTYPE_VSIZE (basetype);
b->vfield = CLASSTYPE_VFIELD (basetype);
b->vfields = CLASSTYPE_VFIELDS (basetype);
CLASSTYPE_VFIELD (t) = b->vfield;
}
else
{
/* Only add unique vfields, and flatten them out as we go. */
tree vfields = CLASSTYPE_VFIELDS (basetype);
while (vfields)
{
if (VF_BINFO_VALUE (vfields) == NULL_TREE
|| ! TREE_VIA_VIRTUAL (VF_BINFO_VALUE (vfields)))
{
tree value = VF_BASETYPE_VALUE (vfields);
b->vfields = tree_cons (base_binfo, value, b->vfields);
if (DECL_NAME (CLASSTYPE_VFIELD (value))
== DECL_NAME (CLASSTYPE_VFIELD (basetype)))
VF_NORMAL_VALUE (b->vfields) = basetype;
else
VF_NORMAL_VALUE (b->vfields) = VF_NORMAL_VALUE (vfields);
}
vfields = TREE_CHAIN (vfields);
}
if (b->has_virtual == 0)
{
first_vfn_base_index = i;
b->has_virtual = CLASSTYPE_VSIZE (basetype);
b->vfield = CLASSTYPE_VFIELD (basetype);
CLASSTYPE_VFIELD (t) = b->vfield;
}
}
}
}
{
tree vfields;
/* Find the base class with the largest number of virtual functions. */
for (vfields = b->vfields; vfields; vfields = TREE_CHAIN (vfields))
{
if (CLASSTYPE_VSIZE (VF_BASETYPE_VALUE (vfields)) > b->max_has_virtual)
b->max_has_virtual = CLASSTYPE_VSIZE (VF_BASETYPE_VALUE (vfields));
if (VF_DERIVED_VALUE (vfields)
&& CLASSTYPE_VSIZE (VF_DERIVED_VALUE (vfields)) > b->max_has_virtual)
b->max_has_virtual = CLASSTYPE_VSIZE (VF_DERIVED_VALUE (vfields));
}
}
if (b->vfield == 0)
/* If all virtual functions come only from virtual baseclasses. */
return -1;
return first_vfn_base_index;
}
static int
typecode_p (type, code)
tree type;
enum tree_code code;
{
return (TREE_CODE (type) == code
|| (TREE_CODE (type) == REFERENCE_TYPE
&& TREE_CODE (TREE_TYPE (type)) == code));
}
/* Set memoizing fields and bits of T (and its variants) for later use.
MAX_HAS_VIRTUAL is the largest size of any T's virtual function tables. */
static void
finish_struct_bits (t, max_has_virtual)
tree t;
int max_has_virtual;
{
int i, n_baseclasses = CLASSTYPE_N_BASECLASSES (t);
tree method_vec = CLASSTYPE_METHOD_VEC (t);
/* Fix up variants (if any). */
tree variants = TYPE_NEXT_VARIANT (t);
while (variants)
{
/* These fields are in the _TYPE part of the node, not in
the TYPE_LANG_SPECIFIC component, so they are not shared. */
TYPE_HAS_CONSTRUCTOR (variants) = TYPE_HAS_CONSTRUCTOR (t);
TYPE_HAS_DESTRUCTOR (variants) = TYPE_HAS_DESTRUCTOR (t);
TYPE_NEEDS_CONSTRUCTOR (variants) = TYPE_NEEDS_CONSTRUCTOR (t);
TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
TYPE_NEEDS_DESTRUCTOR (variants) = TYPE_NEEDS_DESTRUCTOR (t);
TYPE_USES_COMPLEX_INHERITANCE (variants) = TYPE_USES_COMPLEX_INHERITANCE (t);
TYPE_VIRTUAL_P (variants) = TYPE_VIRTUAL_P (t);
TYPE_USES_VIRTUAL_BASECLASSES (variants) = TYPE_USES_VIRTUAL_BASECLASSES (t);
/* Copy whatever these are holding today. */
TYPE_MIN_VALUE (variants) = TYPE_MIN_VALUE (t);
TYPE_MAX_VALUE (variants) = TYPE_MAX_VALUE (t);
variants = TYPE_NEXT_VARIANT (variants);
}
if (n_baseclasses && max_has_virtual)
{
/* Done by `finish_struct' for classes without baseclasses. */
int has_abstract_virtuals = CLASSTYPE_ABSTRACT_VIRTUALS (t) != 0;
tree binfos = TYPE_BINFO_BASETYPES (t);
for (i = n_baseclasses-1; i >= 0; i--)
{
has_abstract_virtuals
|= (CLASSTYPE_ABSTRACT_VIRTUALS (BINFO_TYPE (TREE_VEC_ELT (binfos, i))) != 0);
if (has_abstract_virtuals)
break;
}
if (has_abstract_virtuals)
CLASSTYPE_ABSTRACT_VIRTUALS (t) = get_abstract_virtuals (t);
}
if (n_baseclasses)
{
/* Notice whether this class has type conversion functions defined.
Also report whether joining two types yields an ambiguity in the
virtual function table, e.g.,
struct A { virtual int f (); };
struct B { virtual int f (); };
struct C : A, B { / * no f (); * / }; / / error, ambiguous
*/
tree binfo = TYPE_BINFO (t);
tree binfos = BINFO_BASETYPES (binfo);
int n_binfos = list_length (binfo);
tree vbases = CLASSTYPE_VBASECLASSES (t), basetype;
int n_vbases = list_length (vbases), j;
build_mi_virtuals (n_binfos+n_vbases*n_baseclasses, max_has_virtual);
/* Fill in virtual function table with values which do not come
"normal"ly, i.e., those which come from virtual and/or
non-leftmost base classes. */
for (i = 0; binfo; binfo = TREE_CHAIN (binfo))
{
if (TREE_VIA_VIRTUAL (binfo))
/* Virtual functions from virtual baseclasses are done below. */;
else if (CLASSTYPE_VSIZE (BINFO_TYPE (binfo)))
{
tree virtuals = TREE_CHAIN (BINFO_VIRTUALS (binfo));
if (flag_dossier)
virtuals = TREE_CHAIN (virtuals);
add_mi_virtuals (++i, virtuals);
}
}
for (; vbases; vbases = TREE_CHAIN (vbases))
{
basetype = BINFO_TYPE (vbases);
if (CLASSTYPE_VSIZE (basetype))
for (j = n_baseclasses-1; j >= 0; j--)
{
tree this_binfo = TREE_VEC_ELT (binfos, j);
if (UNIQUELY_DERIVED_FROM_P (basetype, this_binfo))
{
tree virtuals = TREE_CHAIN (BINFO_VIRTUALS (vbases));
if (flag_dossier)
virtuals = TREE_CHAIN (virtuals);
add_mi_virtuals (++i, virtuals);
}
}
}
for (i = n_baseclasses-1; i >= 0; i--)
{
basetype = BINFO_TYPE (TREE_VEC_ELT (binfos, i));
if (TYPE_HAS_CONVERSION (basetype))
{
TYPE_HAS_CONVERSION (t) = 1;
TYPE_HAS_INT_CONVERSION (t) |= TYPE_HAS_INT_CONVERSION (basetype);
TYPE_HAS_REAL_CONVERSION (t) |= TYPE_HAS_REAL_CONVERSION (basetype);
}
if (CLASSTYPE_MAX_DEPTH (basetype) >= CLASSTYPE_MAX_DEPTH (t))
CLASSTYPE_MAX_DEPTH (t) = CLASSTYPE_MAX_DEPTH (basetype) + 1;
}
report_ambiguous_mi_virtuals (n_binfos+n_vbases*n_baseclasses, t);
#if 0
/* Now that we know what the virtual function table looks like,
fix up offsets in the presence of virtual base classes. */
if (n_vbases)
fixup_vbase_offsets (t);
#endif
}
/* Need to test METHOD_VEC here in case all methods
(conversions and otherwise) are inherited. */
if (TYPE_HAS_CONVERSION (t) && method_vec != NULL_TREE)
{
tree first_conversions[last_conversion_type];
tree last_conversions[last_conversion_type];
enum conversion_type conv_index;
tree *tmp;
int i;
bzero (first_conversions, sizeof (first_conversions));
bzero (last_conversions, sizeof (last_conversions));
for (tmp = &TREE_VEC_ELT (method_vec, 1);
tmp != TREE_VEC_END (method_vec); tmp += 1)
{
/* ??? This should compare DECL_NAME (*tmp) == ansi_opname[TYPE_EXPR]. */
if (IDENTIFIER_TYPENAME_P (DECL_ASSEMBLER_NAME (*tmp)))
{
tree fntype = TREE_TYPE (*tmp);
tree return_type = TREE_TYPE (fntype);
my_friendly_assert (TREE_CODE (fntype) == METHOD_TYPE, 171);
if (typecode_p (return_type, POINTER_TYPE))
{
if (TYPE_READONLY (TREE_TYPE (return_type)))
conv_index = constptr_conv;
else
conv_index = ptr_conv;
}
else if (typecode_p (return_type, INTEGER_TYPE))
{
TYPE_HAS_INT_CONVERSION (t) = 1;
conv_index = int_conv;
}
else if (typecode_p (return_type, REAL_TYPE))
{
TYPE_HAS_REAL_CONVERSION (t) = 1;
conv_index = real_conv;
}
else
continue;
if (first_conversions[(int) conv_index] == NULL_TREE)
first_conversions[(int) conv_index] = *tmp;
last_conversions[(int) conv_index] = *tmp;
}
}
for (i = 0; i < (int) last_conversion_type; i++)
if (first_conversions[i] != last_conversions[i])
CLASSTYPE_CONVERSION (t, i) = error_mark_node;
else
CLASSTYPE_CONVERSION (t, i) = first_conversions[i];
}
/* If this type has constructors, force its mode to be BLKmode,
and force its TREE_ADDRESSABLE bit to be nonzero. */
if (TYPE_NEEDS_CONSTRUCTING (t) || TYPE_NEEDS_DESTRUCTOR (t))
{
tree variants = t;
if (TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)
DECL_MODE (TYPE_NAME (t)) = BLKmode;
while (variants)
{
TYPE_MODE (variants) = BLKmode;
TREE_ADDRESSABLE (variants) = 1;
variants = TYPE_NEXT_VARIANT (variants);
}
}
}
/* Warn about duplicate methods in fn_fields. Also compact method
lists so that lookup can be made faster.
Algorithm: Outer loop builds lists by method name. Inner loop
checks for redundant method names within a list.
Data Structure: List of method lists. The outer list is a
TREE_LIST, whose TREE_PURPOSE field is the field name and the
TREE_VALUE is the TREE_CHAIN of the FUNCTION_DECLs. Friends are
chained in the same way as member functions, but they live in the
TREE_TYPE field of the outer list. That allows them to be quickly
deleted, and requires no extra storage.
If there are any constructors/destructors, they are moved to the
front of the list. This makes pushclass more efficient.
We also link each field which has shares a name with its baseclass
to the head of the list of fields for that base class. This allows
us to reduce search time in places like `build_method_call' to
consider only reasonably likely functions. */
static tree
finish_struct_methods (t, fn_fields, nonprivate_method)
tree t;
tree fn_fields;
int nonprivate_method;
{
tree method_vec;
tree name = constructor_name (t);
int i, n_baseclasses = CLASSTYPE_N_BASECLASSES (t);
/* Now prepare to gather fn_fields into vector. */
struct obstack *ambient_obstack = current_obstack;
current_obstack = &class_obstack;
method_vec = make_node (TREE_VEC);
/* Room has been saved for constructors and destructors. */
current_obstack = ambient_obstack;
/* Now make this a live vector. */
obstack_free (&class_obstack, method_vec);
obstack_blank (&class_obstack, sizeof (struct tree_vec));
while (fn_fields)
{
/* NEXT Pointer, TEST Pointer, and BASE Pointer. */
tree nextp, *testp;
tree fn_name = DECL_NAME (fn_fields);
if (fn_name == NULL_TREE)
fn_name = name;
nextp = TREE_CHAIN (fn_fields);
TREE_CHAIN (fn_fields) = NULL_TREE;
/* Constructors are handled easily in search routines.
Besides, we know we won't find any, so do not bother looking. */
if (fn_name == name && TREE_VEC_ELT (method_vec, 0) == 0)
TREE_VEC_ELT (method_vec, 0) = fn_fields;
else
{
testp = &TREE_VEC_ELT (method_vec, 0);
if (*testp == NULL_TREE)
testp++;
while (((HOST_WIDE_INT) testp
< (HOST_WIDE_INT) obstack_next_free (&class_obstack))
&& DECL_NAME (*testp) != fn_name)
testp++;
if ((HOST_WIDE_INT) testp
< (HOST_WIDE_INT) obstack_next_free (&class_obstack))
{
tree x, prev_x;
for (x = *testp; x; x = DECL_CHAIN (x))
{
if (DECL_NAME (fn_fields) == ansi_opname[(int) DELETE_EXPR])
{
/* ANSI C++ June 5 1992 WP 12.5.5.1 */
error_with_decl (fn_fields, "operator delete cannot be overloaded");
error_with_decl (x, "previous declaration here");
}
if (DECL_ASSEMBLER_NAME (fn_fields) == DECL_ASSEMBLER_NAME (x))
{
/* We complain about multiple destructors on sight,
so we do not repeat the warning here. Friend-friend
ambiguities are warned about outside this loop. */
if (! DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (fn_fields)))
error_with_file_and_line (DECL_SOURCE_FILE (fn_fields),
DECL_SOURCE_LINE (fn_fields),
"ambiguous method `%s' in structure",
lang_printable_name (fn_fields));
break;
}
prev_x = x;
}
if (x == 0)
if (*testp)
DECL_CHAIN (prev_x) = fn_fields;
else
*testp = fn_fields;
}
else
{
obstack_ptr_grow (&class_obstack, fn_fields);
method_vec = (tree)obstack_base (&class_obstack);
}
}
fn_fields = nextp;
}
TREE_VEC_LENGTH (method_vec)
= (tree *)obstack_next_free (&class_obstack) - (&TREE_VEC_ELT (method_vec, 0));
obstack_finish (&class_obstack);
CLASSTYPE_METHOD_VEC (t) = method_vec;
if (nonprivate_method == 0
&& CLASSTYPE_FRIEND_CLASSES (t) == NULL_TREE
&& DECL_FRIENDLIST (TYPE_NAME (t)) == NULL_TREE)
{
tree binfos = BINFO_BASETYPES (TYPE_BINFO (t));
for (i = 0; i < n_baseclasses; i++)
if (TREE_VIA_PUBLIC (TREE_VEC_ELT (binfos, i))
|| TREE_VIA_PROTECTED (TREE_VEC_ELT (binfos, i)))
{
nonprivate_method = 1;
break;
}
if (nonprivate_method == 0)
warning ("all member functions in class `%s' are private",
TYPE_NAME_STRING (t));
}
/* If there are constructors (and destructors), they are at the
front. Place destructors at very front. Also warn if all
constructors and/or destructors are private (in which case this
class is effectively unusable. */
if (TYPE_HAS_DESTRUCTOR (t))
{
tree dtor, prev;
for (dtor = TREE_VEC_ELT (method_vec, 0); dtor; prev = dtor, dtor = DECL_CHAIN (dtor))
{
if (DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (dtor)))
{
if (TREE_PRIVATE (dtor)
&& CLASSTYPE_FRIEND_CLASSES (t) == NULL_TREE
&& DECL_FRIENDLIST (TYPE_NAME (t)) == NULL_TREE)
warning_with_decl (TYPE_NAME (t), "class `%s' only defines a private destructor and has no friends");
break;
}
}
/* Wild parse errors can cause this to happen. */
if (dtor == NULL_TREE)
TYPE_HAS_DESTRUCTOR (t) = 0;
else if (dtor != TREE_VEC_ELT (method_vec, 0))
{
DECL_CHAIN (prev) = DECL_CHAIN (dtor);
DECL_CHAIN (dtor) = TREE_VEC_ELT (method_vec, 0);
TREE_VEC_ELT (method_vec, 0) = dtor;
}
}
/* Now for each member function (except for constructors and
destructors), compute where member functions of the same
name reside in base classes. */
if (n_baseclasses != 0
&& TREE_VEC_LENGTH (method_vec) > 1)
{
int len = TREE_VEC_LENGTH (method_vec);
tree baselink_vec = make_tree_vec (len);
int any_links = 0;
tree baselink_binfo = build_tree_list (NULL_TREE, TYPE_BINFO (t));
for (i = 1; i < len; i++)
{
TREE_VEC_ELT (baselink_vec, i)
= get_baselinks (baselink_binfo, t, DECL_NAME (TREE_VEC_ELT (method_vec, i)));
if (TREE_VEC_ELT (baselink_vec, i) != 0)
any_links = 1;
}
if (any_links != 0)
CLASSTYPE_BASELINK_VEC (t) = baselink_vec;
else
obstack_free (current_obstack, baselink_vec);
}
/* Now add the methods to the TYPE_METHODS of T, arranged in a chain. */
{
tree x, last_x = NULL_TREE;
int limit = TREE_VEC_LENGTH (method_vec);
for (i = 1; i < limit; i++)
{
for (x = TREE_VEC_ELT (method_vec, i); x; x = DECL_CHAIN (x))
{
if (last_x != NULL_TREE)
TREE_CHAIN (last_x) = x;
last_x = x;
}
}
/* Put ctors and dtors at the front of the list. */
x = TREE_VEC_ELT (method_vec, 0);
if (x)
{
while (DECL_CHAIN (x))
{
/* Let's avoid being circular about this. */
if (x == DECL_CHAIN (x))
break;
TREE_CHAIN (x) = DECL_CHAIN (x);
x = DECL_CHAIN (x);
}
if (TREE_VEC_LENGTH (method_vec) > 1)
TREE_CHAIN (x) = TREE_VEC_ELT (method_vec, 1);
else
TREE_CHAIN (x) = NULL_TREE;
}
}
#if 0
TYPE_METHODS (t) = TREE_VEC_ELT (method_vec, 0)
? TREE_VEC_ELT (method_vec, 0) : TREE_VEC_ELT (method_vec, 1);
#else
TYPE_METHODS (t) = method_vec;
#endif
return method_vec;
}
/* Emit error when a duplicate definition of a type is seen. Patch up. */
void
duplicate_tag_error (t)
tree t;
{
char *err_name;
tree name = TYPE_NAME (t);
if (TREE_CODE (name) == TYPE_DECL)
name = DECL_NAME (name);
err_name = IDENTIFIER_POINTER (name);
if (TREE_CODE (t) == UNION_TYPE)
error ("redefinition of `union %s'", err_name);
else if (TREE_CODE (t) == RECORD_TYPE)
error ("redefinition of `struct %s'", err_name);
else
error ("redefinition of tag %s", err_name);
/* Pretend we haven't defined this type. */
/* All of the component_decl's were TREE_CHAINed together in the parser.
finish_struct_methods walks these chains and assembles all methods with
the same base name into DECL_CHAINs. Now we don't need the parser chains
anymore, so we unravel them.
*/
/*
* This used to be in finish_struct, but it turns out that the
* TREE_CHAIN is used by dbxout_type_methods and perhaps some other things...
*/
if (CLASSTYPE_METHOD_VEC(t))
{
tree tv = CLASSTYPE_METHOD_VEC(t);
int i, len = TREE_VEC_LENGTH (tv);
for (i = 0; i < len; i++)
{
tree unchain = TREE_VEC_ELT (tv, i);
while(unchain != NULL_TREE)
{
TREE_CHAIN (unchain) = NULL_TREE;
unchain = DECL_CHAIN(unchain);
}
}
}
if (TYPE_LANG_SPECIFIC (t))
{
tree as_list = CLASSTYPE_AS_LIST (t);
tree binfo = TYPE_BINFO (t);
tree binfo_as_list = CLASSTYPE_BINFO_AS_LIST (t);
int interface_only = CLASSTYPE_INTERFACE_ONLY (t);
int interface_unknown = CLASSTYPE_INTERFACE_UNKNOWN (t);
bzero (TYPE_LANG_SPECIFIC (t), sizeof (struct lang_type));
BINFO_BASETYPES(binfo) = NULL_TREE;
CLASSTYPE_AS_LIST (t) = as_list;
TYPE_BINFO (t) = binfo;
CLASSTYPE_BINFO_AS_LIST (t) = binfo_as_list;
CLASSTYPE_INTERFACE_ONLY (t) = interface_only;
CLASSTYPE_INTERFACE_UNKNOWN (t) = interface_unknown;
CLASSTYPE_VBASE_SIZE (t) = integer_zero_node;
TYPE_REDEFINED (t) = 1;
}
TYPE_SIZE (t) = NULL_TREE;
TYPE_MODE (t) = VOIDmode;
TYPE_FIELDS (t) = NULL_TREE;
TYPE_METHODS (t) = NULL_TREE;
TYPE_VFIELD (t) = NULL_TREE;
TYPE_CONTEXT (t) = NULL_TREE;
}
/* Create a RECORD_TYPE or UNION_TYPE node for a C struct or union declaration
(or C++ class declaration).
For C++, we must handle the building of derived classes.
Also, C++ allows static class members. The way that this is
handled is to keep the field name where it is (as the DECL_NAME
of the field), and place the overloaded decl in the DECL_FIELD_BITPOS
of the field. layout_record and layout_union will know about this.
More C++ hair: inline functions have text in their
DECL_PENDING_INLINE_INFO nodes which must somehow be parsed into
meaningful tree structure. After the struct has been laid out, set
things up so that this can happen.
And still more: virtual functions. In the case of single inheritance,
when a new virtual function is seen which redefines a virtual function
from the base class, the new virtual function is placed into
the virtual function table at exactly the same address that
it had in the base class. When this is extended to multiple
inheritance, the same thing happens, except that multiple virtual
function tables must be maintained. The first virtual function
table is treated in exactly the same way as in the case of single
inheritance. Additional virtual function tables have different
DELTAs, which tell how to adjust `this' to point to the right thing.
LIST_OF_FIELDLISTS is just that. The elements of the list are
TREE_LIST elements, whose TREE_PURPOSE field tells what visibility
the list has, and the TREE_VALUE slot gives the actual fields.
If flag_all_virtual == 1, then we lay all functions into
the virtual function table, as though they were declared
virtual. Constructors do not lay down in the virtual function table.
If flag_all_virtual == 2, then we lay all functions into
the virtual function table, such that virtual functions
occupy a space by themselves, and then all functions
of the class occupy a space by themselves. This is illustrated
in the following diagram:
class A; class B : A;
Class A's vtbl: Class B's vtbl:
--------------------------------------------------------------------
| A's virtual functions| | B's virtual functions |
| | | (may inherit some from A). |
--------------------------------------------------------------------
| All of A's functions | | All of A's functions |
| (such as a->A::f). | | (such as b->A::f) |
--------------------------------------------------------------------
| B's new virtual functions |
| (not defined in A.) |
-------------------------------
| All of B's functions |
| (such as b->B::f) |
-------------------------------
this allows the program to make references to any function, virtual
or otherwise in a type-consistent manner. */
tree
finish_struct (t, list_of_fieldlists, warn_anon)
tree t;
tree list_of_fieldlists;
int warn_anon;
{
extern int interface_only, interface_unknown;
int old;
int round_up_size = 1;
/* Set non-zero to debug using default functions.
Not set by program. */
static int debug_default_functions = 0;
enum tree_code code = TREE_CODE (t);
register tree x, last_x, method_vec;
int needs_ctor = 0, needs_dtor = 0;
int members_need_dtors, needs_virtual_dtor;
tree name = TYPE_NAME (t), fields, fn_fields, tail;
enum visibility_type visibility;
int all_virtual;
int has_virtual;
int max_has_virtual;
tree pending_virtuals = NULL_TREE;
tree abstract_virtuals = NULL_TREE;
tree vfield;
tree vfields;
int needs_default_ctor;
int cant_have_default_ctor;
int needs_const_ctor;
int cant_have_const_ctor;
/* The index of the first base class which has virtual
functions. Only applied to non-virtual baseclasses. */
int first_vfn_base_index;
int n_baseclasses;
int any_default_members = 0;
char *err_name;
int const_sans_init = 0;
int ref_sans_init = 0;
int nonprivate_method = 0;
tree t_binfo = TYPE_BINFO (t);
if (TREE_CODE (name) == TYPE_DECL)
{
extern int lineno;
DECL_SOURCE_FILE (name) = input_filename;
/* For TYPE_DECL that are not typedefs (those marked with a line number
of zero, we don't want to mark them as real typedefs. If this fails
one needs to make sure real typedefs have a previous line number,
even if it is wrong, that way the below will fill in the right line
number. (mrs) */
if (DECL_SOURCE_LINE (name))
DECL_SOURCE_LINE (name) = lineno;
name = DECL_NAME (name);
}
err_name = IDENTIFIER_POINTER (name);
if (warn_anon && code != UNION_TYPE && ANON_AGGRNAME_P (name))
{
warning ("un-usable class ignored (anonymous classes and unions are useless)");
err_name = "(anon)";
}
#if 0
/* This is set here, but it's never actually used anywhere. (bpk) */
leftmost_baseclasses = NULL_TREE;
#endif
if (TYPE_SIZE (t))
{
if (TREE_CODE (t) == UNION_TYPE)
error ("redefinition of `union %s'", err_name);
else if (TREE_CODE (t) == RECORD_TYPE)
error ("redefinition of `struct %s'", err_name);
else
my_friendly_abort (172);
popclass (0);
return t;
}
GNU_xref_decl (current_function_decl, t);
/* If this type was previously laid out as a forward reference,
make sure we lay it out again. */
TYPE_SIZE (t) = 0;
CLASSTYPE_GOT_SEMICOLON (t) = 0;
CLASSTYPE_INTERFACE_ONLY (t) = interface_only;
CLASSTYPE_INTERFACE_UNKNOWN (t) = interface_unknown;
if (flag_dossier)
build_t_desc (t, 0);
TYPE_BINFO (t) = NULL_TREE;
old = suspend_momentary ();
/* Install struct as DECL_FIELD_CONTEXT of each field decl.
Also process specified field sizes.
Set DECL_FIELD_SIZE to the specified size, or 0 if none specified.
The specified size is found in the DECL_INITIAL.
Store 0 there, except for ": 0" fields (so we can find them
and delete them, below). */
if (t_binfo && BINFO_BASETYPES (t_binfo))
n_baseclasses = TREE_VEC_LENGTH (BINFO_BASETYPES (t_binfo));
else
n_baseclasses = 0;
if (n_baseclasses > 0)
{
struct base_info base_info;
/* If using multiple inheritance, this may cause variants of our
basetypes to be used (instead of their canonical forms). */
fields = layout_basetypes (t, BINFO_BASETYPES (t_binfo));
last_x = tree_last (fields);
first_vfn_base_index = finish_base_struct (t, &base_info,
BINFO_BASETYPES (t_binfo));
has_virtual = base_info.has_virtual;
max_has_virtual = base_info.max_has_virtual;
CLASSTYPE_N_SUPERCLASSES (t) += base_info.n_ancestors;
vfield = base_info.vfield;
vfields = base_info.vfields;
needs_default_ctor = base_info.needs_default_ctor;
cant_have_default_ctor = base_info.cant_have_default_ctor;
needs_const_ctor = base_info.needs_const_ctor;
cant_have_const_ctor = base_info.cant_have_const_ctor;
members_need_dtors = base_info.members_need_dtors;
needs_virtual_dtor = base_info.needs_virtual_dtor;
n_baseclasses = TREE_VEC_LENGTH (BINFO_BASETYPES (t_binfo));
}
else
{
first_vfn_base_index = -1;
has_virtual = 0;
max_has_virtual = has_virtual;
vfield = NULL_TREE;
vfields = NULL_TREE;
fields = NULL_TREE;
last_x = NULL_TREE;
needs_default_ctor = 0;
cant_have_default_ctor = 0;
needs_const_ctor = 0;
cant_have_const_ctor = 0;
members_need_dtors = 0;
needs_virtual_dtor = 0;
}
if (write_virtuals == 3 && ! CLASSTYPE_INTERFACE_UNKNOWN (t)
&& current_lang_name == lang_name_cplusplus)
{
CLASSTYPE_INTERFACE_ONLY (t) = interface_only;
CLASSTYPE_VTABLE_NEEDS_WRITING (t) = ! interface_only;
}
/* The three of these are approximations which may later be
modified. Needed at this point to make add_virtual_function
and modify_vtable_entries work. */
TREE_CHAIN (t_binfo) = TYPE_BINFO (t);
TYPE_BINFO (t) = t_binfo;
CLASSTYPE_VFIELDS (t) = vfields;
CLASSTYPE_VFIELD (t) = vfield;
fn_fields = NULL_TREE;
tail = NULL_TREE;
if (last_x && list_of_fieldlists)
TREE_CHAIN (last_x) = TREE_VALUE (list_of_fieldlists);
if (flag_all_virtual == 1 && TYPE_OVERLOADS_METHOD_CALL_EXPR (t))
all_virtual = 1;
else
all_virtual = 0;
if (CLASSTYPE_DECLARED_CLASS (t) == 0)
{
nonprivate_method = 1;
if (list_of_fieldlists
&& TREE_PURPOSE (list_of_fieldlists) == (tree)visibility_default)
TREE_PURPOSE (list_of_fieldlists) = (tree)visibility_public;
}
else if (list_of_fieldlists
&& TREE_PURPOSE (list_of_fieldlists) == (tree)visibility_default)
TREE_PURPOSE (list_of_fieldlists) = (tree)visibility_private;
while (list_of_fieldlists)
{
visibility = (enum visibility_type)TREE_PURPOSE (list_of_fieldlists);
for (x = TREE_VALUE (list_of_fieldlists); x; x = TREE_CHAIN (x))
{
TREE_PRIVATE (x) = visibility == visibility_private;
TREE_PROTECTED (x) = visibility == visibility_protected;
GNU_xref_member (current_class_name, x);
if (TREE_CODE (x) == TYPE_DECL
&& TREE_CODE (TREE_TYPE (x)) == RECORD_TYPE)
{
#if 0
/* @@ Um. This doesn't seem to be handled properly, at
least in my PT test cases. Not sure if it's really
supposed to work for non-PT cases. Let's find out. */
static tree t, d;
d = DECL_NAME (x);
t = TYPE_IDENTIFIER (TREE_TYPE (x));
if (d == t) continue;
if (IDENTIFIER_TEMPLATE (t))
{
t = DECL_NAME (TREE_PURPOSE (IDENTIFIER_TEMPLATE (t)));
my_friendly_assert (t == d, 173);
continue;
}
else if (IDENTIFIER_CLASS_VALUE (t))
my_friendly_assert (TREE_TYPE (DECL_NAME (d))
== TREE_TYPE (DECL_NAME (TREE_TYPE (t))),
174);
else
abort ();
#endif
continue;
}
if (TREE_CODE (x) == FUNCTION_DECL)
{
/* Clear out this flag.
@@ Doug may figure out how to break
@@ this with nested classes and friends. */
DECL_IN_AGGR_P (x) = 0;
nonprivate_method |= ! TREE_PRIVATE (x);
/* If this was an evil function, don't keep it in class. */
if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (x)))
continue;
if (last_x) TREE_CHAIN (last_x) = TREE_CHAIN (x);
if (! fn_fields) fn_fields = x;
else TREE_CHAIN (tail) = x;
tail = x;
#if 0
/* ??? What if we have duplicate declarations
in T's definition? */
if (DECL_CLASS_CONTEXT (x))
continue;
#endif
DECL_CLASS_CONTEXT (x) = t;
DECL_FIELD_SIZE (x) = 0;
/* The name of the field is the original field name
Save this in auxiliary field for later overloading. */
if (DECL_VINDEX (x)
|| (all_virtual == 1 && ! DECL_CONSTRUCTOR_P (x)))
{
pending_virtuals = add_virtual_function (pending_virtuals,
&has_virtual, x, t);
if (DECL_ABSTRACT_VIRTUAL_P (x))
abstract_virtuals = tree_cons (NULL_TREE, x, abstract_virtuals);
}
continue;
}
/* Handle visibility declarations. */
if (DECL_NAME (x) && TREE_CODE (DECL_NAME (x)) == SCOPE_REF)
{
tree fdecl = TREE_OPERAND (DECL_NAME (x), 1);
if (last_x) TREE_CHAIN (last_x) = TREE_CHAIN (x);
/* Make type T see field decl FDECL with
the visibility VISIBILITY. */
if (TREE_CODE (fdecl) == TREE_LIST)
{
fdecl = TREE_VALUE (fdecl);
while (fdecl)
{
if (alter_visibility (t, fdecl, visibility) == 0)
break;
fdecl = DECL_CHAIN (fdecl);
}
}
else alter_visibility (t, fdecl, visibility);
CLASSTYPE_ALTERS_VISIBILITIES_P (t) = 1;
continue;
}
/* If this is of reference type, check if it needs an init. */
if (TREE_CODE (x) != TYPE_DECL
&& TREE_CODE (TREE_TYPE (x)) == REFERENCE_TYPE
&& DECL_INITIAL (x) == 0)
ref_sans_init = 1;
/* ``A local class cannot have static data members.'' ARM 9.4 */
if (current_function_decl && TREE_STATIC (x))
error_with_decl (x, "field `%s' in local class cannot be static");
/* When this goes into scope, it will be a non-local reference. */
DECL_NONLOCAL (x) = 1;
/* Perform error checking that did not get done in grokdeclarator. */
if (TREE_CODE (x) == FIELD_DECL || TREE_CODE (x) == VAR_DECL)
{
if (TREE_CODE (TREE_TYPE (x)) == FUNCTION_TYPE)
{
error_with_decl (x, "field `%s' invalidly declared function type");
TREE_TYPE (x) = build_pointer_type (TREE_TYPE (x));
}
else if (TREE_CODE (TREE_TYPE (x)) == METHOD_TYPE)
{
error_with_decl (x, "field `%s' invalidly declared method type");
TREE_TYPE (x) = build_pointer_type (TREE_TYPE (x));
}
else if (TREE_CODE (TREE_TYPE (x)) == OFFSET_TYPE)
{
error_with_decl (x, "field `%s' invalidly declared offset type");
TREE_TYPE (x) = build_pointer_type (TREE_TYPE (x));
}
}
if (TREE_CODE (x) == FIELD_DECL)
{
/* If the field has a bogus type, don't bother with it. */
if (TREE_TYPE (x) != error_mark_node)
{
/* Never let anything with uninheritable virtuals
make it through without complaint. */
if (TYPE_LANG_SPECIFIC (TREE_TYPE (x))
&& CLASSTYPE_ABSTRACT_VIRTUALS (TREE_TYPE (x)))
abstract_virtuals_error (x, TREE_TYPE (x));
if (TYPE_LANG_SPECIFIC (TREE_TYPE (x)))
{
if (TYPE_HAS_DEFAULT_CONSTRUCTOR (TREE_TYPE (x)))
needs_default_ctor = 1;
if (TYPE_GETS_CONST_INIT_REF (TREE_TYPE (x)))
needs_const_ctor = 1;
else if (TYPE_GETS_INIT_REF (TREE_TYPE (x)))
cant_have_const_ctor = 1;
}
else if (DECL_INITIAL (x) == NULL_TREE
&& (TYPE_HAS_CONSTRUCTOR (TREE_TYPE (x))
|| TREE_CODE (TREE_TYPE (x)) == REFERENCE_TYPE))
cant_have_default_ctor = 1;
}
/* If any field is const, the structure type is pseudo-const. */
if (TREE_READONLY (x))
{
C_TYPE_FIELDS_READONLY (t) = 1;
if (DECL_INITIAL (x) == 0)
const_sans_init = 1;
}
else
{
/* A field that is pseudo-const makes the structure likewise. */
tree t1 = TREE_TYPE (x);
while (TREE_CODE (t1) == ARRAY_TYPE)
t1 = TREE_TYPE (t1);
if (IS_AGGR_TYPE (t1))
{
if (C_TYPE_FIELDS_READONLY (t1))
C_TYPE_FIELDS_READONLY (t) = 1;
if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (t1))
const_sans_init = 1;
}
}
}
else if (TREE_CODE (x) == VAR_DECL && TREE_CODE (t) == UNION_TYPE)
/* Unions cannot have static members. */
error_with_decl (x, "field `%s' declared static in union");
if (! fields) fields = x;
DECL_FIELD_CONTEXT (x) = t;
/* We could be making an extern "C" function a friend. */
if (DECL_LANG_SPECIFIC (x))
DECL_CLASS_CONTEXT (x) = t;
DECL_FIELD_SIZE (x) = 0;
/* We set DECL_BIT_FIELD tentatively in grokbitfield.
If the type and width are valid, we'll keep it set.
Otherwise, the flag is cleared. */
if (DECL_BIT_FIELD (x))
{
DECL_BIT_FIELD (x) = 0;
/* Invalid bit-field size done by grokfield. */
/* Detect invalid bit-field type. */
if (DECL_INITIAL (x)
&& TREE_CODE (TREE_TYPE (x)) != INTEGER_TYPE
&& TREE_CODE (TREE_TYPE (x)) != ENUMERAL_TYPE)
{
error_with_decl (x, "bit-field `%s' has invalid type");
DECL_INITIAL (x) = NULL;
}
if (DECL_INITIAL (x) && pedantic
&& TREE_TYPE (x) != integer_type_node
&& TREE_TYPE (x) != unsigned_type_node
&& TREE_CODE (TREE_TYPE (x)) != ENUMERAL_TYPE)
warning_with_decl (x, "bit-field `%s' type invalid in ANSI C++");
/* Detect and ignore out of range field width. */
if (DECL_INITIAL (x))
{
register int width = TREE_INT_CST_LOW (DECL_INITIAL (x));
if (width < 0)
{
DECL_INITIAL (x) = NULL;
warning_with_decl (x, "negative width in bit-field `%s'");
}
else if (width == 0 && DECL_NAME (x) != 0)
{
error_with_decl (x, "zero width for bit-field `%s'");
DECL_INITIAL (x) = NULL;
}
else if ((unsigned)width > TYPE_PRECISION (TREE_TYPE (x)))
{
DECL_INITIAL (x) = NULL;
warning_with_decl (x, "width of `%s' exceeds its type");
}
}
/* Process valid field width. */
if (DECL_INITIAL (x))
{
register int width = TREE_INT_CST_LOW (DECL_INITIAL (x));
if (width == 0)
{
#ifdef EMPTY_FIELD_BOUNDARY
/* field size 0 => mark following field as "aligned" */
if (TREE_CHAIN (x))
DECL_ALIGN (TREE_CHAIN (x))
= MAX (DECL_ALIGN (TREE_CHAIN (x)), EMPTY_FIELD_BOUNDARY);
/* field of size 0 at the end => round up the size. */
else
round_up_size = EMPTY_FIELD_BOUNDARY;
#endif
#ifdef PCC_BITFIELD_TYPE_MATTERS
DECL_ALIGN (x) = MAX (DECL_ALIGN (x),
TYPE_ALIGN (TREE_TYPE (x)));
#endif
}
else
{
DECL_INITIAL (x) = NULL_TREE;
DECL_FIELD_SIZE (x) = width;
DECL_BIT_FIELD (x) = 1;
/* Traditionally a bit field is unsigned
even if declared signed. */
if (flag_traditional
&& TREE_CODE (TREE_TYPE (x)) == INTEGER_TYPE)
TREE_TYPE (x) = unsigned_type_node;
}
}
else
/* Non-bit-fields are aligned for their type. */
DECL_ALIGN (x) = MAX (DECL_ALIGN (x), TYPE_ALIGN (TREE_TYPE (x)));
}
else if (TREE_CODE (x) == FIELD_DECL)
{
tree type = TREE_TYPE (x);
if (TREE_CODE (type) == ARRAY_TYPE)
type = TREE_TYPE (type);
if (code == UNION_TYPE && IS_AGGR_TYPE (type))
{
if (TYPE_NEEDS_CONSTRUCTING (type)
|| TYPE_NEEDS_DESTRUCTOR (type))
error_with_decl (x, "member `%s' with constructor or destructor not allowed in union");
TYPE_GETS_ASSIGNMENT (t) |= TYPE_GETS_ASSIGNMENT (type);
TYPE_GETS_INIT_REF (t) |= TYPE_GETS_INIT_REF (type);
}
else if (code == RECORD_TYPE)
{
/* Array of record type doesn't matter for this bit. */
TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
if (IS_AGGR_TYPE (type))
{
needs_ctor |= TYPE_NEEDS_CONSTRUCTOR (type);
needs_dtor |= TYPE_NEEDS_DESTRUCTOR (type);
members_need_dtors |= TYPE_NEEDS_DESTRUCTOR (type);
TYPE_GETS_CONST_INIT_REF (t) |= TYPE_GETS_CONST_INIT_REF (type);
TYPE_GETS_ASSIGNMENT (t) |= TYPE_GETS_ASSIGNMENT (type);
TYPE_GETS_INIT_REF (t) |= TYPE_GETS_INIT_REF (type);
}
}
if (DECL_INITIAL (x) != NULL_TREE)
{
/* `build_class_init_list' does not recognize non-FIELD_DECLs. */
if (code == UNION_TYPE && any_default_members != 0)
error ("multiple fields in union initialized");
any_default_members = 1;
}
}
last_x = x;
}
list_of_fieldlists = TREE_CHAIN (list_of_fieldlists);
/* link the tail while we have it! */
if (last_x)
{
TREE_CHAIN (last_x) = NULL_TREE;
if (list_of_fieldlists
&& TREE_VALUE (list_of_fieldlists)
&& TREE_CODE (TREE_VALUE (list_of_fieldlists)) != FUNCTION_DECL)
TREE_CHAIN (last_x) = TREE_VALUE (list_of_fieldlists);
}
}
if (tail) TREE_CHAIN (tail) = NULL_TREE;
/* If this type has any constant members which did not come
with their own initialization, mark that fact here. It is
not an error here, since such types can be saved either by their
constructors, or by fortuitous initialization. */
CLASSTYPE_READONLY_FIELDS_NEED_INIT (t) = const_sans_init;
CLASSTYPE_REF_FIELDS_NEED_INIT (t) = ref_sans_init;
CLASSTYPE_ABSTRACT_VIRTUALS (t) = abstract_virtuals;
if (members_need_dtors && !TYPE_HAS_DESTRUCTOR (t))
{
/* Here we must cons up a destructor on the fly. */
tree dtor = cons_up_default_function (t, name,
needs_virtual_dtor != 0);
/* If we couldn't make it work, then pretend we didn't need it. */
if (dtor == void_type_node)
TYPE_NEEDS_DESTRUCTOR (t) = 0;
else
{
if (! fn_fields) fn_fields = dtor;
else TREE_CHAIN (tail) = dtor;
tail = dtor;
if (DECL_VINDEX (dtor) == NULL_TREE
&& ! CLASSTYPE_DECLARED_EXCEPTION (t)
&& (needs_virtual_dtor
|| pending_virtuals != NULL_TREE
|| pending_hard_virtuals != NULL_TREE))
DECL_VINDEX (dtor) = error_mark_node;
if (DECL_VINDEX (dtor))
pending_virtuals = add_virtual_function (pending_virtuals,
&has_virtual, dtor, NULL_TREE);
nonprivate_method = 1;
TYPE_HAS_DESTRUCTOR (t) = 1;
}
}
if (debug_default_functions)
{
if ((TYPE_NEEDS_CONSTRUCTOR (t) || TYPE_HAS_CONSTRUCTOR (t) || needs_ctor)
&& ! TYPE_HAS_INIT_REF (t))
{
tree default_fn = cons_up_default_function (t, name, 4);
TREE_CHAIN (default_fn) = fn_fields;
fn_fields = default_fn;
TYPE_HAS_INIT_REF (t) = 1;
default_fn = cons_up_default_function (t, name, 3);
TREE_CHAIN (default_fn) = fn_fields;
fn_fields = default_fn;
nonprivate_method = 1;
}
if (! TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
&& needs_default_ctor && ! cant_have_default_ctor)
{
tree default_fn = cons_up_default_function (t, name, 2);
TREE_CHAIN (default_fn) = fn_fields;
fn_fields = default_fn;
TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
nonprivate_method = 1;
}
}
if (fn_fields)
{
method_vec = finish_struct_methods (t, fn_fields, nonprivate_method);
if (TYPE_HAS_CONSTRUCTOR (t)
&& ! CLASSTYPE_DECLARED_EXCEPTION (t)
&& CLASSTYPE_FRIEND_CLASSES (t) == NULL_TREE
&& DECL_FRIENDLIST (TYPE_NAME (t)) == NULL_TREE)
{
int nonprivate_ctor = 0;
tree ctor;
for (ctor = TREE_VEC_ELT (method_vec, 0);
ctor;
ctor = DECL_CHAIN (ctor))
if (! TREE_PRIVATE (ctor))
{
nonprivate_ctor = 1;
break;
}
if (nonprivate_ctor == 0)
warning ("class `%s' only defines private constructors and has no friends",
err_name);
}
}
else
{
method_vec = 0;
/* Just in case these got accidentally
filled in by syntax errors. */
TYPE_HAS_CONSTRUCTOR (t) = 0;
TYPE_HAS_DESTRUCTOR (t) = 0;
}
if (vfield == NULL_TREE && has_virtual)
{
/* We build this decl with ptr_type_node, and
change the type when we know what it should be. */
vfield = build_lang_field_decl (FIELD_DECL, get_vfield_name (t), ptr_type_node);
/* If you change any of the below, take a look at all the
other VFIELD_BASEs and VTABLE_BASEs in the code, and change
them too. */
DECL_ASSEMBLER_NAME (vfield) = get_identifier (VFIELD_BASE);
CLASSTYPE_VFIELD (t) = vfield;
DECL_VIRTUAL_P (vfield) = 1;
DECL_FIELD_CONTEXT (vfield) = t;
DECL_CLASS_CONTEXT (vfield) = t;
DECL_FCONTEXT (vfield) = t;
DECL_FIELD_SIZE (vfield) = 0;
DECL_ALIGN (vfield) = TYPE_ALIGN (ptr_type_node);
if (CLASSTYPE_DOSSIER (t))
{
/* vfield is always first entry in structure. */
TREE_CHAIN (vfield) = fields;
fields = vfield;
}
else if (last_x)
{
my_friendly_assert (TREE_CHAIN (last_x) == 0, 175);
TREE_CHAIN (last_x) = vfield;
last_x = vfield;
}
else fields = vfield;
vfields = chainon (vfields, CLASSTYPE_AS_LIST (t));
}
/* Now DECL_INITIAL is null on all members except for zero-width bit-fields.
And they have already done their work.
C++: maybe we will support default field initialization some day... */
/* Delete all zero-width bit-fields from the front of the fieldlist */
while (fields && DECL_BIT_FIELD (fields)
&& DECL_INITIAL (fields))
fields = TREE_CHAIN (fields);
/* Delete all such fields from the rest of the fields. */
for (x = fields; x;)
{
if (TREE_CHAIN (x) && DECL_BIT_FIELD (TREE_CHAIN (x))
&& DECL_INITIAL (TREE_CHAIN (x)))
TREE_CHAIN (x) = TREE_CHAIN (TREE_CHAIN (x));
else x = TREE_CHAIN (x);
}
/* Delete all duplicate fields from the fields */
delete_duplicate_fields (fields);
/* Now we have the final fieldlist for the data fields. Record it,
then lay out the structure or union (including the fields). */
TYPE_FIELDS (t) = fields;
/* If there's a :0 field at the end, round the size to the
EMPTY_FIELD_BOUNDARY. */
TYPE_ALIGN (t) = round_up_size;
/* Pass layout information about base classes to layout_type, if any. */
if (n_baseclasses)
{
tree pseudo_basetype = TREE_TYPE (base_layout_decl);
TREE_CHAIN (base_layout_decl) = TYPE_FIELDS (t);
TYPE_FIELDS (t) = base_layout_decl;
TYPE_SIZE (pseudo_basetype) = CLASSTYPE_SIZE (t);
TYPE_MODE (pseudo_basetype) = TYPE_MODE (t);
TYPE_ALIGN (pseudo_basetype) = CLASSTYPE_ALIGN (t);
DECL_ALIGN (base_layout_decl) = TYPE_ALIGN (pseudo_basetype);
}
layout_type (t);
if (n_baseclasses)
TYPE_FIELDS (t) = TREE_CHAIN (TYPE_FIELDS (t));
/* C++: do not let empty structures exist. */
if (integer_zerop (TYPE_SIZE (t)))
TYPE_SIZE (t) = TYPE_SIZE (char_type_node);
/* Set the TYPE_DECL for this type to contain the right
value for DECL_OFFSET, so that we can use it as part
of a COMPONENT_REF for multiple inheritance. */
if (TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)
layout_decl (TYPE_NAME (t), 0);
/* Now fix up any virtual base class types that we
left lying around. We must get these done
before we try to lay out the virtual function table. */
doing_hard_virtuals = 1;
pending_hard_virtuals = nreverse (pending_hard_virtuals);
if (TYPE_USES_VIRTUAL_BASECLASSES (t))
{
tree vbases;
max_has_virtual = layout_vbasetypes (t, max_has_virtual);
vbases = CLASSTYPE_VBASECLASSES (t);
CLASSTYPE_N_VBASECLASSES (t) = list_length (vbases);
/* This loop makes all the entries in the virtual function tables
of interest contain the "latest" version of the functions
we have defined. */
while (vbases)
{
tree virtuals = BINFO_VIRTUALS (vbases);
if (virtuals)
{
/* Get past the `null' vtable entry... */
virtuals = TREE_CHAIN (virtuals);
/* and the `dossier' vtable entry if we're doing dossiers. */
if (flag_dossier)
virtuals = TREE_CHAIN (virtuals);
}
while (virtuals != NULL_TREE)
{
tree pfn = FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (virtuals));
tree base_fndecl = TREE_OPERAND (pfn, 0);
tree decl = get_first_matching_virtual (TYPE_BINFO (t), base_fndecl,
DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (base_fndecl)));
tree context = DECL_CLASS_CONTEXT (decl);
if (decl != base_fndecl && context != t)
{
tree base_context = DECL_CLASS_CONTEXT (base_fndecl);
tree binfo = NULL_TREE, these_virtuals;
#if 0
unsigned HOST_WIDE_INT i
= (TREE_INT_CST_LOW (DECL_VINDEX (base_fndecl))
& (((unsigned HOST_WIDE_INT)1<<(BITS_PER_WORD-1))-1));
#endif
if (TYPE_USES_VIRTUAL_BASECLASSES (context))
binfo = virtual_member (base_context,
CLASSTYPE_VBASECLASSES (context));
if (binfo == NULL_TREE)
binfo = binfo_value (base_context, context);
if (binfo != NULL_TREE)
{
#if 1
pfn = FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (get_vtable_entry (BINFO_VIRTUALS (binfo), base_fndecl)));
#else
these_virtuals = BINFO_VIRTUALS (binfo);
while (i-- > 0)
these_virtuals = TREE_CHAIN (these_virtuals);
pfn = FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (these_virtuals));
#endif
modify_vtable_entries (t, decl, base_fndecl, pfn);
}
}
virtuals = TREE_CHAIN (virtuals);
}
/* Update dossier info with offsets for virtual baseclasses. */
if (flag_dossier && ! BINFO_NEW_VTABLE_MARKED (vbases))
prepare_fresh_vtable (vbases, vbases, t);
vbases = TREE_CHAIN (vbases);
}
}
while (pending_hard_virtuals)
{
/* Need an entry in some other virtual function table. */
if (TREE_TYPE (pending_hard_virtuals))
{
/* This is how we modify entries when a vfn's index changes
between derived and base type. */
modify_vtable_entries (t, TREE_PURPOSE (pending_hard_virtuals),
TREE_TYPE (pending_hard_virtuals),
TREE_VALUE (pending_hard_virtuals));
}
else
{
/* This is how we modify entries when a vfn comes from
a virtual baseclass. */
tree base_fndecls = DECL_VINDEX (TREE_PURPOSE (pending_hard_virtuals));
my_friendly_assert (base_fndecls != error_mark_node, 176);
while (base_fndecls)
{
modify_vtable_entries (t, TREE_PURPOSE (pending_hard_virtuals),
TREE_VALUE (base_fndecls),
TREE_VALUE (pending_hard_virtuals));
base_fndecls = TREE_CHAIN (base_fndecls);
}
}
pending_hard_virtuals = TREE_CHAIN (pending_hard_virtuals);
}
doing_hard_virtuals = 0;
/* Under our model of GC, every C++ class gets its own virtual
function table, at least virtually. */
if (pending_virtuals || CLASSTYPE_DOSSIER (t))
{
pending_virtuals = nreverse (pending_virtuals);
/* We must enter these virtuals into the table. */
if (first_vfn_base_index < 0)
{
if (flag_dossier)
pending_virtuals = tree_cons (NULL_TREE,
build_vtable_entry (integer_zero_node,
build_t_desc (t, 0)),
pending_virtuals);
pending_virtuals = tree_cons (NULL_TREE, the_null_vtable_entry,
pending_virtuals);
build_vtable (NULL_TREE, t);
}
else
{
/* Here we know enough to change the type of our virtual
function table, but we will wait until later this function. */
if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
build_vtable (binfo_value (TYPE_BINFO_BASETYPE (t, first_vfn_base_index), t), t);
/* Update the dossier pointer for this class. */
if (flag_dossier)
TREE_VALUE (TREE_CHAIN (TYPE_BINFO_VIRTUALS (t)))
= build_vtable_entry (integer_zero_node, build_t_desc (t, 0));
}
/* If this type has basetypes with constructors, then those
constructors might clobber the virtual function table. But
they don't if the derived class shares the exact vtable of the base
class. */
CLASSTYPE_NEEDS_VIRTUAL_REINIT (t) = 1;
}
else if (first_vfn_base_index >= 0)
{
tree binfo = get_binfo (DECL_FIELD_CONTEXT (vfield), t, 0);
/* This class contributes nothing new to the virtual function
table. However, it may have declared functions which
went into the virtual function table "inherited" from the
base class. If so, we grab a copy of those updated functions,
and pretend they are ours. */
/* See if we should steal the virtual info from base class. */
if (TYPE_BINFO_VTABLE (t) == NULL_TREE)
TYPE_BINFO_VTABLE (t) = BINFO_VTABLE (binfo);
if (TYPE_BINFO_VIRTUALS (t) == NULL_TREE)
TYPE_BINFO_VIRTUALS (t) = BINFO_VIRTUALS (binfo);
if (TYPE_BINFO_VTABLE (t) != BINFO_VTABLE (binfo))
CLASSTYPE_NEEDS_VIRTUAL_REINIT (t) = 1;
}
if (has_virtual > max_has_virtual)
max_has_virtual = has_virtual;
if (max_has_virtual || first_vfn_base_index >= 0)
{
#ifdef VTABLE_USES_MASK
if (max_has_virtual >= VINDEX_MAX)
{
error ("too many virtual functions for class `%s' (VINDEX_MAX < %d)",
err_name, has_virtual);
}
#endif
TYPE_VIRTUAL_P (t) = 1;
CLASSTYPE_VSIZE (t) = has_virtual;
if (first_vfn_base_index >= 0)
{
if (pending_virtuals)
TYPE_BINFO_VIRTUALS (t) = chainon (TYPE_BINFO_VIRTUALS (t),
pending_virtuals);
}
else if (has_virtual)
{
TYPE_BINFO_VIRTUALS (t) = pending_virtuals;
if (write_virtuals >= 0)
DECL_VIRTUAL_P (TYPE_BINFO_VTABLE (t)) = 1;
}
}
/* Now lay out the virtual function table. */
if (has_virtual)
{
tree atype, itype;
if (TREE_TYPE (vfield) == ptr_type_node)
{
/* We must create a pointer to this table because
the one inherited from base class does not exist.
We will fill in the type when we know what it
should really be. Use `size_int' so values are memoized
in common cases. */
itype = build_index_type (size_int (has_virtual));
atype = build_array_type (vtable_entry_type, itype);
layout_type (atype);
TREE_TYPE (vfield) = build_pointer_type (atype);
}
else
{
atype = TREE_TYPE (TREE_TYPE (vfield));
if (has_virtual != TREE_INT_CST_LOW (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))))
{
/* We must extend (or create) the boundaries on this array,
because we picked up virtual functions from multiple
base classes. */
itype = build_index_type (size_int (has_virtual));
atype = build_array_type (vtable_entry_type, itype);
layout_type (atype);
vfield = copy_node (vfield);
TREE_TYPE (vfield) = build_pointer_type (atype);
}
}
CLASSTYPE_VFIELD (t) = vfield;
if (TREE_TYPE (TYPE_BINFO_VTABLE (t)) != atype)
{
TREE_TYPE (TYPE_BINFO_VTABLE (t)) = atype;
layout_decl (TYPE_BINFO_VTABLE (t), 0);
DECL_ALIGN (TYPE_BINFO_VTABLE (t))
= MAX (TYPE_ALIGN (double_type_node),
DECL_ALIGN (TYPE_BINFO_VTABLE (t)));
}
}
else if (first_vfn_base_index >= 0)
CLASSTYPE_VFIELD (t) = vfield;
CLASSTYPE_VFIELDS (t) = vfields;
/* Set all appropriate CLASSTYPE_... flags for this type
and its variants. */
TYPE_NEEDS_CONSTRUCTOR (t) |= needs_ctor || TYPE_HAS_CONSTRUCTOR (t);
TYPE_NEEDS_CONSTRUCTING (t)
|= ((TYPE_NEEDS_CONSTRUCTOR (t)|TYPE_USES_VIRTUAL_BASECLASSES (t))
|| has_virtual || any_default_members
|| first_vfn_base_index >= 0);
TYPE_NEEDS_DESTRUCTOR (t) |= needs_dtor || TYPE_HAS_DESTRUCTOR (t);
finish_struct_bits (t, max_has_virtual);
/* Promote each bit-field's type to int if it is narrower than that.
There's more: complete the rtl for any static member objects which
is of the same type we're working on.
*/
for (x = fields; x; x = TREE_CHAIN (x))
{
if (DECL_BIT_FIELD (x)
&& C_PROMOTING_INTEGER_TYPE_P (TREE_TYPE (x)))
TREE_TYPE (x) = TREE_UNSIGNED (TREE_TYPE (x))
? unsigned_type_node : integer_type_node;
if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
&& TREE_TYPE (x) == t)
{
DECL_MODE (x) = TYPE_MODE (t);
make_decl_rtl (x, NULL, 0);
}
}
/* Now add the tags, if any, to the list of TYPE_DECLs
defined for this type. */
if (CLASSTYPE_TAGS (t))
{
x = CLASSTYPE_TAGS (t);
last_x = tree_last (TYPE_FIELDS (t));
while (x)
{
tree tag = build_lang_decl (TYPE_DECL, TREE_PURPOSE (x), TREE_VALUE (x));
DECL_CONTEXT (tag) = t;
DECL_CLASS_CONTEXT (tag) = t;
x = TREE_CHAIN (x);
last_x = chainon (last_x, tag);
}
if (TYPE_FIELDS (t) == 0)
TYPE_FIELDS (t) = last_x;
CLASSTYPE_LOCAL_TYPEDECLS (t) = 1;
}
if (TYPE_HAS_CONSTRUCTOR (t))
{
tree vfields = CLASSTYPE_VFIELDS (t);
while (vfields)
{
/* Mark the fact that constructor for T
could affect anybody inheriting from T
who wants to initialize vtables for VFIELDS's type. */
if (VF_DERIVED_VALUE (vfields))
TREE_ADDRESSABLE (vfields) = 1;
vfields = TREE_CHAIN (vfields);
}
if (any_default_members != 0)
build_class_init_list (t);
}
else if (TYPE_NEEDS_CONSTRUCTING (t))
build_class_init_list (t);
if (current_lang_name == lang_name_cplusplus)
{
if (! CLASSTYPE_DECLARED_EXCEPTION (t))
embrace_waiting_friends (t);
/* Write out inline function definitions. */
do_inline_function_hair (t, CLASSTYPE_INLINE_FRIENDS (t));
CLASSTYPE_INLINE_FRIENDS (t) = 0;
}
if (CLASSTYPE_VSIZE (t) != 0)
{
#if 0
if (!TYPE_USES_COMPLEX_INHERITANCE (t))
TYPE_NONCOPIED_PARTS (t) = build_tree_list (default_conversion (TYPE_BINFO_VTABLE (t)), vfield);
#endif
if ((flag_this_is_variable & 1) == 0)
{
tree vtbl_ptr = build_decl (VAR_DECL, get_identifier (VPTR_NAME),
TREE_TYPE (vfield));
DECL_REGISTER (vtbl_ptr) = 1;
CLASSTYPE_VTBL_PTR (t) = vtbl_ptr;
}
if (DECL_FIELD_CONTEXT (vfield) != t)
{
tree binfo = binfo_value (DECL_FIELD_CONTEXT (vfield), t);
tree offset = BINFO_OFFSET (binfo);
vfield = copy_node (vfield);
copy_lang_decl (vfield);
if (! integer_zerop (offset))
offset = size_binop (MULT_EXPR, offset, size_int (BITS_PER_UNIT));
DECL_FIELD_CONTEXT (vfield) = t;
DECL_CLASS_CONTEXT (vfield) = t;
DECL_FIELD_BITPOS (vfield)
= size_binop (PLUS_EXPR, offset, DECL_FIELD_BITPOS (vfield));
CLASSTYPE_VFIELD (t) = vfield;
}
if (warn_nonvdtor && TYPE_HAS_DESTRUCTOR (t)
&& DECL_VINDEX (TREE_VEC_ELT (method_vec, 0)) == NULL_TREE)
warning ("class `%s' has virtual functions but non-virtual destructor",
err_name);
}
/* Make the rtl for any new vtables we have created, and unmark
the base types we marked. */
unmark_finished_struct (t);
TYPE_BEING_DEFINED (t) = 0;
if (flag_dossier && CLASSTYPE_VTABLE_NEEDS_WRITING (t))
{
tree variants;
tree tdecl;
/* Now instantiate its type descriptors. */
tdecl = TREE_OPERAND (build_t_desc (t, 1), 0);
variants = TYPE_POINTER_TO (t);
build_type_variant (variants, 1, 0);
while (variants)
{
build_t_desc (variants, 1);
variants = TYPE_NEXT_VARIANT (variants);
}
variants = build_reference_type (t);
build_type_variant (variants, 1, 0);
while (variants)
{
build_t_desc (variants, 1);
variants = TYPE_NEXT_VARIANT (variants);
}
#if 0
DECL_VPARENT (tdecl) = t;
#endif
DECL_CONTEXT (tdecl) = t;
}
/* Still need to instantiate this C struct's type descriptor. */
else if (flag_dossier && ! CLASSTYPE_DOSSIER (t))
build_t_desc (t, 1);
if (TYPE_NAME (t) && TYPE_IDENTIFIER (t))
undo_template_name_overload (TYPE_IDENTIFIER (t), 1);
if (current_class_type)
popclass (0);
else
error ("trying to finish struct, but kicked out due to previous parse errors.");
hack_incomplete_structures (t);
resume_momentary (old);
if (flag_cadillac)
cadillac_finish_struct (t);
#if 0
/* This has to be done after we have sorted out what to do with
the enclosing type. */
/* Be smarter about nested classes here. If a type is nested,
only output it if we would output the enclosing type. */
if (DECL_CONTEXT (TYPE_NAME (t))
&& TREE_CODE_CLASS (TREE_CODE (DECL_CONTEXT (TYPE_NAME (t)))) == 't')
DECL_IGNORED_P (TYPE_NAME (t)) = TREE_ASM_WRITTEN (TYPE_NAME (t));
#endif
/* If the type has methods, we want to think about cutting down
the amount of symbol table stuff we output. The value stored in
the TYPE_DECL's DECL_IGNORED_P slot is a first approximation.
For example, if a member function is seen and we decide to
write out that member function, then we can change the value
of the DECL_IGNORED_P slot, and the type will be output when
that member function's debug info is written out. */
if (CLASSTYPE_METHOD_VEC (t))
{
extern tree pending_vtables;
/* Don't output full info about any type
which does not have its implementation defined here. */
if (TYPE_VIRTUAL_P (t) && write_virtuals == 2)
DECL_IGNORED_P (TYPE_NAME (t))
= (value_member (TYPE_IDENTIFIER (t), pending_vtables) == 0);
else if (CLASSTYPE_INTERFACE_ONLY (t))
DECL_IGNORED_P (TYPE_NAME (t)) = 1;
else if (CLASSTYPE_INTERFACE_UNKNOWN (t))
/* Only a first approximation! */
DECL_IGNORED_P (TYPE_NAME (t)) = 1;
}
else if (CLASSTYPE_INTERFACE_ONLY (t))
DECL_IGNORED_P (TYPE_NAME (t)) = 1;
/* Finish debugging output for this type. */
rest_of_type_compilation (t, global_bindings_p ());
return t;
}
/* Return non-zero if the effective type of INSTANCE is static.
Used to determine whether the virtual function table is needed
or not.
*NONNULL is set iff INSTANCE can be known to be nonnull, regardless
of our knowledge of its type. */
int
resolves_to_fixed_type_p (instance, nonnull)
tree instance;
int *nonnull;
{
switch (TREE_CODE (instance))
{
case INDIRECT_REF:
/* Check that we are not going through a cast of some sort. */
if (TREE_TYPE (instance)
== TREE_TYPE (TREE_TYPE (TREE_OPERAND (instance, 0))))
instance = TREE_OPERAND (instance, 0);
/* fall through... */
case CALL_EXPR:
/* This is a call to a constructor, hence it's never zero. */
if (TREE_HAS_CONSTRUCTOR (instance))
{
if (nonnull)
*nonnull = 1;
return 1;
}
return 0;
case SAVE_EXPR:
/* This is a call to a constructor, hence it's never zero. */
if (TREE_HAS_CONSTRUCTOR (instance))
{
if (nonnull)
*nonnull = 1;
return 1;
}
return resolves_to_fixed_type_p (TREE_OPERAND (instance, 0), nonnull);
case RTL_EXPR:
/* This is a call to `new', hence it's never zero. */
if (TREE_CALLS_NEW (instance))
{
if (nonnull)
*nonnull = 1;
return 1;
}
return 0;
case PLUS_EXPR:
case MINUS_EXPR:
if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
/* Propagate nonnull. */
resolves_to_fixed_type_p (TREE_OPERAND (instance, 0), nonnull);
if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
return resolves_to_fixed_type_p (TREE_OPERAND (instance, 0), nonnull);
return 0;
case NOP_EXPR:
case CONVERT_EXPR:
return resolves_to_fixed_type_p (TREE_OPERAND (instance, 0), nonnull);
case ADDR_EXPR:
if (nonnull)
*nonnull = 1;
return resolves_to_fixed_type_p (TREE_OPERAND (instance, 0), nonnull);
case COMPONENT_REF:
return resolves_to_fixed_type_p (TREE_OPERAND (instance, 1), nonnull);
case WITH_CLEANUP_EXPR:
if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
return resolves_to_fixed_type_p (TREE_OPERAND (instance, 0), nonnull);
/* fall through... */
case VAR_DECL:
case FIELD_DECL:
if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
&& IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance))))
{
if (nonnull)
*nonnull = 1;
return 1;
}
/* fall through... */
case TARGET_EXPR:
case PARM_DECL:
if (IS_AGGR_TYPE (TREE_TYPE (instance)))
{
if (nonnull)
*nonnull = 1;
return 1;
}
else if (nonnull)
{
if (instance == current_class_decl
&& flag_this_is_variable <= 0)
{
/* Some people still use `this = 0' inside destructors. */
*nonnull = ! DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (current_function_decl));
/* In a constructor, we know our type. */
if (flag_this_is_variable < 0)
return 1;
}
else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
/* Reference variables should be references to objects. */
*nonnull = 1;
}
return 0;
default:
return 0;
}
}
void
init_class_processing ()
{
current_class_depth = 0;
current_class_stacksize = 10;
current_class_base = (tree *)xmalloc(current_class_stacksize * sizeof (tree));
current_class_stack = current_class_base;
current_lang_stacksize = 10;
current_lang_base = (tree *)xmalloc(current_lang_stacksize * sizeof (tree));
current_lang_stack = current_lang_base;
delta_name = get_identifier (VTABLE_DELTA_NAME);
pfn_name = get_identifier (VTABLE_PFN_NAME);
/* Keep these values lying around. */
the_null_vtable_entry = build_vtable_entry (integer_zero_node, integer_zero_node);
base_layout_decl = build_lang_field_decl (FIELD_DECL, NULL_TREE, error_mark_node);
TREE_TYPE (base_layout_decl) = make_node (RECORD_TYPE);
gcc_obstack_init (&class_obstack);
}
/* Set current scope to NAME. CODE tells us if this is a
STRUCT, UNION, or ENUM environment.
NAME may end up being NULL_TREE if this is an anonymous or
late-bound struct (as in "struct { ... } foo;") */
/* Here's a subroutine we need because C lacks lambdas. */
static void
unuse_fields (type)
tree type;
{
tree fields;
for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
{
if (TREE_CODE (fields) != FIELD_DECL)
continue;
TREE_USED (fields) = 0;
if (DECL_NAME (fields) == NULL_TREE
&& TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
unuse_fields (TREE_TYPE (fields));
}
}
/* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE to
appropriate values, found by looking up the type definition of
NAME (as a CODE).
If MODIFY is 1, we set IDENTIFIER_CLASS_VALUE's of names
which can be seen locally to the class. They are shadowed by
any subsequent local declaration (including parameter names).
If MODIFY is 2, we set IDENTIFIER_CLASS_VALUE's of names
which have static meaning (i.e., static members, static
member functions, enum declarations, etc).
If MODIFY is 3, we set IDENTIFIER_CLASS_VALUE of names
which can be seen locally to the class (as in 1), but
know that we are doing this for declaration purposes
(i.e. friend foo::bar (int)).
So that we may avoid calls to lookup_name, we cache the _TYPE
nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
For multiple inheritance, we perform a two-pass depth-first search
of the type lattice. The first pass performs a pre-order search,
marking types after the type has had its fields installed in
the appropriate IDENTIFIER_CLASS_VALUE slot. The second pass merely
unmarks the marked types. If a field or member function name
appears in an ambiguous way, the IDENTIFIER_CLASS_VALUE of
that name becomes `error_mark_node'. */
void
pushclass (type, modify)
tree type;
int modify;
{
#ifdef DEBUG_CP_BINDING_LEVELS
indent_to (stderr, debug_bindings_indentation);
fprintf (stderr, "pushclass");
debug_bindings_indentation += 4;
#endif
push_memoized_context (type, modify);
current_class_depth++;
*current_class_stack++ = current_class_name;
*current_class_stack++ = current_class_type;
if (current_class_stack >= current_class_base + current_class_stacksize)
{
current_class_base =
(tree *)xrealloc (current_class_base,
sizeof (tree) * (current_class_stacksize + 10));
current_class_stack = current_class_base + current_class_stacksize;
current_class_stacksize += 10;
}
current_class_name = TYPE_NAME (type);
if (TREE_CODE (current_class_name) == TYPE_DECL)
current_class_name = DECL_NAME (current_class_name);
current_class_type = type;
if (prev_class_type != NULL_TREE
&& (type != prev_class_type
|| TYPE_SIZE (prev_class_type) == NULL_TREE
/* ??? Is this necessary any more? */
|| IDENTIFIER_TEMPLATE (TYPE_IDENTIFIER (prev_class_type)))
&& (current_class_depth == 1 || modify == 3))
{
/* Forcibly remove any old class remnants. */
popclass (-1);
prev_class_type = 0;
}
pushlevel_class ();
if (modify)
{
tree tags;
tree this_fndecl = current_function_decl;
if (current_function_decl
&& DECL_CONTEXT (current_function_decl)
&& TREE_CODE (DECL_CONTEXT (current_function_decl)) == FUNCTION_DECL)
current_function_decl = DECL_CONTEXT (current_function_decl);
else
current_function_decl = NULL_TREE;
if (TREE_CODE (type) == UNINSTANTIATED_P_TYPE)
{
declare_uninstantiated_type_level ();
overload_template_name (current_class_name, 0);
}
else if (type != prev_class_type)
{
build_mi_matrix (type);
push_class_decls (type);
free_mi_matrix ();
prev_class_type = type;
}
else
unuse_fields (type);
for (tags = CLASSTYPE_TAGS (type); tags; tags = TREE_CHAIN (tags))
{
TREE_NONLOCAL_FLAG (TREE_VALUE (tags)) = 1;
if (! TREE_PURPOSE (tags))
continue;
pushtag (TREE_PURPOSE (tags), TREE_VALUE (tags));
if (IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (tags)) == NULL_TREE
&& TREE_CODE (TYPE_NAME (TREE_VALUE (tags))) == TYPE_DECL)
IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (tags))
= TYPE_NAME (TREE_VALUE (tags));
}
current_function_decl = this_fndecl;
}
if (flag_cadillac)
cadillac_push_class (type);
#ifdef DEBUG_CP_BINDING_LEVELS
debug_bindings_indentation -= 4;
#endif
}
/* Get out of the current class scope. If we were in a class scope
previously, that is the one popped to. The flag MODIFY tells
whether the current scope declarations needs to be modified
as a result of popping to the previous scope. */
void
popclass (modify)
int modify;
{
#ifdef DEBUG_CP_BINDING_LEVELS
indent_to (stderr, debug_bindings_indentation);
fprintf (stderr, "popclass");
debug_bindings_indentation += 4;
#endif
if (flag_cadillac)
cadillac_pop_class ();
if (modify < 0)
{
/* Back this old class out completely. */
tree tags = CLASSTYPE_TAGS (prev_class_type);
pop_class_decls (prev_class_type);
while (tags)
{
TREE_NONLOCAL_FLAG (TREE_VALUE (tags)) = 0;
IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (tags)) = NULL_TREE;
tags = TREE_CHAIN (tags);
}
goto ret;
}
if (modify)
{
/* Just remove from this class what didn't make
it into IDENTIFIER_CLASS_VALUE. */
tree tags = CLASSTYPE_TAGS (current_class_type);
while (tags)
{
TREE_NONLOCAL_FLAG (TREE_VALUE (tags)) = 0;
if (TREE_PURPOSE (tags))
IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (tags)) = NULL_TREE;
tags = TREE_CHAIN (tags);
}
}
if (TREE_CODE (current_class_type) == UNINSTANTIATED_P_TYPE)
undo_template_name_overload (current_class_name, 0);
poplevel_class ();
current_class_depth--;
current_class_type = *--current_class_stack;
current_class_name = *--current_class_stack;
if (current_class_type)
{
if (CLASSTYPE_VTBL_PTR (current_class_type))
{
current_vtable_decl = lookup_name (DECL_NAME (CLASSTYPE_VTBL_PTR (current_class_type)), 0);
if (current_vtable_decl)
current_vtable_decl = build_indirect_ref (current_vtable_decl,
NULL);
}
current_class_decl = lookup_name (get_identifier (THIS_NAME), 0);
if (current_class_decl)
{
if (TREE_CODE (TREE_TYPE (current_class_decl)) == POINTER_TYPE)
{
tree temp;
/* Can't call build_indirect_ref here, because it has special
logic to return C_C_D given this argument. */
C_C_D = build1 (INDIRECT_REF, current_class_type, current_class_decl);
temp = TREE_TYPE (TREE_TYPE (current_class_decl));
TREE_READONLY (C_C_D) = TYPE_READONLY (temp);
TREE_SIDE_EFFECTS (C_C_D) = TYPE_VOLATILE (temp);
TREE_THIS_VOLATILE (C_C_D) = TYPE_VOLATILE (temp);
}
else
C_C_D = current_class_decl;
}
else C_C_D = NULL_TREE;
}
else
{
current_class_decl = NULL_TREE;
current_vtable_decl = NULL_TREE;
C_C_D = NULL_TREE;
}
pop_memoized_context (modify);
ret:
;
#ifdef DEBUG_CP_BINDING_LEVELS
debug_bindings_indentation -= 4;
#endif
}
/* Set global variables CURRENT_LANG_NAME to appropriate value
so that behavior of name-mangling machinery is correct. */
void
push_lang_context (name)
tree name;
{
*current_lang_stack++ = current_lang_name;
if (current_lang_stack >= current_lang_base + current_lang_stacksize)
{
current_lang_base =
(tree *)xrealloc (current_lang_base,
sizeof (tree) * (current_lang_stacksize + 10));
current_lang_stack = current_lang_base + current_lang_stacksize;
current_lang_stacksize += 10;
}
if (name == lang_name_cplusplus)
{
strict_prototype = strict_prototypes_lang_cplusplus;
current_lang_name = name;
}
else if (name == lang_name_c)
{
strict_prototype = strict_prototypes_lang_c;
current_lang_name = name;
}
else
error ("language string `\"%s\"' not recognized", IDENTIFIER_POINTER (name));
if (flag_cadillac)
cadillac_push_lang (name);
}
/* Get out of the current language scope. */
void
pop_lang_context ()
{
if (flag_cadillac)
cadillac_pop_lang ();
current_lang_name = *--current_lang_stack;
if (current_lang_name == lang_name_cplusplus)
strict_prototype = strict_prototypes_lang_cplusplus;
else if (current_lang_name == lang_name_c)
strict_prototype = strict_prototypes_lang_c;
}
int
root_lang_context_p ()
{
return current_lang_stack == current_lang_base;
}
/* Type instantiation routines. */
/* This function will instantiate the type of the expression given
in RHS to match the type of LHSTYPE. If LHSTYPE is NULL_TREE,
or other errors exist, the TREE_TYPE of RHS will be ERROR_MARK_NODE.
This function is used in build_modify_expr, convert_arguments,
build_c_cast, and compute_conversion_costs. */
tree
instantiate_type (lhstype, rhs, complain)
tree lhstype, rhs;
int complain;
{
if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
{
if (complain)
error ("not enough type information");
return error_mark_node;
}
if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
return rhs;
/* This should really only be used when attempting to distinguish
what sort of a pointer to function we have. For now, any
arithmetic operation which is not supported on pointers
is rejected as an error. */
switch (TREE_CODE (rhs))
{
case TYPE_EXPR:
case CONVERT_EXPR:
case SAVE_EXPR:
case CONSTRUCTOR:
case BUFFER_REF:
my_friendly_abort (177);
return error_mark_node;
case INDIRECT_REF:
case ARRAY_REF:
TREE_TYPE (rhs) = lhstype;
lhstype = build_pointer_type (lhstype);
TREE_OPERAND (rhs, 0)
= instantiate_type (lhstype, TREE_OPERAND (rhs, 0), complain);
if (TREE_OPERAND (rhs, 0) == error_mark_node)
return error_mark_node;
return rhs;
case NOP_EXPR:
rhs = copy_node (TREE_OPERAND (rhs, 0));
TREE_TYPE (rhs) = unknown_type_node;
return instantiate_type (lhstype, rhs, complain);
case COMPONENT_REF:
{
tree field = TREE_OPERAND (rhs, 1);
if (TREE_CODE (field) == TREE_LIST)
{
tree function = instantiate_type (lhstype, field, complain);
if (function == error_mark_node)
return error_mark_node;
my_friendly_assert (TREE_CODE (function) == FUNCTION_DECL, 185);
if (DECL_VINDEX (function))
{
tree base = TREE_OPERAND (rhs, 0);
tree base_ptr = build_unary_op (ADDR_EXPR, base, 0);
if (base_ptr == error_mark_node)
return error_mark_node;
base_ptr = convert_pointer_to (DECL_CONTEXT (function), base_ptr);
if (base_ptr == error_mark_node)
return error_mark_node;
return build_vfn_ref (&base_ptr, base, DECL_VINDEX (function));
}
return function;
}
my_friendly_assert (TREE_CODE (field) == FIELD_DECL, 178);
my_friendly_assert (!(TREE_CODE (TREE_TYPE (field)) == FUNCTION_TYPE
|| TREE_CODE (TREE_TYPE (field)) == METHOD_TYPE),
179);
TREE_TYPE (rhs) = lhstype;
/* First look for an exact match */
while (field && TREE_TYPE (field) != lhstype)
field = TREE_CHAIN (field);
if (field)
{
TREE_OPERAND (rhs, 1) = field;
return rhs;
}
/* No exact match found, look for a compatible function. */
field = TREE_OPERAND (rhs, 1);
while (field && ! comptypes (lhstype, TREE_TYPE (field), 0))
field = TREE_CHAIN (field);
if (field)
{
TREE_OPERAND (rhs, 1) = field;
field = TREE_CHAIN (field);
while (field && ! comptypes (lhstype, TREE_TYPE (field), 0))
field = TREE_CHAIN (field);
if (field)
{
if (complain)
error ("ambiguous overload for COMPONENT_REF requested");
return error_mark_node;
}
}
else
{
if (complain)
error ("no appropriate overload exists for COMPONENT_REF");
return error_mark_node;
}
return rhs;
}
case TREE_LIST:
{
tree elem, baselink, name;
int globals = overloaded_globals_p (rhs);
/* If there's only one function we know about, return that. */
if (globals > 0 && TREE_CHAIN (rhs) == NULL_TREE)
return TREE_VALUE (rhs);
/* First look for an exact match. Search either overloaded
functions or member functions. May have to undo what
`default_conversion' might do to lhstype. */
if (TREE_CODE (lhstype) == POINTER_TYPE)
if (TREE_CODE (TREE_TYPE (lhstype)) == FUNCTION_TYPE
|| TREE_CODE (TREE_TYPE (lhstype)) == METHOD_TYPE)
lhstype = TREE_TYPE (lhstype);
else
{
if (complain)
error ("invalid type combination for overload");
return error_mark_node;
}
if (TREE_CODE (lhstype) != FUNCTION_TYPE && globals > 0)
{
if (complain)
error ("cannot resolve overloaded function `%s' based on non-function type",
IDENTIFIER_POINTER (TREE_PURPOSE (rhs)));
return error_mark_node;
}
if (globals > 0)
{
my_friendly_assert (TREE_CODE (TREE_VALUE (rhs)) == FUNCTION_DECL,
180);
elem = rhs;
while (elem)
if (TREE_TYPE (TREE_VALUE (elem)) != lhstype)
elem = TREE_CHAIN (elem);
else
return TREE_VALUE (elem);
/* No exact match found, look for a compatible function. */
elem = rhs;
while (elem && ! comp_target_types (lhstype, TREE_TYPE (TREE_VALUE (elem)), 1))
elem = TREE_CHAIN (elem);
if (elem)
{
tree save_elem = TREE_VALUE (elem);
elem = TREE_CHAIN (elem);
while (elem && ! comp_target_types (lhstype, TREE_TYPE (TREE_VALUE (elem)), 0))
elem = TREE_CHAIN (elem);
if (elem)
{
if (complain)
error ("ambiguous overload for overloaded function requested");
return error_mark_node;
}
return save_elem;
}
if (complain)
{
if (TREE_CHAIN (rhs))
error ("no appropriate overload for overloaded function `%s' exists",
IDENTIFIER_POINTER (TREE_PURPOSE (rhs)));
else
error ("function `%s' has inappropriate type signature",
IDENTIFIER_POINTER (TREE_PURPOSE (rhs)));
}
return error_mark_node;
}
if (TREE_NONLOCAL_FLAG (rhs))
{
/* Got to get it as a baselink. */
rhs = lookup_fnfields (TYPE_BINFO (current_class_type),
TREE_PURPOSE (rhs), 0);
}
else
{
my_friendly_assert (TREE_CHAIN (rhs) == NULL_TREE, 181);
if (TREE_CODE (TREE_VALUE (rhs)) == TREE_LIST)
rhs = TREE_VALUE (rhs);
my_friendly_assert (TREE_CODE (TREE_VALUE (rhs)) == FUNCTION_DECL,
182);
}
for (baselink = rhs; baselink;
baselink = next_baselink (baselink))
{
elem = TREE_VALUE (baselink);
while (elem)
if (TREE_TYPE (elem) != lhstype)
elem = TREE_CHAIN (elem);
else
return elem;
}
/* No exact match found, look for a compatible method. */
for (baselink = rhs; baselink;
baselink = next_baselink (baselink))
{
elem = TREE_VALUE (baselink);
while (elem && ! comp_target_types (lhstype, TREE_TYPE (elem), 1))
elem = TREE_CHAIN (elem);
if (elem)
{
tree save_elem = elem;
elem = TREE_CHAIN (elem);
while (elem && ! comp_target_types (lhstype, TREE_TYPE (elem), 0))
elem = TREE_CHAIN (elem);
if (elem)
{
if (complain)
error ("ambiguous overload for overloaded method requested");
return error_mark_node;
}
return save_elem;
}
name = DECL_NAME (TREE_VALUE (rhs));
if (TREE_CODE (lhstype) == FUNCTION_TYPE && globals < 0)
{
/* Try to instantiate from non-member functions. */
rhs = IDENTIFIER_GLOBAL_VALUE (name);
if (rhs && TREE_CODE (rhs) == TREE_LIST)
{
/* This code seems to be missing a `return'. */
my_friendly_abort (4);
instantiate_type (lhstype, rhs, complain);
}
}
}
if (complain)
error ("no static member functions named `%s'",
IDENTIFIER_POINTER (name));
return error_mark_node;
}
case CALL_EXPR:
/* This is too hard for now. */
my_friendly_abort (183);
return error_mark_node;
case PLUS_EXPR:
case MINUS_EXPR:
case COMPOUND_EXPR:
TREE_OPERAND (rhs, 0) = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), complain);
if (TREE_OPERAND (rhs, 0) == error_mark_node)
return error_mark_node;
TREE_OPERAND (rhs, 1) = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), complain);
if (TREE_OPERAND (rhs, 1) == error_mark_node)
return error_mark_node;
TREE_TYPE (rhs) = lhstype;
return rhs;
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case FLOOR_DIV_EXPR:
case CEIL_DIV_EXPR:
case ROUND_DIV_EXPR:
case RDIV_EXPR:
case TRUNC_MOD_EXPR:
case FLOOR_MOD_EXPR:
case CEIL_MOD_EXPR:
case ROUND_MOD_EXPR:
case FIX_ROUND_EXPR:
case FIX_FLOOR_EXPR:
case FIX_CEIL_EXPR:
case FIX_TRUNC_EXPR:
case FLOAT_EXPR:
case NEGATE_EXPR:
case ABS_EXPR:
case MAX_EXPR:
case MIN_EXPR:
case FFS_EXPR:
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
case PREINCREMENT_EXPR:
case PREDECREMENT_EXPR:
case POSTINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
if (complain)
error ("illegal operation on uninstantiated type");
return error_mark_node;
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_XOR_EXPR:
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case EQ_EXPR:
case NE_EXPR:
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
case TRUTH_NOT_EXPR:
if (complain)
error ("not enough type information");
return error_mark_node;
case COND_EXPR:
if (type_unknown_p (TREE_OPERAND (rhs, 0)))
{
if (complain)
error ("not enough type information");
return error_mark_node;
}
TREE_OPERAND (rhs, 1) = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), complain);
if (TREE_OPERAND (rhs, 1) == error_mark_node)
return error_mark_node;
TREE_OPERAND (rhs, 2) = instantiate_type (lhstype, TREE_OPERAND (rhs, 2), complain);
if (TREE_OPERAND (rhs, 2) == error_mark_node)
return error_mark_node;
TREE_TYPE (rhs) = lhstype;
return rhs;
case MODIFY_EXPR:
TREE_OPERAND (rhs, 1) = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), complain);
if (TREE_OPERAND (rhs, 1) == error_mark_node)
return error_mark_node;
TREE_TYPE (rhs) = lhstype;
return rhs;
case ADDR_EXPR:
if (TREE_CODE (lhstype) != POINTER_TYPE)
{
if (complain)
error ("type for resolving address of overloaded function must be pointer type");
return error_mark_node;
}
TREE_TYPE (rhs) = lhstype;
lhstype = TREE_TYPE (lhstype);
TREE_OPERAND (rhs, 0) = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), complain);
if (TREE_OPERAND (rhs, 0) == error_mark_node)
return error_mark_node;
mark_addressable (TREE_OPERAND (rhs, 0));
return rhs;
case ENTRY_VALUE_EXPR:
my_friendly_abort (184);
return error_mark_node;
case ERROR_MARK:
return error_mark_node;
default:
my_friendly_abort (185);
return error_mark_node;
}
}
/* Return the name of the virtual function pointer field
(as an IDENTIFIER_NODE) for the given TYPE. Note that
this may have to look back through base types to find the
ultimate field name. (For single inheritance, these could
all be the same name. Who knows for multiple inheritance). */
static tree
get_vfield_name (type)
tree type;
{
tree binfo = TYPE_BINFO (type);
char *buf;
while (BINFO_BASETYPES (binfo)
&& TYPE_VIRTUAL_P (BINFO_TYPE (BINFO_BASETYPE (binfo, 0)))
&& ! TREE_VIA_VIRTUAL (BINFO_BASETYPE (binfo, 0)))
binfo = BINFO_BASETYPE (binfo, 0);
type = BINFO_TYPE (binfo);
buf = (char *)alloca (sizeof (VFIELD_NAME_FORMAT)
+ TYPE_NAME_LENGTH (type) + 2);
sprintf (buf, VFIELD_NAME_FORMAT, TYPE_NAME_STRING (type));
return get_identifier (buf);
}
void
print_class_statistics ()
{
#ifdef GATHER_STATISTICS
fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
fprintf (stderr, "build_method_call = %d (inner = %d)\n",
n_build_method_call, n_inner_fields_searched);
if (n_vtables)
{
fprintf (stderr, "vtables = %d; vtable searches = %d\n",
n_vtables, n_vtable_searches);
fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
n_vtable_entries, n_vtable_elems);
}
#endif
}