NetBSD/sys/dev/isa/ess.c
christos 2ccc3ff1e9 - add const
- avoid variable shadowing.
2005-05-30 04:32:38 +00:00

2643 lines
63 KiB
C

/* $NetBSD: ess.c,v 1.68 2005/05/30 04:32:38 christos Exp $ */
/*
* Copyright 1997
* Digital Equipment Corporation. All rights reserved.
*
* This software is furnished under license and may be used and
* copied only in accordance with the following terms and conditions.
* Subject to these conditions, you may download, copy, install,
* use, modify and distribute this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce
* and retain this copyright notice and list of conditions as
* they appear in the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
* Digital Equipment Corporation. Neither the "Digital Equipment
* Corporation" name nor any trademark or logo of Digital Equipment
* Corporation may be used to endorse or promote products derived
* from this software without the prior written permission of
* Digital Equipment Corporation.
*
* 3) This software is provided "AS-IS" and any express or implied
* warranties, including but not limited to, any implied warranties
* of merchantability, fitness for a particular purpose, or
* non-infringement are disclaimed. In no event shall DIGITAL be
* liable for any damages whatsoever, and in particular, DIGITAL
* shall not be liable for special, indirect, consequential, or
* incidental damages or damages for lost profits, loss of
* revenue or loss of use, whether such damages arise in contract,
* negligence, tort, under statute, in equity, at law or otherwise,
* even if advised of the possibility of such damage.
*/
/*
**++
**
** ess.c
**
** FACILITY:
**
** DIGITAL Network Appliance Reference Design (DNARD)
**
** MODULE DESCRIPTION:
**
** This module contains the device driver for the ESS
** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
** used as a reference point when implementing this driver.
**
** AUTHORS:
**
** Blair Fidler Software Engineering Australia
** Gold Coast, Australia.
**
** CREATION DATE:
**
** March 10, 1997.
**
** MODIFICATION HISTORY:
**
** Heavily modified by Lennart Augustsson and Charles M. Hannum for
** bus_dma, changes to audio interface, and many bug fixes.
** ESS1788 support by Nathan J. Williams and Charles M. Hannum.
**--
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.68 2005/05/30 04:32:38 christos Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <machine/bus.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/auconv.h>
#include <dev/mulaw.h>
#include <dev/isa/isavar.h>
#include <dev/isa/isadmavar.h>
#include <dev/isa/essvar.h>
#include <dev/isa/essreg.h>
#include "joy_ess.h"
#ifdef AUDIO_DEBUG
#define DPRINTF(x) if (essdebug) printf x
#define DPRINTFN(n,x) if (essdebug>(n)) printf x
int essdebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#if 0
unsigned uuu;
#define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
#define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
#else
#define EREAD1(t, h, a) bus_space_read_1(t, h, a)
#define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
#endif
int ess_setup_sc(struct ess_softc *, int);
int ess_open(void *, int);
void ess_close(void *);
int ess_getdev(void *, struct audio_device *);
int ess_drain(void *);
int ess_query_encoding(void *, struct audio_encoding *);
int ess_set_params(void *, int, int, audio_params_t *,
audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
int ess_round_blocksize(void *, int, int, const audio_params_t *);
int ess_audio1_trigger_output(void *, void *, void *, int,
void (*)(void *), void *, const audio_params_t *);
int ess_audio2_trigger_output(void *, void *, void *, int,
void (*)(void *), void *, const audio_params_t *);
int ess_audio1_trigger_input(void *, void *, void *, int,
void (*)(void *), void *, const audio_params_t *);
int ess_audio1_halt(void *);
int ess_audio2_halt(void *);
int ess_audio1_intr(void *);
int ess_audio2_intr(void *);
void ess_audio1_poll(void *);
void ess_audio2_poll(void *);
int ess_speaker_ctl(void *, int);
int ess_getdev(void *, struct audio_device *);
int ess_set_port(void *, mixer_ctrl_t *);
int ess_get_port(void *, mixer_ctrl_t *);
void *ess_malloc(void *, int, size_t, struct malloc_type *, int);
void ess_free(void *, void *, struct malloc_type *);
size_t ess_round_buffersize(void *, int, size_t);
paddr_t ess_mappage(void *, void *, off_t, int);
int ess_query_devinfo(void *, mixer_devinfo_t *);
int ess_1788_get_props(void *);
int ess_1888_get_props(void *);
void ess_speaker_on(struct ess_softc *);
void ess_speaker_off(struct ess_softc *);
void ess_config_irq(struct ess_softc *);
void ess_config_drq(struct ess_softc *);
void ess_setup(struct ess_softc *);
int ess_identify(struct ess_softc *);
int ess_reset(struct ess_softc *);
void ess_set_gain(struct ess_softc *, int, int);
int ess_set_in_port(struct ess_softc *, int);
int ess_set_in_ports(struct ess_softc *, int);
u_int ess_srtotc(u_int);
u_int ess_srtofc(u_int);
u_char ess_get_dsp_status(struct ess_softc *);
u_char ess_dsp_read_ready(struct ess_softc *);
u_char ess_dsp_write_ready(struct ess_softc *);
int ess_rdsp(struct ess_softc *);
int ess_wdsp(struct ess_softc *, u_char);
u_char ess_read_x_reg(struct ess_softc *, u_char);
int ess_write_x_reg(struct ess_softc *, u_char, u_char);
void ess_clear_xreg_bits(struct ess_softc *, u_char, u_char);
void ess_set_xreg_bits(struct ess_softc *, u_char, u_char);
u_char ess_read_mix_reg(struct ess_softc *, u_char);
void ess_write_mix_reg(struct ess_softc *, u_char, u_char);
void ess_clear_mreg_bits(struct ess_softc *, u_char, u_char);
void ess_set_mreg_bits(struct ess_softc *, u_char, u_char);
void ess_read_multi_mix_reg(struct ess_softc *, u_char, u_int8_t *, bus_size_t);
static const char *essmodel[] = {
"unsupported",
"688",
"1688",
"1788",
"1868",
"1869",
"1878",
"1879",
"888",
"1887",
"1888",
};
struct audio_device ess_device = {
"ESS Technology",
"x",
"ess"
};
/*
* Define our interface to the higher level audio driver.
*/
const struct audio_hw_if ess_1788_hw_if = {
ess_open,
ess_close,
ess_drain,
ess_query_encoding,
ess_set_params,
ess_round_blocksize,
NULL,
NULL,
NULL,
NULL,
NULL,
ess_audio1_halt,
ess_audio1_halt,
ess_speaker_ctl,
ess_getdev,
NULL,
ess_set_port,
ess_get_port,
ess_query_devinfo,
ess_malloc,
ess_free,
ess_round_buffersize,
ess_mappage,
ess_1788_get_props,
ess_audio1_trigger_output,
ess_audio1_trigger_input,
NULL,
};
const struct audio_hw_if ess_1888_hw_if = {
ess_open,
ess_close,
ess_drain,
ess_query_encoding,
ess_set_params,
ess_round_blocksize,
NULL,
NULL,
NULL,
NULL,
NULL,
ess_audio2_halt,
ess_audio1_halt,
ess_speaker_ctl,
ess_getdev,
NULL,
ess_set_port,
ess_get_port,
ess_query_devinfo,
ess_malloc,
ess_free,
ess_round_buffersize,
ess_mappage,
ess_1888_get_props,
ess_audio2_trigger_output,
ess_audio1_trigger_input,
NULL,
};
#define ESS_NFORMATS 8
static const struct audio_format ess_formats[ESS_NFORMATS] = {
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
};
#ifdef AUDIO_DEBUG
void ess_printsc(struct ess_softc *);
void ess_dump_mixer(struct ess_softc *);
void
ess_printsc(struct ess_softc *sc)
{
int i;
printf("iobase 0x%x outport %u inport %u speaker %s\n",
sc->sc_iobase, sc->out_port,
sc->in_port, sc->spkr_state ? "on" : "off");
printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
sc->sc_audio1.intr, sc->sc_audio1.arg);
if (!ESS_USE_AUDIO1(sc->sc_model)) {
printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
sc->sc_audio2.intr, sc->sc_audio2.arg);
}
printf("gain:");
for (i = 0; i < sc->ndevs; i++)
printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
printf("\n");
}
void
ess_dump_mixer(struct ess_softc *sc)
{
printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
0x7C, ess_read_mix_reg(sc, 0x7C));
printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
0x1A, ess_read_mix_reg(sc, 0x1A));
printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
0x3E, ess_read_mix_reg(sc, 0x3E));
printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
0x36, ess_read_mix_reg(sc, 0x36));
printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
0x38, ess_read_mix_reg(sc, 0x38));
printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
0x3A, ess_read_mix_reg(sc, 0x3A));
printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
0x32, ess_read_mix_reg(sc, 0x32));
printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
0x3C, ess_read_mix_reg(sc, 0x3C));
printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
0x69, ess_read_mix_reg(sc, 0x69));
printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
0x68, ess_read_mix_reg(sc, 0x68));
printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
0x6E, ess_read_mix_reg(sc, 0x6E));
printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
0x6B, ess_read_mix_reg(sc, 0x6B));
printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
0x6A, ess_read_mix_reg(sc, 0x6A));
printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
0x6C, ess_read_mix_reg(sc, 0x6C));
printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
0xB4, ess_read_x_reg(sc, 0xB4));
printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
0x14, ess_read_mix_reg(sc, 0x14));
printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
}
#endif
/*
* Configure the ESS chip for the desired audio base address.
*/
int
ess_config_addr(struct ess_softc *sc)
{
int iobase;
bus_space_tag_t iot;
/*
* Configure using the System Control Register method. This
* method is used when the AMODE line is tied high, which is
* the case for the Shark, but not for the evaluation board.
*/
bus_space_handle_t scr_access_ioh;
bus_space_handle_t scr_ioh;
u_short scr_value;
iobase = sc->sc_iobase;
iot = sc->sc_iot;
/*
* Set the SCR bit to enable audio.
*/
scr_value = ESS_SCR_AUDIO_ENABLE;
/*
* Set the SCR bits necessary to select the specified audio
* base address.
*/
switch(iobase) {
case 0x220:
scr_value |= ESS_SCR_AUDIO_220;
break;
case 0x230:
scr_value |= ESS_SCR_AUDIO_230;
break;
case 0x240:
scr_value |= ESS_SCR_AUDIO_240;
break;
case 0x250:
scr_value |= ESS_SCR_AUDIO_250;
break;
default:
printf("ess: configured iobase 0x%x invalid\n", iobase);
return 1;
break;
}
/*
* Get a mapping for the System Control Register (SCR) access
* registers and the SCR data registers.
*/
if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
0, &scr_access_ioh)) {
printf("ess: can't map SCR access registers\n");
return 1;
}
if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
0, &scr_ioh)) {
printf("ess: can't map SCR registers\n");
bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
return 1;
}
/* Unlock the SCR. */
EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
/* Write the base address information into SCR[0]. */
EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
/* Lock the SCR. */
EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
/* Unmap the SCR access ports and the SCR data ports. */
bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
return 0;
}
/*
* Configure the ESS chip for the desired IRQ and DMA channels.
* ESS ISA
* --------
* IRQA irq9
* IRQB irq5
* IRQC irq7
* IRQD irq10
* IRQE irq15
*
* DRQA drq0
* DRQB drq1
* DRQC drq3
* DRQD drq5
*/
void
ess_config_irq(struct ess_softc *sc)
{
int v;
DPRINTFN(2,("ess_config_irq\n"));
if (sc->sc_model == ESS_1887 &&
sc->sc_audio1.irq == sc->sc_audio2.irq &&
sc->sc_audio1.irq != -1) {
/* Use new method, both interrupts are the same. */
v = ESS_IS_SELECT_IRQ; /* enable intrs */
switch (sc->sc_audio1.irq) {
case 5:
v |= ESS_IS_INTRB;
break;
case 7:
v |= ESS_IS_INTRC;
break;
case 9:
v |= ESS_IS_INTRA;
break;
case 10:
v |= ESS_IS_INTRD;
break;
case 15:
v |= ESS_IS_INTRE;
break;
#ifdef DIAGNOSTIC
default:
printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
sc->sc_audio1.irq);
return;
#endif
}
/* Set the IRQ */
ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
return;
}
if (sc->sc_model == ESS_1887) {
/* Tell the 1887 to use the old interrupt method. */
ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
}
if (sc->sc_audio1.polled) {
/* Turn off Audio1 interrupts. */
v = 0;
} else {
/* Configure Audio 1 for the appropriate IRQ line. */
v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
switch (sc->sc_audio1.irq) {
case 5:
v |= ESS_IRQ_CTRL_INTRB;
break;
case 7:
v |= ESS_IRQ_CTRL_INTRC;
break;
case 9:
v |= ESS_IRQ_CTRL_INTRA;
break;
case 10:
v |= ESS_IRQ_CTRL_INTRD;
break;
#ifdef DIAGNOSTIC
default:
printf("ess: configured irq %d not supported for Audio 1\n",
sc->sc_audio1.irq);
return;
#endif
}
}
ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
if (ESS_USE_AUDIO1(sc->sc_model))
return;
if (sc->sc_audio2.polled) {
/* Turn off Audio2 interrupts. */
ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
} else {
/* Audio2 is hardwired to INTRE in this mode. */
ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
}
}
void
ess_config_drq(struct ess_softc *sc)
{
int v;
DPRINTFN(2,("ess_config_drq\n"));
/* Configure Audio 1 (record) for DMA on the appropriate channel. */
v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
switch (sc->sc_audio1.drq) {
case 0:
v |= ESS_DRQ_CTRL_DRQA;
break;
case 1:
v |= ESS_DRQ_CTRL_DRQB;
break;
case 3:
v |= ESS_DRQ_CTRL_DRQC;
break;
#ifdef DIAGNOSTIC
default:
printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
sc->sc_audio1.drq);
return;
#endif
}
/* Set DRQ1 */
ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
if (ESS_USE_AUDIO1(sc->sc_model))
return;
/* Configure DRQ2 */
v = ESS_AUDIO2_CTRL3_DRQ_PD;
switch (sc->sc_audio2.drq) {
case 0:
v |= ESS_AUDIO2_CTRL3_DRQA;
break;
case 1:
v |= ESS_AUDIO2_CTRL3_DRQB;
break;
case 3:
v |= ESS_AUDIO2_CTRL3_DRQC;
break;
case 5:
v |= ESS_AUDIO2_CTRL3_DRQD;
break;
#ifdef DIAGNOSTIC
default:
printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
sc->sc_audio2.drq);
return;
#endif
}
ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
/* Enable DMA 2 */
ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
ESS_AUDIO2_CTRL2_DMA_ENABLE);
}
/*
* Set up registers after a reset.
*/
void
ess_setup(struct ess_softc *sc)
{
ess_config_irq(sc);
ess_config_drq(sc);
DPRINTFN(2,("ess_setup: done\n"));
}
/*
* Determine the model of ESS chip we are talking to. Currently we
* only support ES1888, ES1887 and ES888. The method of determining
* the chip is based on the information on page 27 of the ES1887 data
* sheet.
*
* This routine sets the values of sc->sc_model and sc->sc_version.
*/
int
ess_identify(struct ess_softc *sc)
{
u_char reg1;
u_char reg2;
u_char reg3;
u_int8_t ident[4];
sc->sc_model = ESS_UNSUPPORTED;
sc->sc_version = 0;
memset(ident, 0, sizeof(ident));
/*
* 1. Check legacy ID bytes. These should be 0x68 0x8n, where
* n >= 8 for an ES1887 or an ES888. Other values indicate
* earlier (unsupported) chips.
*/
ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
if ((reg1 = ess_rdsp(sc)) != 0x68) {
printf("ess: First ID byte wrong (0x%02x)\n", reg1);
return 1;
}
reg2 = ess_rdsp(sc);
if (((reg2 & 0xf0) != 0x80) ||
((reg2 & 0x0f) < 8)) {
sc->sc_model = ESS_688;
return 0;
}
/*
* Store the ID bytes as the version.
*/
sc->sc_version = (reg1 << 8) + reg2;
/*
* 2. Verify we can change bit 2 in mixer register 0x64. This
* should be possible on all supported chips.
*/
reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
reg2 = reg1 ^ 0x04; /* toggle bit 2 */
ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
switch (sc->sc_version) {
case 0x688b:
sc->sc_model = ESS_1688;
break;
default:
printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
return 1;
}
return 0;
}
/*
* Restore the original value of mixer register 0x64.
*/
ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
/*
* 3. Verify we can change the value of mixer register
* ESS_MREG_SAMPLE_RATE.
* This is possible on the 1888/1887/888, but not on the 1788.
* It is not necessary to restore the value of this mixer register.
*/
reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
reg2 = reg1 ^ 0xff; /* toggle all bits */
ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
/* If we got this far before failing, it's a 1788. */
sc->sc_model = ESS_1788;
/*
* Identify ESS model for ES18[67]8.
*/
ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
if(ident[0] == 0x18) {
switch(ident[1]) {
case 0x68:
sc->sc_model = ESS_1868;
break;
case 0x78:
sc->sc_model = ESS_1878;
break;
}
}
return 0;
}
/*
* 4. Determine if we can change bit 5 in mixer register 0x64.
* This determines whether we have an ES1887:
*
* - can change indicates ES1887
* - can't change indicates ES1888 or ES888
*/
reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
reg2 = reg1 ^ 0x20; /* toggle bit 5 */
ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
sc->sc_model = ESS_1887;
/*
* Restore the original value of mixer register 0x64.
*/
ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
/*
* Identify ESS model for ES18[67]9.
*/
ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
if(ident[0] == 0x18) {
switch(ident[1]) {
case 0x69:
sc->sc_model = ESS_1869;
break;
case 0x79:
sc->sc_model = ESS_1879;
break;
}
}
return 0;
}
/*
* 5. Determine if we can change the value of mixer
* register 0x69 independently of mixer register
* 0x68. This determines which chip we have:
*
* - can modify idependently indicates ES888
* - register 0x69 is an alias of 0x68 indicates ES1888
*/
reg1 = ess_read_mix_reg(sc, 0x68);
reg2 = ess_read_mix_reg(sc, 0x69);
reg3 = reg2 ^ 0xff; /* toggle all bits */
/*
* Write different values to each register.
*/
ess_write_mix_reg(sc, 0x68, reg2);
ess_write_mix_reg(sc, 0x69, reg3);
if (ess_read_mix_reg(sc, 0x68) == reg2 &&
ess_read_mix_reg(sc, 0x69) == reg3)
sc->sc_model = ESS_888;
else
sc->sc_model = ESS_1888;
/*
* Restore the original value of the registers.
*/
ess_write_mix_reg(sc, 0x68, reg1);
ess_write_mix_reg(sc, 0x69, reg2);
return 0;
}
int
ess_setup_sc(struct ess_softc *sc, int doinit)
{
callout_init(&sc->sc_poll1_ch);
callout_init(&sc->sc_poll2_ch);
/* Reset the chip. */
if (ess_reset(sc) != 0) {
DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
return 1;
}
/* Identify the ESS chip, and check that it is supported. */
if (ess_identify(sc)) {
DPRINTF(("ess_setup_sc: couldn't identify\n"));
return 1;
}
return 0;
}
/*
* Probe for the ESS hardware.
*/
int
essmatch(struct ess_softc *sc)
{
if (!ESS_BASE_VALID(sc->sc_iobase)) {
printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
return 0;
}
if (ess_setup_sc(sc, 1))
return 0;
if (sc->sc_model == ESS_UNSUPPORTED) {
DPRINTF(("ess: Unsupported model\n"));
return 0;
}
/* Check that requested DMA channels are valid and different. */
if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
return 0;
}
if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
return 0;
if (!ESS_USE_AUDIO1(sc->sc_model)) {
if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
return 0;
}
if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
printf("ess: play and record drq both %d\n",
sc->sc_audio1.drq);
return 0;
}
if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
return 0;
}
/*
* The 1887 has an additional IRQ mode where both channels are mapped
* to the same IRQ.
*/
if (sc->sc_model == ESS_1887 &&
sc->sc_audio1.irq == sc->sc_audio2.irq &&
sc->sc_audio1.irq != -1 &&
ESS_IRQ12_VALID(sc->sc_audio1.irq))
goto irq_not1888;
/* Check that requested IRQ lines are valid and different. */
if (sc->sc_audio1.irq != -1 &&
!ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
return 0;
}
if (!ESS_USE_AUDIO1(sc->sc_model)) {
if (sc->sc_audio2.irq != -1 &&
!ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
return 0;
}
if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
sc->sc_audio1.irq != -1) {
printf("ess: play and record irq both %d\n",
sc->sc_audio1.irq);
return 0;
}
}
irq_not1888:
/* XXX should we check IRQs as well? */
return 2; /* beat "sb" */
}
/*
* Attach hardware to driver, attach hardware driver to audio
* pseudo-device driver.
*/
void
essattach(struct ess_softc *sc, int enablejoy)
{
struct audio_attach_args arg;
int i;
u_int v;
if (ess_setup_sc(sc, 0)) {
printf(": setup failed\n");
return;
}
printf(": ESS Technology ES%s [version 0x%04x]\n",
essmodel[sc->sc_model], sc->sc_version);
sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
if (!sc->sc_audio1.polled) {
sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
ess_audio1_intr, sc);
printf("%s: audio1 interrupting at irq %d\n",
sc->sc_dev.dv_xname, sc->sc_audio1.irq);
} else
printf("%s: audio1 polled\n", sc->sc_dev.dv_xname);
sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) {
printf("%s: can't reserve drq %d\n",
sc->sc_dev.dv_xname, sc->sc_audio1.drq);
return;
}
if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
printf("%s: can't create map for drq %d\n",
sc->sc_dev.dv_xname, sc->sc_audio1.drq);
return;
}
if (!ESS_USE_AUDIO1(sc->sc_model)) {
sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
if (!sc->sc_audio2.polled) {
sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
ess_audio2_intr, sc);
printf("%s: audio2 interrupting at irq %d\n",
sc->sc_dev.dv_xname, sc->sc_audio2.irq);
} else
printf("%s: audio2 polled\n", sc->sc_dev.dv_xname);
sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
sc->sc_audio2.drq);
if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) {
printf("%s: can't reserve drq %d\n",
sc->sc_dev.dv_xname, sc->sc_audio2.drq);
return;
}
if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
printf("%s: can't create map for drq %d\n",
sc->sc_dev.dv_xname, sc->sc_audio2.drq);
return;
}
}
/* Do a hardware reset on the mixer. */
ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
/*
* Set volume of Audio 1 to zero and disable Audio 1 DAC input
* to playback mixer, since playback is always through Audio 2.
*/
if (!ESS_USE_AUDIO1(sc->sc_model))
ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
if (ESS_USE_AUDIO1(sc->sc_model)) {
ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
sc->in_port = ESS_SOURCE_MIC;
sc->ndevs = ESS_1788_NDEVS;
} else {
/*
* Set hardware record source to use output of the record
* mixer. We do the selection of record source in software by
* setting the gain of the unused sources to zero. (See
* ess_set_in_ports.)
*/
ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
sc->in_mask = 1 << ESS_MIC_REC_VOL;
sc->ndevs = ESS_1888_NDEVS;
ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
}
/*
* Set gain on each mixer device to a sensible value.
* Devices not normally used are turned off, and other devices
* are set to 50% volume.
*/
for (i = 0; i < sc->ndevs; i++) {
switch (i) {
case ESS_MIC_PLAY_VOL:
case ESS_LINE_PLAY_VOL:
case ESS_CD_PLAY_VOL:
case ESS_AUXB_PLAY_VOL:
case ESS_DAC_REC_VOL:
case ESS_LINE_REC_VOL:
case ESS_SYNTH_REC_VOL:
case ESS_CD_REC_VOL:
case ESS_AUXB_REC_VOL:
v = 0;
break;
default:
v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
break;
}
sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
ess_set_gain(sc, i, 1);
}
ess_setup(sc);
/* Disable the speaker until the device is opened. */
ess_speaker_off(sc);
sc->spkr_state = SPKR_OFF;
snprintf(ess_device.name, sizeof(ess_device.name), "ES%s",
essmodel[sc->sc_model]);
snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x",
sc->sc_version);
if (ESS_USE_AUDIO1(sc->sc_model))
audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
else
audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
arg.type = AUDIODEV_TYPE_OPL;
arg.hwif = 0;
arg.hdl = 0;
(void)config_found(&sc->sc_dev, &arg, audioprint);
#if NJOY_ESS > 0
if (sc->sc_model == ESS_1888 && enablejoy) {
unsigned char m40;
m40 = ess_read_mix_reg(sc, 0x40);
m40 |= 2;
ess_write_mix_reg(sc, 0x40, m40);
arg.type = AUDIODEV_TYPE_AUX;
(void)config_found(&sc->sc_dev, &arg, audioprint);
}
#endif
#ifdef AUDIO_DEBUG
if (essdebug > 0)
ess_printsc(sc);
#endif
}
/*
* Various routines to interface to higher level audio driver
*/
int
ess_open(void *addr, int flags)
{
return 0;
}
void
ess_close(void *addr)
{
struct ess_softc *sc;
sc = addr;
DPRINTF(("ess_close: sc=%p\n", sc));
ess_speaker_off(sc);
sc->spkr_state = SPKR_OFF;
DPRINTF(("ess_close: closed\n"));
}
/*
* Wait for FIFO to drain, and analog section to settle.
* XXX should check FIFO empty bit.
*/
int
ess_drain(void *addr)
{
tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
return 0;
}
/* XXX should use reference count */
int
ess_speaker_ctl(void *addr, int newstate)
{
struct ess_softc *sc;
sc = addr;
if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
ess_speaker_on(sc);
sc->spkr_state = SPKR_ON;
}
if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
ess_speaker_off(sc);
sc->spkr_state = SPKR_OFF;
}
return 0;
}
int
ess_getdev(void *addr, struct audio_device *retp)
{
*retp = ess_device;
return 0;
}
int
ess_query_encoding(void *addr, struct audio_encoding *fp)
{
/*struct ess_softc *sc = addr;*/
switch (fp->index) {
case 0:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR;
fp->precision = 8;
fp->flags = 0;
return 0;
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 2:
strcpy(fp->name, AudioEalaw);
fp->encoding = AUDIO_ENCODING_ALAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 3:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 8;
fp->flags = 0;
return 0;
case 4:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = 0;
return 0;
case 5:
strcpy(fp->name, AudioEulinear_le);
fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
fp->precision = 16;
fp->flags = 0;
return 0;
case 6:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
case 7:
strcpy(fp->name, AudioEulinear_be);
fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return 0;
default:
return EINVAL;
}
return 0;
}
int
ess_set_params(
void *addr,
int setmode, int usemode,
audio_params_t *play, audio_params_t *rec,
stream_filter_list_t *pfil, stream_filter_list_t *rfil)
{
struct ess_softc *sc;
int rate;
DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
sc = addr;
/*
* The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
* full-duplex operation the sample rates must be the same for both
* channels. This appears to be false; the only bit in common is the
* clock source selection. However, we'll be conservative here.
* - mycroft
*/
if (play->sample_rate != rec->sample_rate &&
usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
if (setmode == AUMODE_PLAY) {
rec->sample_rate = play->sample_rate;
setmode |= AUMODE_RECORD;
} else if (setmode == AUMODE_RECORD) {
play->sample_rate = rec->sample_rate;
setmode |= AUMODE_PLAY;
} else
return EINVAL;
}
if (setmode & AUMODE_RECORD) {
if (auconv_set_converter(ess_formats, ESS_NFORMATS,
AUMODE_RECORD, rec, FALSE, rfil) < 0)
return EINVAL;
}
if (setmode & AUMODE_PLAY) {
if (auconv_set_converter(ess_formats, ESS_NFORMATS,
AUMODE_PLAY, play, FALSE, pfil) < 0)
return EINVAL;
}
if (usemode == AUMODE_RECORD)
rate = rec->sample_rate;
else
rate = play->sample_rate;
ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
if (!ESS_USE_AUDIO1(sc->sc_model)) {
ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
}
return 0;
}
int
ess_audio1_trigger_output(
void *addr,
void *start, void *end,
int blksize,
void (*intr)(void *),
void *arg,
const audio_params_t *param)
{
struct ess_softc *sc;
u_int8_t reg;
sc = addr;
DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p "
"blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
if (sc->sc_audio1.active)
panic("ess_audio1_trigger_output: already running");
sc->sc_audio1.active = 1;
sc->sc_audio1.intr = intr;
sc->sc_audio1.arg = arg;
if (sc->sc_audio1.polled) {
sc->sc_audio1.dmapos = 0;
sc->sc_audio1.buffersize = (char *)end - (char *)start;
sc->sc_audio1.dmacount = 0;
sc->sc_audio1.blksize = blksize;
callout_reset(&sc->sc_poll1_ch, hz / 30,
ess_audio1_poll, sc);
}
reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
if (param->channels == 2) {
reg &= ~ESS_AUDIO_CTRL_MONO;
reg |= ESS_AUDIO_CTRL_STEREO;
} else {
reg |= ESS_AUDIO_CTRL_MONO;
reg &= ~ESS_AUDIO_CTRL_STEREO;
}
ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
if (param->precision == 16)
reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
else
reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
if (param->channels == 2)
reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
else
reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
param->encoding == AUDIO_ENCODING_SLINEAR_LE)
reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
else
reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
(char *)end - (char *)start, NULL,
DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
/* Program transfer count registers with 2's complement of count. */
blksize = -blksize;
ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
/* Use 4 bytes per output DMA. */
ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
/* Start auto-init DMA */
ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
return 0;
}
int
ess_audio2_trigger_output(
void *addr,
void *start, void *end,
int blksize,
void (*intr)(void *),
void *arg,
const audio_params_t *param)
{
struct ess_softc *sc;
u_int8_t reg;
sc = addr;
DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p "
"blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
if (sc->sc_audio2.active)
panic("ess_audio2_trigger_output: already running");
sc->sc_audio2.active = 1;
sc->sc_audio2.intr = intr;
sc->sc_audio2.arg = arg;
if (sc->sc_audio2.polled) {
sc->sc_audio2.dmapos = 0;
sc->sc_audio2.buffersize = (char *)end - (char *)start;
sc->sc_audio2.dmacount = 0;
sc->sc_audio2.blksize = blksize;
callout_reset(&sc->sc_poll2_ch, hz / 30,
ess_audio2_poll, sc);
}
reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
if (param->precision == 16)
reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
else
reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
if (param->channels == 2)
reg |= ESS_AUDIO2_CTRL2_CHANNELS;
else
reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
param->encoding == AUDIO_ENCODING_SLINEAR_LE)
reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
else
reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
(char *)end - (char *)start, NULL,
DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
if (IS16BITDRQ(sc->sc_audio2.drq))
blksize >>= 1; /* use word count for 16 bit DMA */
/* Program transfer count registers with 2's complement of count. */
blksize = -blksize;
ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
if (IS16BITDRQ(sc->sc_audio2.drq))
reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
else
reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
ESS_AUDIO2_CTRL1_AUTO_INIT;
ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
return (0);
}
int
ess_audio1_trigger_input(
void *addr,
void *start, void *end,
int blksize,
void (*intr)(void *),
void *arg,
const audio_params_t *param)
{
struct ess_softc *sc;
u_int8_t reg;
sc = addr;
DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p "
"blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
if (sc->sc_audio1.active)
panic("ess_audio1_trigger_input: already running");
sc->sc_audio1.active = 1;
sc->sc_audio1.intr = intr;
sc->sc_audio1.arg = arg;
if (sc->sc_audio1.polled) {
sc->sc_audio1.dmapos = 0;
sc->sc_audio1.buffersize = (char *)end - (char *)start;
sc->sc_audio1.dmacount = 0;
sc->sc_audio1.blksize = blksize;
callout_reset(&sc->sc_poll1_ch, hz / 30,
ess_audio1_poll, sc);
}
reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
if (param->channels == 2) {
reg &= ~ESS_AUDIO_CTRL_MONO;
reg |= ESS_AUDIO_CTRL_STEREO;
} else {
reg |= ESS_AUDIO_CTRL_MONO;
reg &= ~ESS_AUDIO_CTRL_STEREO;
}
ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
if (param->precision == 16)
reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
else
reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
if (param->channels == 2)
reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
else
reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
param->encoding == AUDIO_ENCODING_SLINEAR_LE)
reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
else
reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
(char *)end - (char *)start, NULL,
DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
/* Program transfer count registers with 2's complement of count. */
blksize = -blksize;
ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
/* Use 4 bytes per input DMA. */
ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
/* Start auto-init DMA */
ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
return 0;
}
int
ess_audio1_halt(void *addr)
{
struct ess_softc *sc;
sc = addr;
DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
if (sc->sc_audio1.active) {
ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
ESS_AUDIO1_CTRL2_FIFO_ENABLE);
isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
if (sc->sc_audio1.polled)
callout_stop(&sc->sc_poll1_ch);
sc->sc_audio1.active = 0;
}
return 0;
}
int
ess_audio2_halt(void *addr)
{
struct ess_softc *sc;
sc = addr;
DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
if (sc->sc_audio2.active) {
ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
ESS_AUDIO2_CTRL1_DAC_ENABLE |
ESS_AUDIO2_CTRL1_FIFO_ENABLE);
isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
if (sc->sc_audio2.polled)
callout_stop(&sc->sc_poll2_ch);
sc->sc_audio2.active = 0;
}
return 0;
}
int
ess_audio1_intr(void *arg)
{
struct ess_softc *sc;
uint8_t reg;
sc = arg;
DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
/* Check and clear interrupt on Audio1. */
reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
if ((reg & ESS_DSP_READ_OFLOW) == 0)
return 0;
reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
sc->sc_audio1.nintr++;
if (sc->sc_audio1.active) {
(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
return 1;
} else
return 0;
}
int
ess_audio2_intr(void *arg)
{
struct ess_softc *sc;
uint8_t reg;
sc = arg;
DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
/* Check and clear interrupt on Audio2. */
reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
return 0;
reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
sc->sc_audio2.nintr++;
if (sc->sc_audio2.active) {
(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
return 1;
} else
return 0;
}
void
ess_audio1_poll(void *addr)
{
struct ess_softc *sc;
int dmapos, dmacount;
sc = addr;
if (!sc->sc_audio1.active)
return;
sc->sc_audio1.nintr++;
dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
dmacount = sc->sc_audio1.dmapos - dmapos;
if (dmacount < 0)
dmacount += sc->sc_audio1.buffersize;
sc->sc_audio1.dmapos = dmapos;
#if 1
dmacount += sc->sc_audio1.dmacount;
while (dmacount > sc->sc_audio1.blksize) {
dmacount -= sc->sc_audio1.blksize;
(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
}
sc->sc_audio1.dmacount = dmacount;
#else
(*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
#endif
callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
}
void
ess_audio2_poll(void *addr)
{
struct ess_softc *sc;
int dmapos, dmacount;
sc = addr;
if (!sc->sc_audio2.active)
return;
sc->sc_audio2.nintr++;
dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
dmacount = sc->sc_audio2.dmapos - dmapos;
if (dmacount < 0)
dmacount += sc->sc_audio2.buffersize;
sc->sc_audio2.dmapos = dmapos;
#if 1
dmacount += sc->sc_audio2.dmacount;
while (dmacount > sc->sc_audio2.blksize) {
dmacount -= sc->sc_audio2.blksize;
(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
}
sc->sc_audio2.dmacount = dmacount;
#else
(*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
#endif
callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
}
int
ess_round_blocksize(void *addr, int blk, int mode, const audio_params_t *param)
{
return blk & -8; /* round for max DMA size */
}
int
ess_set_port(void *addr, mixer_ctrl_t *cp)
{
struct ess_softc *sc;
int lgain, rgain;
sc = addr;
DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
cp->dev, cp->un.value.num_channels));
switch (cp->dev) {
/*
* The following mixer ports are all stereo. If we get a
* single-channel gain value passed in, then we duplicate it
* to both left and right channels.
*/
case ESS_MASTER_VOL:
case ESS_DAC_PLAY_VOL:
case ESS_MIC_PLAY_VOL:
case ESS_LINE_PLAY_VOL:
case ESS_SYNTH_PLAY_VOL:
case ESS_CD_PLAY_VOL:
case ESS_AUXB_PLAY_VOL:
case ESS_RECORD_VOL:
if (cp->type != AUDIO_MIXER_VALUE)
return EINVAL;
switch (cp->un.value.num_channels) {
case 1:
lgain = rgain = ESS_4BIT_GAIN(
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
break;
case 2:
lgain = ESS_4BIT_GAIN(
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
rgain = ESS_4BIT_GAIN(
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
break;
default:
return EINVAL;
}
sc->gain[cp->dev][ESS_LEFT] = lgain;
sc->gain[cp->dev][ESS_RIGHT] = rgain;
ess_set_gain(sc, cp->dev, 1);
return 0;
/*
* The PC speaker port is mono. If we get a stereo gain value
* passed in, then we return EINVAL.
*/
case ESS_PCSPEAKER_VOL:
if (cp->un.value.num_channels != 1)
return EINVAL;
sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
ess_set_gain(sc, cp->dev, 1);
return 0;
case ESS_RECORD_SOURCE:
if (ESS_USE_AUDIO1(sc->sc_model)) {
if (cp->type == AUDIO_MIXER_ENUM)
return ess_set_in_port(sc, cp->un.ord);
else
return EINVAL;
} else {
if (cp->type == AUDIO_MIXER_SET)
return ess_set_in_ports(sc, cp->un.mask);
else
return EINVAL;
}
return 0;
case ESS_RECORD_MONITOR:
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
if (cp->un.ord)
/* Enable monitor */
ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
ESS_AUDIO_CTRL_MONITOR);
else
/* Disable monitor */
ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
ESS_AUDIO_CTRL_MONITOR);
return 0;
}
if (ESS_USE_AUDIO1(sc->sc_model))
return EINVAL;
switch (cp->dev) {
case ESS_DAC_REC_VOL:
case ESS_MIC_REC_VOL:
case ESS_LINE_REC_VOL:
case ESS_SYNTH_REC_VOL:
case ESS_CD_REC_VOL:
case ESS_AUXB_REC_VOL:
if (cp->type != AUDIO_MIXER_VALUE)
return EINVAL;
switch (cp->un.value.num_channels) {
case 1:
lgain = rgain = ESS_4BIT_GAIN(
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
break;
case 2:
lgain = ESS_4BIT_GAIN(
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
rgain = ESS_4BIT_GAIN(
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
break;
default:
return EINVAL;
}
sc->gain[cp->dev][ESS_LEFT] = lgain;
sc->gain[cp->dev][ESS_RIGHT] = rgain;
ess_set_gain(sc, cp->dev, 1);
return 0;
case ESS_MIC_PREAMP:
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
if (cp->un.ord)
/* Enable microphone preamp */
ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
ESS_PREAMP_CTRL_ENABLE);
else
/* Disable microphone preamp */
ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
ESS_PREAMP_CTRL_ENABLE);
return 0;
}
return EINVAL;
}
int
ess_get_port(void *addr, mixer_ctrl_t *cp)
{
struct ess_softc *sc;
sc = addr;
DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
switch (cp->dev) {
case ESS_MASTER_VOL:
case ESS_DAC_PLAY_VOL:
case ESS_MIC_PLAY_VOL:
case ESS_LINE_PLAY_VOL:
case ESS_SYNTH_PLAY_VOL:
case ESS_CD_PLAY_VOL:
case ESS_AUXB_PLAY_VOL:
case ESS_RECORD_VOL:
switch (cp->un.value.num_channels) {
case 1:
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
sc->gain[cp->dev][ESS_LEFT];
break;
case 2:
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
sc->gain[cp->dev][ESS_LEFT];
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
sc->gain[cp->dev][ESS_RIGHT];
break;
default:
return EINVAL;
}
return 0;
case ESS_PCSPEAKER_VOL:
if (cp->un.value.num_channels != 1)
return EINVAL;
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
sc->gain[cp->dev][ESS_LEFT];
return 0;
case ESS_RECORD_SOURCE:
if (ESS_USE_AUDIO1(sc->sc_model))
cp->un.ord = sc->in_port;
else
cp->un.mask = sc->in_mask;
return 0;
case ESS_RECORD_MONITOR:
cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
return 0;
}
if (ESS_USE_AUDIO1(sc->sc_model))
return EINVAL;
switch (cp->dev) {
case ESS_DAC_REC_VOL:
case ESS_MIC_REC_VOL:
case ESS_LINE_REC_VOL:
case ESS_SYNTH_REC_VOL:
case ESS_CD_REC_VOL:
case ESS_AUXB_REC_VOL:
switch (cp->un.value.num_channels) {
case 1:
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
sc->gain[cp->dev][ESS_LEFT];
break;
case 2:
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
sc->gain[cp->dev][ESS_LEFT];
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
sc->gain[cp->dev][ESS_RIGHT];
break;
default:
return EINVAL;
}
return 0;
case ESS_MIC_PREAMP:
cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
return 0;
}
return EINVAL;
}
int
ess_query_devinfo(void *addr, mixer_devinfo_t *dip)
{
struct ess_softc *sc;
sc = addr;
DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
sc->sc_model, dip->index));
/*
* REVISIT: There are some slight differences between the
* mixers on the different ESS chips, which can
* be sorted out using the chip model rather than a
* separate mixer model.
* This is currently coded assuming an ES1887; we
* need to work out which bits are not applicable to
* the other models (1888 and 888).
*/
switch (dip->index) {
case ESS_DAC_PLAY_VOL:
dip->mixer_class = ESS_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNdac);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_MIC_PLAY_VOL:
dip->mixer_class = ESS_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
if (ESS_USE_AUDIO1(sc->sc_model))
dip->next = AUDIO_MIXER_LAST;
else
dip->next = ESS_MIC_PREAMP;
strcpy(dip->label.name, AudioNmicrophone);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_LINE_PLAY_VOL:
dip->mixer_class = ESS_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNline);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_SYNTH_PLAY_VOL:
dip->mixer_class = ESS_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNfmsynth);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_CD_PLAY_VOL:
dip->mixer_class = ESS_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNcd);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_AUXB_PLAY_VOL:
dip->mixer_class = ESS_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "auxb");
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_INPUT_CLASS:
dip->mixer_class = ESS_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCinputs);
dip->type = AUDIO_MIXER_CLASS;
return 0;
case ESS_MASTER_VOL:
dip->mixer_class = ESS_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmaster);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_PCSPEAKER_VOL:
dip->mixer_class = ESS_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "pc_speaker");
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_OUTPUT_CLASS:
dip->mixer_class = ESS_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCoutputs);
dip->type = AUDIO_MIXER_CLASS;
return 0;
case ESS_RECORD_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNrecord);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_RECORD_SOURCE:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNsource);
if (ESS_USE_AUDIO1(sc->sc_model)) {
/*
* The 1788 doesn't use the input mixer control that
* the 1888 uses, because it's a pain when you only
* have one mixer.
* Perhaps it could be emulated by keeping both sets of
* gain values, and doing a `context switch' of the
* mixer registers when shifting from playing to
* recording.
*/
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 4;
strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
dip->un.e.member[0].ord = ESS_SOURCE_MIC;
strcpy(dip->un.e.member[1].label.name, AudioNline);
dip->un.e.member[1].ord = ESS_SOURCE_LINE;
strcpy(dip->un.e.member[2].label.name, AudioNcd);
dip->un.e.member[2].ord = ESS_SOURCE_CD;
strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
} else {
dip->type = AUDIO_MIXER_SET;
dip->un.s.num_mem = 6;
strcpy(dip->un.s.member[0].label.name, AudioNdac);
dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
strcpy(dip->un.s.member[2].label.name, AudioNline);
dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
strcpy(dip->un.s.member[4].label.name, AudioNcd);
dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
strcpy(dip->un.s.member[5].label.name, "auxb");
dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
}
return 0;
case ESS_RECORD_CLASS:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCrecord);
dip->type = AUDIO_MIXER_CLASS;
return 0;
case ESS_RECORD_MONITOR:
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmute);
dip->type = AUDIO_MIXER_ENUM;
dip->mixer_class = ESS_MONITOR_CLASS;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
return 0;
case ESS_MONITOR_CLASS:
dip->mixer_class = ESS_MONITOR_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCmonitor);
dip->type = AUDIO_MIXER_CLASS;
return 0;
}
if (ESS_USE_AUDIO1(sc->sc_model))
return ENXIO;
switch (dip->index) {
case ESS_DAC_REC_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNdac);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_MIC_REC_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmicrophone);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_LINE_REC_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNline);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_SYNTH_REC_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNfmsynth);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_CD_REC_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNcd);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_AUXB_REC_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "auxb");
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case ESS_MIC_PREAMP:
dip->mixer_class = ESS_INPUT_CLASS;
dip->prev = ESS_MIC_PLAY_VOL;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNpreamp);
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
return 0;
}
return ENXIO;
}
void *
ess_malloc(void *addr, int direction, size_t size,
struct malloc_type *pool, int flags)
{
struct ess_softc *sc;
int drq;
sc = addr;
if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
drq = sc->sc_audio2.drq;
else
drq = sc->sc_audio1.drq;
return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
}
void
ess_free(void *addr, void *ptr, struct malloc_type *pool)
{
isa_free(ptr, pool);
}
size_t
ess_round_buffersize(void *addr, int direction, size_t size)
{
struct ess_softc *sc;
bus_size_t maxsize;
sc = addr;
if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
maxsize = sc->sc_audio2.maxsize;
else
maxsize = sc->sc_audio1.maxsize;
if (size > maxsize)
size = maxsize;
return size;
}
paddr_t
ess_mappage(void *addr, void *mem, off_t off, int prot)
{
return isa_mappage(mem, off, prot);
}
int
ess_1788_get_props(void *addr)
{
return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT;
}
int
ess_1888_get_props(void *addr)
{
return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
}
/* ============================================
* Generic functions for ess, not used by audio h/w i/f
* =============================================
*/
/*
* Reset the chip.
* Return non-zero if the chip isn't detected.
*/
int
ess_reset(struct ess_softc *sc)
{
bus_space_tag_t iot;
bus_space_handle_t ioh;
iot = sc->sc_iot;
ioh = sc->sc_ioh;
sc->sc_audio1.active = 0;
sc->sc_audio2.active = 0;
EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
delay(10000); /* XXX shouldn't delay so long */
EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
if (ess_rdsp(sc) != ESS_MAGIC)
return 1;
/* Enable access to the ESS extension commands. */
ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
return 0;
}
void
ess_set_gain(struct ess_softc *sc, int port, int on)
{
int gain, left, right;
int mix;
int src;
int stereo;
/*
* Most gain controls are found in the mixer registers and
* are stereo. Any that are not, must set mix and stereo as
* required.
*/
mix = 1;
stereo = 1;
switch (port) {
case ESS_MASTER_VOL:
src = ESS_MREG_VOLUME_MASTER;
break;
case ESS_DAC_PLAY_VOL:
if (ESS_USE_AUDIO1(sc->sc_model))
src = ESS_MREG_VOLUME_VOICE;
else
src = 0x7C;
break;
case ESS_MIC_PLAY_VOL:
src = ESS_MREG_VOLUME_MIC;
break;
case ESS_LINE_PLAY_VOL:
src = ESS_MREG_VOLUME_LINE;
break;
case ESS_SYNTH_PLAY_VOL:
src = ESS_MREG_VOLUME_SYNTH;
break;
case ESS_CD_PLAY_VOL:
src = ESS_MREG_VOLUME_CD;
break;
case ESS_AUXB_PLAY_VOL:
src = ESS_MREG_VOLUME_AUXB;
break;
case ESS_PCSPEAKER_VOL:
src = ESS_MREG_VOLUME_PCSPKR;
stereo = 0;
break;
case ESS_DAC_REC_VOL:
src = 0x69;
break;
case ESS_MIC_REC_VOL:
src = 0x68;
break;
case ESS_LINE_REC_VOL:
src = 0x6E;
break;
case ESS_SYNTH_REC_VOL:
src = 0x6B;
break;
case ESS_CD_REC_VOL:
src = 0x6A;
break;
case ESS_AUXB_REC_VOL:
src = 0x6C;
break;
case ESS_RECORD_VOL:
src = ESS_XCMD_VOLIN_CTRL;
mix = 0;
break;
default:
return;
}
/* 1788 doesn't have a separate recording mixer */
if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
return;
if (on) {
left = sc->gain[port][ESS_LEFT];
right = sc->gain[port][ESS_RIGHT];
} else {
left = right = 0;
}
if (stereo)
gain = ESS_STEREO_GAIN(left, right);
else
gain = ESS_MONO_GAIN(left);
if (mix)
ess_write_mix_reg(sc, src, gain);
else
ess_write_x_reg(sc, src, gain);
}
/* Set the input device on devices without an input mixer. */
int
ess_set_in_port(struct ess_softc *sc, int ord)
{
mixer_devinfo_t di;
int i;
DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
/*
* Get the device info for the record source control,
* including the list of available sources.
*/
di.index = ESS_RECORD_SOURCE;
if (ess_query_devinfo(sc, &di))
return EINVAL;
/* See if the given ord value was anywhere in the list. */
for (i = 0; i < di.un.e.num_mem; i++) {
if (ord == di.un.e.member[i].ord)
break;
}
if (i == di.un.e.num_mem)
return EINVAL;
ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
sc->in_port = ord;
return 0;
}
/* Set the input device levels on input-mixer-enabled devices. */
int
ess_set_in_ports(struct ess_softc *sc, int mask)
{
mixer_devinfo_t di;
int i, port;
DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
/*
* Get the device info for the record source control,
* including the list of available sources.
*/
di.index = ESS_RECORD_SOURCE;
if (ess_query_devinfo(sc, &di))
return EINVAL;
/*
* Set or disable the record volume control for each of the
* possible sources.
*/
for (i = 0; i < di.un.s.num_mem; i++) {
/*
* Calculate the source port number from its mask.
*/
port = ffs(di.un.s.member[i].mask);
/*
* Set the source gain:
* to the current value if source is enabled
* to zero if source is disabled
*/
ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
}
sc->in_mask = mask;
return 0;
}
void
ess_speaker_on(struct ess_softc *sc)
{
/* Unmute the DAC. */
ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
}
void
ess_speaker_off(struct ess_softc *sc)
{
/* Mute the DAC. */
ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
}
/*
* Calculate the time constant for the requested sampling rate.
*/
u_int
ess_srtotc(u_int rate)
{
u_int tc;
/* The following formulae are from the ESS data sheet. */
if (rate <= 22050)
tc = 128 - 397700L / rate;
else
tc = 256 - 795500L / rate;
return tc;
}
/*
* Calculate the filter constant for the reuqested sampling rate.
*/
u_int
ess_srtofc(u_int rate)
{
/*
* The following formula is derived from the information in
* the ES1887 data sheet, based on a roll-off frequency of
* 87%.
*/
return 256 - 200279L / rate;
}
/*
* Return the status of the DSP.
*/
u_char
ess_get_dsp_status(struct ess_softc *sc)
{
return EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
}
/*
* Return the read status of the DSP: 1 -> DSP ready for reading
* 0 -> DSP not ready for reading
*/
u_char
ess_dsp_read_ready(struct ess_softc *sc)
{
return (ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0;
}
/*
* Return the write status of the DSP: 1 -> DSP ready for writing
* 0 -> DSP not ready for writing
*/
u_char
ess_dsp_write_ready(struct ess_softc *sc)
{
return (ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1;
}
/*
* Read a byte from the DSP.
*/
int
ess_rdsp(struct ess_softc *sc)
{
bus_space_tag_t iot;
bus_space_handle_t ioh;
int i;
iot = sc->sc_iot;
ioh = sc->sc_ioh;
for (i = ESS_READ_TIMEOUT; i > 0; --i) {
if (ess_dsp_read_ready(sc)) {
i = EREAD1(iot, ioh, ESS_DSP_READ);
DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
return i;
} else
delay(10);
}
DPRINTF(("ess_rdsp: timed out\n"));
return -1;
}
/*
* Write a byte to the DSP.
*/
int
ess_wdsp(struct ess_softc *sc, u_char v)
{
bus_space_tag_t iot;
bus_space_handle_t ioh;
int i;
DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
iot = sc->sc_iot;
ioh = sc->sc_ioh;
for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
if (ess_dsp_write_ready(sc)) {
EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
return 0;
} else
delay(10);
}
DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
return -1;
}
/*
* Write a value to one of the ESS extended registers.
*/
int
ess_write_x_reg(struct ess_softc *sc, u_char reg, u_char val)
{
int error;
DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
if ((error = ess_wdsp(sc, reg)) == 0)
error = ess_wdsp(sc, val);
return error;
}
/*
* Read the value of one of the ESS extended registers.
*/
u_char
ess_read_x_reg(struct ess_softc *sc, u_char reg)
{
int error;
int val;
if ((error = ess_wdsp(sc, 0xC0)) == 0)
error = ess_wdsp(sc, reg);
if (error)
DPRINTF(("Error reading extended register 0x%02x\n", reg));
/* REVISIT: what if an error is returned above? */
val = ess_rdsp(sc);
DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
return val;
}
void
ess_clear_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
{
if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
DPRINTF(("Error clearing bits in extended register 0x%02x\n",
reg));
}
void
ess_set_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
{
if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
DPRINTF(("Error setting bits in extended register 0x%02x\n",
reg));
}
/*
* Write a value to one of the ESS mixer registers.
*/
void
ess_write_mix_reg(struct ess_softc *sc, u_char reg, u_char val)
{
bus_space_tag_t iot;
bus_space_handle_t ioh;
int s;
DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
iot = sc->sc_iot;
ioh = sc->sc_ioh;
s = splaudio();
EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
splx(s);
}
/*
* Read the value of one of the ESS mixer registers.
*/
u_char
ess_read_mix_reg(struct ess_softc *sc, u_char reg)
{
bus_space_tag_t iot;
bus_space_handle_t ioh;
int s;
u_char val;
iot = sc->sc_iot;
ioh = sc->sc_ioh;
s = splaudio();
EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
splx(s);
DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
return val;
}
void
ess_clear_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
{
ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
}
void
ess_set_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
{
ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
}
void
ess_read_multi_mix_reg(struct ess_softc *sc, u_char reg,
uint8_t *datap, bus_size_t count)
{
bus_space_tag_t iot;
bus_space_handle_t ioh;
int s;
iot = sc->sc_iot;
ioh = sc->sc_ioh;
s = splaudio();
EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
splx(s);
}