NetBSD/sys/arch/x86/include/bus.h
fvdl 7dd7f8baa2 Handle 64bit DMA addresses on PCI for platforms that can (currently only
enabled on amd64). Add a dmat64 field to various PCI attach structures,
and pass it down where needed. Implement a simple new function called
pci_dma64_available(pa) to test if 64bit DMA addresses may be used.
This returns 1 iff _PCI_HAVE_DMA64 is defined in <machine/pci_machdep.h>,
and there is more than 4G of memory.
2003-06-15 23:08:53 +00:00

1250 lines
40 KiB
C

/* $NetBSD: bus.h,v 1.3 2003/06/15 23:09:08 fvdl Exp $ */
/*-
* Copyright (c) 1996, 1997, 1998, 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1996 Charles M. Hannum. All rights reserved.
* Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Christopher G. Demetriou
* for the NetBSD Project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _X86_BUS_H_
#define _X86_BUS_H_
#include <machine/pio.h>
#ifdef BUS_SPACE_DEBUG
#include <sys/systm.h> /* for printf() prototype */
/*
* Macros for sanity-checking the aligned-ness of pointers passed to
* bus space ops. These are not strictly necessary on the x86, but
* could lead to performance improvements, and help catch problems
* with drivers that would creep up on other architectures.
*/
#define __BUS_SPACE_ALIGNED_ADDRESS(p, t) \
((((u_long)(p)) & (sizeof(t)-1)) == 0)
#define __BUS_SPACE_ADDRESS_SANITY(p, t, d) \
({ \
if (__BUS_SPACE_ALIGNED_ADDRESS((p), t) == 0) { \
printf("%s 0x%lx not aligned to %d bytes %s:%d\n", \
d, (u_long)(p), sizeof(t), __FILE__, __LINE__); \
} \
(void) 0; \
})
#define BUS_SPACE_ALIGNED_POINTER(p, t) __BUS_SPACE_ALIGNED_ADDRESS(p, t)
#else
#define __BUS_SPACE_ADDRESS_SANITY(p,t,d) (void) 0
#define BUS_SPACE_ALIGNED_POINTER(p, t) ALIGNED_POINTER(p, t)
#endif /* BUS_SPACE_DEBUG */
/*
* Values for the x86 bus space tag, not to be used directly by MI code.
*/
#define X86_BUS_SPACE_IO 0 /* space is i/o space */
#define X86_BUS_SPACE_MEM 1 /* space is mem space */
#define __BUS_SPACE_HAS_STREAM_METHODS 1
/*
* Bus address and size types
*/
typedef u_long bus_addr_t;
typedef u_long bus_size_t;
/*
* Access methods for bus resources and address space.
*/
typedef int bus_space_tag_t;
typedef u_long bus_space_handle_t;
/*
* int bus_space_map __P((bus_space_tag_t t, bus_addr_t addr,
* bus_size_t size, int flags, bus_space_handle_t *bshp));
*
* Map a region of bus space.
*/
#define BUS_SPACE_MAP_CACHEABLE 0x01
#define BUS_SPACE_MAP_LINEAR 0x02
#define BUS_SPACE_MAP_PREFETCHABLE 0x04
int x86_memio_map __P((bus_space_tag_t t, bus_addr_t addr,
bus_size_t size, int flags, bus_space_handle_t *bshp));
/* like map, but without extent map checking/allocation */
int _x86_memio_map __P((bus_space_tag_t t, bus_addr_t addr,
bus_size_t size, int flags, bus_space_handle_t *bshp));
#define bus_space_map(t, a, s, f, hp) \
x86_memio_map((t), (a), (s), (f), (hp))
/*
* int bus_space_unmap __P((bus_space_tag_t t,
* bus_space_handle_t bsh, bus_size_t size));
*
* Unmap a region of bus space.
*/
void x86_memio_unmap __P((bus_space_tag_t t, bus_space_handle_t bsh,
bus_size_t size));
void _x86_memio_unmap __P((bus_space_tag_t t, bus_space_handle_t bsh,
bus_size_t size, bus_addr_t *));
#define bus_space_unmap(t, h, s) \
x86_memio_unmap((t), (h), (s))
/*
* int bus_space_subregion __P((bus_space_tag_t t,
* bus_space_handle_t bsh, bus_size_t offset, bus_size_t size,
* bus_space_handle_t *nbshp));
*
* Get a new handle for a subregion of an already-mapped area of bus space.
*/
int x86_memio_subregion __P((bus_space_tag_t t, bus_space_handle_t bsh,
bus_size_t offset, bus_size_t size, bus_space_handle_t *nbshp));
#define bus_space_subregion(t, h, o, s, nhp) \
x86_memio_subregion((t), (h), (o), (s), (nhp))
/*
* int bus_space_alloc __P((bus_space_tag_t t, bus_addr_t rstart,
* bus_addr_t rend, bus_size_t size, bus_size_t align,
* bus_size_t boundary, int flags, bus_addr_t *addrp,
* bus_space_handle_t *bshp));
*
* Allocate a region of bus space.
*/
int x86_memio_alloc __P((bus_space_tag_t t, bus_addr_t rstart,
bus_addr_t rend, bus_size_t size, bus_size_t align,
bus_size_t boundary, int flags, bus_addr_t *addrp,
bus_space_handle_t *bshp));
#define bus_space_alloc(t, rs, re, s, a, b, f, ap, hp) \
x86_memio_alloc((t), (rs), (re), (s), (a), (b), (f), (ap), (hp))
/*
* int bus_space_free __P((bus_space_tag_t t,
* bus_space_handle_t bsh, bus_size_t size));
*
* Free a region of bus space.
*/
void x86_memio_free __P((bus_space_tag_t t, bus_space_handle_t bsh,
bus_size_t size));
#define bus_space_free(t, h, s) \
x86_memio_free((t), (h), (s))
/*
* void *bus_space_vaddr __P((bus_space_tag_t, bus_space_handle_t));
*
* Get the kernel virtual address for the mapped bus space.
* Only allowed for regions mapped with BUS_SPACE_MAP_LINEAR.
* (XXX not enforced)
*/
#define bus_space_vaddr(t, h) \
((t) == X86_BUS_SPACE_MEM ? (void *)(h) : (void *)0)
/*
* paddr_t bus_space_mmap __P((bus_space_tag_t t, bus_addr_t base,
* off_t offset, int prot, int flags));
*
* Mmap an area of bus space.
*/
paddr_t x86_memio_mmap __P((bus_space_tag_t, bus_addr_t, off_t,
int, int));
#define bus_space_mmap(t, b, o, p, f) \
x86_memio_mmap((t), (b), (o), (p), (f))
/*
* u_intN_t bus_space_read_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset));
*
* Read a 1, 2, 4, or 8 byte quantity from bus space
* described by tag/handle/offset.
*/
#define bus_space_read_1(t, h, o) \
((t) == X86_BUS_SPACE_IO ? (inb((h) + (o))) :\
(*(volatile u_int8_t *)((h) + (o))))
#define bus_space_read_2(t, h, o) \
(__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"), \
((t) == X86_BUS_SPACE_IO ? (inw((h) + (o))) : \
(*(volatile u_int16_t *)((h) + (o)))))
#define bus_space_read_4(t, h, o) \
(__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"), \
((t) == X86_BUS_SPACE_IO ? (inl((h) + (o))) : \
(*(volatile u_int32_t *)((h) + (o)))))
#define bus_space_read_stream_1 bus_space_read_1
#define bus_space_read_stream_2 bus_space_read_2
#define bus_space_read_stream_4 bus_space_read_4
#if 0 /* Cause a link error for bus_space_read_8 */
#define bus_space_read_8(t, h, o) !!! bus_space_read_8 unimplemented !!!
#define bus_space_read_stream_8(t, h, o) \
!!! bus_space_read_stream_8 unimplemented !!!
#endif
/*
* void bus_space_read_multi_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* u_intN_t *addr, size_t count));
*
* Read `count' 1, 2, 4, or 8 byte quantities from bus space
* described by tag/handle/offset and copy into buffer provided.
*/
#define bus_space_read_multi_1(t, h, o, ptr, cnt) \
do { \
if ((t) == X86_BUS_SPACE_IO) { \
insb((h) + (o), (ptr), (cnt)); \
} else { \
void *dummy1; \
int dummy2; \
void *dummy3; \
int __x; \
__asm __volatile(" \
cld ; \
1: movb (%2),%%al ; \
stosb ; \
loop 1b" : \
"=D" (dummy1), "=c" (dummy2), "=r" (dummy3), "=&a" (__x) : \
"0" ((ptr)), "1" ((cnt)), "2" ((h) + (o)) : \
"memory"); \
} \
} while (/* CONSTCOND */ 0)
#define bus_space_read_multi_2(t, h, o, ptr, cnt) \
do { \
__BUS_SPACE_ADDRESS_SANITY((ptr), u_int16_t, "buffer"); \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \
if ((t) == X86_BUS_SPACE_IO) { \
insw((h) + (o), (ptr), (cnt)); \
} else { \
void *dummy1; \
int dummy2; \
void *dummy3; \
int __x; \
__asm __volatile(" \
cld ; \
1: movw (%2),%%ax ; \
stosw ; \
loop 1b" : \
"=D" (dummy1), "=c" (dummy2), "=r" (dummy3), "=&a" (__x) : \
"0" ((ptr)), "1" ((cnt)), "2" ((h) + (o)) : \
"memory"); \
} \
} while (/* CONSTCOND */ 0)
#define bus_space_read_multi_4(t, h, o, ptr, cnt) \
do { \
__BUS_SPACE_ADDRESS_SANITY((ptr), u_int32_t, "buffer"); \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \
if ((t) == X86_BUS_SPACE_IO) { \
insl((h) + (o), (ptr), (cnt)); \
} else { \
void *dummy1; \
int dummy2; \
void *dummy3; \
int __x; \
__asm __volatile(" \
cld ; \
1: movl (%2),%%eax ; \
stosl ; \
loop 1b" : \
"=D" (dummy1), "=c" (dummy2), "=r" (dummy3), "=&a" (__x) : \
"0" ((ptr)), "1" ((cnt)), "2" ((h) + (o)) : \
"memory"); \
} \
} while (/* CONSTCOND */ 0)
#define bus_space_read_multi_stream_1 bus_space_read_multi_1
#define bus_space_read_multi_stream_2 bus_space_read_multi_2
#define bus_space_read_multi_stream_4 bus_space_read_multi_4
#if 0 /* Cause a link error for bus_space_read_multi_8 */
#define bus_space_read_multi_8 !!! bus_space_read_multi_8 unimplemented !!!
#define bus_space_read_multi_stream_8 \
!!! bus_space_read_multi_stream_8 unimplemented !!!
#endif
/*
* void bus_space_read_region_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* u_intN_t *addr, size_t count));
*
* Read `count' 1, 2, 4, or 8 byte quantities from bus space
* described by tag/handle and starting at `offset' and copy into
* buffer provided.
*/
#define bus_space_read_region_1(t, h, o, ptr, cnt) \
do { \
if ((t) == X86_BUS_SPACE_IO) { \
int dummy1; \
void *dummy2; \
int dummy3; \
int __x; \
__asm __volatile(" \
cld ; \
1: inb %w1,%%al ; \
stosb ; \
incl %1 ; \
loop 1b" : \
"=&a" (__x), "=d" (dummy1), "=D" (dummy2), \
"=c" (dummy3) : \
"1" ((h) + (o)), "2" ((ptr)), "3" ((cnt)) : \
"memory"); \
} else { \
int dummy1; \
void *dummy2; \
int dummy3; \
__asm __volatile(" \
cld ; \
repne ; \
movsb" : \
"=S" (dummy1), "=D" (dummy2), "=c" (dummy3) : \
"0" ((h) + (o)), "1" ((ptr)), "2" ((cnt)) : \
"memory"); \
} \
} while (/* CONSTCOND */ 0)
#define bus_space_read_region_2(t, h, o, ptr, cnt) \
do { \
__BUS_SPACE_ADDRESS_SANITY((ptr), u_int16_t, "buffer"); \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \
if ((t) == X86_BUS_SPACE_IO) { \
int dummy1; \
void *dummy2; \
int dummy3; \
int __x; \
__asm __volatile(" \
cld ; \
1: inw %w1,%%ax ; \
stosw ; \
addl $2,%1 ; \
loop 1b" : \
"=&a" (__x), "=d" (dummy1), "=D" (dummy2), \
"=c" (dummy3) : \
"1" ((h) + (o)), "2" ((ptr)), "3" ((cnt)) : \
"memory"); \
} else { \
int dummy1; \
void *dummy2; \
int dummy3; \
__asm __volatile(" \
cld ; \
repne ; \
movsw" : \
"=S" (dummy1), "=D" (dummy2), "=c" (dummy3) : \
"0" ((h) + (o)), "1" ((ptr)), "2" ((cnt)) : \
"memory"); \
} \
} while (/* CONSTCOND */ 0)
#define bus_space_read_region_4(t, h, o, ptr, cnt) \
do { \
__BUS_SPACE_ADDRESS_SANITY((ptr), u_int32_t, "buffer"); \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \
if ((t) == X86_BUS_SPACE_IO) { \
int dummy1; \
void *dummy2; \
int dummy3; \
int __x; \
__asm __volatile(" \
cld ; \
1: inl %w1,%%eax ; \
stosl ; \
addl $4,%1 ; \
loop 1b" : \
"=&a" (__x), "=d" (dummy1), "=D" (dummy2), \
"=c" (dummy3) : \
"1" ((h) + (o)), "2" ((ptr)), "3" ((cnt)) : \
"memory"); \
} else { \
int dummy1; \
void *dummy2; \
int dummy3; \
__asm __volatile(" \
cld ; \
repne ; \
movsl" : \
"=S" (dummy1), "=D" (dummy2), "=c" (dummy3) : \
"0" ((h) + (o)), "1" ((ptr)), "2" ((cnt)) : \
"memory"); \
} \
} while (/* CONSTCOND */ 0)
#define bus_space_read_region_stream_1 bus_space_read_region_1
#define bus_space_read_region_stream_2 bus_space_read_region_2
#define bus_space_read_region_stream_4 bus_space_read_region_4
#if 0 /* Cause a link error for bus_space_read_region_8 */
#define bus_space_read_region_8 !!! bus_space_read_region_8 unimplemented !!!
#define bus_space_read_region_stream_8 \
!!! bus_space_read_region_stream_8 unimplemented !!!
#endif
/*
* void bus_space_write_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* u_intN_t value));
*
* Write the 1, 2, 4, or 8 byte value `value' to bus space
* described by tag/handle/offset.
*/
#define bus_space_write_1(t, h, o, v) \
do { \
if ((t) == X86_BUS_SPACE_IO) \
outb((h) + (o), (v)); \
else \
((void)(*(volatile u_int8_t *)((h) + (o)) = (v))); \
} while (/* CONSTCOND */ 0)
#define bus_space_write_2(t, h, o, v) \
do { \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \
if ((t) == X86_BUS_SPACE_IO) \
outw((h) + (o), (v)); \
else \
((void)(*(volatile u_int16_t *)((h) + (o)) = (v))); \
} while (/* CONSTCOND */ 0)
#define bus_space_write_4(t, h, o, v) \
do { \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \
if ((t) == X86_BUS_SPACE_IO) \
outl((h) + (o), (v)); \
else \
((void)(*(volatile u_int32_t *)((h) + (o)) = (v))); \
} while (/* CONSTCOND */ 0)
#define bus_space_write_stream_1 bus_space_write_1
#define bus_space_write_stream_2 bus_space_write_2
#define bus_space_write_stream_4 bus_space_write_4
#if 0 /* Cause a link error for bus_space_write_8 */
#define bus_space_write_8 !!! bus_space_write_8 not implemented !!!
#define bus_space_write_stream_8 \
!!! bus_space_write_stream_8 not implemented !!!
#endif
/*
* void bus_space_write_multi_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* const u_intN_t *addr, size_t count));
*
* Write `count' 1, 2, 4, or 8 byte quantities from the buffer
* provided to bus space described by tag/handle/offset.
*/
#define bus_space_write_multi_1(t, h, o, ptr, cnt) \
do { \
if ((t) == X86_BUS_SPACE_IO) { \
outsb((h) + (o), (ptr), (cnt)); \
} else { \
void *dummy1; \
int dummy2; \
void *dummy3; \
int __x; \
__asm __volatile(" \
cld ; \
1: lodsb ; \
movb %%al,(%2) ; \
loop 1b" : \
"=S" (dummy1), "=c" (dummy2), "=r" (dummy3), "=&a" (__x) : \
"0" ((ptr)), "1" ((cnt)), "2" ((h) + (o))); \
} \
} while (/* CONSTCOND */ 0)
#define bus_space_write_multi_2(t, h, o, ptr, cnt) \
do { \
__BUS_SPACE_ADDRESS_SANITY((ptr), u_int16_t, "buffer"); \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \
if ((t) == X86_BUS_SPACE_IO) { \
outsw((h) + (o), (ptr), (cnt)); \
} else { \
void *dummy1; \
int dummy2; \
void *dummy3; \
int __x; \
__asm __volatile(" \
cld ; \
1: lodsw ; \
movw %%ax,(%2) ; \
loop 1b" : \
"=S" (dummy1), "=c" (dummy2), "=r" (dummy3), "=&a" (__x) : \
"0" ((ptr)), "1" ((cnt)), "2" ((h) + (o))); \
} \
} while (/* CONSTCOND */ 0)
#define bus_space_write_multi_4(t, h, o, ptr, cnt) \
do { \
__BUS_SPACE_ADDRESS_SANITY((ptr), u_int32_t, "buffer"); \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \
if ((t) == X86_BUS_SPACE_IO) { \
outsl((h) + (o), (ptr), (cnt)); \
} else { \
void *dummy1; \
int dummy2; \
void *dummy3; \
int __x; \
__asm __volatile(" \
cld ; \
1: lodsl ; \
movl %%eax,(%2) ; \
loop 1b" : \
"=S" (dummy1), "=c" (dummy2), "=r" (dummy3), "=&a" (__x) : \
"0" ((ptr)), "1" ((cnt)), "2" ((h) + (o))); \
} \
} while (/* CONSTCOND */ 0)
#define bus_space_write_multi_stream_1 bus_space_write_multi_1
#define bus_space_write_multi_stream_2 bus_space_write_multi_2
#define bus_space_write_multi_stream_4 bus_space_write_multi_4
#if 0 /* Cause a link error for bus_space_write_multi_8 */
#define bus_space_write_multi_8(t, h, o, ptr, cnt) \
!!! bus_space_write_multi_8 unimplemented !!!
#define bus_space_write_multi_stream_8(t, h, o, ptr, cnt) \
!!! bus_space_write_multi_stream_8 unimplemented !!!
#endif
/*
* void bus_space_write_region_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* const u_intN_t *addr, size_t count));
*
* Write `count' 1, 2, 4, or 8 byte quantities from the buffer provided
* to bus space described by tag/handle starting at `offset'.
*/
#define bus_space_write_region_1(t, h, o, ptr, cnt) \
do { \
if ((t) == X86_BUS_SPACE_IO) { \
int dummy1; \
void *dummy2; \
int dummy3; \
int __x; \
__asm __volatile(" \
cld ; \
1: lodsb ; \
outb %%al,%w1 ; \
incl %1 ; \
loop 1b" : \
"=&a" (__x), "=d" (dummy1), "=S" (dummy2), \
"=c" (dummy3) : \
"1" ((h) + (o)), "2" ((ptr)), "3" ((cnt)) : \
"memory"); \
} else { \
int dummy1; \
void *dummy2; \
int dummy3; \
__asm __volatile(" \
cld ; \
repne ; \
movsb" : \
"=D" (dummy1), "=S" (dummy2), "=c" (dummy3) : \
"0" ((h) + (o)), "1" ((ptr)), "2" ((cnt)) : \
"memory"); \
} \
} while (/* CONSTCOND */ 0)
#define bus_space_write_region_2(t, h, o, ptr, cnt) \
do { \
__BUS_SPACE_ADDRESS_SANITY((ptr), u_int16_t, "buffer"); \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \
if ((t) == X86_BUS_SPACE_IO) { \
int dummy1; \
void *dummy2; \
int dummy3; \
int __x; \
__asm __volatile(" \
cld ; \
1: lodsw ; \
outw %%ax,%w1 ; \
addl $2,%1 ; \
loop 1b" : \
"=&a" (__x), "=d" (dummy1), "=S" (dummy2), \
"=c" (dummy3) : \
"1" ((h) + (o)), "2" ((ptr)), "3" ((cnt)) : \
"memory"); \
} else { \
int dummy1; \
void *dummy2; \
int dummy3; \
__asm __volatile(" \
cld ; \
repne ; \
movsw" : \
"=D" (dummy1), "=S" (dummy2), "=c" (dummy3) : \
"0" ((h) + (o)), "1" ((ptr)), "2" ((cnt)) : \
"memory"); \
} \
} while (/* CONSTCOND */ 0)
#define bus_space_write_region_4(t, h, o, ptr, cnt) \
do { \
__BUS_SPACE_ADDRESS_SANITY((ptr), u_int32_t, "buffer"); \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \
if ((t) == X86_BUS_SPACE_IO) { \
int dummy1; \
void *dummy2; \
int dummy3; \
int __x; \
__asm __volatile(" \
cld ; \
1: lodsl ; \
outl %%eax,%w1 ; \
addl $4,%1 ; \
loop 1b" : \
"=&a" (__x), "=d" (dummy1), "=S" (dummy2), \
"=c" (dummy3) : \
"1" ((h) + (o)), "2" ((ptr)), "3" ((cnt)) : \
"memory"); \
} else { \
int dummy1; \
void *dummy2; \
int dummy3; \
__asm __volatile(" \
cld ; \
repne ; \
movsl" : \
"=D" (dummy1), "=S" (dummy2), "=c" (dummy3) : \
"0" ((h) + (o)), "1" ((ptr)), "2" ((cnt)) : \
"memory"); \
} \
} while (/* CONSTCOND */ 0)
#define bus_space_write_region_stream_1 bus_space_write_region_1
#define bus_space_write_region_stream_2 bus_space_write_region_2
#define bus_space_write_region_stream_4 bus_space_write_region_4
#if 0 /* Cause a link error for bus_space_write_region_8 */
#define bus_space_write_region_8 \
!!! bus_space_write_region_8 unimplemented !!!
#define bus_space_write_region_stream_8 \
!!! bus_space_write_region_stream_8 unimplemented !!!
#endif
/*
* void bus_space_set_multi_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset, u_intN_t val,
* size_t count));
*
* Write the 1, 2, 4, or 8 byte value `val' to bus space described
* by tag/handle/offset `count' times.
*/
static __inline void x86_memio_set_multi_1 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int8_t, size_t));
static __inline void x86_memio_set_multi_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int16_t, size_t));
static __inline void x86_memio_set_multi_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int32_t, size_t));
#define bus_space_set_multi_1(t, h, o, v, c) \
x86_memio_set_multi_1((t), (h), (o), (v), (c))
#define bus_space_set_multi_2(t, h, o, v, c) \
do { \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \
x86_memio_set_multi_2((t), (h), (o), (v), (c)); \
} while (/* CONSTCOND */ 0)
#define bus_space_set_multi_4(t, h, o, v, c) \
do { \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \
x86_memio_set_multi_4((t), (h), (o), (v), (c)); \
} while (/* CONSTCOND */ 0)
static __inline void
x86_memio_set_multi_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
u_int8_t v, size_t c)
{
bus_addr_t addr = h + o;
if (t == X86_BUS_SPACE_IO)
while (c--)
outb(addr, v);
else
while (c--)
*(volatile u_int8_t *)(addr) = v;
}
static __inline void
x86_memio_set_multi_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
u_int16_t v, size_t c)
{
bus_addr_t addr = h + o;
if (t == X86_BUS_SPACE_IO)
while (c--)
outw(addr, v);
else
while (c--)
*(volatile u_int16_t *)(addr) = v;
}
static __inline void
x86_memio_set_multi_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
u_int32_t v, size_t c)
{
bus_addr_t addr = h + o;
if (t == X86_BUS_SPACE_IO)
while (c--)
outl(addr, v);
else
while (c--)
*(volatile u_int32_t *)(addr) = v;
}
#if 0 /* Cause a link error for bus_space_set_multi_8 */
#define bus_space_set_multi_8 !!! bus_space_set_multi_8 unimplemented !!!
#endif
/*
* void bus_space_set_region_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset, u_intN_t val,
* size_t count));
*
* Write `count' 1, 2, 4, or 8 byte value `val' to bus space described
* by tag/handle starting at `offset'.
*/
static __inline void x86_memio_set_region_1 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int8_t, size_t));
static __inline void x86_memio_set_region_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int16_t, size_t));
static __inline void x86_memio_set_region_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, u_int32_t, size_t));
#define bus_space_set_region_1(t, h, o, v, c) \
x86_memio_set_region_1((t), (h), (o), (v), (c))
#define bus_space_set_region_2(t, h, o, v, c) \
do { \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int16_t, "bus addr"); \
x86_memio_set_region_2((t), (h), (o), (v), (c)); \
} while (/* CONSTCOND */ 0)
#define bus_space_set_region_4(t, h, o, v, c) \
do { \
__BUS_SPACE_ADDRESS_SANITY((h) + (o), u_int32_t, "bus addr"); \
x86_memio_set_region_4((t), (h), (o), (v), (c)); \
} while (/* CONSTCOND */ 0)
static __inline void
x86_memio_set_region_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
u_int8_t v, size_t c)
{
bus_addr_t addr = h + o;
if (t == X86_BUS_SPACE_IO)
for (; c != 0; c--, addr++)
outb(addr, v);
else
for (; c != 0; c--, addr++)
*(volatile u_int8_t *)(addr) = v;
}
static __inline void
x86_memio_set_region_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
u_int16_t v, size_t c)
{
bus_addr_t addr = h + o;
if (t == X86_BUS_SPACE_IO)
for (; c != 0; c--, addr += 2)
outw(addr, v);
else
for (; c != 0; c--, addr += 2)
*(volatile u_int16_t *)(addr) = v;
}
static __inline void
x86_memio_set_region_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
u_int32_t v, size_t c)
{
bus_addr_t addr = h + o;
if (t == X86_BUS_SPACE_IO)
for (; c != 0; c--, addr += 4)
outl(addr, v);
else
for (; c != 0; c--, addr += 4)
*(volatile u_int32_t *)(addr) = v;
}
#if 0 /* Cause a link error for bus_space_set_region_8 */
#define bus_space_set_region_8 !!! bus_space_set_region_8 unimplemented !!!
#endif
/*
* void bus_space_copy_region_N __P((bus_space_tag_t tag,
* bus_space_handle_t bsh1, bus_size_t off1,
* bus_space_handle_t bsh2, bus_size_t off2,
* size_t count));
*
* Copy `count' 1, 2, 4, or 8 byte values from bus space starting
* at tag/bsh1/off1 to bus space starting at tag/bsh2/off2.
*/
static __inline void x86_memio_copy_region_1 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, bus_space_handle_t,
bus_size_t, size_t));
static __inline void x86_memio_copy_region_2 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, bus_space_handle_t,
bus_size_t, size_t));
static __inline void x86_memio_copy_region_4 __P((bus_space_tag_t,
bus_space_handle_t, bus_size_t, bus_space_handle_t,
bus_size_t, size_t));
#define bus_space_copy_region_1(t, h1, o1, h2, o2, c) \
x86_memio_copy_region_1((t), (h1), (o1), (h2), (o2), (c))
#define bus_space_copy_region_2(t, h1, o1, h2, o2, c) \
do { \
__BUS_SPACE_ADDRESS_SANITY((h1) + (o1), u_int16_t, "bus addr 1"); \
__BUS_SPACE_ADDRESS_SANITY((h2) + (o2), u_int16_t, "bus addr 2"); \
x86_memio_copy_region_2((t), (h1), (o1), (h2), (o2), (c)); \
} while (/* CONSTCOND */ 0)
#define bus_space_copy_region_4(t, h1, o1, h2, o2, c) \
do { \
__BUS_SPACE_ADDRESS_SANITY((h1) + (o1), u_int32_t, "bus addr 1"); \
__BUS_SPACE_ADDRESS_SANITY((h2) + (o2), u_int32_t, "bus addr 2"); \
x86_memio_copy_region_4((t), (h1), (o1), (h2), (o2), (c)); \
} while (/* CONSTCOND */ 0)
static __inline void
x86_memio_copy_region_1(bus_space_tag_t t,
bus_space_handle_t h1, bus_size_t o1,
bus_space_handle_t h2, bus_size_t o2, size_t c)
{
bus_addr_t addr1 = h1 + o1;
bus_addr_t addr2 = h2 + o2;
if (t == X86_BUS_SPACE_IO) {
if (addr1 >= addr2) {
/* src after dest: copy forward */
for (; c != 0; c--, addr1++, addr2++)
outb(addr2, inb(addr1));
} else {
/* dest after src: copy backwards */
for (addr1 += (c - 1), addr2 += (c - 1);
c != 0; c--, addr1--, addr2--)
outb(addr2, inb(addr1));
}
} else {
if (addr1 >= addr2) {
/* src after dest: copy forward */
for (; c != 0; c--, addr1++, addr2++)
*(volatile u_int8_t *)(addr2) =
*(volatile u_int8_t *)(addr1);
} else {
/* dest after src: copy backwards */
for (addr1 += (c - 1), addr2 += (c - 1);
c != 0; c--, addr1--, addr2--)
*(volatile u_int8_t *)(addr2) =
*(volatile u_int8_t *)(addr1);
}
}
}
static __inline void
x86_memio_copy_region_2(bus_space_tag_t t,
bus_space_handle_t h1, bus_size_t o1,
bus_space_handle_t h2, bus_size_t o2, size_t c)
{
bus_addr_t addr1 = h1 + o1;
bus_addr_t addr2 = h2 + o2;
if (t == X86_BUS_SPACE_IO) {
if (addr1 >= addr2) {
/* src after dest: copy forward */
for (; c != 0; c--, addr1 += 2, addr2 += 2)
outw(addr2, inw(addr1));
} else {
/* dest after src: copy backwards */
for (addr1 += 2 * (c - 1), addr2 += 2 * (c - 1);
c != 0; c--, addr1 -= 2, addr2 -= 2)
outw(addr2, inw(addr1));
}
} else {
if (addr1 >= addr2) {
/* src after dest: copy forward */
for (; c != 0; c--, addr1 += 2, addr2 += 2)
*(volatile u_int16_t *)(addr2) =
*(volatile u_int16_t *)(addr1);
} else {
/* dest after src: copy backwards */
for (addr1 += 2 * (c - 1), addr2 += 2 * (c - 1);
c != 0; c--, addr1 -= 2, addr2 -= 2)
*(volatile u_int16_t *)(addr2) =
*(volatile u_int16_t *)(addr1);
}
}
}
static __inline void
x86_memio_copy_region_4(bus_space_tag_t t,
bus_space_handle_t h1, bus_size_t o1,
bus_space_handle_t h2, bus_size_t o2, size_t c)
{
bus_addr_t addr1 = h1 + o1;
bus_addr_t addr2 = h2 + o2;
if (t == X86_BUS_SPACE_IO) {
if (addr1 >= addr2) {
/* src after dest: copy forward */
for (; c != 0; c--, addr1 += 4, addr2 += 4)
outl(addr2, inl(addr1));
} else {
/* dest after src: copy backwards */
for (addr1 += 4 * (c - 1), addr2 += 4 * (c - 1);
c != 0; c--, addr1 -= 4, addr2 -= 4)
outl(addr2, inl(addr1));
}
} else {
if (addr1 >= addr2) {
/* src after dest: copy forward */
for (; c != 0; c--, addr1 += 4, addr2 += 4)
*(volatile u_int32_t *)(addr2) =
*(volatile u_int32_t *)(addr1);
} else {
/* dest after src: copy backwards */
for (addr1 += 4 * (c - 1), addr2 += 4 * (c - 1);
c != 0; c--, addr1 -= 4, addr2 -= 4)
*(volatile u_int32_t *)(addr2) =
*(volatile u_int32_t *)(addr1);
}
}
}
#if 0 /* Cause a link error for bus_space_copy_8 */
#define bus_space_copy_region_8 !!! bus_space_copy_region_8 unimplemented !!!
#endif
/*
* Bus read/write barrier methods.
*
* void bus_space_barrier __P((bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* bus_size_t len, int flags));
*
* Note: the x86 does not currently require barriers, but we must
* provide the flags to MI code.
*/
#define bus_space_barrier(t, h, o, l, f) \
((void)((void)(t), (void)(h), (void)(o), (void)(l), (void)(f)))
#define BUS_SPACE_BARRIER_READ 0x01 /* force read barrier */
#define BUS_SPACE_BARRIER_WRITE 0x02 /* force write barrier */
/*
* Flags used in various bus DMA methods.
*/
#define BUS_DMA_WAITOK 0x000 /* safe to sleep (pseudo-flag) */
#define BUS_DMA_NOWAIT 0x001 /* not safe to sleep */
#define BUS_DMA_ALLOCNOW 0x002 /* perform resource allocation now */
#define BUS_DMA_COHERENT 0x004 /* hint: map memory DMA coherent */
#define BUS_DMA_STREAMING 0x008 /* hint: sequential, unidirectional */
#define BUS_DMA_BUS1 0x010 /* placeholders for bus functions... */
#define BUS_DMA_BUS2 0x020
#define BUS_DMA_BUS3 0x040
#define BUS_DMA_BUS4 0x080
#define BUS_DMA_READ 0x100 /* mapping is device -> memory only */
#define BUS_DMA_WRITE 0x200 /* mapping is memory -> device only */
#define BUS_DMA_NOCACHE 0x400 /* hint: map non-cached memory */
/* Forwards needed by prototypes below. */
struct mbuf;
struct uio;
/*
* Operations performed by bus_dmamap_sync().
*/
#define BUS_DMASYNC_PREREAD 0x01 /* pre-read synchronization */
#define BUS_DMASYNC_POSTREAD 0x02 /* post-read synchronization */
#define BUS_DMASYNC_PREWRITE 0x04 /* pre-write synchronization */
#define BUS_DMASYNC_POSTWRITE 0x08 /* post-write synchronization */
typedef struct x86_bus_dma_tag *bus_dma_tag_t;
typedef struct x86_bus_dmamap *bus_dmamap_t;
#define BUS_DMA_TAG_VALID(t) ((t) != (bus_dma_tag_t)0)
/*
* bus_dma_segment_t
*
* Describes a single contiguous DMA transaction. Values
* are suitable for programming into DMA registers.
*/
struct x86_bus_dma_segment {
bus_addr_t ds_addr; /* DMA address */
bus_size_t ds_len; /* length of transfer */
};
typedef struct x86_bus_dma_segment bus_dma_segment_t;
/*
* bus_dma_tag_t
*
* A machine-dependent opaque type describing the implementation of
* DMA for a given bus.
*/
struct x86_bus_dma_tag {
/*
* The `bounce threshold' is checked while we are loading
* the DMA map. If the physical address of the segment
* exceeds the threshold, an error will be returned. The
* caller can then take whatever action is necessary to
* bounce the transfer. If this value is 0, it will be
* ignored.
*/
bus_addr_t _bounce_thresh;
bus_addr_t _bounce_alloc_lo;
bus_addr_t _bounce_alloc_hi;
int (*_may_bounce) __P((bus_dma_tag_t, bus_dmamap_t, int, int *));
/*
* DMA mapping methods.
*/
int (*_dmamap_create) __P((bus_dma_tag_t, bus_size_t, int,
bus_size_t, bus_size_t, int, bus_dmamap_t *));
void (*_dmamap_destroy) __P((bus_dma_tag_t, bus_dmamap_t));
int (*_dmamap_load) __P((bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int));
int (*_dmamap_load_mbuf) __P((bus_dma_tag_t, bus_dmamap_t,
struct mbuf *, int));
int (*_dmamap_load_uio) __P((bus_dma_tag_t, bus_dmamap_t,
struct uio *, int));
int (*_dmamap_load_raw) __P((bus_dma_tag_t, bus_dmamap_t,
bus_dma_segment_t *, int, bus_size_t, int));
void (*_dmamap_unload) __P((bus_dma_tag_t, bus_dmamap_t));
void (*_dmamap_sync) __P((bus_dma_tag_t, bus_dmamap_t,
bus_addr_t, bus_size_t, int));
/*
* DMA memory utility functions.
*/
int (*_dmamem_alloc) __P((bus_dma_tag_t, bus_size_t, bus_size_t,
bus_size_t, bus_dma_segment_t *, int, int *, int));
void (*_dmamem_free) __P((bus_dma_tag_t,
bus_dma_segment_t *, int));
int (*_dmamem_map) __P((bus_dma_tag_t, bus_dma_segment_t *,
int, size_t, caddr_t *, int));
void (*_dmamem_unmap) __P((bus_dma_tag_t, caddr_t, size_t));
paddr_t (*_dmamem_mmap) __P((bus_dma_tag_t, bus_dma_segment_t *,
int, off_t, int, int));
};
#define bus_dmamap_create(t, s, n, m, b, f, p) \
(*(t)->_dmamap_create)((t), (s), (n), (m), (b), (f), (p))
#define bus_dmamap_destroy(t, p) \
(*(t)->_dmamap_destroy)((t), (p))
#define bus_dmamap_load(t, m, b, s, p, f) \
(*(t)->_dmamap_load)((t), (m), (b), (s), (p), (f))
#define bus_dmamap_load_mbuf(t, m, b, f) \
(*(t)->_dmamap_load_mbuf)((t), (m), (b), (f))
#define bus_dmamap_load_uio(t, m, u, f) \
(*(t)->_dmamap_load_uio)((t), (m), (u), (f))
#define bus_dmamap_load_raw(t, m, sg, n, s, f) \
(*(t)->_dmamap_load_raw)((t), (m), (sg), (n), (s), (f))
#define bus_dmamap_unload(t, p) \
(*(t)->_dmamap_unload)((t), (p))
#define bus_dmamap_sync(t, p, o, l, ops) \
(void)((t)->_dmamap_sync ? \
(*(t)->_dmamap_sync)((t), (p), (o), (l), (ops)) : (void)0)
#define bus_dmamem_alloc(t, s, a, b, sg, n, r, f) \
(*(t)->_dmamem_alloc)((t), (s), (a), (b), (sg), (n), (r), (f))
#define bus_dmamem_free(t, sg, n) \
(*(t)->_dmamem_free)((t), (sg), (n))
#define bus_dmamem_map(t, sg, n, s, k, f) \
(*(t)->_dmamem_map)((t), (sg), (n), (s), (k), (f))
#define bus_dmamem_unmap(t, k, s) \
(*(t)->_dmamem_unmap)((t), (k), (s))
#define bus_dmamem_mmap(t, sg, n, o, p, f) \
(*(t)->_dmamem_mmap)((t), (sg), (n), (o), (p), (f))
/*
* bus_dmamap_t
*
* Describes a DMA mapping.
*/
struct x86_bus_dmamap {
/*
* PRIVATE MEMBERS: not for use by machine-independent code.
*/
bus_size_t _dm_size; /* largest DMA transfer mappable */
int _dm_segcnt; /* number of segs this map can map */
bus_size_t _dm_maxsegsz; /* largest possible segment */
bus_size_t _dm_boundary; /* don't cross this */
bus_addr_t _dm_bounce_thresh; /* bounce threshold; see tag */
int _dm_flags; /* misc. flags */
void *_dm_cookie; /* cookie for bus-specific functions */
/*
* PUBLIC MEMBERS: these are used by machine-independent code.
*/
bus_size_t dm_mapsize; /* size of the mapping */
int dm_nsegs; /* # valid segments in mapping */
bus_dma_segment_t dm_segs[1]; /* segments; variable length */
};
#ifdef _X86_BUS_DMA_PRIVATE
int _bus_dmamap_create __P((bus_dma_tag_t, bus_size_t, int, bus_size_t,
bus_size_t, int, bus_dmamap_t *));
void _bus_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
int _bus_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int));
int _bus_dmamap_load_mbuf __P((bus_dma_tag_t, bus_dmamap_t,
struct mbuf *, int));
int _bus_dmamap_load_uio __P((bus_dma_tag_t, bus_dmamap_t,
struct uio *, int));
int _bus_dmamap_load_raw __P((bus_dma_tag_t, bus_dmamap_t,
bus_dma_segment_t *, int, bus_size_t, int));
void _bus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
void _bus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
bus_size_t, int));
int _bus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size,
bus_size_t alignment, bus_size_t boundary,
bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags));
void _bus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
int nsegs));
int _bus_dmamem_map __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
int nsegs, size_t size, caddr_t *kvap, int flags));
void _bus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva,
size_t size));
paddr_t _bus_dmamem_mmap __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
int nsegs, off_t off, int prot, int flags));
int _bus_dmamem_alloc_range __P((bus_dma_tag_t tag, bus_size_t size,
bus_size_t alignment, bus_size_t boundary,
bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags,
paddr_t low, paddr_t high));
int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
bus_size_t size, int flags);
void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
int _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map,
void *buf, bus_size_t buflen, struct proc *p, int flags,
paddr_t *lastaddrp, int *segp, int first);
/*
* Cookie used for bounce buffers. A pointer to one of these it stashed in
* the DMA map.
*/
struct x86_bus_dma_cookie {
int id_flags; /* flags; see below */
/*
* Information about the original buffer used during
* DMA map syncs. Note that origibuflen is only used
* for ID_BUFTYPE_LINEAR.
*/
void *id_origbuf; /* pointer to orig buffer if
bouncing */
bus_size_t id_origbuflen; /* ...and size */
int id_buftype; /* type of buffer */
void *id_bouncebuf; /* pointer to the bounce buffer */
bus_size_t id_bouncebuflen; /* ...and size */
int id_nbouncesegs; /* number of valid bounce segs */
bus_dma_segment_t id_bouncesegs[0]; /* array of bounce buffer
physical memory segments */
};
/* id_flags */
#define X86_DMA_ID_MIGHT_NEED_BOUNCE 0x01 /* may eed bounce buffers */
#define X86_DMA_ID_HAS_BOUNCE 0x02 /* has bounce buffers */
#define X86_DMA_ID_IS_BOUNCING 0x04 /* is bouncing current xfer */
/* id_buftype */
#define X86_DMA_ID_BUFTYPE_INVALID 0
#define X86_DMA_ID_BUFTYPE_LINEAR 1
#define X86_DMA_ID_BUFTYPE_MBUF 2
#define X86_DMA_ID_BUFTYPE_UIO 3
#define X86_DMA_ID_BUFTYPE_RAW 4
#endif /* _X86_BUS_DMA_PRIVATE */
#endif /* _X86_BUS_H_ */