NetBSD/sys/dev/usb/if_smsc.c
skrll b842161189 PR kern/52931 Kernel panics with Atheros usb wireless interface
Audit the flags to usbd_create_xfer so that USBD_FORCE_SHORT_XFER is
supplied wherever such a transfer is setup.  We can drop
USBD_SHORT_XFER_OK as it has not bearing on number of TDs
2018-01-21 13:57:11 +00:00

1590 lines
39 KiB
C

/* $NetBSD: if_smsc.c,v 1.33 2018/01/21 13:57:12 skrll Exp $ */
/* $OpenBSD: if_smsc.c,v 1.4 2012/09/27 12:38:11 jsg Exp $ */
/* $FreeBSD: src/sys/dev/usb/net/if_smsc.c,v 1.1 2012/08/15 04:03:55 gonzo Exp $ */
/*-
* Copyright (c) 2012
* Ben Gray <bgray@freebsd.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* SMSC LAN9xxx devices (http://www.smsc.com/)
*
* The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that
* support USB 2.0 and 10/100 Mbps Ethernet.
*
* The LAN951x devices are an integrated USB hub and USB to Ethernet adapter.
* The driver only covers the Ethernet part, the standard USB hub driver
* supports the hub part.
*
* This driver is closely modelled on the Linux driver written and copyrighted
* by SMSC.
*
* H/W TCP & UDP Checksum Offloading
* ---------------------------------
* The chip supports both tx and rx offloading of UDP & TCP checksums, this
* feature can be dynamically enabled/disabled.
*
* RX checksuming is performed across bytes after the IPv4 header to the end of
* the Ethernet frame, this means if the frame is padded with non-zero values
* the H/W checksum will be incorrect, however the rx code compensates for this.
*
* TX checksuming is more complicated, the device requires a special header to
* be prefixed onto the start of the frame which indicates the start and end
* positions of the UDP or TCP frame. This requires the driver to manually
* go through the packet data and decode the headers prior to sending.
* On Linux they generally provide cues to the location of the csum and the
* area to calculate it over, on FreeBSD we seem to have to do it all ourselves,
* hence this is not as optimal and therefore h/w TX checksum is currently not
* implemented.
*/
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#include "opt_inet.h"
#endif
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/rndsource.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/bpf.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/if_smscreg.h>
#include <dev/usb/if_smscvar.h>
#include "ioconf.h"
#ifdef USB_DEBUG
int smsc_debug = 0;
#endif
#define ETHER_ALIGN 2
/*
* Various supported device vendors/products.
*/
static const struct usb_devno smsc_devs[] = {
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN89530 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9530 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9730 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_ALT },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_HAL },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_SAL10 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_ALT },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_SAL10 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_HAL },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_SAL10 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505_SAL10 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_ALT },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_SAL10 }
};
#ifdef USB_DEBUG
#define smsc_dbg_printf(sc, fmt, args...) \
do { \
if (smsc_debug > 0) \
printf("debug: " fmt, ##args); \
} while(0)
#else
#define smsc_dbg_printf(sc, fmt, args...)
#endif
#define smsc_warn_printf(sc, fmt, args...) \
printf("%s: warning: " fmt, device_xname((sc)->sc_dev), ##args)
#define smsc_err_printf(sc, fmt, args...) \
printf("%s: error: " fmt, device_xname((sc)->sc_dev), ##args)
/* Function declarations */
int smsc_chip_init(struct smsc_softc *);
void smsc_setmulti(struct smsc_softc *);
int smsc_setmacaddress(struct smsc_softc *, const uint8_t *);
int smsc_match(device_t, cfdata_t, void *);
void smsc_attach(device_t, device_t, void *);
int smsc_detach(device_t, int);
int smsc_activate(device_t, enum devact);
int smsc_init(struct ifnet *);
void smsc_start(struct ifnet *);
int smsc_ioctl(struct ifnet *, u_long, void *);
void smsc_stop(struct ifnet *, int);
void smsc_reset(struct smsc_softc *);
struct mbuf *smsc_newbuf(void);
void smsc_tick(void *);
void smsc_tick_task(void *);
void smsc_miibus_statchg(struct ifnet *);
int smsc_miibus_readreg(device_t, int, int);
void smsc_miibus_writereg(device_t, int, int, int);
int smsc_ifmedia_upd(struct ifnet *);
void smsc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
void smsc_lock_mii(struct smsc_softc *);
void smsc_unlock_mii(struct smsc_softc *);
int smsc_tx_list_init(struct smsc_softc *);
int smsc_rx_list_init(struct smsc_softc *);
int smsc_encap(struct smsc_softc *, struct mbuf *, int);
void smsc_rxeof(struct usbd_xfer *, void *, usbd_status);
void smsc_txeof(struct usbd_xfer *, void *, usbd_status);
int smsc_read_reg(struct smsc_softc *, uint32_t, uint32_t *);
int smsc_write_reg(struct smsc_softc *, uint32_t, uint32_t);
int smsc_wait_for_bits(struct smsc_softc *, uint32_t, uint32_t);
int smsc_sethwcsum(struct smsc_softc *);
CFATTACH_DECL_NEW(usmsc, sizeof(struct smsc_softc), smsc_match, smsc_attach,
smsc_detach, smsc_activate);
int
smsc_read_reg(struct smsc_softc *sc, uint32_t off, uint32_t *data)
{
usb_device_request_t req;
uint32_t buf;
usbd_status err;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = SMSC_UR_READ_REG;
USETW(req.wValue, 0);
USETW(req.wIndex, off);
USETW(req.wLength, 4);
err = usbd_do_request(sc->sc_udev, &req, &buf);
if (err != 0)
smsc_warn_printf(sc, "Failed to read register 0x%0x\n", off);
*data = le32toh(buf);
return err;
}
int
smsc_write_reg(struct smsc_softc *sc, uint32_t off, uint32_t data)
{
usb_device_request_t req;
uint32_t buf;
usbd_status err;
buf = htole32(data);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = SMSC_UR_WRITE_REG;
USETW(req.wValue, 0);
USETW(req.wIndex, off);
USETW(req.wLength, 4);
err = usbd_do_request(sc->sc_udev, &req, &buf);
if (err != 0)
smsc_warn_printf(sc, "Failed to write register 0x%0x\n", off);
return err;
}
int
smsc_wait_for_bits(struct smsc_softc *sc, uint32_t reg, uint32_t bits)
{
uint32_t val;
int err, i;
for (i = 0; i < 100; i++) {
if ((err = smsc_read_reg(sc, reg, &val)) != 0)
return err;
if (!(val & bits))
return 0;
DELAY(5);
}
return 1;
}
int
smsc_miibus_readreg(device_t dev, int phy, int reg)
{
struct smsc_softc *sc = device_private(dev);
uint32_t addr;
uint32_t val = 0;
smsc_lock_mii(sc);
if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
smsc_warn_printf(sc, "MII is busy\n");
goto done;
}
addr = (phy << 11) | (reg << 6) | SMSC_MII_READ;
smsc_write_reg(sc, SMSC_MII_ADDR, addr);
if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0)
smsc_warn_printf(sc, "MII read timeout\n");
smsc_read_reg(sc, SMSC_MII_DATA, &val);
done:
smsc_unlock_mii(sc);
return val & 0xffff;
}
void
smsc_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct smsc_softc *sc = device_private(dev);
uint32_t addr;
if (sc->sc_phyno != phy)
return;
smsc_lock_mii(sc);
if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
smsc_warn_printf(sc, "MII is busy\n");
smsc_unlock_mii(sc);
return;
}
smsc_write_reg(sc, SMSC_MII_DATA, val);
addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE;
smsc_write_reg(sc, SMSC_MII_ADDR, addr);
smsc_unlock_mii(sc);
if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0)
smsc_warn_printf(sc, "MII write timeout\n");
}
void
smsc_miibus_statchg(struct ifnet *ifp)
{
struct smsc_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
int err;
uint32_t flow;
uint32_t afc_cfg;
if (mii == NULL || ifp == NULL ||
(ifp->if_flags & IFF_RUNNING) == 0)
return;
/* Use the MII status to determine link status */
sc->sc_flags &= ~SMSC_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->sc_flags |= SMSC_FLAG_LINK;
break;
case IFM_1000_T:
/* Gigabit ethernet not supported by chipset */
break;
default:
break;
}
}
/* Lost link, do nothing. */
if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) {
smsc_dbg_printf(sc, "link flag not set\n");
return;
}
err = smsc_read_reg(sc, SMSC_AFC_CFG, &afc_cfg);
if (err) {
smsc_warn_printf(sc, "failed to read initial AFC_CFG, "
"error %d\n", err);
return;
}
/* Enable/disable full duplex operation and TX/RX pause */
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
smsc_dbg_printf(sc, "full duplex operation\n");
sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN;
sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
flow = 0xffff0002;
else
flow = 0;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
afc_cfg |= 0xf;
else
afc_cfg &= ~0xf;
} else {
smsc_dbg_printf(sc, "half duplex operation\n");
sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX;
sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN;
flow = 0;
afc_cfg |= 0xf;
}
err = smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
err += smsc_write_reg(sc, SMSC_FLOW, flow);
err += smsc_write_reg(sc, SMSC_AFC_CFG, afc_cfg);
if (err)
smsc_warn_printf(sc, "media change failed, error %d\n", err);
}
int
smsc_ifmedia_upd(struct ifnet *ifp)
{
struct smsc_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
int err;
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
err = mii_mediachg(mii);
return err;
}
void
smsc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct smsc_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
static inline uint32_t
smsc_hash(uint8_t addr[ETHER_ADDR_LEN])
{
return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f;
}
void
smsc_setmulti(struct smsc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t hashtbl[2] = { 0, 0 };
uint32_t hash;
if (sc->sc_dying)
return;
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
allmulti:
smsc_dbg_printf(sc, "receive all multicast enabled\n");
sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS;
sc->sc_mac_csr &= ~SMSC_MAC_CSR_HPFILT;
smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
return;
} else {
sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT;
sc->sc_mac_csr &= ~(SMSC_MAC_CSR_PRMS | SMSC_MAC_CSR_MCPAS);
}
ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0)
goto allmulti;
hash = smsc_hash(enm->enm_addrlo);
hashtbl[hash >> 5] |= 1 << (hash & 0x1F);
ETHER_NEXT_MULTI(step, enm);
}
/* Debug */
if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT) {
smsc_dbg_printf(sc, "receive select group of macs\n");
} else {
smsc_dbg_printf(sc, "receive own packets only\n");
}
/* Write the hash table and mac control registers */
ifp->if_flags &= ~IFF_ALLMULTI;
smsc_write_reg(sc, SMSC_HASHH, hashtbl[1]);
smsc_write_reg(sc, SMSC_HASHL, hashtbl[0]);
smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
}
int
smsc_sethwcsum(struct smsc_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
uint32_t val;
int err;
if (!ifp)
return EIO;
err = smsc_read_reg(sc, SMSC_COE_CTRL, &val);
if (err != 0) {
smsc_warn_printf(sc, "failed to read SMSC_COE_CTRL (err=%d)\n",
err);
return err;
}
/* Enable/disable the Rx checksum */
if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
val |= (SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
else
val &= ~(SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
/* Enable/disable the Tx checksum (currently not supported) */
if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
val |= SMSC_COE_CTRL_TX_EN;
else
val &= ~SMSC_COE_CTRL_TX_EN;
sc->sc_coe_ctrl = val;
err = smsc_write_reg(sc, SMSC_COE_CTRL, val);
if (err != 0) {
smsc_warn_printf(sc, "failed to write SMSC_COE_CTRL (err=%d)\n",
err);
return err;
}
return 0;
}
int
smsc_setmacaddress(struct smsc_softc *sc, const uint8_t *addr)
{
int err;
uint32_t val;
smsc_dbg_printf(sc, "setting mac address to "
"%02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
if ((err = smsc_write_reg(sc, SMSC_MAC_ADDRL, val)) != 0)
goto done;
val = (addr[5] << 8) | addr[4];
err = smsc_write_reg(sc, SMSC_MAC_ADDRH, val);
done:
return err;
}
void
smsc_reset(struct smsc_softc *sc)
{
if (sc->sc_dying)
return;
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
/* Reinitialize controller to achieve full reset. */
smsc_chip_init(sc);
}
int
smsc_init(struct ifnet *ifp)
{
struct smsc_softc *sc = ifp->if_softc;
struct smsc_chain *c;
usbd_status err;
int s, i;
if (sc->sc_dying)
return EIO;
s = splnet();
/* Cancel pending I/O */
if (ifp->if_flags & IFF_RUNNING)
smsc_stop(ifp, 1);
/* Reset the ethernet interface. */
smsc_reset(sc);
/* Load the multicast filter. */
smsc_setmulti(sc);
/* TCP/UDP checksum offload engines. */
smsc_sethwcsum(sc);
/* Open RX and TX pipes. */
err = usbd_open_pipe(sc->sc_iface, sc->sc_ed[SMSC_ENDPT_RX],
USBD_EXCLUSIVE_USE, &sc->sc_ep[SMSC_ENDPT_RX]);
if (err) {
printf("%s: open rx pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(err));
splx(s);
return EIO;
}
err = usbd_open_pipe(sc->sc_iface, sc->sc_ed[SMSC_ENDPT_TX],
USBD_EXCLUSIVE_USE, &sc->sc_ep[SMSC_ENDPT_TX]);
if (err) {
printf("%s: open tx pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(err));
splx(s);
return EIO;
}
/* Init RX ring. */
if (smsc_rx_list_init(sc)) {
aprint_error_dev(sc->sc_dev, "rx list init failed\n");
splx(s);
return EIO;
}
/* Init TX ring. */
if (smsc_tx_list_init(sc)) {
aprint_error_dev(sc->sc_dev, "tx list init failed\n");
splx(s);
return EIO;
}
/* Start up the receive pipe. */
for (i = 0; i < SMSC_RX_LIST_CNT; i++) {
c = &sc->sc_cdata.rx_chain[i];
usbd_setup_xfer(c->sc_xfer, c, c->sc_buf, sc->sc_bufsz,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, smsc_rxeof);
usbd_transfer(c->sc_xfer);
}
/* Indicate we are up and running. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
callout_reset(&sc->sc_stat_ch, hz, smsc_tick, sc);
return 0;
}
void
smsc_start(struct ifnet *ifp)
{
struct smsc_softc *sc = ifp->if_softc;
struct mbuf *m_head = NULL;
/* Don't send anything if there is no link or controller is busy. */
if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) {
return;
}
if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING)
return;
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
return;
if (smsc_encap(sc, m_head, 0)) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
IFQ_DEQUEUE(&ifp->if_snd, m_head);
bpf_mtap(ifp, m_head);
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
void
smsc_tick(void *xsc)
{
struct smsc_softc *sc = xsc;
if (sc == NULL)
return;
if (sc->sc_dying)
return;
usb_add_task(sc->sc_udev, &sc->sc_tick_task, USB_TASKQ_DRIVER);
}
void
smsc_stop(struct ifnet *ifp, int disable)
{
usbd_status err;
struct smsc_softc *sc = ifp->if_softc;
int i;
smsc_reset(sc);
ifp = &sc->sc_ec.ec_if;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
callout_stop(&sc->sc_stat_ch);
/* Stop transfers. */
if (sc->sc_ep[SMSC_ENDPT_RX] != NULL) {
err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
if (err) {
printf("%s: abort rx pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(err));
}
}
if (sc->sc_ep[SMSC_ENDPT_TX] != NULL) {
err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
if (err) {
printf("%s: abort tx pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(err));
}
}
if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL) {
err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_INTR]);
if (err) {
printf("%s: abort intr pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(err));
}
}
/* Free RX resources. */
for (i = 0; i < SMSC_RX_LIST_CNT; i++) {
if (sc->sc_cdata.rx_chain[i].sc_mbuf != NULL) {
m_freem(sc->sc_cdata.rx_chain[i].sc_mbuf);
sc->sc_cdata.rx_chain[i].sc_mbuf = NULL;
}
if (sc->sc_cdata.rx_chain[i].sc_xfer != NULL) {
usbd_destroy_xfer(sc->sc_cdata.rx_chain[i].sc_xfer);
sc->sc_cdata.rx_chain[i].sc_xfer = NULL;
}
}
/* Free TX resources. */
for (i = 0; i < SMSC_TX_LIST_CNT; i++) {
if (sc->sc_cdata.tx_chain[i].sc_mbuf != NULL) {
m_freem(sc->sc_cdata.tx_chain[i].sc_mbuf);
sc->sc_cdata.tx_chain[i].sc_mbuf = NULL;
}
if (sc->sc_cdata.tx_chain[i].sc_xfer != NULL) {
usbd_destroy_xfer(sc->sc_cdata.tx_chain[i].sc_xfer);
sc->sc_cdata.tx_chain[i].sc_xfer = NULL;
}
}
/* Close pipes */
if (sc->sc_ep[SMSC_ENDPT_RX] != NULL) {
err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
if (err) {
printf("%s: close rx pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(err));
}
sc->sc_ep[SMSC_ENDPT_RX] = NULL;
}
if (sc->sc_ep[SMSC_ENDPT_TX] != NULL) {
err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
if (err) {
printf("%s: close tx pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(err));
}
sc->sc_ep[SMSC_ENDPT_TX] = NULL;
}
if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL) {
err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_INTR]);
if (err) {
printf("%s: close intr pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(err));
}
sc->sc_ep[SMSC_ENDPT_INTR] = NULL;
}
}
int
smsc_chip_init(struct smsc_softc *sc)
{
int err;
uint32_t reg_val;
int burst_cap;
/* Enter H/W config mode */
smsc_write_reg(sc, SMSC_HW_CFG, SMSC_HW_CFG_LRST);
if ((err = smsc_wait_for_bits(sc, SMSC_HW_CFG,
SMSC_HW_CFG_LRST)) != 0) {
smsc_warn_printf(sc, "timed-out waiting for reset to "
"complete\n");
goto init_failed;
}
/* Reset the PHY */
smsc_write_reg(sc, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST);
if ((err = smsc_wait_for_bits(sc, SMSC_PM_CTRL,
SMSC_PM_CTRL_PHY_RST)) != 0) {
smsc_warn_printf(sc, "timed-out waiting for phy reset to "
"complete\n");
goto init_failed;
}
usbd_delay_ms(sc->sc_udev, 40);
/* Set the mac address */
struct ifnet *ifp = &sc->sc_ec.ec_if;
const char *eaddr = CLLADDR(ifp->if_sadl);
if ((err = smsc_setmacaddress(sc, eaddr)) != 0) {
smsc_warn_printf(sc, "failed to set the MAC address\n");
goto init_failed;
}
/*
* Don't know what the HW_CFG_BIR bit is, but following the reset
* sequence as used in the Linux driver.
*/
if ((err = smsc_read_reg(sc, SMSC_HW_CFG, &reg_val)) != 0) {
smsc_warn_printf(sc, "failed to read HW_CFG: %d\n", err);
goto init_failed;
}
reg_val |= SMSC_HW_CFG_BIR;
smsc_write_reg(sc, SMSC_HW_CFG, reg_val);
/*
* There is a so called 'turbo mode' that the linux driver supports, it
* seems to allow you to jam multiple frames per Rx transaction.
* By default this driver supports that and therefore allows multiple
* frames per USB transfer.
*
* The xfer buffer size needs to reflect this as well, therefore based
* on the calculations in the Linux driver the RX bufsize is set to
* 18944,
* bufsz = (16 * 1024 + 5 * 512)
*
* Burst capability is the number of URBs that can be in a burst of
* data/ethernet frames.
*/
if (sc->sc_udev->ud_speed == USB_SPEED_HIGH)
burst_cap = 37;
else
burst_cap = 128;
smsc_write_reg(sc, SMSC_BURST_CAP, burst_cap);
/* Set the default bulk in delay (magic value from Linux driver) */
smsc_write_reg(sc, SMSC_BULK_IN_DLY, 0x00002000);
/*
* Initialise the RX interface
*/
if ((err = smsc_read_reg(sc, SMSC_HW_CFG, &reg_val)) < 0) {
smsc_warn_printf(sc, "failed to read HW_CFG: (err = %d)\n",
err);
goto init_failed;
}
/*
* The following settings are used for 'turbo mode', a.k.a multiple
* frames per Rx transaction (again info taken form Linux driver).
*/
reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE);
/*
* set Rx data offset to ETHER_ALIGN which will make the IP header
* align on a word boundary.
*/
reg_val |= ETHER_ALIGN << SMSC_HW_CFG_RXDOFF_SHIFT;
smsc_write_reg(sc, SMSC_HW_CFG, reg_val);
/* Clear the status register ? */
smsc_write_reg(sc, SMSC_INTR_STATUS, 0xffffffff);
/* Read and display the revision register */
if ((err = smsc_read_reg(sc, SMSC_ID_REV, &sc->sc_rev_id)) < 0) {
smsc_warn_printf(sc, "failed to read ID_REV (err = %d)\n", err);
goto init_failed;
}
/* GPIO/LED setup */
reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED |
SMSC_LED_GPIO_CFG_FDX_LED;
smsc_write_reg(sc, SMSC_LED_GPIO_CFG, reg_val);
/*
* Initialise the TX interface
*/
smsc_write_reg(sc, SMSC_FLOW, 0);
smsc_write_reg(sc, SMSC_AFC_CFG, AFC_CFG_DEFAULT);
/* Read the current MAC configuration */
if ((err = smsc_read_reg(sc, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) {
smsc_warn_printf(sc, "failed to read MAC_CSR (err=%d)\n", err);
goto init_failed;
}
/* disable pad stripping, collides with checksum offload */
sc->sc_mac_csr &= ~SMSC_MAC_CSR_PADSTR;
/* Vlan */
smsc_write_reg(sc, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN);
/*
* Start TX
*/
sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN;
smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
smsc_write_reg(sc, SMSC_TX_CFG, SMSC_TX_CFG_ON);
/*
* Start RX
*/
sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN;
smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr);
return 0;
init_failed:
smsc_err_printf(sc, "smsc_chip_init failed (err=%d)\n", err);
return err;
}
int
smsc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct smsc_softc *sc = ifp->if_softc;
struct ifreq /*const*/ *ifr = data;
int s, error = 0;
if (sc->sc_dying)
return EIO;
s = splnet();
switch(cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
case IFF_RUNNING:
smsc_stop(ifp, 1);
break;
case IFF_UP:
smsc_init(ifp);
break;
case IFF_UP | IFF_RUNNING:
if (ifp->if_flags & IFF_PROMISC &&
!(sc->sc_if_flags & IFF_PROMISC)) {
sc->sc_mac_csr |= SMSC_MAC_CSR_PRMS;
smsc_write_reg(sc, SMSC_MAC_CSR,
sc->sc_mac_csr);
smsc_setmulti(sc);
} else if (!(ifp->if_flags & IFF_PROMISC) &&
sc->sc_if_flags & IFF_PROMISC) {
sc->sc_mac_csr &= ~SMSC_MAC_CSR_PRMS;
smsc_write_reg(sc, SMSC_MAC_CSR,
sc->sc_mac_csr);
smsc_setmulti(sc);
} else {
smsc_init(ifp);
}
break;
}
sc->sc_if_flags = ifp->if_flags;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
break;
error = 0;
if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI)
smsc_setmulti(sc);
}
splx(s);
return error;
}
int
smsc_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return (usb_lookup(smsc_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
void
smsc_attach(device_t parent, device_t self, void *aux)
{
struct smsc_softc *sc = device_private(self);
struct usb_attach_arg *uaa = aux;
struct usbd_device *dev = uaa->uaa_device;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
char *devinfop;
struct mii_data *mii;
struct ifnet *ifp;
int err, s, i;
uint32_t mac_h, mac_l;
sc->sc_dev = self;
sc->sc_udev = dev;
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
err = usbd_set_config_no(dev, SMSC_CONFIG_INDEX, 1);
if (err) {
aprint_error_dev(self, "failed to set configuration"
", err=%s\n", usbd_errstr(err));
return;
}
/* Setup the endpoints for the SMSC LAN95xx device(s) */
usb_init_task(&sc->sc_tick_task, smsc_tick_task, sc, 0);
usb_init_task(&sc->sc_stop_task, (void (*)(void *))smsc_stop, sc, 0);
mutex_init(&sc->sc_mii_lock, MUTEX_DEFAULT, IPL_NONE);
err = usbd_device2interface_handle(dev, SMSC_IFACE_IDX, &sc->sc_iface);
if (err) {
aprint_error_dev(self, "getting interface handle failed\n");
return;
}
id = usbd_get_interface_descriptor(sc->sc_iface);
if (sc->sc_udev->ud_speed >= USB_SPEED_HIGH)
sc->sc_bufsz = SMSC_MAX_BUFSZ;
else
sc->sc_bufsz = SMSC_MIN_BUFSZ;
/* Find endpoints. */
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
if (!ed) {
aprint_error_dev(self, "couldn't get ep %d\n", i);
return;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
sc->sc_ed[SMSC_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
sc->sc_ed[SMSC_ENDPT_TX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
sc->sc_ed[SMSC_ENDPT_INTR] = ed->bEndpointAddress;
}
}
s = splnet();
ifp = &sc->sc_ec.ec_if;
ifp->if_softc = sc;
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = smsc_init;
ifp->if_ioctl = smsc_ioctl;
ifp->if_start = smsc_start;
ifp->if_stop = smsc_stop;
#ifdef notyet
/*
* We can do TCPv4, and UDPv4 checksums in hardware.
*/
ifp->if_capabilities |=
/*IFCAP_CSUM_TCPv4_Tx |*/ IFCAP_CSUM_TCPv4_Rx |
/*IFCAP_CSUM_UDPv4_Tx |*/ IFCAP_CSUM_UDPv4_Rx;
#endif
sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
/* Setup some of the basics */
sc->sc_phyno = 1;
/*
* Attempt to get the mac address, if an EEPROM is not attached this
* will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC
* address based on urandom.
*/
memset(sc->sc_enaddr, 0xff, ETHER_ADDR_LEN);
prop_dictionary_t dict = device_properties(self);
prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
if (eaprop != NULL) {
KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop),
ETHER_ADDR_LEN);
} else
/* Check if there is already a MAC address in the register */
if ((smsc_read_reg(sc, SMSC_MAC_ADDRL, &mac_l) == 0) &&
(smsc_read_reg(sc, SMSC_MAC_ADDRH, &mac_h) == 0)) {
sc->sc_enaddr[5] = (uint8_t)((mac_h >> 8) & 0xff);
sc->sc_enaddr[4] = (uint8_t)((mac_h) & 0xff);
sc->sc_enaddr[3] = (uint8_t)((mac_l >> 24) & 0xff);
sc->sc_enaddr[2] = (uint8_t)((mac_l >> 16) & 0xff);
sc->sc_enaddr[1] = (uint8_t)((mac_l >> 8) & 0xff);
sc->sc_enaddr[0] = (uint8_t)((mac_l) & 0xff);
}
aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(sc->sc_enaddr));
IFQ_SET_READY(&ifp->if_snd);
/* Initialize MII/media info. */
mii = &sc->sc_mii;
mii->mii_ifp = ifp;
mii->mii_readreg = smsc_miibus_readreg;
mii->mii_writereg = smsc_miibus_writereg;
mii->mii_statchg = smsc_miibus_statchg;
mii->mii_flags = MIIF_AUTOTSLEEP;
sc->sc_ec.ec_mii = mii;
ifmedia_init(&mii->mii_media, 0, smsc_ifmedia_upd, smsc_ifmedia_sts);
mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (LIST_FIRST(&mii->mii_phys) == NULL) {
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
} else
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
if_attach(ifp);
ether_ifattach(ifp, sc->sc_enaddr);
rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
callout_init(&sc->sc_stat_ch, 0);
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
}
int
smsc_detach(device_t self, int flags)
{
struct smsc_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ec.ec_if;
int s;
callout_stop(&sc->sc_stat_ch);
if (sc->sc_ep[SMSC_ENDPT_TX] != NULL)
usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_TX]);
if (sc->sc_ep[SMSC_ENDPT_RX] != NULL)
usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_RX]);
if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL)
usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_INTR]);
/*
* Remove any pending tasks. They cannot be executing because they run
* in the same thread as detach.
*/
usb_rem_task(sc->sc_udev, &sc->sc_tick_task);
usb_rem_task(sc->sc_udev, &sc->sc_stop_task);
s = splusb();
if (--sc->sc_refcnt >= 0) {
/* Wait for processes to go away */
usb_detach_waitold(sc->sc_dev);
}
if (ifp->if_flags & IFF_RUNNING)
smsc_stop(ifp ,1);
rnd_detach_source(&sc->sc_rnd_source);
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
if (ifp->if_softc != NULL) {
ether_ifdetach(ifp);
if_detach(ifp);
}
#ifdef DIAGNOSTIC
if (sc->sc_ep[SMSC_ENDPT_TX] != NULL ||
sc->sc_ep[SMSC_ENDPT_RX] != NULL ||
sc->sc_ep[SMSC_ENDPT_INTR] != NULL)
printf("%s: detach has active endpoints\n",
device_xname(sc->sc_dev));
#endif
if (--sc->sc_refcnt >= 0) {
/* Wait for processes to go away. */
usb_detach_waitold(sc->sc_dev);
}
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
mutex_destroy(&sc->sc_mii_lock);
return 0;
}
void
smsc_tick_task(void *xsc)
{
int s;
struct smsc_softc *sc = xsc;
struct ifnet *ifp;
struct mii_data *mii;
if (sc == NULL)
return;
if (sc->sc_dying)
return;
ifp = &sc->sc_ec.ec_if;
mii = &sc->sc_mii;
if (mii == NULL)
return;
s = splnet();
mii_tick(mii);
if ((sc->sc_flags & SMSC_FLAG_LINK) == 0)
smsc_miibus_statchg(ifp);
callout_reset(&sc->sc_stat_ch, hz, smsc_tick, sc);
splx(s);
}
int
smsc_activate(device_t self, enum devact act)
{
struct smsc_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_ec.ec_if);
sc->sc_dying = 1;
return 0;
default:
return EOPNOTSUPP;
}
return 0;
}
void
smsc_lock_mii(struct smsc_softc *sc)
{
sc->sc_refcnt++;
mutex_enter(&sc->sc_mii_lock);
}
void
smsc_unlock_mii(struct smsc_softc *sc)
{
mutex_exit(&sc->sc_mii_lock);
if (--sc->sc_refcnt < 0)
usb_detach_wakeupold(sc->sc_dev);
}
void
smsc_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct smsc_chain *c = (struct smsc_chain *)priv;
struct smsc_softc *sc = c->sc_sc;
struct ifnet *ifp = &sc->sc_ec.ec_if;
u_char *buf = c->sc_buf;
uint32_t total_len;
uint32_t rxhdr;
uint16_t pktlen;
struct mbuf *m;
int s;
if (sc->sc_dying)
return;
if (!(ifp->if_flags & IFF_RUNNING))
return;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
if (usbd_ratecheck(&sc->sc_rx_notice)) {
printf("%s: usb errors on rx: %s\n",
device_xname(sc->sc_dev), usbd_errstr(status));
}
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_ep[SMSC_ENDPT_RX]);
goto done;
}
usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
smsc_dbg_printf(sc, "xfer status total_len %d\n", total_len);
while (total_len != 0) {
if (total_len < sizeof(rxhdr)) {
smsc_dbg_printf(sc, "total_len %d < sizeof(rxhdr) %zu\n",
total_len, sizeof(rxhdr));
ifp->if_ierrors++;
goto done;
}
memcpy(&rxhdr, buf, sizeof(rxhdr));
rxhdr = le32toh(rxhdr);
buf += sizeof(rxhdr);
total_len -= sizeof(rxhdr);
if (rxhdr & SMSC_RX_STAT_COLLISION)
ifp->if_collisions++;
if (rxhdr & (SMSC_RX_STAT_ERROR
| SMSC_RX_STAT_LENGTH_ERROR
| SMSC_RX_STAT_MII_ERROR)) {
smsc_dbg_printf(sc, "rx error (hdr 0x%08x)\n", rxhdr);
ifp->if_ierrors++;
goto done;
}
pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr);
smsc_dbg_printf(sc, "rxeof total_len %d pktlen %d rxhdr "
"0x%08x\n", total_len, pktlen, rxhdr);
if (pktlen < ETHER_HDR_LEN) {
smsc_dbg_printf(sc, "pktlen %d < ETHER_HDR_LEN %d\n",
pktlen, ETHER_HDR_LEN);
ifp->if_ierrors++;
goto done;
}
pktlen += ETHER_ALIGN;
if (pktlen > MCLBYTES) {
smsc_dbg_printf(sc, "pktlen %d > MCLBYTES %d\n",
pktlen, MCLBYTES);
ifp->if_ierrors++;
goto done;
}
if (pktlen > total_len) {
smsc_dbg_printf(sc, "pktlen %d > total_len %d\n",
pktlen, total_len);
ifp->if_ierrors++;
goto done;
}
m = smsc_newbuf();
if (m == NULL) {
smsc_dbg_printf(sc, "smc_newbuf returned NULL\n");
ifp->if_ierrors++;
goto done;
}
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len = pktlen;
m->m_flags |= M_HASFCS;
m_adj(m, ETHER_ALIGN);
KASSERT(m->m_len < MCLBYTES);
memcpy(mtod(m, char *), buf + ETHER_ALIGN, m->m_len);
/* Check if RX TCP/UDP checksumming is being offloaded */
if (sc->sc_coe_ctrl & SMSC_COE_CTRL_RX_EN) {
smsc_dbg_printf(sc,"RX checksum offload checking\n");
struct ether_header *eh;
eh = mtod(m, struct ether_header *);
/* Remove the extra 2 bytes of the csum */
m_adj(m, -2);
/*
* The checksum appears to be simplistically calculated
* over the udp/tcp header and data up to the end of the
* eth frame. Which means if the eth frame is padded
* the csum calculation is incorrectly performed over
* the padding bytes as well. Therefore to be safe we
* ignore the H/W csum on frames less than or equal to
* 64 bytes.
*
* Ignore H/W csum for non-IPv4 packets.
*/
smsc_dbg_printf(sc,"Ethertype %02x pktlen %02x\n",
be16toh(eh->ether_type), pktlen);
if (be16toh(eh->ether_type) == ETHERTYPE_IP &&
pktlen > ETHER_MIN_LEN) {
m->m_pkthdr.csum_flags |=
(M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
/*
* Copy the TCP/UDP checksum from the last 2
* bytes of the transfer and put in the
* csum_data field.
*/
memcpy(&m->m_pkthdr.csum_data,
buf + pktlen - 2, 2);
/*
* The data is copied in network order, but the
* csum algorithm in the kernel expects it to be
* in host network order.
*/
m->m_pkthdr.csum_data =
ntohs(m->m_pkthdr.csum_data);
smsc_dbg_printf(sc,
"RX checksum offloaded (0x%04x)\n",
m->m_pkthdr.csum_data);
}
}
/* round up to next longword */
pktlen = (pktlen + 3) & ~0x3;
/* total_len does not include the padding */
if (pktlen > total_len)
pktlen = total_len;
buf += pktlen;
total_len -= pktlen;
/* push the packet up */
s = splnet();
if_percpuq_enqueue(ifp->if_percpuq, m);
splx(s);
}
done:
/* Setup new transfer. */
usbd_setup_xfer(xfer, c, c->sc_buf, sc->sc_bufsz, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, smsc_rxeof);
usbd_transfer(xfer);
return;
}
void
smsc_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct smsc_softc *sc;
struct smsc_chain *c;
struct ifnet *ifp;
int s;
c = priv;
sc = c->sc_sc;
ifp = &sc->sc_ec.ec_if;
if (sc->sc_dying)
return;
s = splnet();
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
splx(s);
return;
}
ifp->if_oerrors++;
printf("%s: usb error on tx: %s\n", device_xname(sc->sc_dev),
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_ep[SMSC_ENDPT_TX]);
splx(s);
return;
}
ifp->if_opackets++;
m_freem(c->sc_mbuf);
c->sc_mbuf = NULL;
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
smsc_start(ifp);
splx(s);
}
int
smsc_tx_list_init(struct smsc_softc *sc)
{
struct smsc_cdata *cd;
struct smsc_chain *c;
int i;
cd = &sc->sc_cdata;
for (i = 0; i < SMSC_TX_LIST_CNT; i++) {
c = &cd->tx_chain[i];
c->sc_sc = sc;
c->sc_idx = i;
c->sc_mbuf = NULL;
if (c->sc_xfer == NULL) {
int error = usbd_create_xfer(sc->sc_ep[SMSC_ENDPT_TX],
sc->sc_bufsz, USBD_FORCE_SHORT_XFER, 0,
&c->sc_xfer);
if (error)
return EIO;
c->sc_buf = usbd_get_buffer(c->sc_xfer);
}
}
return 0;
}
int
smsc_rx_list_init(struct smsc_softc *sc)
{
struct smsc_cdata *cd;
struct smsc_chain *c;
int i;
cd = &sc->sc_cdata;
for (i = 0; i < SMSC_RX_LIST_CNT; i++) {
c = &cd->rx_chain[i];
c->sc_sc = sc;
c->sc_idx = i;
c->sc_mbuf = NULL;
if (c->sc_xfer == NULL) {
int error = usbd_create_xfer(sc->sc_ep[SMSC_ENDPT_RX],
sc->sc_bufsz, 0, 0, &c->sc_xfer);
if (error)
return error;
c->sc_buf = usbd_get_buffer(c->sc_xfer);
}
}
return 0;
}
struct mbuf *
smsc_newbuf(void)
{
struct mbuf *m;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return NULL;
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
return NULL;
}
return m;
}
int
smsc_encap(struct smsc_softc *sc, struct mbuf *m, int idx)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct smsc_chain *c;
usbd_status err;
uint32_t txhdr;
uint32_t frm_len = 0;
c = &sc->sc_cdata.tx_chain[idx];
/*
* Each frame is prefixed with two 32-bit values describing the
* length of the packet and buffer.
*/
txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) |
SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG;
txhdr = htole32(txhdr);
memcpy(c->sc_buf, &txhdr, sizeof(txhdr));
txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len);
txhdr = htole32(txhdr);
memcpy(c->sc_buf + 4, &txhdr, sizeof(txhdr));
frm_len += 8;
/* Next copy in the actual packet */
m_copydata(m, 0, m->m_pkthdr.len, c->sc_buf + frm_len);
frm_len += m->m_pkthdr.len;
c->sc_mbuf = m;
usbd_setup_xfer(c->sc_xfer, c, c->sc_buf, frm_len,
USBD_FORCE_SHORT_XFER, 10000, smsc_txeof);
err = usbd_transfer(c->sc_xfer);
/* XXXNH get task to stop interface */
if (err != USBD_IN_PROGRESS) {
smsc_stop(ifp, 0);
return EIO;
}
sc->sc_cdata.tx_cnt++;
return 0;
}